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Abstract
Let EK be the simplicial suspension of a pointed simpli-

cial set K. We construct a chain model of the James map,
αK : CK → ΩCEK. We compute the cobar diagonal on
ΩCEK, not assuming that EK is 1-reduced, and show that
αK is comultiplicative. As a result, the natural isomorphism
of chain algebras TCK ∼= ΩCK preserves diagonals.

In an appendix, we show that the Milgram map,
Ω(A⊗B) → ΩA⊗ ΩB, where A and B are coaugmented
coalgebras, forms part of a strong deformation retract of
chain complexes. Therefore, it is a chain equivalence even
when A and B are not 1-connected.

1. Introduction

Let L be a 1-reduced simplicial set. Let G(−) and C(−) be the Kan loop group
and normalized chain functors respectively. The explicit, natural twisting cochain
tL : CL→ C(GL) of Szczarba [17] determines a natural morphism of chain alge-
bras θL : ΩCL→ C(GL) that induces an isomorphism in homology, since CL is
1-connected. Here ΩCL is the cobar construction [1].

The coassociative, counital diagonal ψ on ΩCL of Baues [2] makes ΩCL a Hopf
algebra. The Alexander-Whitney diagonal on CL is comultiplicative up to strong
homotopy or DCSH [8], and hence is the linear part in a morphism of chain alge-
bras, Ω̃∆: Ω(CK) → Ω(CL⊗ CL). By [11], ψ = q ◦ Ω̃∆, where q : Ω(CL⊗ CL) →
ΩCL⊗ ΩCL is the Milgram equivalence [15].1 Furthermore, the Szczarba equiva-
lence is a DCSH morphism.

In the present paper, we consider the special case L = EK, where K is a pointed
simplicial set and E(−) is the simplicial suspension. Note that we allow the case
when K is not reduced, and hence L need not be 1-reduced. Since the Alexander-
Whitney diagonal on CEK is trivial, there is a natural isomorphism of chain alge-
bras,

ΩCEK ∼= T (C̃K), (1)

where C̃K = CK/C(∗). Our main result states:
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1In hindsight, we realize that we had resurrected an idea of Drachman [3, 4].
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Theorem (Theorem 4.9). The isomorphism (1) preserves diagonals.
To prove the theorem, we construct a chain model of the James map (see below),

αK : CK → ΩCEK. We compute the diagonal ψEK on ΩCEK, even when EK is
not 1-reduced, and show that αK is comultiplicative. An immediate consequence is
that ψEK is coassociative.

Let JX be the James construction [12] on the pointed topological space X. The
unit ηX : X → JX determines an isomorphism TH̃∗(X)

∼=−→ H∗(JX) of associative
algebras when the coefficients are such that H̃∗(X) is torsion-free. This result has
the following implications at the chain level. Let CS(−) be the normalized singular
chains functor over Z (the composite of normalized chains C and total singular
complex S). Since JX is a topological monoid, CS(JX) is a chain Hopf algebra. The
chain coalgebra morphism CS(ηX) : CS(X) → CS(JX), extends to a chain Hopf
algebra morphism, T (CS(X)) → CS(JX) inducing an isomorphism in homology.

If one replaces X by a pointed simplicial set K, our main theorem identi-
fies T (CK) ∼= ΩCEK as a Hopf algebra. We calculate the Szczarba equivalence
ΩCEK → C(GEK) when K is reduced, and show that it factors through the nat-
ural equivalence T (CK) → C(G+EK) where G+EK is a simplicial model of J |K|.
We are interested in G+EK since in the applications, it is important to be able to
treat ΩCEK when K is not necessarily reduced.

We remark that Theorem 4.9 plays an essential role in both [9] and [10]. In [9]
Theorem 4.9 is applied in the construction of a simple algebraic model of the free
loop space on a suspension, which is the basic building block of a model for calcu-
lation of the mod 2 topological cyclic homology of a suspension. Similarly, thanks
to Theorem 4.9, the model developed in [10] for calculating the homology alge-
bra of double loop spaces has a particularly tractable form when applied to double
suspensions.

In the appendix, we show that the Milgram map q : Ω(A⊗ C) → ΩA⊗ ΩC fits
into a strong deformation retract of chain complexes [8], and therefore is a chain
homotopy equivalence whenever A and C are coaugmented. This result further
reinforces the geometric validity of our calculation when K is not reduced.

2. Notation and background

2.1. Simplicial structures
For any m 6 n ∈ N, let [m,n] = {j ∈ N|m 6 j 6 n}. Let ∆ denote the category

with objects Ob(∆) = {[0, n]|n > 0} and morphisms

∆([0,m], [0, n]) = {[0,m]
f→ [0, n] | f is an order-preserving set map}.

In [13, p.177], it is shown that the classical coface and codegeneracy maps, namely,

dn
i : [0, n− 1] → [0, n]

x 7→
{

x if x < i
x+ 1 if x > i

and
σn

i : [0, n+ 1] → [0, n]

x 7→
{

x if x 6 i
x− 1 if x > i

for 0 6 i 6 n, generate ∆([0,m], [0, n]). Eilenberg and MacLane in [5] associate to a
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morphism f ∈ ∆([0,m], [0, n]) its derived map f ′ ∈ ∆([0,m+ 1], [0, n+ 1]) defined
by

f ′(0) = 0 and f ′(i+ 1) = f(i) + 1, i = 0, . . . ,m.

Clearly, (dn
i )′ = dn+1

i+1 and (σn
i )′ = σn+1

i+1 .
A simplicial set is a contravariant functor K : ∆ → Set. Let Kn := K([0, n]),

sn
i := K(σn

i ), and ∂n
i := K(dn

i ). The maps sn
i and ∂n

i are called respectively degen-
eracy and face maps and an element x ∈ Kn is called an n-simplex. The dimension
superscript will be omitted when the context is clear. We will use extensively the
simplicial identities:

∂i∂j = ∂j−1∂i if i < j,
sisj = sj+1si if i 6 j,
∂isj = sj−1∂i if i < j,
∂jsj = identity = ∂j+1sj , and
∂isj = sj∂i−1 if i > j + 1.

The derived maps associated to the face and degeneracy maps are

(∂n
i )′ = K((dn

i )′) = ∂n+1
i+1 and (sn

j )′ = K((σn
j )′) = sn+1

j+1 .

Naturality implies that the derived map associated to a composition of iterated
faces and degeneracies is the composition of the iterated derived face and degeneracy
maps, i.e., (si1 . . . sik

∂j1 . . . ∂jl
)′ = si1+1 . . . sik+1∂j1+1 . . . ∂jl+1. Given two simplicial

sets K and L, we extend the notion of derived map on K × L componentwise; i.e.,
(
(si1 . . . sik

∂j1 . . . ∂jl
)× (sα1 . . . sαn∂β1 . . . ∂βm)

)′
= (si1 . . . sik

∂j1 . . . ∂jl
)′ × (sα1 . . . sαn∂β1 . . . ∂βm)′.

