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(communicated by Charles Weibel)

Abstract
In this paper, we consider “diagrams of rings”, or functors

from a small category to the category of rings, and the cor-
responding diagrams of groups Ki. Classically, this was initi-
ated by Milnor [13]. The main result of this paper is the direct
comparison of the filtration in classical algebraic K-theory dis-
cussed in [6, 7] to a corresponding filtration in the Bousfield-
Kan spectral sequence associated to a Tot-tower of simplicial
groups attached to the diagram of rings.

1. Introduction

This paper is the initial part of a study of the Bousfield-Kan spectral sequence
associated to certain types of cosimplicial simplicial groups and its relationship to
the work presented in [6, 7]. These relationships are primarily developed in Sections
5 and 6. Much of the remaining sections is expository. Below is an outline of the
paper.

• Sections 2.1–2.3 present notation, definitions and basic results from the liter-
ature. Section 2.4 presents a particular model for computing the homotopy of
Tot1G, for a cosimplicial simplicial group G, which is used in the subsequent
work. Section 2.5 returns to summarize homotopy properties of the construc-
tions used in the paper.

• Section 3 presents a review of the details of the Bousfield-Kan spectral sequence,
discussing particular properties that it possesses when applied to the types of
cosimplicial simplicial groups discussed in the subsequent work. The general
construction of the Bousfield-Kan spectral sequence [4] for any cosimplicial sim-
plicial group X is first outlined and an extension of the spectral sequence is con-
structed for the types of cosimplicial simplicial groups considered in the applica-
tions, remedying the defect of “fringedness” that the general spectral sequence
possesses. When the cosimplicial simplicial group X satisfies the “cofiniteness”
condition of vanishing π∗(NXs) for large s, the spectral sequence converges
strongly to the homotopy groups of Tot(X). The purpose of this is to give
an exposition of a (known) remedy for the defects of the Bousfield-Kan spec-
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tral sequence, found not by passing to the category of spectra but, instead, by
restricting to an appropriate category of cosimplicial simplicial groups.

• Sections 4 through 5.2 provide a review of notation, definitions and results
from [6, 7]. In [7], if R is the inverse limit of a diagram of rings R over a small
category I, then a filtration

F2 ⊆ F1 ⊆ F0 ⊆ K0(R)

is constructed on the classical Grothendieck group K0(R). This filtration
has successive quotients related to the cohomology groups Hi(I,KiR), for
i = 0, 1, 2, and is defined in terms of certain long exact sequences in nonabelian
cohomology.
In [6], given a ring R, a particular model for a simplicial group GR, whose
homotopy groups yield the algebraic K-theory of the ring, is considered, and
explicit natural identifications ξ : Ki(R)→ πiGR are constructed, where Ki(R)
are the classical K-groups of R, for i = 0, 1.

• In Section 5.3, the constructions of Sections 3 through 5.2 are compared, result-
ing in:

Theorem 1.1. There is a homomorphism

j : K0(lim←−I
R)→ π0(Tot(I, GR))

(induced by ξ), and, the inverse image of the filtration given by the extended
Bousfield-Kan spectral sequence

F1,0 ⊆ F0,0 ⊆ π0(Tot(I, GR))

under the homomorphism j contains the filtration

F1 ⊆ F0 ⊆ K0(lim←−I
R).

• In Section 6, the “Mayer-Vietoris” sequence of classical K-theory [13] is viewed
via the constructions of this paper. The main result of this section is

Lemma 1.2. Given a diagram R of rings

R1

↓ f

R2
g→ R12,

yielding a diagram of simplicial groups GR

GR1

↓ Gf

GR2
Gg→ GR12,

such that g is surjective and Gg is a fibration, there is a commuting square

π1(GR12)
D−−−−→ π0(GR1 ×GR12 GR2)

ξ

x ν1∗◦ξ
x

K1(R12)
∂−−−−→ K0(R1 ×R12 R2).
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The bottom arrow in the diagram of the lemma is the connecting homomorphism
of Milnor [13] constructed in classical K-theory, and the top arrow is one coming
from the spectral sequence for the simple example of a pullback diagram of rings.

2. Preliminaries

For the definitions of cosimplicial spaces (i.e., cosimplicial simplicial sets) cosimpli-
cial simplicial groups, simplicial groups and cosimplicial groups, see [4, 8, 12] or [15].
The face, degeneracy, coface and codegeneracy maps will be denoted by using upper
and lower indices: di, sj , d

k, sl.
In the category of simplicial groups, all homotopy groups will be taken using the

identity element as a basepoint.

2.1. The homotopy groups of a simplicial group
If G is a simplicial group, then one can compute the homotopy groups of G in the

following way ([12]): for each t > 1, define

Ḡt = Gt ∩ ker d0 ∩ · · · ∩ ker dt−1;

if t = 0,
Ḡ0 = G0.

Then (Proposition 17.3 from [12]):
(i) dt+1(Ḡt+1)

.= BGt ⊆ Ḡt, t > 0.

(ii) BGt ⊆ ZGt
.= ker dt : Ḡt → Ḡt−1, t > 0.

(iii) BGt is a normal subgroup of both Ḡt and of Gt.
Thus,

· · · dt+2−→ Ḡt+1
dt+1−→ Ḡt

dt−→ Ḡt−1
dt−1−→ · · · →

becomes a chain complex, generally nonabelian. Then one proves that the “homology”
groups of this chain complex are the homotopy groups of the simplicial group G. Note
that πt(G) is an abelian group ([12]) if t > 1, and that π0(G) is a group. The product
in πt(G) may be computed in the following way ([12]): if [g1], [g2] are in πt(G) (where
[g] denotes the coset of the element g), then [g1][g2] = [g1g2].

One can prove the following well-known lemma [15]:

Lemma 2.1. Let f : G→ H be a homomorphism of simplicial groups that is also a
fibration. Define the simplicial group F

.= ker f ; face maps and degeneracy maps are
of course those coming from G. Then
(a) For every t > 1, the induced homomorphism f : Ḡt → H̄t is surjective.
(b) The following is a diagram of exact sequences (NB: if t = 1 the bottom sequence

is not necessarily short exact in that the end arrow may not be surjective!):

0 −−−−→ F̄t −−−−→ Ḡt
f−−−−→ H̄t −−−−→ 0

y dt

y dt

y dt

y
0 −−−−→ F̄t−1 −−−−→ Ḡt−1

f−−−−→ H̄t−1.
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(c) The long exact sequence in homotopy,

· · · δ→ πt(F )→ πt(G)
f∗→ πt(H) δ→ πt−1(F )→ · · · ,

may be constructed with δ defined in the following way: Let [h] ∈ πt(H) (t > 1).
Then there exists an element g ∈ Ḡt such that f(g) = h. Also,

dt(g) ∈ F̄t−1 ∩ ker dt−1.

Define δ([h]) = [dt(g)].
Moreover, all the maps in this long exact sequence are group homomorphisms,
and im(δ : π1(H)→ π0(F )) is a central subgroup of π0(F ).

(d) Conversely: if f̃ is any homomorphism of simplicial groups such that for every
t > 1, the induced homomorphism f̃ : Ḡt → H̄t is surjective, then indeed f̃ is a
fibration.

Consider the following commutative diagram of simplicial groups, where every
row and column are fibration sequences (the maps p and q are fibrations, and we
will regard i, j as inclusion maps of the kernels of the homomorphisms t and p
respectively):

F1
i−−−−→ G1

q−−−−→ H1

j

y j

y j

y
F2

i−−−−→ G2
q−−−−→ H2

p

y p

y p

y
F3

i−−−−→ G3
q−−−−→ H3.

Then, there is a square (for every t > 1) for two connecting homomorphisms δ,∆
defined as in the previous lemma:

πt+1(H3)
∆−−−−→ πt(H1)

δ

y δ

y
πt(F3)

∆−−−−→ πt−1(F1).

We will need the following (also well-known) lemma.

Lemma 2.2. With ∆, δ defined as in the previous lemma, in the above diagram

(∆ ◦ δ)(x) = (δ ◦∆)(x)−1,

for every x ∈ πt+1(H3), and every t > 1.

In this instance, we switch to additive notation, defining −∆ to be the homomor-
phism such that −∆(x) = ∆(x)−1 for every x in the domain of ∆. Note that −∆ is
indeed a homomorphism, since the domain of ∆ is always an abelian group.
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2.2. The cohomotopy groups of a cosimplicial group
Let G be a cosimplicial group. The normalized groups NG∗ are defined by

NGm =
m−1⋂

j=0

ker(sj : Gm → Gm−1)

for m > 1. The group NG0 is defined to be G0.
If µ : G→ H is a homomorphism of cosimplicial groups, then we denote the induced

homomorphisms from NGm → NHm by µ as well.
The zero-th cohomotopy group of G is

π0(G) = {g ∈ NG0 | d0(g) = d1(g)}.
If µ : G→ H is a homomorphism of cosimplicial groups, then the restriction of µ to
π0(G) will be denoted by µ∗.

The first cohomotopy set is defined as follows:
Let

Z1(G) = {g ∈ NG1 | d1(g) = d2(g)d0(g)}.
Z1 is not necessarily a subgroup of NG1, but it does have the identity element 1 of
G1 in it, and is thus considered as a pointed set with basepoint equal to 1.

Now, the group NG0 acts on the set Z1(G) on the right as follows: If g ∈ NG0

and f ∈ Z1(G), then
f · g = d1(g)−1fd0(g).

Define π1(G) to be the set of orbits of the action of NG0 on Z1(G). The set π1(G)
is a pointed set with basepoint equal to the orbit of 1. Notice that the orbit of 1 is a
set in one-to-one correspondence with the coset space NG0/π0(G).

If µ : G→ H is a homomorphism of cosimplicial groups, then µ takes Z1(G) to
Z1(H) since it commutes with the operators di and s0. Since the actions of NG0 and
NH0 on Z1(G) and Z1(H) are defined in terms of the operators di as well, these
actions are equivariant with respect to µ, and thus there is a basepoint preserving
induced function µ∗ : π1(G)→ π1(H).

As far as the higher cohomotopy groups go, we shall only be interested in these if
G is an abelian cosimplicial group.

So, in case G is an abelian cosimplicial group, π1(G) is also an abelian group (with
multiplication induced by that of G) and one may also define higher cohomotopy
groups πi(G) for i > 2; let

Zi(G) = {g ∈ NGi |
i+1∏

j=0

dj(g)(−1)j

= 1}

and let

Bi(G) = {g ∈ NGi | ∃h ∈ NGi−1 � g =
i∏

j=0

dj(h)(−1)j}.

Then, Bi(G) is a subgroup of Zi(G) and we define

πi(G) = Zi(G)/Bi(G).
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Naturally, one has induced homomorphisms µ∗ : πi(G)→ πi(H) for every map of
cosimplicial groups µ : G→ H.

2.3. Constructions from homotopy theory
We give some details of the basic definitions used in the construction of the

Bousfield-Kan spectral sequence. References for this section are [4, 8].
Let ∆ be the cosimplicial space formed by the standard simplices. In other words,

∆i
j = {α : j→ i | α is nondecreasing} .= [j, i];

here, if n > 0 is a nonnegative integer, then

n = {0, 1, . . . , n}
is the set of integers between 0 and n ordered in the usual way.

The simplicial and cosimplicial structure on ∆ is as follows. If τ : i1 → i is a non-
decreasing map, then

τ∗ : ∆i1
j → ∆i

j

is the function

τ∗(α) = τ ◦ α.

If σ : j1 → j is a nondecreasing map, then

σ∗ : ∆i
j → ∆i

j1

is the function

σ∗(α) = α ◦ σ.

If q > 0, then the q-skeleton of ∆ is the cosimplicial space defined by

Skq(∆)n
j = {α ∈ [j,n] | ∃r 6 q, ∃β ∈ [r,n], ∃γ ∈ [j, r] � α = β ◦ γ};

the cosimplicial structure is that coming from ∆. In other words, Skq(∆) is the
subspace of ∆ generated by the simplices of dimension less than or equal to q.

Now, if n and q are fixed nonnegative integers, then we may form the cosimplicial
spaces ∆n ×∆ and ∆n × Skq(∆), defined by

(∆n ×∆)i
j = ∆n

j ×∆i
j , (∆

n × Skq(∆))i
j = ∆n

j × Skq(∆)i
j .

The cosimplicial space structure is described by:
If θ : i1 → i2 is a nondecreasing map, then

θ∗ : ∆n
j ×∆i1

j → ∆n
j ×∆i2

j

is the function

θ∗(α, β) = (α, θ ◦ β),

for every j.
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If τ : j1 → j2 is a nondecreasing map, then

τ∗ : ∆n
j2 ×∆i

j2 → ∆n
j1 ×∆i

j1

is the function

τ∗(α, β) = (α ◦ τ, β ◦ τ),

for every i.

2.3.1. Paths and loops
The first constructions we are interested in are the path and loop constructions. We
outline two models for these constructions; one model is that used for any fibrant
simplicial set, and the second is one used only for simplicial groups.

If G is a simplicial group, it is fibrant as a pointed simplicial set [12]. Thus we
can form the usual path and loop space constructions, defined, in fact, for any fibrant
simplicial set, outlined in the following.

