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PERIODIC COHOMOLOGY

W.H. MANNAN

(communicated by Graham Ellis)

Abstract
We remark that a very short proof of an elementary result

concerning cohomological periods is implicit in the existing lit-
erature. As a corollary we show that given a finitely generated
stably free resolution of the integers over a finite group, two of
its modules are free.

1. Introduction

The study of periodic cohomology over finite groups closely relates to free group
actions on spheres (see, for example, [3]). This in part contributes to the importance
of the classification of finite groups with periodic cohomology (see [4] and [6]).

A much simpler classification is the classification of groups which specifically have
cohomological period 2. They must be cyclic. Although well-known, the proof in
the literature (see [5]) is disproportionately technical, involving the methods used in
more general classifications of periodic cohomology. This includes considering poten-
tial Sylow p-subgroups and finding normal complements. We deduce a direct proof
from the characterization of periodic cohomology in [1]. This avoids such technical
difficulties.

In §2 we use this result to prove a result regarding finite stably free resolutions of
Z over finite groups:

Theorem A. Let G be a finite group and suppose we have a finitely generated stably
free resolution over G:

· · · d3→ S2
d2→ S1

d1→ S0 → Z.

Then S1 and S2 are free.

The chain complex associated to the universal cover of a cell complex may be
regarded as an algebraic complex over the fundamental group. In particular, if the
cell complex is finite and 2-dimensional, then one obtains a truncated free finite
resolution of Z. The classification of these homotopy types is of particular interest
due to its relation to Wall’s D2 problem (see the introduction to [1]).

Although the modules in these complexes are free, algebraic surgery may leave
some modules potentially only stably free. From the point of view of classification, it
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is useful to know that these modules will still be free (in particular, as the maps may
then be represented by matrices). Over finite groups, Theorem A does just that.

2. Cohomological period

We follow the characterization of cohomological period in [1] by saying that n > 0
is a (cohomological) period of a finite group G if one of the following equivalent
conditions holds (see [1, §40], P1(n), P3(n), P4(n)):

C1(n): Dn+k(Z) ∼= Dk(Z) for all integers k. (Dn denotes the nth iteration of John-
son’s “derived functor”, defined in [1, §20]. In particular, Ĥan+k(G;Z) ∼=
Ĥbn+k(G;Z) for all a, b, k ∈ Z.)

C2(n): There exists an exact sequence of the form

0 → Z→ Pn−1 → · · · → P0 → Z→ 0,

where the Pi, i = 0, . . . , n− 1, are projective.
C3(n): Ĥn(G;Z) ∼= Z/|G|.

Note that C1(n) implies Hn−1(G;Z) ∼= Ĥ−n(G;Z) ∼= Ĥn(G;Z). Hence, if n is a
period of G, then Hn−1(G;Z) ∼= Z/|G|.
Theorem 2.1. If 2 is a period of a finite group G, then G is cyclic.

Proof. G/G′ ∼= H1(G;Z) ∼= Z/|G|, which has the same order as G so G ∼= G/G′.

3. Stably free resolutions

Before using Theorem 2.1 to prove Theorem A, we note the following restriction
on stably free modules over finite groups:

Proposition 3.1. Any stably free module of finite Z[G]-rank greater than one is free.

Proof. Z[G]⊕ Z[G] is an Eichler lattice so the result follows from [1, Thm. 15.1].

Proof of Theorem A. Suppose one of S1 or S2 is not free and let K = ker(d1). We
have an exact sequence:

0 → K → S1
d1→ S0 → Z→ 0. (1)

Consideration of ranks and nullities implies rkZ(K) ≡ 1 mod |G|.
K is a submodule of S1 and d2 induces a surjection S2 → K. Hence,

rkZ(K) 6 rkZ(S1), rkZ(S2).

By Proposition 3.1, we have rkZ(S1) 6 |G| or rkZ(S2) 6 |G|, so either way rkZ(K) = 1.
Tensoring (1) with Q yields the exact sequence

0 → K ⊗Q→ Q[G]a → Q[G]b → Q→ 0.

By the “Whitehead Trick”, K ⊗Q⊕Q[G]b ∼= Q⊕Q[G]a as Q[G]- modules. Consid-
eration of dimension over Q implies a = b, so cancelation gives K ⊗Q ∼= Q. In par-
ticular, the G-action on K ⊗Q is trivial. Hence the G-action on K is trivial and we
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have K ∼= Z. We therefore have an exact sequence

0 → Z→ S1
d1→ S0 → Z→ 0.

Hence G satisfies C2(2) and is cyclic by Theorem 2.1.
Any finitely generated stably free module over a cyclic group is free (see [1, Propo-

sition 15.7]). So, in particular, S1 and S2 are free as required.

Note, however, that S0 need not be free. For example, if G is the quaternionic
group Q32, then we have a finitely generated stably free resolution where S0 is not
free (see [2, §4]).
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