Let ∆n denote the standard geometric n-simplex. The singular complex on a
topological space X is the simplicial set S(X) where Sn(X) = Top(∆n, X). Its left
adjoint, the geometric realization functor, is denoted | · |.

More generally a simplicial object in a category C is a contravariant functor from
∆ to C. In particular we will be concerned with simplicial monoids and simplicial
(abelian) groups.

Let Fab : Set→ Ab denote the free abelian group functor. Given a simplicial
set K, there is an associated simplicial abelian group, namely Kab := Fab ◦K. We
extend linearly the notion of derived map. For all n > 0, let DKn = ∪n−1

i=0 si(Kn−1),
the set of degenerate n-simplices ofK. The normalized chain complex onK, denoted
C(K), is given by

Cn(K) = Fab(Kn)/Fab(DKn),

where its differential is induced by ∂ =
∑n

i=0(−1)i∂i. The simplicial identities imply
that ∂2 = 0 and ∂(Fab(DKn)) ⊂ Fab(DKn−1). As noted in [5] the notion of a
derived map does not descend to normalized chains. Hence all computations will be
carried out with unnormalized chains, and we pass afterwards to the quotient.

Let ∗ be the unique simplicial set generated by a single nondegenerate 0-simplex.
For the remainder of this paper we work within the category of pointed simplicial
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sets. Objects are simplicial maps κ : ∗ → K, which boils down to choosing a 0-
simplex as basepoint in K. Morphisms are commuting triangles, i.e., basepoint-
preserving simplicial maps. The basepoint of K is denoted k0 := κ(∗), and kn :=
(s0)nk0. An n reduced simplicial set K is a simplicial set such that Ki = {ki} for
0 6 i 6 n. A 0-reduced simplicial set will simply be called a reduced simplicial set.
The unique simplicial map c : K → ∗ induces a chain map C(K) ε−→ C(∗) ∼= Z. The
reduced chain complex on K will be denoted by C̃(K) = ker(ε). Thus C̃>0(K) =
C>0(K), while κ : ∗ → K induces a natural splitting of ε, from which we obtain a
natural basis for C̃0, namely the set

{
x− k0 |x ∈ K0\{k0}

}
. Thus C0(K) = Z{k0} ⊕

C̃0(K).
We now recall three classical constructions on a pointed simplicial set K that are

central to the discussion at hand.
(a) Simplicial suspension EK ([14, p.124]): Let E0(K) = b0, while En(K) is

the set of pairs (i, x), where i > 1 is an integer and x ∈ Kn−i, under the identification
(i, kn) = sn+i

0 b0 = bn+i. The face and degeneracy operators are generated by

1. ∂0(1, x) = bn, for all x ∈ Kn,

2. ∂1(1, x) = b0, for all x ∈ K0,

3. ∂i+1(1, x) = (1, ∂ix), for all x ∈ Kn, n > 0,

4. s0(i, x) = (i+ 1, x), and

5. si+1(1, x) = (1, six),

with all other face and degeneracy maps defined by the requirement that EK be a
simplicial set.

The reduced suspension of the geometric realization of K is canonically homeo-
morphic to the geometric realization of EK ([14, p.125]). Note that Cn+1(EK) is
generated by elements (1, x), for nondegenerate x ∈ Kn.

(b) Simplicial loop group G(K) ([14, p.118]): Let K be a reduced simplicial
set. Define Gn(K) to be the free group generated by the elements of Kn+1 under
the identification s0x = en for x ∈ Kn, where en is the identity element of Gn(K).
The face and degeneracy operators are given by

1. τ(∂0x)∂0τ(x) = τ(∂1x),

2. ∂iτ(x) = τ(∂i+1x), if i > 0, and

3. siτ(x) = τ(si+1x), if i > 0,

where τ(x) denotes the class of x ∈ Kn+1 in Gn(K). These maps, ∂i and si, extend
uniquely to homomorphisms Gn(K) → Gn−1(K) and Gn(K) → Gn+1(K) respec-
tively.

In the appendix of [16], Smith shows that the (based) loops on the geometric
realization of K is weakly equivalent to the geometric realization of GK.

(c) Simplicial James construction G+E(K): Notice that since G(K) is a
simplicial group, from condition (b.1) we can solve for ∂0τ(x). If we ask that Gn(K)
be the free monoid instead of the free group, then condition (b.1) is not enough to
determine ∂0τ(x). But ifK = EL, then condition (b.1) characterizes ∂0τ(x). Indeed,
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for x ∈ Ln>0, we have either

τ(∂0(1, x)) = τ(bn) = en−1 or ∂0τ(i+ 1, x) = ∂0τ(s0(i, x)) = en+i−1.

Hence we have a well-defined functor, G+E(−), from (arbitrary) pointed simplicial
sets to simplicial monoids. An easy calculation shows that for all K, the natural
map

ηK : K → G+E(K)
x 7→ τ(1, x)

is simplicial. In fact, using the universal properties of the James construction, JX,
on a topological space X ([12]) and the adjunction between S(−) and | · |, one
can show that ηK is a model of the topological James map X → JX. In particular,
|G+E(K)| ∼= J |K|. Moreover, whenK is reduced, the inclusion G+E(K) ↪→ GE(K)
is a homotopy equivalence. In [14, p.126], the last result is said to be valid for
countable reduced simplicial sets. Using Proposition 2.4 on page 9 of [7], one can
extend it to arbitrary reduced simplicial sets.

Remark 2.1. The G+E(−) construction is isomorphic to Milnor’s F+ construction
as remarked in [16].

2.2. Differential structures
We recall now a number of basic definitions and constructions related to graded

modules and graded (co)algebras over a principal ideal domain R. A graded R-
module V = ⊕i∈ZVi is connected if V<0 = 0 and V0

∼= R. It is simply connected if,
in addition, V1 = 0. We write V+ for V>0. Let V be a nonnegatively graded, free
R-module. The free associative algebra generated by V is denoted TV ; i.e.,

TV ∼= R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ . . .

where the product µ : TV ⊗ TV → TV is given by word concatenation. We denote
the submodule of words of length n by TnV = V ⊗n.

The suspension endofunctor s on the category of graded modules is defined on
objects V = ⊕i∈ZVi by (sV )i

∼= Vi−1. Given a homogeneous element v ∈ V , we write
sv for the corresponding element of sV . The suspension s admits an obvious inverse,
which we denote s−1. Observe that C(EK) ∼= sC(K) as chain complexes. A map
of chain complexes inducing an isomorphism in homology will be called a quasi-
isomorphism.

Let f, g : (A, d) → (B, d) be two maps of chain algebras. An (f, g)-derivation is
a linear map ϕ : A→ B of degree +1 such that ϕµ = µ(ϕ⊗ g + f ⊗ ϕ), where µ
denotes the multiplication on A and B. A derivation homotopy from f to g is an
(f, g)-derivation ϕ that satisfies dϕ+ ϕd = f − g.

Let (C, d,∆) be a coaugmented chain coalgebra. Let C = ker ε where ε : C → R
is the counit. The reduced coproduct is defined by

∆(c) := ∆(c)− (c⊗ 1 + 1⊗ c),

for c ∈ C.
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Definition 2.2 ([1]). The cobar construction on C, denoted Ω(C), is the chain
algebra (Ts−1(C), dΩ), where dΩ = −s−1ds+ µ(s−1 ⊗ s−1)∆s on generators.