First, for ε = 0, 1, form the simplicial sets HomS(∆ε, G), whose set of n-simplices
is by definition

HomS(∆ε, G)n = homS(∆n ×∆ε, G),

where the right-hand hom-set is the set of maps of simplicial sets (the category of
simplicial sets is denoted by S).

These simplicial sets are simplicial groups under pointwise multiplication of func-
tions.

Then, PG is defined to be the kernel of the homomorphism of simplicial groups

HomS(∆1, G)
(d0)∗→ HomS(∆0, G) ∼= G.

If d0, d1 : ∆0 → ∆1 are the standard coface maps, then the maps (d0)∗ and (d1)∗

from HomS(∆1, G) to HomS(∆0, G) are defined by (dε)∗(g) = g ◦ (1× dε), for ε = 0
or 1.

The homomorphism of simplicial groups

π : PG→ G

is defined to be the composite

PG ↪→ HomS(∆1, G)
(d1)∗→ HomS(∆0, G) ∼= G.

The loop space ΩG is the kernel of π. As is well known ([8]), π is a fibration (of
simplicial groups) whose total space PG is weakly equivalent to a point. The fibration
sequence

ΩG→ PG→ G

is functorial in G as well.
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The long exact sequence of homotopy groups associated to the fibration sequence

ΩG→ PG→ G

yields a natural isomorphism of groups

∆: πi+1(G)→ πi(ΩG)

for every i > 0, since PG is weakly equivalent to a point.
If H is a cosimplicial simplicial group, then for each i > 0, Hi is a simplicial

group and the cofaces and codegeneracies are homomorphisms of simplicial groups
Hα → Hβ for appropriate α and β. Thus, we may form the cosimplicial simplicial
groups PH obtained by using the construction P of the above paragraph on each
simplicial group Hi; the coface and codegeneracy maps are obtained from applying
the functor P to the cofaces and codegeneracies of H. Then, the homomorphisms π
induce a homomorphism π : PH → H of cosimplicial simplicial groups. The kernel
of this homomorphism is exactly the cosimplicial simplicial group ΩH obtained by
using the construction Ω of the above paragraph on each simplicial group Hi, with the
coface and codegeneracy maps obtained from applying the functor Ω to the cofaces
and codegeneracies of H.

The sequence ΩH → PH → H is a fibration sequence in the category of cosimpli-
cial simplicial groups as well.

Another model for the fibration sequence ΩG→ PG→ G for a simplicial group G
is constructed as follows. We use [9] as a reference.

The simplicial group GI is defined by

(GI)q = {(x0, . . . , xq) ∈ Gq+1 × · · · ×Gq+1 | dixi = dixi−1, 1 6 i 6 q},
with face operators

di(x0, . . . , xq) = (di+1x0, . . . , di+1xi−1, dixi+1, . . . , dixq).

The two maps of simplicial groups, for ε = 0, 1

∂ε : GI → G

defined by

∂ε(x0, . . . , xq) =

{
d0x0, ε = 0
dq+1xq, ε = 1

are fibrations. PG is here defined as ker ∂0. Also, the map ∂1 |PG : PG→ G is a
fibration, and ΩG is defined as the kernel of this homomorphism. Then one has (for
a basic reference see [12, Section 6]):

Lemma 2.3. There is an isomorphism φ : Hom(∆1, G)→ GI of simplicial groups,
defined by

φ(c̃) = (. . . , c̃(sk, s0 · · · ŝk · · · si), . . .),
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if c̃ is of degree i. This isomorphism defines an isomorphism of fibrations of simplicial
groups

ΩG
i−−−−→ PG

π−−−−→ G

φ

y φ

y =

y
ΩG

i−−−−→ PG
∂1−−−−→ G.

We will use both models in this paper.

2.3.2. Loopedness
If G is a cosimplicial simplicial group, and if i > 0 is a fixed (cosimplicial) index, then
there is a simplicial group NGi formed by the set of groups {NGi

j | j > 0}. If j > 0 is
a fixed (simplicial) index, then there is a cosimplicial group {πj(Gi) | i > 0}, which is
a subquotient of the cosimplicial group Gj , with cofaces and codegeneracies induced
by those of G.

We will say that a cosimplicial simplicial group G is “looped” if and only if there
is a cosimplicial simplicial group H, and a homomorphism of cosimplicial simplicial
groups θ : G→ ΩH such that θ induces an isomorphism of cosimplicial groups
πj(G)→ πj(ΩH) for every every j > 0. We will say that such a θ is a “simplicial-wise
weak equivalence” of cosimplicial simplicial groups.

There is a suitable category of looped cosimplicial simplicial groups: the objects
are all triples (G, θ,H), where G and H are cosimplicial simplicial groups, and
θ : G→ ΩH is a simplicial-wise weak equivalence; the morphisms are “maps of
triples”. We leave this to the reader to formally write down, but note that the maps
G→ G̃ and H → H̃ comprising a morphism should be homomorphisms of cosimpli-
cial simplicial groups.

Similarly, one can define a “looped” simplicial group, and a category of looped
simplicial groups.

A looped cosimplicial simplicial group has the property that for every j > 0, the
cosimplicial groups πj(G) are abelian cosimplicial groups: for j > 2, this is of course
true for any cosimplicial simplicial set; for j = 1, this is because we have a cosimplicial
simplicial group; for j = 0, this is because we have a looped cosimplicial simplicial
group.

We are interested in the following sort of cosimplicial simplicial group G:
• G is looped: there is a cosimplicial simplicial group H and a simplicial-wise weak

equivalence θ : G→ ΩH that is also a homomorphism of cosimplicial simplicial
groups.

• There exists an integer M > 0 such that the homotopy groups πj(NHi) of the
simplicial groups NHi are equal to the identity group, for every i > M and
every j > 0.

In the rest of this paper, we will call such a (cosimplicial simplicial) group a
“cofinite looped (cosimplicial simplicial) group”.

2.3.3. Tot and Tots

The next constructions we review are those of the simplicial groups TotqG functorially
associated to a cosimplicial simplicial group G (More generally, the Tot constructions
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may be made for any cosimplicial space.)
For each q > 0, the simplicial group TotqG is defined by specifying its n-simplices

as
(TotqG)n = homcS(∆n × Skq(∆), G) .= (HomcS(Skq(∆), G))n;

in other words, (TotqG)n is the set of cosimplicial space maps from ∆n × Skq(∆) to G
(we denote the category of cosimplicial simplicial sets by cS). This set is a group with
respect to pointwise multiplication. If q < 0, define TotqG to be the trivial simplicial
group.

The simplicial set structure on TotqG is described by:
If θ ∈ [n1,n2], then θ∗ : (TotqG)n2 → (TotqG)n1 is

θ∗(f)(α, β) = f(θ ◦ α, β),

for (α, β) ∈ ∆n × Skq(∆). These maps are all group homomorphisms, giving TotqG
the structure of a simplicial group.

Note that one has inclusions of cosimplicial spaces

· · · ⊂ Skq−1(∆) ⊂ Skq(∆) ⊂ · · · ⊂ ∆,

and
∆ =

⋃

q>0

Skq(∆).

The above inclusions induce simplicial group homomorphisms

· · · p→ TotqG
p→ Totq−1G

p→ · · · p→ Tot0G.

We will refer to this tower as the Tot-tower for the simplicial group G. It is func-
torial in G.

According to [4] these maps p are all fibrations of simplicial sets; thus, being
homomorphisms of simplicial groups, they are all also fibrations in the closed model
category of simplicial groups.

The simplicial set Tot(G) can be defined to be the inverse limit of the above tower
of fibrations. One may describe Tot(G) as the simplicial set whose n-simplices is the
set of cosimplicial space maps from ∆n ×∆ to G.

This set is a group with respect to pointwise multiplication. There are natural
homomorphisms of simplicial groups (which are also fibrations) p̃ : Tot(G)→ TotqG,
for every q, giving commuting triangles with the maps p : TotqG→ Totq−1G. Note
that Tot(G), being a group, is always nonempty: the identity element (which is the
constant map at 1 ∈ G) is certainly in Tot(G).

One can compute that the simplicial groups Tot0G and G0 are isomorphic simpli-
cial groups.

The description of Totq above is not so useful in computations; more useful is the
principle below, enunciated in [8], describing how Totq is built from Totq−1, using a
pullback diagram of simplicial groups (where C is a cosimplicial simplicial group):

TotqC −−−−→ Hom(∆q, Cq)

p

y R

y
Totq−1C

r−−−−→ Hom(∂∆q, Cq)×Hom(∆q,M q−1C),
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where the simplicial group Mq−1C is defined for q = 0, 1 by

Mq−1C =

{
1, q = 0
C0, q = 1

and, if q > 1, as the equalizer of the diagram

q−1∏

i=0

Cq−1
A
⇒
B

∏

06i<j6q−1

Cq−2.

Here, A and B are defined by (the lower double subscript denotes that particular
component of the indicated element of the product)

A(y0, . . . , yq−1)ij = siyj ,

B(y0, . . . , yq−1)ij = sj−1yi.

We describe the maps r and R below.
To set notation, if g : X → Y is any map of cosimplicial spaces (i.e., cosimplicial

simplicial sets), then for every cosimplicial index a, the map ga : Xa → Y a is the map
of simplicial sets induced by g, and, for every simplicial index b, the map gb : Xb → Yb

is the map of cosimplicial sets induced by g.
An element f of Totq−1C, let us say of degree t, is a map of cosimplicial spaces

∆t × Skq−1∆→ C. Then, fq is a map of simplicial sets ∆t × (Skq−1∆)q → Cq; thus
it gives a map of simplicial sets ∆t × ∂∆q → Cq; i.e., fq defines a degree t ele-
ment of Hom(∂∆q, Cq). Also, fq−1 is a map of simplicial sets ∆t ×∆q−1 → Cq−1.
Since si : ∆q → ∆q−1 for 0 6 i 6 q − 1, the map fq−1 ◦ (1× si) is a simplicial
map ∆t ×∆q → Cq−1, for 0 6 i 6 q − 1. Then, the map r is defined (in degree t)
by

f 7→ (fq, (fq−1 ◦ (1× s0), . . . , fq−1 ◦ (1× sq−1))).

There is a homomorphism of simplicial groups

θ : Cq →Mq−1C

given by

z 7→ (s0z, . . . , sq−1z).

Then, the map R is defined by

h 7→ (h |∂∆q , θ ◦ h),

for h ∈ Hom(∆q, Cq).

2.4. A computational model for Tot1

We may consider TotqC as a nonabelian chain complex as in Section 2.1, for every
q > 0.

We have already seen that Tot0C is identified with C0; thus the chain complex
Tot0 is identified with the chain complex C

0
.
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2.4.1. Tot1

We may compute Tot1C as the pullback of the diagram

Hom(∆1, C1)
↓

C0 → C1 × C1 ×Hom(∆1, C0),

where the horizontal arrow is the homomorphism

c 7→ (d0c, d1c, c ◦ (1× s0))

and the vertical arrow is the homomorphism

g 7→ (g ◦ (1× d0), g ◦ (1× d1), s0 ◦ g).

Here, d0, d1 : ∆0 → ∆1 or C0 → C1; s0 : C1 → C0 or ∆1 → ∆0. Also, we are identi-
fying an element x ∈ Cs

t with a simplicial set map x : ∆t → Cs, for any s, t. Using
∆t ×∆0 = ∆t for any t we see that the map 1× s0 : ∆t ×∆1 → ∆t ×∆0 may be
identified with projection on the first factor ∆t ×∆1 → ∆t, for any t.

In other words, Tot1C is the subgroup of the simplicial group C0 ×Hom(∆1, C1)
defined by

Tot1C = {(c, c̃) ∈ C0 ×Hom(∆1, C1) | (d0c, d1c, c ◦ (1× s0))

= (c̃ ◦ (1× d0), c̃ ◦ (1× d1), s0 ◦ c̃)},
and the map Tot1 → Tot0 sends (c, c̃) to c. Writing out the conditions for (c, c̃) to be
an element of (Tot1C)t explicitly, for (a, y) ∈ ∆t ×∆0, c̃(a, dεy) = a∗dεc, if ε is 0 or
1; and for (a, b) ∈ ∆t ×∆1, a∗c = s0(c̃(a, b)).

In addition, the face maps dj : (Tot1)∗ → (Tot1)∗−1 are defined by

dj(c, c̃) = (djc, dj c̃) = (djc, c̃ ◦ (dj × 1)),

where dj : ∆∗−1 → ∆∗ is the j-th coface. Recall that for

(a, b) ∈ ∆t−1 ×∆1, dj ∈ ∆t
t−1, 0 6 j 6 t,

(dj c̃)(a, b) = c̃(dja, b).

One must be careful to distinguish between dj c̃ and the composite dj ◦ c̃; by defi-
nition, if (x, y) ∈ ∆t ×∆1, dj ∈ ∆t

t−1, then dj(c̃(x, y)) = c̃(xdj , ydj).
Writing out the conditions for (c, c̃) to be an element of (Tot1)t explicitly, in

addition to the conditions above for (c, c̃) ∈ (Tot1)t, we must also have, for every
(a, b) ∈ ∆t ×∆1, c̃(dja, b) = 1 for 0 6 j 6 t− 1, and djc = 1, for 0 6 j 6 t− 1.

