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THE EULER CHARACTERISTIC OF A CATEGORY
AS THE SUM OF A DIVERGENT SERIES

CLEMENS BERGER and TOM LEINSTER

(communicated by J. Daniel Christensen)

Abstract
The Euler characteristic of a cell complex is often thought of

as the alternating sum of the number of cells of each dimension.
When the complex is infinite, the sum diverges. Nevertheless, it
can sometimes be evaluated; in particular, this is possible when
the complex is the nerve of a finite category. This provides an
alternative definition of the Euler characteristic of a category,
which is in many cases equivalent to the original one.

1. Introduction

What is the Euler characteristic of an infinite cell complex?
The Euler characteristic of a finite complex is most often described as the alternat-

ing sum of the number of cells of each dimension. There seems little hope of extend-
ing this formula to complexes containing infinitely many cells of the same dimension.
However, there are interesting complexes in which there are only finitely many cells of
each dimension, but infinitely many in total. (The classifying space of a finite group
provides an example; see below.) Writing cn for the number of n-dimensional cells,
we would like to find a sensible way of evaluating the divergent series

∑
n∈N(−1)ncn,

which could then be interpreted as the Euler characteristic of the complex.
To see how this might work, consider a finite group G. Its classifying space BG

is the geometric realization of a simplicial set in which an n-simplex is an n-tuple
of elements of G. The nondegenerate n-simplices are the n-tuples of nonidentity ele-
ments, so, writing o(G) for the order of G, there are (o(G)− 1)n of them. A simplicial
set may be regarded as a kind of complex in which the cells are the nondegenerate
simplices, so our task is to evaluate

∑

n∈N
(−1)n(o(G)− 1)n. (1)

In the Eulerian spirit of formal calculation, we apply the formula for the sum of a
geometric series, which gives the answer 1/o(G). And indeed, it has been established

Leinster is supported by an EPSRC Advanced Research Fellowship.
Received July 6, 2007, revised November 23, 2007; published on December 11, 2007.
2000 Mathematics Subject Classification: 18F99, 57N65, 40A05, 05C50.
Key words and phrases: Euler characteristic, finite category, divergent series, divergent sum, Möbius
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that this is the ‘right’ value for the Euler characteristic of G (or BG) from several
points of view: see [W] and [BD], for instance.

Here is a first step towards making this rigorous. Take a cell complex X (in some
nonspecific sense; the exact meaning is not important for this discussion). Suppose
that X has only a finite number cn of cells of each dimension n, and write fX(t) =∑

n∈N cntn for the resulting formal power series. It may be that fX converges in some
neighbourhood of 0. If so, it may also be that fX can be analytically continued to
−1, and it may even be that all such analytic continuations take the same value at
−1. We could then define the Euler characteristic of X to be that value. Of course, if
X has only finitely many cells then the situation is very simple: fX is a polynomial,
there is a unique analytic continuation to −1, and its value there (namely, fX(−1))
is the Euler characteristic of X in the usual sense.

The purpose of this paper is to use this approach to derive a notion of the Euler
characteristic of a finite category. This is achieved with the aid of the nerve construc-
tion (see §2), which turns a category into a simplicial set.

We will see that when X is the nerve of a finite category, the power series fX is
in fact the germ at 0 of a rational function. The question of analytic continuation is
then straightforward. We can therefore carry out the plan above, and this gives us
a definition of the Euler characteristic of a finite category (valid when the rational
function does not have a pole at −1). This is called the ‘series Euler characteristic’
of the category (§2).

The new notion of series Euler characteristic is to be compared with the original
notion of the Euler characteristic of a finite category, introduced in [L]. We will see
that in a large and important class of finite categories the two notions agree (§3).
However, outside this class the relationship breaks down: there are examples of finite
categories for which the Euler characteristic is defined in one sense but not the other
(both ways round), and further examples where both are defined but their values
differ (§4).