A word in Tn(s−1(C)) will be denoted by [x1| . . . |xn] := s−1x1 ⊗ . . .⊗ s−1xn,
while the unit will be denoted by [ ]. There is a natural chain algebra morphism

q : Ω(C ⊗ C ′) → Ω(C)⊗ Ω(C ′) (2)

specified by q([x⊗ 1]) = [x]⊗ [ ], q([1⊗ y]) = [ ]⊗ [y], and q([x⊗ y]) = 0 for all x
∈ C and y ∈ C ′. Milgram shows, in [15, Theorem 7.4], that if C and C ′ are 1-
connected, then q is a natural quasi-isomorphism of chain algebras. In Appendix A
we extend this result to arbitrary coaugmented chain coalgebras.

Let (C, d,∆) be a chain coalgebra, and let (A, d, µ) be a chain algebra. A twisting
cochain from C to A is a degree −1 map t : C → A of graded modules such that

dt+ td = µ(t⊗ t)∆.

If C is connected, then any twisting cochain t : C → A induces a chain algebra map
θ : Ω(C) → A by setting θ([c]) = t(c). It is equally clear that any chain algebra map
θ : Ω(C) → A gives rise to a twisting cochain via the composition

C+
s−1

−→ s−1C+ ↪→ Ts−1C+
θ−→ A.

In Section 4 of this paper, we work in the category DCSH [8]. Its objects are
augmented, connected coassociative chain coalgebras. A DCSH-morphism from C
to C ′ is a map of chain algebras Ω(C) → Ω(C ′). In a slight abuse of terminology,
we say that a chain map between chain coalgebras f : C → C ′ is a DCSH-map if
there is a morphism in DCSH(C,C ′) of which f is the linear part. In other words,
for c ∈ C, there is a map of chain algebras g : Ω(C) → Ω(C ′) such that

g([c]) = [f(c)] + higher-order terms.

In a further abuse of notation, we sometimes write Ω̃f : ΩC → ΩC ′ to indicate one
choice of chain algebra map of which f is the linear part.

2.3. Homological perturbation theory
We now recall those elements of homological perturbation theory that we need

for this article.

Definition 2.3. Suppose that ∇ : (X, ∂) → (Y, d) and f : (Y, d) → (X, ∂) are mor-
phisms of chain complexes. If f∇ = 1X and there exists a chain homotopy ϕ : (Y, d)
→ (Y, d) such that

1. dϕ+ ϕd = ∇f − 1Y ,
2. ϕ∇ = 0,
3. fϕ = 0, and
4. ϕ2 = 0,

then (X, d)
∇­
f

(Y, d) ª ϕ is a strong deformation retract (SDR) of chain complexes.

The following notion was introduced by Gugenheim and Munkholm [8].
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Definition 2.4. An SDR (X, d)
∇­
f

(Y, d) ª ϕ is called Eilenberg-Zilber (E-Z) data

if (Y, d,∆Y ) and (X, d,∆X) are chain coalgebras and ∇ is a morphism of coalgebras.

Observe that in this case

(d⊗ 1X + 1X ⊗ d)
(
(f ⊗ f)∆Y ϕ

)
+

(
(f ⊗ f)∆Y ϕ

)
d = ∆Xf − (f ⊗ f)∆Y ;

i.e., f is a map of coalgebras up to chain homotopy. In fact, as the following theorem
of Gugenheim and Munkholm shows, f is usually a DCSH map.

Theorem 2.5 ([8, Theorem 4.1]). Let (X, d)
∇­
f

(Y, d) ª ϕ be E-Z data such that

X is simply connected and Y is connected. Let F0 = 0 and F1 be the composite

Y
f−→ X → X+

s−1

−→ s−1X+,

and construct inductively Fk : Y → T k(s−1X+) by the formula

Fk = −
∑

i+j=k

(Fi ⊗ Fj)∆Y ϕ.

Then F =
∏

k>1

Fk =
⊕

k>1

Fk is a twisting cochain. Similarly, let Φ0 be the natural

augmentation on Y and Φ1 be the composite

Y
ϕ−→ Y → Y+

s−1

−→ s−1Y+︸ ︷︷ ︸
ρY

,

and construct inductively Φk : Y → T k(s−1Y+) by the formula

Φk =


Φk−1 ⊗ ρY +

∑

i+j=k

(
Ω(∇)Fj ⊗ Φi

)

 ∆Y ϕ.

Then Φ =
∏

k>0

Φk =
⊕

k>0

Φk is a twisting (homotopy) cochain. Moreover,

Ω(X, d)
Ω∇­
eΩf

Ω(Y, d) ª Ω̃ϕ

is an SDR, where Ω∇ is the algebra morphism determined by the coalgebra morphism
∇, Ω̃f is the algebra morphism determined by the twisting cochain F , and Ω̃ϕ is
the derivation homotopy determined by the twisting cochain Φ.

Remark 2.6. Since X is simply connected, the key, as Gugenheim and Munkholm
noted, is that on elements of degree n, Fk = 0 when k > n. Thus F is a well-defined
map into

⊕
k>1 T

k(s−1X+) and not merely into
∏

k>1 T
k(s−1X+). That is the only

place where the hypothesis X is used. Thus that condition can be removed, and
hence Theorem 2.5 still applies if for some other reason (geometric, algebraic, . . .)
F turns out to be locally nilpotent.
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2.4. Relating simplicial and differential structures
Let K and L be simplicial sets. The natural Alexander-Whitney map is the mor-

phism of chain complexes fK,L : C(K × L) → C(K)⊗ C(L) given on nondegenerate
x× y ∈ (K × L)n by

fK,L(x× y) =
n∑

i=0

∂̃n−ix⊗ ∂i
0y,

where ∂̃n−i := ∂i+1 . . . ∂n. The simplicial diagonal K Λ→ K ×K together with the
Alexander-Whitney map endow the normalized chains on K with a natural coprod-
uct ∆K = fK,K ◦ C(Λ) ([5, 6, 14]). If x ∈ Kn is nondegenerate, then

∆K(x) =
n∑

i=0

∂̃n−ix⊗ ∂i
0x.

It is well known that the Alexander-Whitney map is a chain equivalence [6]. A
natural chain homotopy inverse is the Eilenberg-Zilber map ∇K,L : C(K)⊗ C(L) →
C(K × L) defined by

∇K,L(x⊗ y) =
∑

(µ,ν)

(−1)ε(µ)sνq . . . sν1x × sµp . . . sµ1y

for nondegenerate x ∈ Kp and y ∈ Lq, where the sum is taken over all (p, q)-shuffles
(µ, ν) and ε(µ) =

∑p
i=1[µi − (i− 1)] is the signature of the corresponding permu-

tation. Recall that a (p, q)-shuffle is a permutation π of {0, . . . , p+ q − 1} such
that π(i) < π(j) if 0 6 i < j 6 p− 1 or p 6 i < j 6 p+ q − 1. We use Eilenberg and
MacLane’s convention where we let µi = π(i− 1), 1 6 i 6 p, and νj = π(j + p− 1),
1 6 j 6 q. Clearly π is determined by µ and ν, and we let π = (µ, ν). Notice that,
in contrast to the Alexander-Whitney map, ∇K,L is a coalgebra map.