Define a nonabelian chain complex G(C) as follows.

G(C)0 = {(z, w) ∈ C0
0 × C1

1 | d0z = d0w, d1z = d1w, s0z = s0w},
and for i > 0,

G(C)i = {(c, A0, . . . , Ai) ∈ C0
i × (C1

i+1)
i+1 | d0A0 = d0c; di+1Ai = d1c;

dlAj = 1, 0 6 l < j 6 i or j + 1 < l 6 i;

dj+1Aj = dj+1Aj+1, 0 6 j < i; s0Aj = sjc, 0 6 j 6 i}.
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The differentials are, for i > 1,

d : G(C)i → G(C)i−1,

d(c, A0, . . . , Ai) = (dic, di+1A0, . . . , di+1Ai−1).

Note that for every i, G(C)i is a subgroup of C
0

i × ((C1)I)i, using the definition of
(C1)I from Section 2.3.1.

It is straightforward to check that d is a homomorphism that really takes values
in the indicated group, and that d ◦ d is constant at 1.

We may envision the criteria for (c, A0, . . . , Ai) to be an element of G(C)i in an
(i + 2)× (i + 1)-matrix, whose k, l entry is dkAl, and whose top i + 1 rows form a
lower triangular band matrix, with entries of 1 below the first subdiagonal:




d0c 1 1 . . . 1
d1A1 d1A1 1 . . . 1

1 d2A2 d2A2 . . . 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1 . . . diAi diAi

di+1A0 di+1A1 . . . di+1Ai−1 d1c




.

Note that the first i entries of the last row form the last i components of
d(c, A0, . . . , Ai).

Theorem 2.4. There is a natural isomorphism of (nonabelian) chain complexes
φ̃ : Tot1C → G(C). Furthermore, the square (of maps of nonabelian chain complexes)
below commutes:

Tot1C → G(C)
↓ ↓

Tot0C = C0,

where the left vertical arrow is induced by the fibration Tot1C → Tot0C, and the right
vertical arrow is the map (c, A0, . . .) 7→ c.

Proof. The map φ̃, in all degrees, is induced by the isomorphism of simplicial groups

φ : Hom(∆1, C1)→ (C1)I

of Lemma 2.3; i.e.,

φ̃(c, c̃) .= (c, φ(c̃)).

Since φ is an isomorphism, φ̃ is injective.
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One can check:
• If (c, c̃) ∈ Tot1Cj ⊆ C

0

j ×Hom(∆1, C1)j , then

(c, φ(c̃)) ∈ G(C)j ⊆ C
0

j × (C1)I
j .

• φ̃ is a map of chain complexes.
Finally, we do check that φ̃ is surjective, leaving the degree zero case to the reader.
If (c, A0, . . . , Aj) ∈ G(C)j , then there is a unique c̃ ∈ Hom(∆1, C1)j such that

φ(c̃) = (A0, . . . , Aj) ∈ (C1
j+1)

j+1, and we only need to show that (c, c̃) ∈ Tot1C.
Since (c, A0, . . . , Aj) ∈ G(C),

d0c = d0A0 = d0(c̃(s0, s1 · · · sj)) .= c̃(s0d0, s1 · · · sjd0) = c̃(id, d0s0 · · · sj−1),

and
d1c = dj+1Aj = dj+1(c̃(sj , s0 · · · sj−1)) .= c̃(id, d1s0 · · · sj−1).

Now, if a ∈ ∆j , then, abusing notation, and letting d0, d1 ∈ ∆1 be the constant maps
at 1, 0 respectively (in any simplicial degree), since d0 = d0a, and d1 = d1a, we must
have

c̃(a, dε) = c̃(a, dεa) = a∗(c̃(id, dε)) = a∗dεc.

Also, for 0 6 k 6 j, skc = s0Ak = s0(c̃(sk, s0 · · · ŝk · · · sj)).
Thus,

c = djsjc = s0(c̃(sjdj , s0 · · · sj−1dj)) = s0(c̃(id, d0s0 · · · sj−1)),

c = dj+1sjc = s0(c̃(sjdj+1, s0 · · · sj−1dj+1)) = s0(c̃(id, d1s0 · · · sj−1)),

and, if 0 6 k < j,

c = dkskc = s0(c̃(skdk, s0 · · · ŝk · · · sjdk)) = s0(c̃(id, s0 · · · ŝk−1 · · · sj−1)).

Thus, since every b ∈ ∆1
j is either of the form

d0s0 · · · sj−1, d1s0 · · · sj−1 or s0 · · · ŝk−1 · · · sj−1,

one can use the equations immediately above to check that

a∗c = s0(c̃(a, b)),

for every (a, b) ∈ ∆j ×∆1.

Similar models may be defined for the nonabelian chain complexes Totq, for every
q, but we do not present these here.

2.5. Homotopy properties
We now discuss some homotopical properties of the constructions P,Ω,Totq and

Tot . For these closed-model-theoretic properties, we do not present details.

Lemma 2.5.

(a) The functors P and Ω preserve fibrations, homotopy fibrations and weak equiva-
lences in the category of simplicial groups, as do their extensions to the category
of cosimplicial simplicial groups.
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(b) The functors Totq and Tot from the category of cosimplicial simplicial groups
to that of simplicial groups preserve fibrations, homotopy fibrations and weak
equivalences.

Proof. Both of these follow from the following two facts, and the definitions:

• In the appropriate closed (simplicial) model categories, ∆ε, Skq(∆) and ∆ are all
cofibrant objects, and G (whether a simplicial group or a cosimplicial simplicial
group) is a fibrant object ([4, Ch. X, 4]).

• Since the constructions are being performed in an appropriate closed (simplicial)
model category C, “axiom SM7” holds ([15], [4, Ch. X], [8]; see also [19, Section
5]); having as a corollary that the functor HomC(A,−) preserves fibrations and
weak equivalences between fibrant objects, if A is a cofibrant object.

Lemma 2.6. Suppose G and H are cosimplicial simplicial groups, with a simplicial-
wise weak equivalence θ : G→ ΩH that is also a homomorphism of groups. Then, for
every q > 0,

(a) θ induces a weak equivalence of simplicial groups θ : TotqG→ TotqΩH, com-
patible with the fibrations in the Tot-towers for G and ΩH.

(b) Furthermore, there is a natural isomorphism of simplicial groups

TotqPH → PTotqH

inducing an isomorphism of fibrations from the fibration sequence

TotqΩH → TotqPH → TotqH

to the fibration sequence

ΩTotqH → PTotqH → TotqH.

These isomorphisms are all compatible with the fibrations in the Tot-towers.

(c) If q > 1, and if FqG is the kernel of p : TotqG→ Totq−1G while FqH is the
kernel of p : TotqH → Totq−1H, then θ induces a natural homomorphism of
simplicial groups FqG→ ΩFqH that is a weak equivalence.

(d) Thus (for every q > 0), πj(TotqG) and πj(FqG) are abelian groups, for every
j > 0.

Proof. Item (b) is a consequence of “adjointness” ([8, Lemma 2.3]); there are natural
isomorphisms of simplicial groups, for ε = 0, 1

HomS(∆ε,TotqG) = HomS(∆ε,HomcS(Skq(∆), G))
∼= HomcS(Skq(∆),hom(∆ε, G))

and the definitions; recall here that the cosimplicial simplicial group hom(∆ε, G) is
defined by

hom(∆ε, G)n = HomS(∆ε, Gn).
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For item (c), consider the following diagram, in which the columns are fibration
sequences and in the bottom two rows, the arrows are weak equivalences:

FqG −−−−→ FqΩH −−−−→ ΩFqHy
y

y
TotqG −−−−→ TotqΩH −−−−→ ΩTotqH

p

y p

y p

y
Totq−1G −−−−→ Totq−1ΩH −−−−→ ΩtTotq−1H.

This means that the top row arrows are weak equivalences too.

3. An extension of the spectral sequence for Tot

In Section 3.1 we first outline the general construction of the Bousfield-Kan spectral
sequence [4] for any cosimplicial simplicial group X. Then, in 3.2, we show how
an extension of the spectral sequence may be constructed, and, in 3.3, discuss its
convergence properties in detail when our cosimplicial simplicial group is cofinite and
looped. In particular, as one might expect, the condition of being looped means that
the spectral sequence is no longer “fringed”, and the condition of being cofinite means
that the spectral sequence converges strongly to the homotopy groups of Tot(X). The
purpose of this is to give an exposition of a (known) remedy for the defects of the
Bousfield-Kan spectral sequence, found not by passing to the category of spectra
but, instead, by restricting to the category of cosimplicial simplicial groups, with the
applications begun in this paper as motivation.

3.1. The general construction for cosimplicial simplicial groups
Let X be a cosimplicial simplicial group.
The Bousfield-Kan spectral sequence is the homotopy spectral sequence (functorial

in X) for the tower of fibrations

· · · p→ TotqX
p→ Totq−1X

p→ · · · p→ Tot0X.

Let Fq = FqX ⊆ TotqX be the kernel of the homomorphism

p : TotqX → Totq−1X, for every q > 1.

If q = 0, define F0X = Tot0X = X0.
We may compute the homotopy groups of simplicial groups as in Section 2, using

the notation introduced there.
As in Section 2, we have (functorial in X) long exact sequences of homotopy groups

(note also that every map is a group homomorphism, and that every group is abelian,
except possibly the zero-th groups π0), for q > 1 and n > 0:

· · · → πn+1(Totq−1X) δ→ πn(Fq)→ πn(TotqX)→ πn(Totq−1X) δ→ · · · .
For r > 0, and j > 0, define

πr
j (TotqX) = image(pr

∗ : πj(Totq+rX)→ πj(TotqX)).

This is always a subgroup of πj(TotqX).
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Note that if r = 0, then π0
j (TotqX) = πj(TotqX).

For t− s > 0, r > 1, define

Zs,t
r = ker(πt−s(Fs)→ πt−s(TotsX)/πr−1

t−s (TotsX)) ⊆ πt−s(Fs)

and

Bs,t
r = δ(ker(πt−s+1(Tots−1X)

pr−1
∗→ πt−s+1(Tots−rX))) ⊆ πt−s(Fs).

Note that Bs,t
r ⊆ Zs,t

r whenever defined.
Now, if t− s > 1 and r > 1, then the groups

πt−s(Fs), πt−s(TotsX), πr−1
t−s (TotsX), πt−s+1(Tots−1X), πt−s+1(Tots−rX)

are all abelian groups; thus all indicated quotient groups above, as well as the quo-
tient groups Zs,t

r /Bs,t
r are well-defined. (If s− r < 0, we define the homotopy groups

πα(Tots−rX) .= {1}, for every α.)
However, when t− s = 0 and r > 1, and if any zero-th homotopy groups are non-

abelian, we need to discuss the meaning of

π0(TotsX)/πr−1
0 (TotsX)

and

ker(π0(Fs)→ π0(TotsX)/πr−1
0 (TotsX)).

In general, one cannot assume that πr−1
0 (TotsX) is a normal subgroup of

π0(TotsX). However, it is a subgroup, and thus one can form the set of cosets

π0(TotsX)/πr−1
0 (TotsX).

Let i∗ : π0(Fs)→ π0(TotsX) be the homomorphism of groups induced by the inclu-
sion of simplicial groups Fs → TotsX. The set

Zs,s
r = Z = ker(π0(Fs)→ π0(TotsX)/πr−1

0 (TotsX))

is, by definition, equal to the subgroup i−1
∗ (πr−1

0 (TotsX)) of π0(Fs). However, we
know that since

im(δ : π1(Tots−1X)→ π0(Fs))

is a central subgroup of π0(Fs), Bs,s
r is a central subgroup of Zs,s

r for every r > 1.
Thus, one can form the quotient group

Zs,s
r /Bs,s

r
.= πr−1

0 (Fs).

Note that if all the zero-th homotopy groups are abelian, then the above definition
of Es,s

r coincides with the previously given one.
The homotopy spectral sequence {Es,t

r (X)} is then given by:

Es,t
r (X) = Zs,t

r /Bs,t
r

.= πr−1
t−s (Fs),

for t > s > 0, r > 1 with differentials (unfortunately with the same name as face oper-
ators)

dr : Es,t
r → Es+r,t+r−1

r ,
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defined by the composite relations

πr−1
t−s (Fs)

i∗→ πr−1
t−s (TotsX)

δ◦(pr−1
∗ )−1

−−−−−−−→ πr−1
t−s−1(Fs+r),

for t− s > 1.
This spectral sequence has the following properties:

Theorem 3.1 ([4, X.6.3, X.7]; [8, VIII]). Let X be a cosimplicial simplicial group.

(i) There are natural isomorphisms of groups ([4, X.6]) for t− s > 0

Es,t
1

.= πt−s(Fs) ∼= πt(NXs) ∼= N(πt(Xs)).

Note that the above groups are abelian except possibly when t− s = 0.

(ii) There are natural isomorphisms of groups ([8, VIII.1]) for t− s > 0

Es,t
2
∼= πs(πt(X)).

Note that the above groups are abelian except possibly when t = s = 0.