Background: the Euler characteristic of a category
Here are the necessary definitions from [L], with notation changed slightly to allow

a matrix-based approach.
Given a natural number m and a ring K, write Matm(K) for the ring of m×m

matrices over K. Given a finite category A with objects a1, . . . , am, write ZA ∈
Matm(Q) for the matrix whose (i, j)-entry is the number of arrows from ai to aj . (Of
course, ZA also depends on the order in which the objects are listed.) A weighting
on A is an m-tuple w• = (w1, . . . , wm) ∈ Qm such that

ZA




w1

...
wm


 =




1
...
1


 .

A coweighting on A is an m-tuple w• = (w1, . . . , wm) ∈ Qm such that
(
w1 · · · wm

)
ZA =

(
1 · · · 1

)
.

It is easy to show that if w• is a weighting and w• a coweighting on A then∑
i wi =

∑
i wi. A finite category A has Euler characteristic if it admits both
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a weighting and a coweighting, and in that case its Euler characteristic χ(A) is∑
i wi =

∑
i wi ∈ Q, for any weighting w• and coweighting w•.

The Euler characteristic of a category is independent of the choice of ordering of
the objects. It is also independent of the composition and identities; that is, it depends
only on the underlying directed graph. (But it is usually not equal to the Euler char-
acteristic of the underlying graph, ‘vertices minus edges’. The Euler characteristics
of categories and graphs are compatible in a different sense: Proposition 2.10 of [L].)

An important special case is when ZA is invertible. Then A is said to have Möbius
inversion, there are a unique weighting and a unique coweighting, and χ(A) is the
sum of the entries of Z−1

A .
The Euler characteristic of categories enjoys many good properties. It is invariant

under equivalence and behaves predictably with respect to products, fibrations, etc.
It is also compatible with Euler characteristics of other types of structure, including
topological spaces, graphs, posets, groups, manifolds, and orbifolds.

Related work
The observation that the Euler characteristic of a finite group can be calculated by

formal summation of the geometric series (1) is probably nearly as old as the concept
of the classifying space of a group. (We learned it from a talk of John Baez.) A group
can be regarded as a one-object category in which all morphisms are invertible; from
that viewpoint, our purpose is to extend this formal method from finite groups to
finite categories.

There are other contexts in which Euler characteristic has been described using
the sum of a divergent series. Several implementations of this idea are discussed by
Propp [P1, P2]. For finitely generated groups, the Euler characteristic is related to
the growth function: see [FP] and [G], for instance. In [Be], the Euler characteristic
of an Eilenberg–Mac Lane space of type K(π, n) for any finite abelian group π and
any n > 1 is identified with the sum of a divergent series, using a particular cellular
model of this space. There are also homological methods that provide a sensible way of
assigning an Euler characteristic to certain infinite groups, as discussed in Chapter IX
of [Br].

A more restrictive notion of Möbius inversion for categories is considered in [CLL]
and [H]. Like our notion, it generalizes the poset Möbius inversion of Hall, Rota,
Ward and Weisner. See §4 of [L] for a description of the relationships between these
theories. Hall’s theorem—which states that for elements a < b of a finite poset P , the
value µ(a, b) of the Möbius function is the reduced Euler characteristic of the open
interval ]a, b[ in P—follows easily from the proof of Theorem 2.2 by evaluating the
formal power series f]a,b[ at −1. Compare [S, 3.8.5] and [L, 1.5, 4.5].

For a discussion of other related work, and further references, see the introduction
to [L].

2. The series Euler characteristic of a category

In this section we define the series Euler characteristic of a finite category, see how
the definition works in the motivating case where the category is a group, and find a
way to calculate it.
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First let us recall some facts about formal power series. For any field K, there is a
commutative diagram

K[t] Â Ä //
Ä _

²²

K[[t]]
Ä _

²²
K(t) Â Ä // K((t))

of rings. Here K[t] is the ring of polynomials over K and K[[t]] is the ring of formal
power series

∑
n∈N antn (an ∈ K). These are both integral domains, and their fields

of fractions are in the bottom row: the field K(t) of rational expressions over K, and
the field K((t)) of formal Laurent series over K (expressions