There is a natural chain homotopy, ϕK,L such that

C(K)⊗ C(L)
∇K,L­
fK,L

C(K × L) ª ϕK,L (3)

constitutes E-Z data. If K and L are 1-reduced, then Theorem 2.5 implies that fK,L

is naturally a DCSH map. In [6] Eilenberg and MacLane give a recursive formula
for ϕK,L that we reproduce here. Set ϕ(C0(K × L)) = 0. For q > 0 we let

ϕ(x× y) = −ϕ′(x× y) + (∇K,L ◦ fK,L)′s0(x× y),

for x× y ∈ (K × L)q nondegenerate.

2.5. The cobar diagonal
We now describe the coproduct structure on Ω(C(K)) for a 1-reduced simplicial

set K. It was defined in [11] and shown there to be identical to the Baues coproduct.
Recall that the Alexander-Whitney map fK,L is naturally a DCSH map. We are
thus led to define

ψK = q ◦ Ω̃fK,K ◦ ΩC(Λ)

where q is the Milgram equivalence (see (2) p.214). The cobar diagonal, ψK , is
strictly coassociative and cocommutative up to derivation homotopy. Furthermore,
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the Szczarba quasi-isomorphism of chain algebras θK : ΩC(K) → C(GK) is a DCSH
map, in a way compatible with the algebra structures.

3. A chain model for the simplicial James map

Let K be an arbitrary pointed simplical set. Recall that EK is reduced, so the
chain coalgebra C(EK) is connected and ΩC(EK) is defined. Define a map

α : C(K) → ΩC(EK) (4)

by α(k0) = [ ], α(y − k0) = [(1, y)] if y ∈ K0\{k0}, and α(x) = [(1, x)] if x ∈ K>1.
We proceed to show that α is a chain map. As in the geometric case, the coproduct

on C(EK) is as simple as possible.

Lemma 3.1. The diagonal on C(EK) is primitive, i.e., ∆EK = 0.

Proof. The face map ∂0 applied to any element (1, x) ∈ En+1(K) is the basepoint
bn, and bn is degenerate unless n = 0. Therefore

∆(1, x) =
n+1∑

j=0

∂j+1 · · · ∂n+1(1, x)⊗ ∂j
0(1, x)

= b0 ⊗ (1, x) + (1, x)⊗ b0

as desired.

Corollary 3.2. The differential in ΩC(EK) is linear, and

dΩ[(1, x)] =
n∑

j=0

(−1)j [(1, ∂jx)],

for x ∈ Kn.

Proof. The quadratic part of the differential vanishes by Lemma 3.1. A straightfor-
ward computation gives the result.

Theorem 3.3. The map α is a chain map.

Proof. We only check for x ∈ K1 since it is obvious in other degrees. Recall that
(1, k0) = b1 is degenerate in EK. We have

α(∂x) = α(∂0x− ∂1x)
= α(∂0x− k0)− (∂1x− k0)
= α(∂0x− k0)− α(∂1x− k0)

=





[(1, ∂0x)]− [(1, ∂1x)] if ∂0x 6= k0 and ∂1x 6= k0

[(1, ∂0x)] if ∂0x 6= k0 and ∂1x = k0

0 if ∂0x = k0 and ∂1x = k0

= dΩα(x).
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The chain map α is in fact a chain model of the simplicial James map K →
G+EK. More precisely, the diagram below commutes

ΩC(EK)

γ

²²
C(K)

α

99rrrrrrrrrr

C(ηK)
// C(G+EK),

(5)

where the chain algebra map γ is induced by the twisting cochain (1, x) 7→ τ(1, x).
Hence diagram (5) induces a commuting chain algebra triangle

ΩC(EK)

γ

²²
TC̃(K)

bα
88rrrrrrrrrr

bC(ηK)

// C(G+EK),

(6)

where α̂ and Ĉ(ηK) are the chain algebra morphisms induced by α and C(ηK)
respectively. Since C(ηK) is a coalgebra morphism, Ĉ(ηK) is a Hopf algebra mor-
phism. A homological argument shows that Ĉ(ηK) is a quasi-isomorphism while α̂
is obviously an isomorphism. Hence γ is a quasi-isomorphism.

4. Bott-Samelson, Szczarba and the cobar diagonal

In this section, we extend the definition of the cobar diagonal to the suspension of
an arbitrary pointed simplicial set K. Indeed, we show that we have a factorisation

C(EK)

((

C(Λ) // C(EK × EK)
Q

k>1 Fk //
∏

n>0 T
ns−1(C(EK)⊗ C(EK))+

Ω(C(EK)⊗ C(EK))
& §

33hhhhhhhhhhhhhhhhhhh
q // Ω(C(EK))⊗ Ω(C(EK)),

where {Fk}k>1 is the family of higher homotopies associated to the Alexander-
Whitney map fEK,EK as given by Theorem 2.5. Moreover, we show that the com-
posite of the dotted arrow together with q, denoted ξK , is a twisting cochain. We
define the (extended) cobar diagonal to be the induced chain algebra map

ψK : Ω(C(EK)) −→ Ω(C(EK))⊗ Ω(C(EK))

[(1, x)] 7−→ ξK
(
(1, x)

)
.

Note that when K is reduced, then ψK = q ◦ Ω̃fK,K ◦ ΩC(Λ) as on page 216.
Finally, we prove Theorem 4.9, a chain-level Bott-Samelson theorem with respect

to the (extended) cobar diagonal. We then show that the Szczarba equivalence is a
strict morphism of chain Hopf algebras for suspensions. In the process we establish
a few helpful combinatorial identities involving face maps in simplicial suspensions.
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Remark 4.1. From Lemma 3.1 we deduce that ∆EK is a coalgebra map. Thus one
can directly obtain a diagonal on ΩC(EK) as q ◦ Ω(∆EK). If ψK = q ◦ Ω(∆EK) it
would imply, however, that the higher homotopies were trivial. As we show below,
it is not true in general: the homotopy F2 is usually nonzero. Endowed with the
“wrong” coproduct, Ω(C(EK)) is indeed a chain Hopf algebra, but it is not weakly
equivalent to C(G+EK).

4.1. The (extended) cobar diagonal
To show that F2 is nonzero in general, we need first to study the Eilenberg-

MacLane homotopy ϕ : C(EK × EL) → C(EK × EL) ([6]). Since we will eventu-
ally be interested only in the image of C(Λ), i.e., simplices of the form (1, x)× (1, x)
for nondegenerate (n− 1)-simplices x, we will assume that n > 1 and concentrate on
simplices of the form (1, x)× (1, y) ∈ (EK × EL)n for nondegenerate x ∈ Kn−1 and
y ∈ Ln−1. Recall that since EK and EL are reduced, C(EK × EL) is a connected
coalgebra and so the reduced diagonal is defined.