(iii) For t− s > 0 and for r > 1, the differential dr : Es,t
r → Es+r,t+r−1

r is a group
homomorphism whose domain is always abelian. For t− s > 0, the group
Es,t

r ∩ im(dr) is an abelian subgroup of the abelian group Es,t
r ∩ ker(dr) and

Es,t
r+1 is naturally isomorphic to the quotient group

(Es,t
r ∩ ker(dr))/(Es,t

r ∩ im(dr)).

(iv) If r > 1, then the relation dr : Es−r,s−r+1
r → Es,s

r is a homomorphism of groups
(the domain group is always abelian), im(dr) is a central subgroup of Es,s

r , and
Es,s

r+1 is isomorphic to a subgroup of the quotient group Es,s
r /(im(dr)).

Parts (iii) and (iv) of the above theorem follow directly from the definitions and
the fact that im(δ : π0(Tots−1X)→ π0(Fs)) is always a central subgroup of π0(Fs);
the more difficult identifications of the E1 and E2 terms (parts (i) and (ii)) are done
in the cited references.

We will refer to the above spectral sequence as the Bousfield-Kan spectral sequence
(abbreviated BKSS) for X, and use the notation {Es,t

r (X); dr} for this spectral
sequence.

3.2. The extended spectral sequence
Now, let (G, θ, H) be a looped cosimplicial simplicial group. As we have seen, all

the homotopy groups involved in the construction of the BKSS for G are abelian; all
but possibly the zero-th groups involved in the construction of the BKSS for H are
abelian.

Construct the BKSS’s for G, H, PH and ΩH. Since these spectral sequences
arise from the long exact sequences of homotopy groups associated to the fibrations
Totq → Totq−1, one sees using Lemma 2.6 that the construction of the entire spec-
tral sequence associated to G is isomorphic to the construction for ΩH, via θ∗.
Also, using Lemmas 2.2 and 2.6, the connecting homomorphisms ∆ for all the long
exact sequences in homotopy obtained by applying appropriate functors Totq to the
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fibration ΩH → PH → H give isomorphisms ±∆ of the construction of the spectral
sequence for ΩH with that of H. More precisely, for example, there are isomorphisms

As,t+1
r (H)

(−1)t−s+1∆−−−−−−−−→ As,t
r (ΩH) θ∗←− As,t

r (G),

for t− s > 0; s, t > 0, and A can stand for B, Z or E. These isomorphisms commute
with all the differentials where defined. We need to use (−1)t−s+1∆ (the “other”
boundary homomorphism in [5]) instead of ∆ since by Lemma 2.2, −∆ ◦ δ = δ ◦∆,
and the construction of dr involves δ; indeed, the following diagram commutes:

πr−1
t−s (Fs(ΩH)) i∗−−−−→ πr−1

t−s (TotsΩH)
δ◦(pr−1

∗ )−1

−−−−−−−→ πr−1
t−s−1(Fs+1ΩH)

(−1)t−s+1∆

x (−1)t−s+1∆

x (−1)t−s∆

x

πr−1
t−s+1(FsH) i∗−−−−→ πr−1

t−s+1(TotsH)
δ◦(pr−1

∗ )−1

−−−−−−−→ πr−1
t−s (Fs+1H).

We define one more set of “differentials”

d̃r(G) : Es,s
r (G)→ Y s+r,s+r−1

r (G)

for every s > 0 and r > 1, as follows.
The receiving groups Y s+r,s+r−1

r (G) are defined by Y s+r,s+r−1
r (G) = Es+r,s+r

r (H)
(note that this is always a group, but not necessarily an abelian group), and define
d̃r(G) by d̃r(G) = dr(H) ◦∆−1 ◦ θ∗:

Es,s
r (G) θ∗−→ Es,s

r (ΩH) ∆←− Es,s+1
r (H)

dr(H)−−−−→ Es+r,s+r
r (H).

The homomorphisms d̃r(G) also depend on the weak equivalence θ : G→ ΩH, but
we suppress this.

Now, we may augment the conclusion of part (iv) of the Theorem 3.1 by

Lemma 3.2. Let (G, θ, H) be a looped cosimplicial simplicial group. If r > 1, the
relation

dr(G) : Es−r,s−r+1
r (G)→ Es,s

r (G)

is a homomorphism of abelian groups and Es,s
r+1 is isomorphic to the subgroup

ker(d̃r(G))/(im(dr(G))) of the quotient group Es,s
r (G)/(im(dr(G))).

The proof follows from the definitions. However, we give some details as follows.
Let s > 0; the homomorphism

Zs,s
r+1(G)→ Es,s

r /(im(dr(G))

is induced by the inclusion Zs,s
r+1(G) ⊆ Zs,s

r (G). One can check, using the definitions,
that the kernel of this homomorphism is precisely Bs,s

r+1(G). This defines the inclusion

Es,s
r+1(G) ↪→ Es,s

r /(im(dr)).

(This is no different than the verification of the same result for s 6= t.)
Now, z ∈ Zs,s

r+1(G) if and only if ∆−1(θ∗(z)) ∈ Zs,s+1
r+1 (H), so we know that the

class of ∆−1(θ∗(z)) in Es,s+1
r (H) is in ker dr(H).
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One has the following commutative diagram of groups:

Es,s
r (G)

θ∗−−−−−→ Es,s
r (ΩH)

∆−1

−−−−−→ Es,s+1
r (H)

dr(H)−−−−−→ Es+r,s+r
r (H)

dr(G)

x?? dr(ΩH)

x?? dr(H)

x??

Es−r,s−r+1
r (G)

θ∗−−−−−→ Es−r,s−r+1
r (ΩH)

−(∆−1)−−−−−→ Es−r,s−r+2
r (H).

The homomorphism d̃r(G) is by definition the composite of the top row of arrows.
By Theorem 3.1, we know that ker dr(H)/im(dr(H)) ∼= Es,s+1

r (H). The diagram
above implies that the isomorphism ker dr(H)→ ker(dr(H)a) induced by a−1 .= θ−1

∗ ∆
gives an isomorphism ker dr(H)/im(dr(H)) ∼= ker(dr(H)a)/im(dr(G)).

Note that d̃r is natural on the category of looped cosimplicial simplicial groups.

3.3. Convergence properties
We now discuss the convergence of the (extended) spectral sequence {Es,t

r ; dr, d̃r},
under the cofiniteness hypothesis. As one might expect, the convergence discussion is
considerably simplified, but it is also extended to degree 0. We present the details in
the following. We use the notation of [4].

If · · · → Zs → Zs−1 → · · · → Z0 → 1 = Z−1 is any tower of fibrations of simplicial
groups, then we make the following definitions, for s, j > 0. Here, Z = lim←−s

Zs. All of
the sets defined are groups (all abelian, unless j = 0) and all of the maps are group
homomorphisms.

Define
Qsπj(Z) = im(πj(Z)→ πj(Zs)),

for s > −1, j > 0.
Note that Qsπj(Z) ³ Qs−1πj(Z) is a surjection as indicated, for j > 0, s > 0.

es,s+j
∞

.= ker(Qsπj(Z) ³ Qs−1πj(Z)),

for s, j > 0.
Es,s+j
∞

.= ∩r>sE
s,s+j
r ,

for s, j > 0.
Now, if Fs,j = Fs,j(Z) = ker(πj(Z)→ πj(Zs)), for s, j > 0, then

Qsπj(Z) ∼= πj(Z)/Fs,j

for every s, j > 0, and there exists a filtration

· · · ⊆ Fs+1,j ⊆ Fs,j ⊆ · · · ⊆ F0,j ⊆ πj(Z) = F−1,j

of πj(Z) by normal subgroups, for every j > 0. Also,

es,s+j
∞ ∼= Fs−1,j/Fs,j

for every s, j > 0.
We see directly from the definitions that Qsπj(Z) is a subgroup of πr

j (Zs), for
every r > 1 and s, j > 0 and that there are natural inclusions of groups

es,s+j
∞ ↪→ Es,s+j

∞

for every s, j > 0.
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We will assume that Z = Tot(X), Zs = TotsX for some cosimplicial simplicial
group X and that the tower of fibrations is the Tot-tower.

Now, if X is any cosimplicial simplicial group, then the fibre Fs+1X of

Tots+1X
p→ TotsX

has homotopy groups

πj(Fs+1X) ∼= πj+s+1(NXs+1) ∼= Nπj+s+1(Xs+1),

for j > 0. The last isomorphism πj+s+1(NXs+1) ∼= Nπj+s+1(Xs+1) is part of Theo-
rem 3.1, proved in [8, VIII, Lemma 1.8], and is a natural isomorphism, commuting
up to sign with connecting homomorphisms in long exact sequences corresponding to
fibration sequences.

3.3.1. Convergence for cofinite looped groups
Let (G, θ, H) be a cofinite looped group. The weak equivalence θ induces

θ : NGs → NΩHs, for every s.

Now, if t > s, we know that

πt−s(FsG) ∼= πt−s(FsΩHs) ∼= πt−s+1(FsH),

so
πt(NGs) ∼= πt(NΩHs) ∼= πt+1(NHs),

for t > s. Also, π0(Fs+1H) ∼= πs+1(NHs+1).
Thus, if M > 0 is such that πa(NHb) = 1, for every a > 0, b > M , then for every

j > 0, s + 1 > M ,

1 = πj+s+2(NHs+1) ∼= πj+s+1(NGs+1) ∼= πj(Fs+1G),

and, π0(Fs+1H) ∼= πs+1(NHs+1) = 1.
So,
• For every j > 1, s + 1 > M , the fibration p : Tots+1G→ TotsG induces an iso-

morphism on the j-th homotopy groups.
This extends to j = 0 as well. For every s > 0, there is a diagram of groups and

group homomorphisms, where the squares commute up to sign, the rows are exact
and the vertical arrows are isomorphisms:

π0(Fs+1G) → π0(Tots+1G) A→ π0(TotsG)
↓ ↓ ↓

π1(Fs+1H) → π1(Tots+1H) B→ π1(TotsH) C→ π0(Fs+1H).

Now, for s + 1 > M , j = 0 or 1, and X = G or H, πj(Fs+1X) = 1. Therefore, B
and hence A are isomorphisms.

So, we have shown

Lemma 3.3. For every j > 0, s + 1 > M , the fibration p : Tots+1(G)→ Tots(G)
induces an isomorphism on the j-th homotopy groups.

This naturally implies the following two lemmas.
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Lemma 3.4. For every s > M , the fibration p̃ : Tot(G)→ TotsG is a weak equiva-
lence in the category of simplicial groups.

Proof. Theorem 3.1, Ch. IX of [4] says that there is an exact sequence of groups, for
every j > 0:

1→ lim←−
1

s
πj+1(TotsG)→ πj(Tot(G))→ lim←−s

πj(TotsG)→ 1.

Since πk(Tots+1G)→ πk(TotsG) is an isomorphism, for every k > −1 and
s + 1 > M ,

lim←−
1

s
πj+1(TotsG) = 1

and
lim←−s

πj(TotsG) ∼= πj(Tot tG),

for all t > M . Thus,

πj(Tot(G)) ∼= lim←−s
πj(TotsG) ∼= πj(Tot tG),

for all j > 0, t > M .

Lemma 3.5. For every s > 0, j > 0 and r > M + 1, Es,s+j
∞ ∼= Es,s+j

r .

Proof. For j > 1, this is standard, since the groups Es,s+j
r are nonidentity only in

the band 0 6 s 6 M , and for r large enough, the differentials dr both come from
and go to the identity groups outside this band. Also, one can compute Es,s+j

r+1 as
ker dr/im dr, for j > 1.

For j = 0, the only problem with the same argument in this particular spectral
sequence would have been the “fringing” effect: namely, that there are no outgo-
ing differentials dr from the groups Es,s

r , making it impossible to compute Es,t
r+1 as

ker dr/im dr. However, we have extended the spectral sequence with the differentials
d̃r; the receiving groups for these differentials are the groups

Y s+r,s+r−1
r

.= Es+r,s+r
r (H).

Since these have been identified as subquotients of π0(Fs+rH), and s + r > M , these
groups are all identity groups, using the cofiniteness hypothesis, and the identification
of π0(Fs+r(H)) with πs+r(NHs+r).

Moreover, since we have identified Es,s
r+1 as the quotient ker d̃r/imdr, one may use

the same argument as for j > 1 to make the conclusion of the lemma.

Lemma 3.6. For every s, j > 0, es,s+j
∞ ∼= Es,s+j

∞ .

Proof. Fix s, j > 0; let M be as always. Choose t so that t is greater than or equal
to both s and M . Now,

Qsπj(Tot(G)) = im(πj(Tot(G))→ πj(TotsG))
= im(πj(Tot(G))→ πj(Tots+tG)→ πj(TotsG))
= im(πj(Tots+tG)→ πj(TotsG)),

since s + t > M . But

im(πj(Tots+tG)→ πj(TotsG)) = πt
j(TotsG)
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by definition. Similarly,

Qs−1πj(Tot(G)) ∼= πt+1
j (Tots−1G).

So, there is a commutative diagram of short exact sequences:

1 → Es,s+j
t+1 = Es,s+j

∞ → πt
j(TotsG) → πt+1

j (Tots−1G) → 1
↑ ↑ ↑

1 → es,s+j
∞ → Qsπj(Tot(G)) → Qs−1πj(Tot(G)) → 1.