∑
n∈Z antn such that

{n 6 0 | an 6= 0} is finite).
The canonical inclusions of K[[t]] and K(t) into K((t)) make it possible to ask

whether a formal power series ‘is rational’; in other words, whether the element of
K((t)) corresponding to the power series is in the image of K(t). When K is a subfield
of C, the following analytic criterion applies. Let f ∈ K[[t]] and let p, q ∈ K[t] be
coprime polynomials. Then f = p/q in K((t)) if and only if there is a neighbourhood
U of 0 in C such that for all z ∈ U , q(z) 6= 0 and f(z) converges to p(z)/q(z).

We will also need some notation for matrices. Let m ∈ N and let K be a com-
mutative ring. We write s : Matm(K) → K for the K-linear map defined by s(M) =∑

i,j Mij . Every matrix M ∈ Matm(K) has an adjugate adj(M) ∈ Matm(K), defined
by

(adj(M))ij = (−1)i+j · det(M with its jth row and ith column deleted)

and satisfying
M · adj(M) = adj(M) ·M = det(M) · I.

Lemma 2.1. Let M be a square matrix over a field K. Then
∑

n∈N s(Mn)tn ∈ K[[t]]
is rational.

Proof. Write

F (t) =
∑

n∈N
Mntn ∈ Matm(K[[t]]).

Then
(I −Mt)F (t) = I,

so
det(I −Mt) · F (t) = adj(I −Mt).

Applying the K[[t]]-linear map s : Matm(K[[t]]) → K[[t]],

det(I −Mt) · s(F (t)) = s(adj(I −Mt)).

But s(F (t)) =
∑

s(Mn)tn, and det(I −Mt) is not the zero polynomial (since its
value at t = 0 is 1), so

∑
s(Mn)tn is rational and equal to

s(adj(I −Mt))
det(I −Mt)

∈ K(t).
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Given a simplicial set X with only finitely many simplices of each dimension, let cn

be the number of nondegenerate n-simplices and fX(t) =
∑

n∈N cntn ∈ Q[[t]]. Recall
that the nerve NA of a category A is a simplicial set in which an n-simplex is a
chain

x0
φ1−→ x1

φ2−→ · · · φn−−→ xn (2)

of arrows in A; such an n-simplex is degenerate if and only if some φi is an identity.
When A is finite, write fA = fNA ∈ Q[[t]].

Theorem 2.2. For any finite category A, the formal power series fA is rational
(over Q).

Proof. Order the objects of A as a1, . . . , am and let ZA be the matrix of A with
respect to this ordering, as in §1. For each i and j, the number of nonidentity arrows
from ai to aj is (ZA − I)ij . The number of nondegenerate n-simplices (2) beginning
at ai and ending at aj is, therefore, ((ZA − I)n)ij . Hence the total number cn of
nondegenerate n-simplices is s((ZA − I)n). The result now follows from the lemma.

The series
∑

(−1)ncn is in general divergent. (Proposition 2.11 of [L] gives exact
conditions for it to converge.) Nevertheless, the theorem provides a way to ‘evaluate’
it, returning an answer fA(−1) ∈ Q ∪ {∞}.

Definition 2.3. A finite category A has series Euler characteristic if fA(−1) ∈
Q. In that case, its series Euler characteristic is χΣ(A) = fA(−1).

The proofs tell us that

fA(t) =
s(adj(I − (ZA − I)t))
det(I − (ZA − I)t)

.

Example 2.4. Let G be a monoid of finite order o(G), and let A be the corresponding
one-object category. Then

∑
(−1)ncn =

∑
(−1)n(o(G)− 1)n is divergent (unless G is

trivial), but the rational function

fA(t) =
∑

n∈N
cntn =

1
1− (o(G)− 1)t

has value 1/o(G) at t = −1. Hence χΣ(A) = 1/o(G).

A change of variable will be useful. Put u = 1 + 1/t and write

gA(u) =
s(adj(ZA − uI))
det(ZA − uI)

∈ Q(u).