Proposition 4.2. On simplices of the form (1, x)× (1, y), we have

∆̄EK×EL ◦ ϕ = ∆̄EK×EL ◦ (∇EK,EL ◦ fEK,EL)′ ◦ s0.

Proof. Recall that ∆ =
( n∑

j=1

∂̃n+1−j ⊗ ∂j
0

)
◦ C(ΛEK×EL) on elements of degree n+

1, and that ϕn = −ϕ′n−1 + (∇f)′s0. The map ϕ′n−1 is the sum of simplicial opera-
tors whose component face and degeneracy maps all have index at least 1. Thus, as
noted by Eilenberg and MacLane, ∂0ϕ

′
n−1 = ϕn−1∂0. On one hand if (1, x)× (1, y) ∈

C1(EK × EL), then ϕ0∂0((1, x)× (1, y)) = ϕ0(b0 × b0) = 0 by construction. On the
other hand if (1, x)× (1, y) ∈ Ck>1(EK × EL), then ∂0((1, x)× (1, y)) = bk−1 ×
bk−1 which is degenerate; whence ∆̄ϕ′n−1 vanishes.

Thus we only need to consider the differential operator (∇f)′s0. In dimension
n > 1, (∇f)′s0 is the sum of terms of the form

sn+1
0 ∂1 · · · ∂n × s0 when j = 0

sνn−j+1 · · · sν1+1s0∂̃
n−j × sµj+1 · · · sµ1+1∂

j−1
1 when 0 < j < n

s0 × sn · · · s1∂n−1
1 when j = n,

where (µ, ν) is a (j, n− j)-shuffle, and j is the running index in the definition of the
Alexander-Whitney map (0 6 j 6 n). In dimension n = 1, we have

(∇f)′s0 = s20∂1 × s0 + s0 × s1.

We notice that when n > 1 the term corresponding to j = 0 is degenerate and so
vanishes. Thus from now on we will consider j > 1.

To simplify notation we set sµ+1 = sµj+1 · · · sµ1+1, and analogously for sν .

Lemma 4.3. Let k be an integer such that 1 6 k 6 n, and let (µ, ν) be a (j, n− j)-
shuffle different from the one characterized by νn−j = n− j − 1. Then

∂k
0 (sν+1s0∂̃

n−j × sµ+1∂
j−1
1 ) (7)

is degenerate on simplices (1, x)× (1, y) ∈ (EK × EL)n.
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Proof. We use the simplicial identities to move one ∂0 past the second factor
sµ+1∂

j−1
1 ; i.e.,

∂0sµ+1∂
j−1
1 = sµ∂0∂

j−1
1 = sµ∂

j
0.

Thus the second factor is the basepoint bn−k+1 and is degenerate since n− k + 1 6= 0
by assumption. It therefore suffices to show that the first factor in (7) is degenerate.
Because of the simplicial identities we have

∂k
0 sν+1s0∂̃

n−j = ∂k−1
0 sν∂0s0∂̃

n−j = ∂k−1
0 sν ∂̃

n−j . (8)

Notice that if k = 1, then (8) is degenerate. Let k > 2, so that n > 2. There exists
an integer 0 6 l < n− j such that if l = 0, then ν1 > 1, or if l > 0, then νl = l − 1
and νl+1 > l, so that (8) becomes

∂k−1
0 sν ∂̃

n−j = ∂k−1
0 sνn−j

· · · sνl+1s
l
0∂̃

n−j

=

{
∂k−l−1
0 sνn−j−l · · · sνl+1−l∂̃

n−j if l < k − 1
sνn−j−k+1 · · · sνl+1−k+1s

l−k+1
0 ∂̃n−j if l > k − 1.

If l < k − 1, then at least one ∂0 can slide through without interference to the right
of the expression; i.e.,

∂k−l−1
0 sνn−j−l · · · sνl+1−l∂̃

n−j = ∂k−l−2
0 sνn−j−l−1 · · · sνl+1−l−1∂̃

n−j∂0.

Applying this operator to (1, x) we obtain the basepoint bn+1−k, which is degener-
ate since k 6 n. If l > k − 1, then the expression is clearly degenerate since l < n
− j.

Using Lemma 4.3, we establish the following equality.

Proposition 4.4. On simplices of the form (1, x)× (1, y), we have

∆̄ϕ
(
(1, x)× (1, y)

)
=

n∑

j=1

(−1)j(n−1)
(
bn−j+1 × ∂j−1

1 (1, y)
)
⊗

(
∂̃n−j(1, x)× bj

)
.

Proof. Notice that the degree of the image under ϕ of (1, x)× (1, y) is n+ 1. Thus

∆ =

(
n∑

k=1

∂̃n+1−k ⊗ ∂k
0

)
◦ C(ΛEK×EL), (9)

where ∂̃n+1−k = ∂k+1 . . . ∂n+1. By Lemma 4.3 we only need to consider the cases
where the (j, n− j)-shuffle (µ, ν) in (7) is characterized by νn−j = n− j − 1. Notice
that the signature of that shuffle is ε(µ) ≡ j(n− 1) mod 2. Thus on the right side
of the tensor in (9), we have

∂k
0

(
sν+1s0∂̃

n−j(1, x)× sµ+1∂
j−1
1 (1, y)

)

= ∂k−1
0 sν ∂̃

n−j(1, x)× ∂k−1
0 sµ∂

j
0(1, y)

= ∂k−1
0 sn−j−1 . . . s0∂̃

n−j(1, x)× bn−k+1

= ∂k−1
0 (s0)n−j ∂̃n−j(1, x)× bn−k+1

which equals ∂̃n−j(1, x)× bj , if k − 1 6= n− j, or else, it is degenerate. On the left
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side of the tensor in (9), assuming that k − 1 = n− j and νn−j = n− j − 1, we have
µ1 = n− j, . . . , µj = n− 1, and so ∂̃n+1−ksµ+1 = id. Hence

∂̃n+1−k
(
sν+1s0∂̃

n−j(1, x)× sµ+1∂
j−1
1 (1, y)

)

= ∂n−j+2 . . . ∂n+1

(
sν+1s0∂̃

n−j(1, x)× sµ+1∂
j−1
1 (1, y)

)

= ∂n−j+2 . . . ∂n+1

(
sn−j+1
0 ∂̃n−j(1, x)× sµ+1∂

j−1
1 (1, y)

)

= sn−j+1
0 ∂1 . . . ∂n(1, x)× ∂j−1

1 (1, y)

= bn−j+1 × ∂j−1
1 (1, y).

The desired result is obtained by extending linearly.

We now tackle
∏

k>1

Fk associated to the E-Z data of equation (3) on page 216. The

first thing to notice is that the Fk are of degree −1, and hence vanish on elements
of degree 0.

Lemma 4.5. If m > 2, then Fm(bn × (1, y)) = Fm((1, x)× bn) = 0.

Proof. The argument of Proposition 4.2 shows that

∆̄ϕ(bn × (1, y)) = ∆̄(∇f)′s0(bn × (1, y)).