Et+1 = E∞ since t > M ; the top row is exact since t > s and the rightmost two
vertical arrows are isomorphisms using the previous paragraph. Thus, the left vertical
arrow is an isomorphism.

In summary, we have the following:
Let (G, θ, H) be a cofinite looped cosimplicial simplicial group; the integer M is

chosen so that πj(NHq) is the identity group, for j > 0 and q > M . Then, there
is an extended Bousfield-Kan spectral sequence {Es,s+j

r ; s, j > 0; dr, d̃r} and a finite
filtration

1 = FM,j ⊆ · · · ⊆ Fs,j ⊆ Fs−1,j ⊆ · · · ⊆ F0,j ⊆ πj(Tot(G)) = F−1,j ,

Fs,j = ker ps,j , ps,j : πj(Tot(G))→ πj(TotsG);

Fs−1,j/Fs,j
∼= Es,s+j

∞ = Es,s+j
M+1

for every s, j > 0, and
Es,s+j

2
∼= πsπs+j(G),

for every s, j > 0.
One of the main points (the only point?) in being fussy about the extension of the

spectral sequence is to retain information for zero-th homotopy groups.

4. Cosimplicial replacements and the BKSS

4.1. Presheaves on a small category
We review the definitions, using the notation of [7].
Let I be a small category. Rather than saying “x is an object of I” we will say

“x ∈ I”.
Suppose that F is a functor from I to some category C; for each object x ∈ I we

have an object F(x) of C and for each morphism x
g→ y in I we have a morphism in

C, F(x
g→ y) : F(x)→ F(y), satisfying the properties necessary to be a functor.

Such a functor F is called a presheaf (with values in C) on the category I, or, also,
a diagram of objects in C.

If I is a small category, let NI be the nerve of I, a simplicial set. Thus, NI0 is
the set of objects of I, and for q > 1, NIq is the set of sequences [x0

g1→ x1 · · · gq→ xq]
of objects xi and composable morphisms gi as indicated. The face and degeneracy
maps are defined as is usual.

In the rest of this section, the presheaf F has values in the category of groups or
the category of simplicial groups (not necessarily abelian).
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We give some details of the constructions we will use when the range category is
that of simplicial groups. The constructions are of course formally the same for the
category of groups.

Let q > 0, j > 0. The set of all functions

f : NIq →
⋃

x∈I
F(x)j

such that

f([x0
g1→ x1 → · · · gq→ xq]) ∈ F(xq)j

for every q-simplex [x0
g1→ x1 · · · gq→ xq] in NIq, will be denoted by Cq(I, Fj).

Fixing q, the indexed collection

{Cq(I,Fj) | j > 0}
forms a simplicial set: if θ : j1 → j2 is an element of ∆j2

j1
, then

θ∗ : Cq(I, Fj2)→ Cq(I,Fj1)

is defined by

θ∗(f)([x0
g1→ x1 → · · · gq→ xq]) = θ∗(f([x0

g1→ x1 → · · · gq→ xq])).

Notice that this simplicial set is a simplicial group under pointwise multiplication
of functions.

If µ : F→ G is a natural transformation of functors from I to the category of simpli-
cial groups (we call such a µ a homomorphism of presheaves of simplicial groups), then
for every q, µ defines a homomorphism of simplicial groups µ] : Cq(I, F)→ Cq(I, G)
by the rule

µ](f)([x0
g1→ x1 → · · · gq→ xq]) = µ(xq)(f([x0

g1→ x1 → · · · gq→ xq]).

One can check that this definition of µ] is functorial.
For every q > 0, there are q + 2 homomorphisms

di : Cq(I,F)→ Cq+1(I, F), 0 6 i 6 q + 1,

where di(f)([x0
g1−→ x1 → · · · gq+1−−−→ xq+1]) is defined to be





f(x1
g2−→ · · · gq+1−−−→ xq+1]), i = 0

f([x0
g1−→ · · · → xi−1

gi+1gi−−−−→ xi+1 → · · · gq+1−−−→ xq+1]), 1 6 i < q + 1
F(xq

gq+1−−−→ xq+1)(f([x0
g1−→ x1 → · · · gq−→, xq])), i = q + 1.

For every q > 1, there are q homomorphisms

si : Cq(I, F)→ Cq−1(I, F), 0 6 i 6 q − 1,

defined by

si(f)([x0
g1−→ x1 → · · · gq−1−−−→ xq−1])

= f([x0
g1−→ x1 → · · · gi−→→xi

id−→ xi → · · · gq−1−−−→ xq−1]).
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One can verify that these homomorphisms di and si satisfy the cosimplicial rela-
tions and commute with µ], for every natural transformation µ : F→ G.

Thus, we have a cosimplicial simplicial group C(I,F); these cosimplicial simplicial
groups vary functorially with F. This cosimplicial group is called often the cosimplicial
replacement of the diagram of simplicial groups F [4].

As noted above, one can similarly define a cosimplicial group C(I,G) functori-
ally associated to any presheaf of groups G on I. The cohomotopy groups of these
cosimplicial groups are usually denoted by

H∗(I, G),

whenever they are defined.
Given a presheaf F of simplicial groups on the small category I we may form the

composites ΩF and PF; these too are presheaves of simplicial groups on I, and there
are natural maps of presheaves

ΩF→ PF→ F

on I. One can check that there are natural isomorphisms of cosimplicial simplicial
groups

ΩC(I,F) ∼= C(I,ΩF)

and

PC(I, F) ∼= C(I,PF),

inducing a natural isomorphism of the sequence

ΩC(I, F)→ PC(I, F)→ C(I,F)

of cosimplicial simplicial groups with the sequence

C(I,ΩF)→ C(I,PF)→ C(I, F).

Often, in the following, we will refer to the identifications of the last few paragraphs
as equalities, using the identifications implicitly.

In particular, one can make the definition of a presheaf F of looped simplicial
groups on I and then, using the definitions and identifications as above, one can
form a looped cosimplicial simplicial group C(I,F), its total tower {Tots(I, F); p}
with inverse limit Tot(I, F) and homomorphisms p̃ : Tot(I, F)→ Tots(I, F).

Thus, assuming that C(I,F) is cofinite and looped, we may construct the extended
Bousfield-Kan spectral sequence

{Es,s+j
r (I,F); s, j > 0; dr, d̃r},

with convergence properties discussed in Section 3.3.
The simplicial group Tot(I,F) may be identified with the homotopy inverse limit

of the diagram of simplicial groups F on the small category I ([4, XI,5]), but we will
continue to use the Tot notation rather than the homotopy inverse limit notation
holim←−−−IF.
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In any case, for a presheaf of simplicial groups F on I, one always has a natural
augmentation of the cosimplicial simplicial group C(I, F):

ν0 : lim←−I F→ C(I,F),

where lim←−I F is the ordinary inverse limit of the diagram of simplicial groups given
by F. Indeed, this is the maximal augmentation of the cosimplicial simplicial group
C(I, F) by definition. Thus we always have a natural homomorphism of simplicial
groups

ν̃0 : lim←−I F→ Tot(I, F),

compatible with all the maps Tot(I, F)→ Tots(I,F). This natural homomorphism is
not always a weak equivalence; indeed, the above two simplicial groups may not be
weakly equivalent ([4, XI, 4.2]).

4.2. The identifications Ei,j
2
∼= Hi(I, πj(F)) for i = 0, 1

4.2.1. E0,j
2

For any cosimplicial simplicial group X, and any j > 0, the group E0,j
2 is, by defini-

tion, computed as follows.
Since F0

.= Tot0X ∼= X0, we see that

Z0,j
2 = π1

j (Tot0X) ⊆ πj(X0).

Now, one can prove (see, e.g., [8]) that the subgroup Z0,j
2 of πj(X0) is in fact

exactly

{[t] ∈ πj(X0) | [d0t] = [d1t] ∈ πj(X1)} .= π0πjX.

Since B0,j
2 is the identity group by definition, we have an equality

E0,j
2 = π0πjX.

In the case that X = C(I, F) .= C, π0πjX is denoted by H0(I, πjF), and is also,
by definition, equal to lim←−I πjF.

The homomorphism

πj(Tot(I,F)) k1→ E0,j
2 (I, F) = H0(I, πjF) ⊆ C0(I, πjF) = πjTot0(I, F)

is the homomorphism induced by the natural map Tot → Tot0.

4.2.2. E1,j+1
2

By definition, E1,j+1
1 = πj(F1). Identify F1 with ΩNC1. Then, the isomorphism

πj(ΩNC1)→ πj+1NC1 is equal to ∆−1, where ∆ is the connecting homomorphism
of the fibration

ΩNC1 → PNC1 → NC1.

Also, this connecting homomorphism may be computed with coset representatives as
in Section 2.

We will be only interested in the case j = 0 in this paper.
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Now, using the definitions, E1,1
2 is a quotient of

Z1,1
2 = ker(π0F1 → π0Tot1/π0Tot (1)

1 ),

where π0Tot (1)
1 is the image of the homomorphism

π0(Tot2)→ π0(Tot1).

Identifying π0F1 with a quotient of the group

{A0 ∈ C1
1 | d0A0 = d1A0 = 1, s0A0 = 1},

using Theorem 2.4, we see that the map E1,1
2 → π1π1C = H1(I, π1F) must be defined

by taking the coset determined by A0 to the cohomology (cohomotopy) class deter-
mined by A0. The theory (see, e.g., precisely [8, Chap. VIII, Lemma 1.19, (2)])
guarantees that all makes sense: If ζ is the coset of A0, and A0 also gives an element
of Z1,1

2 , then the lemma from [8] cited above tells us that d0ζd1ζ−1d2ζ = 1 in the
abelian group π1C

2; thus ζ represents an element of H1(I, π1F).

5. Applications to algebraic K-theory

We want a specific model for algebraic K-theory, and the one we use in this section
is that given in [6]; this model, in turn, is based on [2]. We will be considering functors
from a fixed small domain category I into various other range categories.

5.1. Presheaves of looped simplicial groups
This section gives the class of examples of presheaves of looped simplicial groups

that we will use to apply the work of the previous sections.
We begin with the category of “star-connected” simplicial sets from [6]: A pointed

simplicial set X, with basepoint 0, is called “star-connected at 0” if and only if
there exists a function ω : X0 → X1 such that ω(0) = s0(0) and, for every z ∈ X0,
d1(ω(z)) = 0 and d0(ω(z)) = z. The objects in the category are thus triples (X, 0, ω)
where X, 0 and ω are as above. Morphisms are defined as expected.

There is a functor G with domain category that of the star-connected simplicial
sets, and range category that of simplicial groups described in two different ways
in [6]; we denote

G(X, 0, ω) .= Gω(X).

We review briefly the construction of G, but refer to [6] for most details. One way
of constructing G is to use Kan’s construction for a “loop” group for the (possibly)
nonreduced simplicial set X [10]; the function ω serves as a way to functorially
associate a maximal tree to the simplicial set X.

In applications, the simplicial sets we use will always be nonreduced. These simpli-
cial sets are the basic ones for algebraic K-theory: the classifying spaces for Quillen’s
category QPR, associated to a ring R. We review the definitions and establish a
change in notation in the following sections.

5.1.1. Definitions
The reader is referred to the standard sources (e.g., [8, 14, 17]) for details in this
section.
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The ring R will always be a ring with a multiplicative identity; PR is the category
of finitely generated projective R-modules. Quillen’s category QPR is the category
whose objects are the objects of PR and whose morphisms τ : X · · · → Y are iso-
morphism classes of diagrams X ´ Z ↪→ Y in PR, where, in addition, the surjec-
tive map X ´ Z and the injective map Z ↪→ Y are admissible maps. One diagram

X
α´ Z

β
↪→ Y is isomorphic to another diagram X

α1´ Z1
β1
↪→ Y if and only if there

exists an isomorphism T : Z → Z1 such that Tβ1 = β and Tα1 = α.

The zero module 0 is an object in QPR (we do not distinguish between different
zero objects); if X is an object in QPR, the identity morphism idX : X · · · → X is
the morphism defined by

X
idX´ X

idX
↪→ X.

If τ1 = X
α1´ Z1

β1
↪→ Y and τ2 = Y

α2´ Z2
β2
↪→W are two morphisms in QPR, which are

composable in the sense “first do τ1 and then do τ2”, the composite morphism in
QPR will be denoted in the usual way by τ2τ1. Let us recall that the composition

τ2τ1 = X
ᾱ1´ Z1 ×Y Z2

β̄2
↪→W,

where

Z1 ×Y Z2 = {(z1, z2) ∈ Z1 × Z2 | β1(z1) = α2(z2)}

and

ᾱ1(z1, z2) = α1(z1), β̄2(z1, z2) = β2(z2).

Particularly simple morphisms in QPR are the morphisms defined as follows, for
any projective module P :

• qP is equal to 0 ´ P = P .

• ιP is equal to 0 ´ 0 ↪→ P .

• If α : P → Q is an isomorphism of projective modules, then there is the mor-

phism, also called α, which is equal to P = P
α∼= Q.