Then fA(t) = (1− u)gA(u). Hence χΣ(A) = gA(0), with one side defined if and only
if the other is.



46 CLEMENS BERGER and TOM LEINSTER

We will need to be able to compute values of χΣ. The key observation is that for
an m×m matrix M over a commutative ring,

s(adj(M)) =
∑

σ∈Sm

sgn(σ) · F ((Mi,σ(i))i∈m)

where m = {1, . . . , m} and F is the symmetric function defined by

F ((xi)i∈I) =
∑

i∈I

∏

j∈I\{i}
xj

for any finite family (xi)i∈I . This follows from the analogous formula for determinants.
Given an m×m matrix M and a subset R of m, denote by M [R] the matrix

obtained from M by deleting the ith row and ith column for every i ∈ R. Write
Sym(S) for the group of permutations of a set S.

Proposition 2.5. Let m ∈ N and let Z be an m×m matrix over a commutative
ring. Then

det(Z − uI) =
m∑

r=0

(−1)rdru
r where dr =

∑

R⊆m, |R|=r

det(Z [R]) (3)

and

s(adj(Z − uI)) =
m∑

r=0

(−1)reru
r where er =

∑

R⊆m, |R|=r

s(adj(Z [R])). (4)

Proof. Equation (3) is classical [J]. For (4), if σ ∈ Sm then, by a short calculation,

F (((Z − uI)i,σ(i))i∈m) =
∑

R⊆Fix(σ)

(−u)|R|F ((Zi,σ(i))i∈m\R).

Hence

s(adj(Z − uI)) =
∑

σ∈Sm

sgn(σ) · F (((Z − uI)i,σ(i))i∈m)

=
∑

σ∈Sm, R⊆Fix(σ)

sgn(σ) · (−u)|R|F ((Zi,σ(i))i∈m\R)

=
∑

R⊆m

(−u)|R|
∑

σ′∈Sym(m\R)

sgn(σ′) · F ((Zi,σ′(i))i∈m\R)

=
∑

R⊆m

(−u)|R|s(adj(Z [R])),

as required. (In fact, the same argument proves (3) too, by changing s(adj(−)) to det
and F to product throughout.)

Given a finite category A, take Z = ZA and write dA
r = dr, eA

r = er. Denote by
l the least number such that dA

l 6= 0. Then A has series Euler characteristic if and
only if eA

r = 0 for all r < l, and in that case,

χΣ(A) = eA
l /dA

l . (5)
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3. Positive results

Among the finite categories that have Euler characteristic, those with Möbius
inversion form an important class. Any finite category equivalent to one with Möbius
inversion also has Euler characteristic, and this larger class encompasses most of
the examples in [L]: finite monoids, groupoids, posets, categories in which the only
endomorphisms are automorphisms (or equivalently, the only idempotents are identi-
ties), and categories admitting an epi-mono factorization system. We show that Euler
characteristic and series Euler characteristic agree on this class.

Lemma 3.1. Let M be a square matrix such that for some i 6= j, the ith and jth
rows are equal and the ith and jth columns are equal. Then s(adj(M)) = 0.

Proof. First suppose that i = 1 and j = 2. Then every entry of adj(M) is zero except
perhaps for the four in the top-left corner, which are

(
y −y
−y y

)

where y is the (1, 1)-minor of M . Hence s(adj(M)) = 0.
The general case is handled similarly. Alternatively, it may be reduced to the case

(i, j) = (1, 2) by showing that s(adj(M)) is unchanged when a permutation is applied
to both the rows and the columns of M .

Theorem 3.2. Let A be a finite category equivalent to some category with Möbius
inversion. Then A has both Euler characteristic and series Euler characteristic, and
χ(A) = χΣ(A).

Proof. Order the objects of A so that the isomorphism classes are grouped together:

a1
1, . . . , a

q1
1 , . . . , a1

n, . . . , aqn
n ,

where aj
i
∼= aj′

i′ if and only if i = i′, and where each qi is nonzero. Let B be the full
subcategory {a1

1, a
1
2, . . . , a

1
n}, a skeleton of A. Now A is equivalent to some category

B′ with Möbius inversion, and any category with Möbius inversion is skeletal, so B′

is isomorphic to B and B has Möbius inversion. Hence χ(B) is defined. Since Euler
characteristic is invariant under equivalence, χ(A) is also defined and χ(A) = χ(B).