We can go further and show that in fact ∆̄ϕ(bn × (1, y)) = 0. Indeed, as mentioned
just after Proposition 4.2, (∇f)′s0 is the sum of terms

sν+1s0∂̃
n−j × sµ+1∂

j−1
1 ,

where j > 1 and (µ, ν) is a (j, n− j)-shuffle. Applying such a term to bn × (1, y),
we obtain

sν+1s0∂̃
n−jbn × sµ+1∂

j−1
1 (1, y) = bn+1 × sµ+1∂

j−1
1 (1, y).

Since j > 1, the right factor is degenerate. Since the left factor is the basepoint, the
whole expression is degenerate. Therefore ∆̄ϕ(bn × (1, y)) = 0, from which it follows
that Fm(bn × (1, y)) = 0 for m > 2. For (1, x)× bn the argument is symmetric.

Proposition 4.6.
∏

k>1

Fk = F1 ⊕ F2 on simplices of the form (1, x)× (1, y). More-

over,

q ◦ (F1 ⊕ F2)
(
(1, x)×(1, y)

)

= [(1, x)]⊗ [ ] +




n∑

j=1

[∂̃n−j(1, x)]⊗ [∂j−1
1 (1, y)]


 + [ ]⊗ [(1, y)].
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Proof. A direct calculation shows that

qF1((1, x)× (1, y)) = [(1, x)]⊗ [ ] + [ ]⊗ [(1, y)].

Using Proposition 4.4 and the fact that q is a graded algebra morphism, we see that

q ◦ F2((1, x)× (1, y))

= − q ◦ F1 ⊗ F1




n∑

j=1

(−1)j(n−1)
(
bn−j+1 × ∂j−1

1 (1, y)
)
⊗

(
∂̃n−j(1, x)× bj

)



= q

n∑

j=1

(−1)(n−j)+j(n−1)
(
[b0 ⊗ ∂j−1

1 (1, y) | ∂̃n−j(1, x)⊗ b0]
)

=
n∑

j=1

(−1)j(n−j)+j(n−1) [∂̃n−j(1, x)]⊗ [∂j−1
1 (1, y)],

where j(n− j) + j(n− 1) ≡ j(j + 1) ≡ 0 mod 2. It remains to show that Fm((1, x)
× (1, y)) = 0 if m > 3. But, by Proposition 4.4,

Fm((1, x)× (1, y)) = −
∑

i+j=m

(Fi ⊗ Fj)∆̄ϕ((1, x)× (1, y))

=
∑

i+j=m

n∑

k=1

(−1)k(n−1)+(n−k)

× Fi(bn−k+1 × ∂k−1
1 (1, y))⊗ Fj(∂̃n−k(1, x)× bk).

If m > 3, then either i > 2 or j > 2; hence Lemma 4.5 implies that the above expres-
sion vanishes.

Corollary 4.7. The map ξK = q ◦ (
F2 ⊕ F1

) ◦ C(Λ) is a twisting cochain.

Proof. We need to show that dξK + ξKd = µ(ξK ⊗ ξK)∆. By Lemma 3.1 and the
fact that ξK = 0 on dimension 0 elements, we have that µ(ξK ⊗ ξK)∆ = 0. Thus
we need to show that ξK is a chain map of degree −1. But, by Proposition 4.6,
the same proof which shows that the Alexander-Whitney map fK,L is a chain map
gives the desired result.

Hence the (extended) cobar diagonal for an arbitrary pointed simplicial set K is
given by

ψEK

(
[(1, x)]

)
= [(1, x)]⊗ [ ] +




n∑

j=1

[(1, ∂̃n−jx)]⊗ [(1, ∂j−1
0 x)]


 + [ ]⊗ [(1, x)],

on nondegenerate simplices (1, x) ∈ EKn.
The next corollary follows immediately from this formula.

Corollary 4.8. For any pointed simplicial set K the map α : C(K) → ΩC(EK) is
a coalgebra morphism with respect to the (extended) cobar diagonal.
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Proof. We first check that α is augmentation preserving. Let εK and εEK denote the
augmentations on C(K) and C(EK) respectively. The augmentation on Ω(C(EK))
is Ω(εEK) (since εEK is a coalgebra map). On one hand, we have Ω(εEK)(α(k0)) =
Ω(εEK)([ ]) = 1 = εK(k0). On the other hand, for y ∈ K0\{k0}, Ω(εEK)(α(y − k0))
= Ω(εEK)

(
[(1, y)]

)
= 0 = εK(y − ko).

Secondly, we check that α⊗ α ◦∆K = ψEK ◦ α. Let x ∈ Cn>1(K) be a nonde-
generate simplex. Then

α⊗ α ◦∆K(x)

= α⊗ α
(
∂̃nx⊗ x+




n−1∑

j=1

∂̃n−jx⊗ ∂j
0x


 + x⊗ ∂n

0 x
)

= α⊗ α
(
k0 ⊗ x+ (∂̃nx− k0)⊗ x

+




n−1∑

j=1

∂̃n−jx⊗ ∂j
0x


 + x⊗ (∂n

0 x− k0) + x⊗ k0

)

= [ ]⊗ [(1, x)] + α(∂̃nx− k0)⊗ [(1, x)]

+




n−1∑

j=1

[(1, ∂̃n−jx)]⊗ [(1, ∂j
0x)]


 + [(1, x)]⊗ α(∂n

0 x− k0) + [(1, x)]⊗ [ ].

As in the proof of Theorem 3.3, there are four cases to consider. We will compute
the case when ∂̃nx 6= k0 and ∂n

0 x 6= k0, leaving the three other cases to the reader
(one should recall that (1, k0) is degenerate). In our case, we have

α(∂̃nx− k0) = [(1, ∂̃nx) and α(∂n
0 x− k0) = [(1, ∂n

0 x)].

Now by inspection we have α⊗ α ◦∆K(x) = ψEK(α(x)).
Finally, let y ∈ K0. By construction, we have ψEK([ ]) = [ ]⊗ [ ]. Hence, clearly,

ψEK(α(k0)) = (α⊗ α)∆K(k0). Let y ∈ K0\{k0}. An easy computation shows that

ψEK(α(y − k0)) = ψEK

(
[(1, y)]

)

= [ ]⊗ [(1, y)] + [(1, y)]⊗ [(1, y)] + [(1, y)]⊗ [ ],

while

α⊗ α ◦∆K(y − k0)
= α⊗ α(y ⊗ y − k0 ⊗ k0)

= α⊗ α
((

(y − k0) + k0

)⊗ (
(y − k0) + k0

)− k0 ⊗ k0

)

= α⊗ α
(
(y − k0)⊗ (y − k0) + k0 ⊗ (y − k0) + (y − k0)⊗ k0

)

= [(1, y)]⊗ [(1, y)] + [ ]⊗ [(1, y)] + [(1, y)]⊗ [ ].

Hence we have the result.