These morphisms satisfy the relations

αιP = ιQ, αqP = qQ

in QPR.
The simplicial set NQPR is the nerve ([8]) of the category QPR “made small”;

by this we mean that QPR is replaced by an appropriate equivalent small category.
However, as is customary, we shall never make a notational distinction between QPR
and its equivalent small replacement. Thus, NQPR0 consists of the objects in QPR,
NQPR1 consists of the morphisms τ in QPR; in general, if q > 2, a q-simplex in
NQPRq is written as τ1 | τ2 | · · · | τq, where τi ∈ NQPR1 for every i, and τi+1τi

exists in QPR for 1 6 i 6 q − 1. The face and degeneracy operators di, si in NQPR
are defined in the usual way; we do not give the details here.
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5.1.2. Functoriality
Let R,S be rings with 1, and let f : R→ S be a ring homomorphism. If XR = NQPR
and XS = NQPS, then we let f∗ : XR → XS be the map of pointed simplicial sets
induced by f (the basepoint for both simplicial sets is 0). More generally, if v is any
exact (basepoint preserving) functor from the category PR to the category PS, there
is an induced (basepoint preserving) simplicial set map v∗ : NQPR→ NQPS.

Let ω : (XR)0 → (XR)1 be the function (“independent” of R)

ω(P ) = qP .

Then, we have
ω ◦ f∗ = f∗ ◦ ω.

This means that f∗ is a map in the category of triples described above; if G = Gω is
the functor described in [6] (and briefly reviewed below), there is an induced homo-
morphism of simplicial groups

Gf∗ : Gω(XR)→ Gω(XS).

More generally, if v is any (basepoint preserving) exact functor from PR to PS, if

ω ◦ v∗ = v∗ ◦ ω

on NQPR then there is an induced homomorphism of simplicial groups

Gv∗ : Gω(XR)→ Gω(XS).

Since ω is fixed, drop it from the notation: GR = Gω(XR).
At this point, we review the definition of GR in order to set notation, referring

to [6] for details.
For each n > 0, GRn is defined to be the free group on the set NQPRn+1, subject

to the relations:

• snσ = 1, for every σ ∈ NQPRn.
• If T is the (maximal) tree inNQPR generated by the morphisms qP inNQPR1,

for every projective P , then σ = 1 for every σ ∈ T .

From now on, we denote the element of GRn corresponding to the element
σ ∈ NQPRn+1 by t(σ).

Note that (using bar notation), for a projective module P ,

(1 | 1 | · · · | qP ) ∈ NQPR,

and
t(1 | 1 | · · · | qP ) = 1;

also,
t(τ1 | τ2 | · · · | 1) = 1

in GR, for every composable sequence of morphisms τ1, τ2, . . . in QPR, using the
above relations. The notation 1 refers to any appropriate identity morphism, one
hopes that this is not too confusing, in view of the fact that are many identity
morphisms in QPR.
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The definitions of the face and degeneracy maps on generators t(σ) ∈ GRn are
• dit(σ) .= t(diσ), if 0 6 i < n.
• dnt(σ) .= t(dn+1σ)−1t(dnσ).
• sit(σ) .= t(si(σ)), if 0 6 i 6 n.

5.1.3. Loopedness
If R is a ring with 1, we let ΣR denote the suspension of R [11]; we regard Σ as
a functor from rings with 1 to rings with 1. One has the following theorem and its
corollary ([6, 21]):

Theorem 5.1 ([6, Theorem 6.5.1]). If R is a ring with 1, then there exists a natural
weak equivalence

αR : GR→ ΩGΣR,

which is also a homomorphism of groups.

In the corollary below, recall the definition of the “i-boundaries” BHi of a simplicial
group H from Section 2.1.

Corollary 5.2 ([6, Corollary 7.5.2]). For every i > 0, πi(GR) is a central subgroup
of of GRi/BGRi.

Our functors F from I to the category of looped simplicial groups will be obtained
as composite functors. First, start with a fixed functor R from I to the category
of rings with 1. Then, we obtain a functor GR from I to the category of looped
simplicial groups defined on objects by

GR(v) = (GR(v), αR(v), GΣR(v)),

for every object v of I.
In fact, the above functor GR takes values in a category of “infinite loop groups”,

using the above theorem. However, we will not use this fact in this paper.

5.2. The extended BKSS for the presheaf GR on I
We write down the results of Section 3 for the case of the presheaf GR on I. We

assume that C(I, GR) is cofinite. (For example, if I is the category associated to a
finite poset, then already NsC vanishes for large s.)

Then, there is an extended Bousfield-Kan spectral sequence

{Es,s+j
r (I, GR); s, j > 0; dr, d̃r}

and a finite filtration

1 = FM,j ⊆ · · · ⊆ Fs,j ⊆ Fs−1,j ⊆ · · · ⊆ F0,j ⊆ πj(Tot(I, GR)) = F−1,j

such that
Fs−1,j/Fs,j

∼= Es,s+j
∞ = Es,s+j

M+1

for every s, j > 0, and

Es,s+j
2

∼= πsπs+j(C(I, GR)) .= Hs(I, πs+jGR),

for every s, j > 0.
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Using the results of [6], for every s, j > 0, the values πs+jGR(v) of the presheaf
πs+jGR of abelian groups on I are isomorphic to the (Quillen) K-groups Ks+j(R(v)).

5.3. Along the (s, s)-line
In this section, we assume that C(I, GR) is cofinite.
We examine in this section a small part of the (s, s)-line of the extended BKSS.
This spectral sequence provides a filtration of

π0(Tot(I, GR)),

of whose terms we write only those in which we are interested here below:

F2,0 ⊆ F1,0 ⊆ F0,0 ⊆ π0(Tot(I, GR)).

The successive quotients of this filtration have been identified as

π0(Tot(I, GR))/F0,0
∼= E0,0

∞ ⊆ E0,0
2
∼= H0(I, K0),

F0,0/F1,0
∼= E1,1

∞ ⊆ E1,1
2
∼= H1(I, K1)

and

F1,0/F2,0
∼= E2,2

∞ ⊆ E2,2
3 ↪→ H2(I,K2)/im ∂2,

where

∂2 : E0,1
2
∼= H0(I,K1)→ E2,2

2
∼= H2(I, K2)

is the indicated differential in the (extended) BKSS.
We will often abbreviate πi(GR) by Ki as above.
Therefore, there are exact sequences

• 0→ F0,0 → π0(Tot(I, GR))
p∗→ H0(I,K0),

• 0→ F1,0 → F0,0
b1→ H1(I, K1),

• 0→ F2,0 → F1,0
c2→ H2(I, K2)/im d2.

5.3.1. Connections with classical K-theory
If T is a ring with 1, then let K0(T ), K1(T ), and K2(T ) denote the classical K-groups
of the ring T ; associated presheaves will be denoted by Ki, i = 0, 1, 2.

In [6], for i = 0, 1, explicit natural isomorphisms

ξ : Ki(T )→ πi(GT )

are constructed; naturality then gives natural isomorphisms of cosimplicial groups

ξ : C(I,Ki)→ C(I, Ki),

and, for each j, of groups

ξ : Hj(I,Ki)→ Hj(I,Ki).

Now, the group K0(lim←−I R) has also a filtration on it described in [7]:

F2 ⊆ F1 ⊆ F0 ⊆ K0(lim←−I
R)
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with exact sequences

• 0→ F0 →,K0(lim←−I R) J→ H0(I,K0),

• 0→ F1 → F0
B→ H1(I,K1),

• 0→ F2 → F1
C→ H2(I,K2)/im(δ2 ◦ δ1),

where J,B,C are homomorphisms described in [7], and δ2, δ1 are connecting homo-
morphisms arising in exact sequences associated to certain nonabelian cohomology
groups. The pertinent definitions are reviewed below.

Consider the homomorphism

j : K0(lim←−I
R)→ π0(Tot(I, GR))

described by the composite

K0(lim←−I
R)

ξ→ π0(G(lim←−I
R))→ π0(lim←−I

GR)→ π0(Tot(I, GR)).

The point of this section is to prove

Theorem 5.3. The inverse image of the filtration given by the extended BKSS

F1,0 ⊆ F0,0 ⊆ π0(Tot(I, GR))

under the homomorphism j contains the filtration

F1 ⊆ F0 ⊆ K0(lim←−I
R).

The result j(F2,0) ⊆ F2 should be true as well, and is work in progress.

5.3.2. Review of definitions and results of [6] and [7]
Let R = lim←−I R. For every v ∈ I, let jv : R→ R(v) be the natural homomorphism.

We make the following abbreviations to use in following calculations. If v
g→ w is an

element of NI1, say g∗ : R(v)→ R(w) is the induced ring homomorphism, making
R(w) into an R(v)-module.

Define jv
∗ (P ) .= P (v) and R(v)n .= Q(v), for every v.

If θv : P (v)→ Q(v) is an isomorphism of R(v)-modules for every v, then g∗θv is
the isomorphism of R(w)-modules defined by the following diagram:

g∗(P (v)) .= P ⊗R R(v)⊗R(v) R(w) = P (w)
↓ θv ⊗ 1R(w) ↓ g∗θv

g∗(Q(v)) .= R(v)n ⊗R(v) R(w) = Q(w),

where of course we know that the way R(w) is regarded as an R(v) module in the
phrase “⊗R(v)R(w)” is using the map g∗, and the equalities result from the definition
of the inverse limit and standard identifications.

The homomorphism J is just the natural homomorphism

K0(R)→ lim←−I
K0

.= H0(I,K0).

The subgroup F0 of K0(R) is defined to be the kernel of J .
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There are presheaves of groups GL, E and ST on I defined by the functors

v 7→ GL(R(v)),
v 7→ E(R(v))

and

v 7→ ST (R(v)),

where GL(T ), E(T ) and ST (T ) are the general linear group, its subgroup correspond-
ing to the elementary matrices and the Steinberg group of a ring T , respectively.

To define

B : F0 → H1(I,K1),

we first represent an element of kerJ ⊆ K0(R) as [P ]− [Rm] for some finitely gener-
ated projective R-module P . Since I has a finite object set, without loss of generality,
we may assume that for every v ∈ I, there is an isomorphism θv : P (v)→ Q(v).

Then, if v
g→ w is a morphism in I, we may regard

g∗θvθ−1
w

as an element of GL(R(w)). The assignment

v
g→ w 7→ g∗θvθ−1

w ∈ GL(R(w))

gives a well-defined cocycle in C1(I,GL1), yielding a cohomology class β([P ]− [Rm])
in the nonabelian cohomology set H1(I,GL1), which in turn yields an element of the
cohomology group H1(I,K1). This last cohomology class is by definition equal to
B([P ]− [Rm]). The details of this construction, and the proof that B is a homomor-
phism, are in [7].

The subgroup F1 of K0(R) is defined to be the kernel of B.
Now, there are exact sequences of presheaves

1→ E ι→ GL → K1 → 1

and

1→ K2 → ST → E → 1,

yielding long exact sequences of pointed sets in (nonabelian) cohomology

· · · → H0(I,K1)
δ1→ H1(I, E)→ H1(I,GL)→ · · ·

and

· · · → H1(I,ST )→ H1(I, E) δ2→ H2(I,K2).

For definitions and proofs, see [7].
To define the homomorphism C, first define a relation C ⊆ F1 ⊕H2(I,K2) by

C = {(φ, ν) | ∃wφ ∈ Z1(I, E) � δ2(〈wφ〉) = ν and β(φ) = ι∗(〈wφ〉)};
this is an additive relation whose domain of definition is F2 and whose indeterminacy
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is im(δ2δ1), and thus defines a homomorphism of groups

C : F1 → H2(I,K2)/im(δ2δ1).

Again, for details see [7]. The subgroup F2 is defined to be the kernel of C. We do
not consider C or F2 in this paper, this will be done in later work.

We now need to review the definitions of the isomorphisms ξ : Ki → Ki, for i = 0, 1
from [6], but refer the reader to [6] for all details.

We recall the classical definition of K1(T )) as K1(T )det, for a ring T . One can
define the group K1(T ) to be the free abelian group on the set of pairs (P, α), where
P is a finitely generated projective module and α is an automorphism of P , modulo
the subgroup generated by the elements

• (P, α) + (P, β)− (P, αβ)

• (X,β)− (P, α)− (Q, γ), whenever

0 → P
f→ X

g→ Q → 0
α ↓ β ↓ γ ↓

0 → P
f→ X

g→ Q → 0

is a commutative diagram of T -modules with exact rows and α, β, γ are auto-
morphisms.

Using this notation, it is well-known that every element of K1(T )det has a repre-
sentative of the form (Tn, A), where A is an invertible n× n-matrix with entries
in T .

Let K0(T ) denote the classically defined K0; if Z is a finitely generated projective
T -module, let [Z] denote the equivalence class of the isomorphism class of Z in K0(T ).

The isomorphism ξ : K0(T )→ π0(GT ) is defined by

ξ([Z]) = [t(ιZ)].

Now, if α : P → P is an automorphism of a finitely generated projective T -module,
there is an element x(α) ∈ GT1 defined by

x(α) = t(qP | α)t(ιP | α)−1.

The isomorphism ξ : K1(T )→ π1(GT ) is defined by

ξ([P, α]) = [x(α)].