Let R ⊆ {1, . . . , q1 + · · ·+ qn}. By Lemma 3.1, s(adj(Z [R]
A )) = 0 unless R omits

at most one element of each isomorphism class, and in particular has at least l =
q1 + · · ·+ qn − n elements. So eA

r = 0 for all r < l. If R has l elements then in order
for s(adj(Z [R]

A )) to be nonzero, R must omit exactly one element of each isomorphism
class, in which case Z

[R]
A = ZB. Hence

eA
l = q1 · · · qns(adj(ZB)).

Similarly, dA
r = 0 for all r < l and

dA
l = q1 · · · qn det(ZB).

But B has Möbius inversion, that is, det(ZB) 6= 0, so dA
l 6= 0. Hence

χΣ(A) = eA
l /dA

l = s(adj(ZB))/ det(ZB) = s(Z−1
B ) = χ(B) = χ(A),

using (5) in the first equality.
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The next result gives a class of categories that need not have Euler characteristic,
but do have series Euler characteristic.

Proposition 3.3. If A has either a weighting or a coweighting and ZA is diagonal-
izable then A has series Euler characteristic.

Proof. We may write ZA = PDP−1, with D the diagonal matrix on (λ1, . . . , λm),
and by duality we may assume that A has a coweighting w•.

For n ∈ N,

s((ZA − I)n) =
∑

i,j,k∈m

Pij(λj − 1)n(P−1)jk =
∑

j∈m

pjp
′
j(λj − 1)n

where pj is the jth column-sum of P and p′j the jth row-sum of P−1. In the proof of
Theorem 2.2 we saw that fA(t) =

∑
n s((ZA − I)n)tn; hence

fA(t) =
∑

j∈m

pjp
′
j

1− (λj − 1)t
. (6)

It suffices to prove that pjp
′
j = 0 for all j such that λj = 0. Indeed, suppose that

λj = 0. Then, writing Pj for the jth column of P , we have

pj =
(
1 · · · 1

)
Pj = w•ZAPj = w•λjPj = 0,

as required.

Example 3.4. Let A be the 4-object category in Example 1.11(d) of [L], which admits
a coweighting (since it has an initial object) but no weighting, and so does not have
Euler characteristic. Then

ZA =




2 2 1 1
2 2 1 2
1 1 1 1
0 0 0 1


 ,

which is diagonalizable, so A has series Euler characteristic. (In fact, it can be shown
using (6) that χΣ(A) = 1.)

4. Negative results

We have already seen that Euler characteristic and series Euler characteristic are
defined and agree in a large and important class of finite categories, namely, those
equivalent to some category with Möbius inversion. In this section we see that outside
this class, the relationship breaks down.

We first see that the properties of having Euler characteristic and having series
Euler characteristic are logically independent. In other words, all four possibilities
occur: a category may have both Euler characteristic and series Euler characteristic
(as in §3), series Euler characteristic but not Euler characteristic (Example 3.4), Euler
characteristic but not series Euler characteristic (Example 4.3), or neither (Exam-
ple 4.4). Furthermore, even when both are defined, they do not necessarily agree
(Example 4.5).
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Given the disagreement between the two definitions, one might ask which (if either)
should be regarded as superior. A major defect of series Euler characteristic is that
it is not invariant under equivalence (Example 4.6). In contrast, ordinary Euler char-
acteristic is invariant not only under equivalence but also under the existence of an
adjunction (Proposition 2.4 of [L]). We do not know whether series Euler character-
istic enjoys the same properties with respect to products, fibrations, etc.