Corollary 4.8 directly implies the chain-level Bott-Samelson theorem.
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Theorem 4.9. Let K be any pointed simplicial set. There is a natural isomorphism
of chain Hopf algebras

α̂ : (TC̃(K), d̂, ∆̂K) → (ΩC(EK), ψEK)

where d̂ and ∆̂K denote, respectively, the derivation determined by the differential
d of C(K) and the algebra morphism determined by ∆K .

Therefore two of the three morphisms in (6) are Hopf algebra morphisms.

4.2. The Szczarba twisting cochain
In this section we will assume that K is a reduced pointed simplicial set.
Since (ΩC(EK), ψEK) has a particularly simple form, it is reasonable to expect

that the Szczarba map also behaves better for suspensions. We show below that our
expectations are indeed fulfilled: θEK is a strict map of chain Hopf algebras.

In [17], Szczarba defines a natural twisting cochain tL : C(L) −→ C(GL), induc-
ing a quasi-isomorphism of chain algebras

θL : ΩC(L) −→ C(GL)

for any 1-reduced simplicial set L. Explicitly, when L = EK, tEK is given by

tEK(1, x) =
(n−1)!∑

i=1

(−1)ε(i,n)Dn
0,iτ((1, x))

−1

since ∂0(1, x) = bn−1 for x ∈ Kn−1. The Dn
0,i are simplicial operators defined induc-

tively as follows.

D1
0,1 = id

Dn+1
0,i+k(n−1)! =

{
(Dn

0,i)
′s0∂k k > 0

(Dn
0,i)

′ k = 0.

The operator Dn
0,1 is therefore the identity for n > 1. The signature function ε is

given by

ε(1, 1) = 0,
ε(i+ k(n− 1)!, n+ 1) = ε(i, n) + k + 1 (mod 2)

whenever 1 6 i 6 (n− 1)!, 0 6 k 6 n− 1;
ε(i, n) = 0 otherwise.

Lemma 4.10. Dn
0,i begins with a degeneracy for all n > 1, 2 6 i 6 (n− 1)!.

Proof. We proceed by induction on n. If n = 1, then the statement is true vacuously.
Suppose inductively that Dn

0,i begins with a degeneracy if 2 6 i 6 (n− 1)!. For 2 6
i 6 n!, consider the operator Dn+1

0,i . Write i = k(n− 1)! + `, where 1 6 ` 6 (n− 1)!.
If k > 1, then

Dn
0,i = (Dn

0,`)
′s0∂k = s0D

n
0,`∂k

since Dn
0,` contains no ∂0 ([17] Lemmas 1.2 and 3.1).
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If k = 0, then 2 6 i 6 (n− 1)!, so

Dn+1
0,i = (Dn

0,i),
′

which starts with a degeneracy by the inductive hypothesis.

An easy induction shows that ε(1, n) = (−1)n+1. The formula for Szczarba’s
twisting cochain thus becomes

tEK(1, x) = (−1)n+1
(
τ((1, x))

)−1
.

Now a straightforward calculation proves the following theorem.

Theorem 4.11. The Szczarba equivalence

θEK : (ΩC(EK), ψEK) '−→ C(GEK)

is comultiplicative, and therefore a Hopf algebra quasi-isomorphism.

Remark 4.12. We now have two natural chain Hopf algebra quasi-isomorphisms
ΩC(EK) → C(GEK) when K is reduced. The first is θEK . The second is the com-
posite

Ω(CEK)
γ−→ C(G+EK) → C(GEK)

where the second arrow is induced by the obvious inclusion. Note that these two
morphisms are not in general homotopic because the identity and the inversion
maps are not homotopic as simplicial maps in GEK.

Appendix A. The Milgram equivalence as a natural SDR

Let A and B be coaugmented chain coalgebras. Recall that the Milgram map
q : Ω(A⊗B) → ΩA⊗ ΩB on page 214 is a quasi-isomorphism if A and B are 1-
connected. The purpose of this appendix is to prove the following generalization.

Theorem A.1. Let A and B be coaugmented chain coalgebras. There exists a strong
deformation retract of chain complexes,

ΩA⊗ ΩB
σ­
q

Ω(A⊗B) ª h.

In particular, q is a chain homotopy equivalence.

A.1. Notation and definitions
Throughout, we work over an arbitrary commutative ground ring R.
Let (A,∆, ε, η) and (B,∆, ε, η) be coaugmented chain coalgebras. We adapt

Sweedler’s notation for the diagonal by writing

∆a = a⊗ 1 + a1 ⊗ a2 + 1⊗ a.

Note that we only use the notation for the reduced diagonal, and we suppress the
summation sign. In Ω(A⊗B), we simplify further by omitting the tensor product
symbol and the unit. Thus [ab] = s−1(a⊗ b), [a] = s−1(a⊗ 1), and [b] = s−1(1⊗ b),
so d[a] = −[da] + (−1)deg a1 [a1|a2].
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Let iA = A⊗ ηB : A ∼= A⊗R→ A⊗B and iB = ηA ⊗B : B ∼= R⊗B → A⊗B.
Let σ be the composite

ΩA⊗ ΩB ΩiA⊗ΩiB−−−−−−→ (
Ω(A⊗B)

)⊗2 mult.−−−→ Ω(A⊗B).

A calculation shows that qσ is the identity. We show that q and σ fit into a natural
strong deformation retract. As a result, the Milgram map is a homotopy equivalence
for any pair of coaugmented coalgebras, not just those that are 1-connected.

A.2. Definition of the homotopy
In this section we construct a natural map of degree +1, h : Ω(A⊗B) →

Ω(A⊗B). In the next section we show that h : σq ' 1.
Let w ∈ Ω(A⊗B). Write w = [ω|β], where ω is a word that does not end in an

element of B and β is possibly empty. Define ]w to be the total number of letters
in ω from B.

Define h[ ] = 0. If w is not the empty word but ends in ab, then set h(w) = 0.
Consider w = [b|a1| · · · |am]. To define h(w), we take the iterated diagonal of b and

distribute the factors among the ai’s. We make an equivalent definition that is easier
to work with inductively. Suppose ∆̄b = b1 ⊗ b2 (again, summation is understood).
Define h[b|a] = −(−1)(deg a+1) deg b[ab]. Suppose inductively that we have defined
h[b|α] for any b ∈ B and any α = [a1| · · · |am−1]. Define

h[b|α|a] = −(−1)deg b(deg α+deg a+1)[α|ab] + (h[b|α])[a]

− (−1)deg b2(deg α+deg a+1)(h[b1|α])[ab2].

Example A.2. A calculation of h[b|a|a′|a′′], signs suppressed:

h[b|a|a′|a′′] = [a|a′|a′′b] + (h[b|a|a′])[a′′] + (h[b1|a|a′])[a′′b2]
= [a|a′|a′′b] + [a|a′b|a′′] + [ab|a′|a′′]

+ [ab1|a′b2|a′′] + [a|a′b1|a′′b2] + [ab1|a′|a′′b2]
+ [ab11|a′b12|a′′b2].