5.3.3. j(F0) ⊆ F0,0

The composite

π0(lim←−I
GR)→ π0(Tot(I, GR))

p∗→ lim←−I
π0GR

.= H0(I, π0GR)

is equal to the natural homomorphism

π0(lim←−I
GR)→ lim←−I

π0GR = H0(I, K0).

Note that p∗ is the map at the π0 level induced by the fibration p : Tot → Tot0.
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The desired conclusion now follows from the naturality property of the isomorphism
ξ, and the universal properties of direct limits. But, one may give an “element-wise”
proof as follows.

In all of our applications, inverse limits of a functor can be realized as subsets
of the direct product, calculated in the range category of the functor, of the values
of the functor on the object set of the domain category of the functor. We will use
“tuple” notation for elements of the direct product. For example, if the value of a
functor on the object v of the domain category is Av, then an element of the direct
product

∏
v Av will be denoted by (av)v, where av ∈ Av, for every object v.

Thus, if [P ] ∈ K0(lim←−I R),

p∗j([P ]) = ([t(ιP (v))])v,

also, considering the isomorphism

H0(I,K0)
ξ→ H0(I, K0),

we see, using the above formula for p∗j([P ]) and the definition of ξ, that

ξ(J([P ])) = ξ(([P (v)])v) = p∗j([P ]).

By definition, kerJ = F0, which we now see is equal to ker k1j. Also, by definition,
ker p∗ = F0,0. Thus,

j(F0) ⊆ F0,0.

5.3.4. j(F1) ⊆ F1,0

Consider the homomorphisms

F0

j|F0−−−→ F0,0
b1−→ H1(I,K1)

ξ←− H1(I,K1)
B←− F0.

We know that b1 is the composite

F0,0 ³ E1,1
∞ ⊆ E1,1

2

β1−→ H1(I, π1GR);

the isomorphism

β1 : E1,1
2 → H1(I, π1GR))

is that described in Section 4.2.2. We will prove that b1j |F0 is equal to the map −ξB.
Then,

F1,0
.= ker(F0,0 ³ E1,1

∞ ) = ker(F0,0
b1→ H1(I, π1GR)).

So, since F1 = kerB and b1j |F0= −ξB, j(F1) ⊆ ker b1 = F1,0.
Now, by definition, F0,0 is the kernel of the homomorphism

π0(Tot(I, GR))→ π0(Tot0(I, GR)) .= C0(I, π0GR).

Let

[γ] ∈ F0,0 ⊆ π0(Tot(I, GR)).

Let γi denote the image of γ under the homomorphism Tot(I, GR)→ Tot i(I, GR).
Recall that Fi is the kernel of the homomorphism Tot i(I, GR)→ Tot i−1(I, GR).
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Since [γ0] = [1] in the group π0(Tot0(I, GR)) = C0(I, π0GR), using the long exact
sequence of the fibration Tot1(I, GR)→ Tot0(I, GR), there exists [τ ] ∈ π0(F1) such
that [τ ] = [γ1] in π0(Tot1(I, GR)).

From now on, we often make the abbreviations

Tot i(I, GR) = Tot i, and C∗(I, GR) = C∗.

More precisely, τ is obtained as follows, using the description of Tot1 given
in Section 2.3 of this paper. First, since [γ0] = [1], there exists an element
γ̃0 ∈ (Tot0)1 ⊆ C0

1 such that d1(γ̃0) = γ0. (The d1 of this discussion is the indicated
face map of the simplicial group Tot0 = C0.) Using Section 2.3, we see that there
exists an element σγ̃0 ∈ (Hom(∆1, C1))1 such that (γ̃0, σγ̃0) is an element of

(Tot1)1 ⊆ C0
1 ×Hom(∆1, C1)1

and maps to γ̃0 via the fibration Tot1 → Tot0 = C0. Then,

d1(γ̃0, σγ̃0)
−1γ1 ∈ (F1)0 ⊆ (Tot1)0 ⊆ C0

0 ×Hom(∆1, C1)0 = C0
0 × C1

1 ,

and we set

τ = d1(γ̃0, σγ̃0)
−1γ1 = (1, τ1) ∈ C0

0 × C1
1 .

As we already know, the homotopy class of τ is independent of the choices made.

By definition, [τ ] ∈ Z1,1
2

.= (kerπ0(F1)→ π0(Tot1)/π1
0(Tot1)), since [τ ] = [γ1] in

π0(Tot1) is clearly the image of [γ2] ∈ π0(Tot2).

Now, b1([γ]) is equal to the cohomology class of [τ1] ∈ Z1(I, π1GR).

Next, assume that [γ] is in the image of j |F0 .

Identify π0(Tot0(I, GR)) with the quotient group

C0(I, GR0)/im d̄1,

where

d̄1 : C0(I, GR1 ∩ ker d0)→ C0(I, GR0)

is induced by d1.

Suppose that [γ] = j([P ]− [Rn]) = j(−[Rn] + [P ]), where

[P ]− [Rn] ∈ kerJ ⊆ K0(R).

Thus, γ0 ∈ π0(Tot0) is the homotopy class of the element

v 7→ t(ιQ(v))−1t(ιP (v)) ∈ GR(v)0

in C0(I, GR0); abusing notation somewhat, we will also denote this element of
C0(I, GR0) by γ0.
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We can write down γ1 using Theorem 2.4.1: γ1 ∈ π0(Tot1) may be identified with
the homotopy class of an ordered pair (γ0, Z) in the simplicial group

C0
0 ×Hom(∆1, C1)0 = C0

0 × C1
1 ,

where Z has the following properties:

d1Z = d1γ0, d0Z = d0γ0, s
0Z = s0γ0.

Such a Z ∈ C1
1 can be defined by

v
g→ w 7→ t(1 | ιQ(w))−1t(1 | ιP (w)).

Using the definitions,

d1Z(v
g→ w) = t(ιQ(w))−1t(1)t(1)−1t(ιP (w)) = d0Z(v

g→ w),

and since g∗(t(ιQ(v))−1t(ιP (v))) = t(ιQ(w))−1t(ιP (w)),

d1γ0(v
g→ w) = g∗(γ0(v)) = t(ιQ(w))−1t(ιP (w)) = d0γ0(v

g→ w),

as well. Finally,

s0Z(v) = Z(v id→ v) = t(1 | ιQ(v))−1t(1 | ιP (v)) = s0γ0(v),

for every v. Again, we will abuse notation and refer to the element (γ0, Z) described
above as γ1 (confusing an element with its homotopy class).

Now, let us bring in the assumption that [P ]− [Rn] ∈ kerJ ⊆ K0(R). We may
assume that there exist isomorphisms of R(v)-modules

θv : jv
∗ (P ) .= P (v)→ R(v)n .= Q(v),

for every v ∈ I.
This allows us to define an element γ̃0 ∈ C0(I, GR1) by

v 7→ t(qP (v) | θv)t(ιP (v) | θv)−1 ∈ (GR(v))1,

for every v ∈ I. Note that γ̃0 ∈ (Tot0)1 = C0(I, GR1), since d0γ̃0 = 1. Also, for every
v ∈ I,

d1(γ̃0(v)) = t(qP (v))−1t(θvqP (v))t(θvιP (v))−1t(ιP (v)),

which equals
t(ιQ(v))−1t(ιP (v));

therefore d1γ̃0 = γ0.

Calculating, always directly from the definitions, we see that, if v
g→ w ∈ NI1,

d1γ̃0(v
g→ w) = g∗(γ̃0(v)) = t(qP (w) | g∗θv)t(ιP (w) | g∗θv)−1

and
d0γ̃0(v

g→ w) = t(qP (w) | θw)t(ιP (w) | θw)−1.

Now, given a morphism v
g→ w in I, define an element B(v

g→ w) ∈ (GR(w))2 by

B(v
g→ w) = t(1 | qP (w) | θw)t(qQ(w) | θ−1

w | θw)−1t(qQ(w) | θ−1
w | g∗θv)

· t(ιQ(w) | θ−1
w | g∗θv)−1t(ιQ(w) | θ−1

w | θw)t(1 | ιP (w) | θw)−1.
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Compute that

d0(B(v
g→ w)) = t(qP (w) | θw)t(ιP (w) | θw)−1 = d0γ̃0(v

g→ w),

and

d1(B(v
g→ w)) = t(qP (w) | θw)t(qP (w) | θw)−1t(qP (w) | g∗θv)

· t(ιP (w) | g∗θv)−1t(ιP (w) | θw)t(ιP (w) | θw)−1

= t(qP (w) | g∗θv)t(ιP (w) | g∗θv)−1 = d1γ̃0(v
g→ w).

Furthermore,

d2(B(v
g→ w)) = t(qQ(w) | θ−1

w )t(qQ(w) | θ−1
w )−1t(qQ(w) | g∗θvθ−1

w )t(ιQ(w) | g∗θvθ−1
w )−1

· t(ιQ(w) | θ−1
w )t(ιQ(w) | θ−1

w )−1t(1 | ιQ(w))−1t(1 | ιP (w))

= t(qQ(w) | g∗θvθ−1
w )t(ιQ(w) | g∗θvθ−1

w )−1Z
.= x(g∗θvθ−1

w )Z.

Finally,

s0B(v) = B(v id→ v) = t(1 | qP (v) | θv)t(1 | ιP (v) | θv)−1 = s0γ̃0,

and

s0d2B(v) = d2B(v id→ v) = t(1 | ιQ(v))−1t(1 | ιP (v)) = s0(t(ιQ(v))−1t(ιP (v))) = s0γ0.

Now, define A = s1d1B, and consider the triple (γ̃0, B,A) ∈ C0
1 × C1

2 × C1
2 .

We have already shown that

d0B = d0γ̃0, d1B = d1γ̃0, s
0B = s0γ̃0.

Also,

d1B = d1s1d1B = d1A, d2A = d2s1d1B = d1B = d1γ̃0,

d0A = d0s1d1B = s0d0d1B = s0d0d0B = s0d
0d0γ̃0 = 1,

and

s0A = s0s1d1B = s0s1d
1γ̃0 = s1γ̃0.

Thus, (γ̃0, B,A) defines an element of (Tot1)1, using Theorem 2.4; note that this
element projects to γ̃0 under the fibration Tot1 → Tot0. Continuing to compute, using
Theorem 2.4,

d1(γ̃0, B,A) = (d1γ̃0, d2B);

so

d0(γ̃0, A, B)−1γ1 = (d1γ̃
−1
0 γ0, d2B

−1Z) = (1, d2B
−1Z).

To conclude, we have shown that

b1j([P ]− [Rn]) = the cohomology class of [d2B
−1Z] ∈ Z1(I, π1GR);

by inspection, the element

[d2B
−1Z] = [Z−1XZ],
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where X ∈ C1
1 is defined by

X(v
g→ w) = x(g∗θvθ−1

w )−1.

Now,
[Z−1XZ] = [X] ∈ Z1(I, π1GR),

since π1GT is central in GT1/BGT1, for any commutative ring T .
Thus,

b1j([P ]− [Rn]) = the cohomology class of [X] ∈ Z1(Iπ1GR),

which is, by the results of [6], equal to the cohomology class of

−ξB([P ]− [Rn]).

6. A simple example

In this example, the category I is the category associated to a poset I which
has only three elements, call them 1, 2 and 12; the only nonreflexive inequalities are
1 < 12, 2 < 12. In this case a presheaf of (looped, since we would like to assume all
homotopy is abelian) simplicial groups on I is just a diagram, call it F,

(G1, θ1,H1)
↓ f

(G2, θ2,H2)
g→ (G12, θ12,H12)

of simplicial groups and simplicial group homomorphisms.
The construction of the Bousfield-Kan spectral sequence (in this simple case, it is

not really necessary to use the extended spectral sequence) shows that there exists a
filtration

1 = F1,j ⊆ F0,j ⊆ πj(Tot(I, F)) = F−1,j ,

of πj(Tot(I, F)) = πj(Tot1(I, F)), for every j > 0. This filtration has the property
that
• πj(Tot(I,F)/F0,j

∼= H0(I, πjF) ∼= E0,j
2 = E0,j

∞ , for every j > 0, and

• F0,j
∼= H1(I, πj+1F) ∼= E1,j+1

2 = E1,j+1
∞ , for every j > 0.

We can compute the cohomology groups in this simple example.
By definition, for every j > 0,

H0(I, πjF) = {(a, b) ∈ πj(G1)× πj(G2) | f∗(a) = g∗(b)}.
Also, by definition,

H1(I, πj+1F) = (πj+1(G12)× πj+1(G12))/N,

where N = {(f∗(a)c−1, g∗(b)c−1) | (a, b, c) ∈ πj+1(G1)× πj+1(G2)× πj+1(G12)}.
This last group is isomorphic to πj+1(G12)/K, where

K = {f∗(a)g∗(b)−1 | (a, b) ∈ πj+1(G1)× πj+1(G2)}
via the homomorphism induced by πj+1(G12)× πj+1(G12)→ πj+1(G12) given by
(x, y) 7→ xy−1; this is a homomorphism since the groups πj+1 are abelian for j > 0.
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Using these identifications, and the properties of the filtration on Tot(I,F), we
obtain a long exact sequence (which is functorial on the appropriate domain category)
of homotopy groups:

· · · → πj+1(G12)
δ̂→ πj(Tot(I, F)) V→ πj(G1)× πj(G2)

A→ πj(G12)→ πj−1(Tot(I, F))→ · · · ,
where the sequence ends at π0:

· · · → π1(G12)
δ̂→ π0(Tot(I, F)) V→ π0(G1)× π0(G2)

A→ π0(G12).