For the examples, we will need to know something about which matrices arise from
categories. Let us say that a square matrix Z of natural numbers is the matrix of
a category if there exists a finite category A such that Z = ZA (with respect to
some ordering of the objects). Any such matrix Z is certainly reflexive (Zii > 1 for
all i) and transitive (Zij , Zjk > 1 =⇒ Zik > 1). These necessary conditions are not
sufficient; for instance, it can be shown that

(
1 2
1 2

)

is not the matrix of a category. (This has also been observed by Allouch [A].) However,
we do have:

Lemma 4.1. Let Z be a transitive square matrix of natural numbers whose diagonal
entries are all at least 2. Then Z is the matrix of a category.

Proof. Suppose that Z is an m×m matrix. We define a category structure on the
directed graph with objects 1, . . . , m and with Zij arrows from i to j, for each i
and j. For each i, choose an arrow 1i : i → i. For each pair (i, j) such that Zij > 1,
choose an arrow φij : i → j, with φii 6= 1i for all i. To define composition, take arrows

i
α−→ j

β−→ k. If either α or β is an identity, it is clear how β◦α must be defined;
otherwise, put β◦α = φik.

Corollary 4.2. Let Z be a square matrix of positive integers whose diagonal entries
are all at least 2. Then Z is the matrix of a category.

All of the examples that follow use this corollary without mention. They can be
verified using Proposition 2.5 and the remark after it.

Example 4.3. A category may have Euler characteristic but not series Euler charac-
teristic. For example, there is a category A with

ZA =




6 6 15 9
6 6 6 6
6 6 9 7
6 30 9 15


 , gA(u) =

4(1 + u)
u(36− u)

.

Then A has a weighting (1/6, 0, 0, 0) and a coweighting (0, 1/6, 0, 0), so χ(A) = 1/6.
But gA has a pole at 0, so χΣ(A) is undefined.

Example 4.4. A finite category may have neither Euler characteristic nor series Euler
characteristic. For example, there is a category A with

ZA =
(

2 4
1 2

)
, gA(u) =

1 + 2u

u(4− u)
.

Then A does not have a weighting or a coweighting, so certainly does not have Euler
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characteristic; χΣ(A) is also undefined.

Example 4.5. Even if a category has Euler characteristic in both senses, their values
may differ. For example, there is a category A with

ZA =




2 2 2
2 2 2
2 8 5


 , gA(u) =

3
9− u

.

Then χ(A) = 1/2 (since (1/2, 0, 0) is both a weighting and a coweighting) but
χΣ(A) = 1/3.

Example 4.6. Series Euler characteristic is not invariant under equivalence. For exam-
ple, we may choose a category A satisfying

ZA =
(

3 3
2 2

)
, gA(u) =

2
5− u

, χΣ(A) =
2
5
.

Write the objects of A as a1, a2 and form a new category B by adjoining an object
a3 isomorphic to a2. Then B is equivalent to A and

ZB =




3 3 3
2 2 2
2 2 2


 , gB(u) =

3
7− u

, χΣ(B) =
3
7
.

The remaining examples concern Proposition 3.3, which gives sufficient conditions
for series Euler characteristic to be defined.

Example 4.7. The proposition is sharp, in the sense that neither of its hypotheses
can be dropped. Example 4.4 shows that we cannot drop the first hypothesis (that
A admits a weighting or a coweighting), since there ZA is diagonalizable but χΣ(A)
is undefined. To see that we cannot drop the second hypothesis (diagonalizability of
ZA), take the following example:

ZA =




2 3 5
2 3 5
2 1 3


 , gA(u) =

2 + 3u

u(8− u)
.

Then A has a weighting (1/2, 0, 0), but χΣ(A) is undefined.

Example 4.8. Even when A does have a weighting and ZA is diagonalizable, χΣ(A)
need not be the total weight

∑
i wi of every weighting w•. Indeed, the total weight

may vary with the weighting chosen. For example, there is a category A with

ZA =
(

2 3
2 3

)
, gA(u) =

2
5− u

, χΣ(A) =
2
5
.

Then ZA is diagonalizable, and (1/2, 0) and (0, 1/3) are weightings whose total
weights are different.
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