The homomorphism A is defined by A(a, b) = f∗(a)g∗(b)−1.
The homomorphism δ̂ is defined by the composite

πj+1(G12) ³ (πj+1(G12)× πj+1(G12))/K

∼= H1(I, πj+1F) ∼= E1,j+1
2

∼= E1,j+1
∞ ⊆ πj(Tot1),

and for j > 0, the homomorphism V is defined by the composite

πj(Tot1) ³ H0(I, πjF) ⊆ πj(G1)× πj(G2).

A special case of the above example occurs when, in the diagram F, the group G2

is weakly equivalent to the identity group. Then, the above exact sequence becomes

· · · → πj+1(G12)→ πj(Tot(I, F))→ πj(G1)
f∗→ πj(G12)→ πj−1(Tot(I, F))→ · · · .

Thus, one recovers the fact that Tot(I, F) is the homotopy fibre of the map f .
If F is the kernel of the homomorphism f , then there is an augmentation

ν : F → C0(I, F) and a natural homomorphism of simplicial groups F → Tot(I, F).
If G2 is weakly equivalent to the identity group, and f is a fibration, then we see that
the homomorphism F → lim←−I F→ Tot(I, F) is a weak equivalence, as expected. If f

is not a fibration, then F → Tot(I,F) of course may not be a weak equivalence; a
very simple example of this is obtained by setting G1 = G2 = 1, and letting G12 be
any simplicial group not weakly equivalent to a point. Then, F = 1, but Tot(I, F) is
weakly equivalent to ΩG12.

In general, under the right conditions (for example, if at least one of the maps f ,g
is a fibration ([4, XI, 4.1, 4.4])), the natural homomorphism φ : lim←−I F→ Tot(I,F)
is a weak equivalence; indeed, one has the following theorem:

Theorem 6.1 ([4, XI, 4.1]). If I is the poset of this section, and the map
g : G2 → G12 is a fibration of simplicial groups, then the natural homomorphism
φ : lim←−I F→ Tot(I,F) is a weak equivalence, and there is a natural long exact se-
quence of groups

· · · → πj+1(G12)
D=δ̂◦φ−1

∗−−−−−−→ πj(lim←−I
F)

P=V ◦φ∗−−−−−−→ πj(G1)× πj(G2)

A→ πj(G12)
D→ πj−1(lim←−I

F)→ · · · ,

where the exact sequence ends with π0.
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To begin a brief sketch of the proof, note that since g is a fibration, there is a
long exact sequence in homotopy, with connecting homomorphisms δ2 : πj+1(G12)→
πj(ker g) for every j > 0. Let ι be the inclusion of ker g into G1 ×G12 G2, and let
p : G1 ×G12 G2 → G1 and q : G1 ×G12 G2 → G2 be the natural projections.

Consider the following diagram, for t > 0:

πj+1(G12)
ι∗◦δ2−−−−→ πj(lim←−I F)

(p∗,q∗)−−−−→ πj(G1)× πj(G2)

=

y φ∗

y =

y

πj+1(G12)
δ̂−−−−→ πj(Tot(I,F)) V−−−−→ πj(G1)× πj(G2).

Since this diagram commutes up to sign, one can make the desired conclusion.
Also, alternate descriptions of the maps D,P the long exact sequence of the theo-

rem are

D = ι∗ ◦ δ2,

P = (p∗, q∗).

6.1. The “Mayer-Vietoris” sequence in K-theory
Let I be the same simple one-dimensional poset of the previous section.
A presheaf of rings R on I is a diagram of rings

R1

↓ f

R2
g→ R12;

applying the functor G gives a diagram (presheaf) of looped simplicial groups GR

GR1

↓ Gf

GR2
Gg→ GR12.

For this poset I and the particular cosimplicial simplicial group C(I, GR), the
long exact sequence of the previous section may be rewritten as follows:

· · · → πt+1(GR12)→ πt(Tot(I, GR))→ πt(GR1)× πt(GR2)
A→ πt(GR12)→ · · · ,

where the sequence ends at π0:

· · · → π1(GR12)→ π0(Tot(I, GR))→ π0(GR1)× π0(GR2)
A→ π0(GR12).

Now, as we have seen, if one of Gf, Gg is a fibration, then the natural map of
simplicial groups

GR1 ×GR12 GR2 = lim←−I
GR→ Tot(I, GR)

induces isomorphisms on all homotopy groups.
We assume that Gg is a fibration, and that g is surjective.
Let L be the simplicial group GR1 ×GR12 GR2.
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Let R be the pullback of the diagram R; indeed, by definition,

R = R1 ×R12 R2 = lim←−I
R.

We examine the end of this long exact sequence; it is the top row in the diagram
below:

π1(GR1)× π1(GR2)
A−−−→ π1(GR12) −−−→ π0(L) −−−→ π0(GR1)× π0(GR2)

A−−−→ π0(GR12)

ξ×ξ

x?? ξ

x?? γ

x?? ξ×ξ

x?? ξ

x??

K1(R1)×K1(R2) −−−→ K1(R12)
∂−−−→ K0(R) −−−→ K0(R1)×K0(R2)

A−−−→ K0(R12).

The bottom row is Milnor’s exact sequence in classical K-theory, constructed
in [13].

The maps ξ are the isomorphisms defined in [6], and reviewed in Section 5.3. The
left- and right-most squares commute because of the naturality of these maps.

The center vertical map γ above is the composite ν1∗ ◦ ξ, where ν1 is the natural
map of simplicial groups ν1 : GR→ L = H0(I, GR). The third-from-left square in
the diagram above commutes because of the naturality of ξ.

We now investigate the second-from-left square in the diagram above:

π1(GR12)
ι∗◦δ2−−−−→ π0(L)

ξ

x ν1∗◦ξ
x

K1(R12)
∂−−−−→ K0(R).

Lemma 6.2. Assuming that the map g above is surjective, the square

π1(GR12)
D−−−−→ π0(L)

ξ

x ν1∗◦ξ
x

K1(R12)
∂−−−−→ K0(R)

described above is a commutative square.

In order to give the proof of this lemma, we must recall the construction of ∂
(from [13]).

Suppose that A is an invertible n× n matrix with entries in R12. Milnor constructs
a projective R-module M(Rn

1 , Rn
2 , A) as follows.

As an abelian group,

M(Rn
1 , Rn

2 , A) = {(v, w) ∈ Rn
1 ⊕Rn

2 | Af(v) = g(w)}.
It becomes an R = R1 ×R12 R2- module in the usual way. Now, since g is surjective,
there is a matrix hA with entries in R2 such that g(hA) = A, and there is a matrix
h̃A with entries in R2 such that g(h̃A) = A−1. Now, if

X = XA =
[

1 hA

0 1

] [
1 0
−h̃A 1

] [
1 hA

0 1

] [
0 −1
1 0

]
,

then XA is an invertible 2n× 2n matrix such that g(XA) = A⊕A−1.
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If S is a ring, we denote by eS
i the i-th standard basis vector of Sn. Furthermore,

if P is any direct summand of the S-module Sn, and if h : S → S′ is a ring homomor-
phism from S to another ring S′, we denote by h∗(P ) the S′-span of the subgroup
h(P ) of (S′)n obtained by applying h to the coordinates of the elements of P ; it is a
direct summand of the S′-module (S′)n.

Now, as Milnor proves, the map B : Rn ⊕Rn →M(Rn
1 ⊕Rn

1 , Rn
2 ⊕Rn

2 , A⊕A−1)
defined by

B(eR
i , 0) = ((eR1

i , 0), XA(eR2
i , 0))

and

B(0, eR
i ) = ((0, eR1

i ), XA(0, eR2
i )),

for 1 6 i 6 n, is an isomorphism of R-modules.
Let U : M(Rn

1 , Rn
2 , A)→ Rn ⊕Rn be the homomorphism of R-modules defined by

U(v, w) = B−1(v, 0, w, 0).

Let P : Rn ⊕Rn →M(Rn
1 , Rn

2 , A) be the homomorphism of R-modules defined by

P = π1 ◦ T ◦B,

where T : (Rn
1 ⊕Rn

1 )⊕ (Rn
2 ⊕Rn

2 )→ (Rn
1 ⊕Rn

2 )⊕ (Rn
1 ⊕Rn

2 ) is the isomorphism
switching the middle two summands, and π1 : (Rn

1 ⊕Rn
2 )⊕ (Rn

1 ⊕Rn
2 )→ (Rn

1 ⊕Rn
2 )

is projection onto the first factor. Then, PU = id and if E = UP , EE = E and
M(Rn

1 , Rn
2 , A) is isomorphic to the direct summand E(Rn ⊕Rn) of Rn ⊕Rn.

From now on, we set M = E(Rn ⊕Rn).
Let i1 : R→ R1 be the ring homomorphism i1(r1, r2) = r2, and let i2 : R→ R2

be the ring homomorphism i2(r1, r2) = r2. (We are identifying R with the subring
{(r1, r2) ∈ R1 ×R2 | f(r1) = g(r2)} of R1 ×R2.)

A direct computation gives the following lemma.

Lemma 6.3.

(a) (i1)∗(M) = Rn
1 ⊕ 0 ⊆ Rn

1 ⊕Rn
1 .

(b) (i2)∗(M) is equal to the R2-submodule of Rn
2 ⊕Rn

2 spanned by the 2n-vectors
[

eR2
i

0

]
−X−1

[
0

(1− h̃AhA)eR2
i

]
,

for 1 6 i 6 n and

X−1

[
(hAh̃A − 1)eR2

i

0

]
,

for 1 6 i 6 n.

(c) f∗((i1)∗(M))=(fi1)∗(M)=(gi2)∗(M)=g∗((i2)∗(M)) = Rn
12 ⊕ 0 ⊆ Rn

12 ⊕Rn
12.
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As a corollary, we have:

Corollary 6.4. The restriction of the R2-module isomorphism defined by XA = X
to the R2-submodule (i2)∗(M) of Rn

2 ⊕Rn
2 gives an isomorphism from (i2)∗(M) to

the R2-submodule Rn
2 ⊕ 0 of Rn

2 ⊕Rn
2 .

Milnor’s homomorphism ∂ : K1(R12)→ K0(R) may be described with the equation

∂([Rn
12, A]) = ∂([Rn

12 ⊕ 0, A⊕ 0]) = [M ]− [Rn ⊕ 0],

where Rn ⊕ 0 ⊆ Rn ⊕Rn.
Returning to the proof of Lemma 6.2, every element of K1(R12) can be represented

by (Rn
12, A), where A is an invertible n× n-matrix with entries in R12. There is the

standard R12-module inclusion Rn
12 ⊕ 0 ⊆ Rn

12 ⊕Rn
12. Then,

ν1∗(ξ(∂([Rn
12, A]))) = ν1∗(ξ(∂([Rn

12 ⊕ 0, A⊕ 0]))) = ν1∗(ξ([M ]− [Rn ⊕ 0]))

= ν1∗(t(ιM )t(ιRn⊕0)−1)

= [(t(ιi1∗M )t(ιRn
1⊕0)−1, t(ιi2∗M )t(ιRn

2⊕0)−1)].

Using Lemma 6.3, we see that

[(t(ιi1∗M )t(ιRn
1⊕0)−1, t(ιi2∗M )t(ιRn

2⊕0)−1)] = [(1, t(ιi2∗M )t(ιRn
2⊕0)−1)]

= ι∗([t(ιi2∗M )t(ιRn
2⊕0)−1]).

However, consider the element t(ιi2∗M )t(ιRn
2⊕0)−1 of (GR2)0. The element x(A⊕

0) of (GR12)1 represents the element ξ([Rn
12 ⊕ 0, A⊕ 0)]). Let Y be the isomor-

phism X |i2∗M : i2∗M → Rn
2 ⊕ 0. Then, using the notation again from [6], we have an

element x(Y ) = t(qi2∗M | Y )t(ιi2∗M | Y )−1 of (GR2)1 ∩ ker d0; under the map
GR2 → GR12, x(Y ) maps to x(A⊕ 0) by Lemma 6.3(b). Therefore, by definition
and the results of [6],

δ2(ξ([Rn
12, A])) = δ2([x(A)]) = δ2([x(A⊕ 0)]) = [d1(x(Y ))].

Also, by definition ([6]),

[d1(x(Y ))] = [t(ιRn
2⊕0))−1t(ιi2∗M )] = [t(ιi2∗M )t(ιRn

2⊕0))−1].

Thus, we may conclude

Lemma 6.5. If, in the diagram R above, g is surjective and, in the diagram GR
above, Gg is a fibration, then the homomorphism on zero-th homotopy groups induced
by

GR→ L→ Tot(I, GR)

is an isomorphism.

On the other hand, the counterexample of Swan [18] shows that, without extra
conditions on the maps f, g, this lemma cannot be extended to higher homotopy
groups.
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