Suppose that we have constructed h for all words u such that ]u < n. Let w
be a word with ]w = n. We may suppose that w does not end in ab (else we set
h(w) = 0). Thus we may write w = [ζ|α|β], where one of α or β may be the empty
word, but not both, and ζ is either empty or ζ = [ω|x] with x = b or x = ab. If
α = [ ] then x = ab. If ζ = [ ] or if x = ab then set h(w) = 0. Otherwise, set

h[ω|b|α|β] = (−1)deg ω[ω](h[b|α])[β] + (−1)deg α(deg b+1)h([ω|α|b|β]).

Since ][ω|α|b|β] = ]w − 1, h[ω|α|b|β] has been defined.

A.3. Induction
In this section we show that h : σq ' 1. To simplify notation we work modulo 2.

Lemma A.3. (dh+ hd)[b|a1| · · · |an] = [a1| · · · |an|b] + [b|a1| · · · |an].
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Proof. We proceed by induction on n. When n = 1, we have

(dh+ hd)[b|a] = d[ab] + h[db|a] + h[b|da] + h[b1|b2|a] + h[b|a1|a2]
= [(da)b] + [a(db)] + [a|b] + [b|a] + [ab1|b2] + [b1|ab2]

+ [a1b|a2] + [a1|a2b] + [a1b1|a2b2] + [a(db)] + [(da)b]
+ [b1|ab2] + [ab1|b2] + [a1|a2b] + [a1b|a2] + [a1b1|a2b2]

= [a|b] + [b|a].

Suppose true for n− 1. Let α = [a1| · · · |an−1]. Then

(dh+ hd)[b|α|a]
= d

(
[α|ab] + (h[b|α])[a] + (h[b1|α])[ab2]

)

+ h
(
[db|α|a] + [b1|b2|α|a] + [b](d[α])[a] + [b|α](d[a])

)

= (d[α])[ab] + [α|d(ab)] + [α|a|b] + [α|b|a]
+ [α|a1b|a2] + [α|a1|a2b] + [α|ab1|b2] + [α|b1|ab2]
+ [α|a1b1|a2b2] + (dh[b|α])[a] + (h[b|α])d[a] + (dh[b1|α])[ab2]
+ (h[b1|α])

(
[d(ab2)] + [a|b2] + [b2|a] + [a1b2|a2]

+ [a1|a2b2] + [ab21|b22] + [b21|ab22] + [a1b21|a2b22]
)

+ [α|a(db)] + (h[db]α)[a] + (h[db1|α])[ab2] + (h[b1|α])[a(db2)]
+ [b1](h[b2|α])[a] + [b1|α|ab2] + [b1](h[b21|α])[ab22] + [α|ab1|b2]
+ (h[b1|α])[a|b2] + (h[b11|α])[ab12|b2] + (d[α])[ab] + (h[b]d[α])[a]
+ (h[b1]d[α])[ab2] + [α|(da)b] + (h[b|α])[da] + (h[b1|α])[(da)b2]
+ [α|a1|a2b] + [α|a1b|a2] + (h[b|α])[a1|a2] + (h[b1|α])[a1b2|a2]
+ [α|a1b1|a2b2] + (h[b1|α])[a1|a2b2] + (h[b11|α])[a1b12|a2b2]

= [α|a|b] + [b|α|a]
+

(
(dh[b|α])[a] + [α|b|a] + (h[b1|α])[b2|a] + (h[db|α])[a]

+ [b1](h[b2|α])[a] + (h[b]d[α])[a] + [b|α|a])

+
(
(dh[b1|α])[ab2] + [α|b1|ab2] + (h[b1|α])[b21|ab22] + (h[db1|α])[ab2]

+ [b1](h[b21|α])[ab22] + (h[b1]d[α])[ab2] + [b1|α|ab2]
)

= (σq + 1)[b|α|a]

by the inductive hypothesis and using the fact that b11 ⊗ b12 ⊗ b2 = b1 ⊗ b21 ⊗ b22
by coassociativity.

Lemma A.4. h([ω](d[b|α])[β]) = [ω](hd[b|α])[β] + h([ω](d[α|b])[β]).
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Proof.

h
(
[ω](d[b|alpha])[β]

)
= h

(
[ω|db|α|β] + [ω|b1|b2|α|β] + [ω|b](d[α])[β]

)

= [ω](h[db|α])[β] + h[ω|α|db|β]
[ω|b1](h[b2|α])[β] + [ω](h[b1|α])[b2|β]
+ h[ω|α|b1|b2|β] + [ω](h[b]d[α])[β]
+ h([ω](d[α])[b|β])

= [ω](hd[b|α])[β] + h([ω](d[α|b])[β]).

Lemma A.5. h[b|a|α] = [ab|α] + [a]h[b|α] + [ab1]h[b2|α].

Proof. Induct on length of α. First,

h[b|a|a′] = [a|a′b] + [ab|a′] + [ab1|a′b2]
= [ab|a′] + [a]h[b|a′] + [ab1]h[b2|a′].

Consider α = [α′|a′], and suppose the lemma holds for [b|a|α′]. Then

h[b|a|α] = h[b|a|α′|a′]
= [a|α′|a′b] + (h[b|a|α′])[a′] + (h[b1|a|α′])[a′]
= [a|α′|a′b] + [ab|α′|a′] + [a](h[b|α′])[a′]

+ [ab1](h[b2|α′])[a′] + [ab1|α′|a′b2]
+ [a](h[b1|α′])[a′b2] + [ab11](h[b12|α′])[a′b2]

= [ab|α] + [a]
(
[α′|a′b] + (h[b|α′])[a′] + (h[b1|α′])[a′b2]

)

+ [ab1]
(
(h[b2|α′])[a′] + [α′|a′b2] + (h[b21|α′])[a′b2]

)

= [ab|α] + [a]h[b|α] + [ab1]h[b2|α].

In the above calculation we used the fact that

b1 ⊗ b21 ⊗ b22 = b11 ⊗ b12 ⊗ b2

by coassociativity.

Theorem A.6. dh+ hd = σq + 1.

Proof. Let w ∈ Ω(A⊗B). Write w = [ζ|α|β], where ζ, α, and β are possibly empty
words, α is a word from A, β is a word from B, and ζ is a word that does not end
in a letter from A. If ζ = [ ], then (dh+ hd)[α|β] = 0 = (σq + 1)[α|β]. If ζ 6= [ ], then
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write ζ = [ω|x], with x = ab or x = b. If x = ab, then

(dh+ hd)[ω|ab|α|β] = h
(
(d[ω])[ab|α|β] + [ω]d[ab|α|β]

)

= h
(
[ω|d(ab)|α|β] + [ω|a|b|α|β]

+ [ω|b|a|α|β] + [ω|a1b|a2|α|β]
+ [ω|a1|a2b|α|β] + [ω|ab1|b2|α|β]
+ [ω|b1|ab2|α|β] + [ω|a1b1|a2b2|α|β]

)

= [ω|a](h[b|α])[β] + h[ω|a|α|b|β]
+ [ω|ab|α|β] + [ω|a](h[b|α])[β]
+ [ω|ab1](h[b2|α])[β] + h([ω|a|α|b|β])
+ [ω|ab1](h[b2|α])[β] + h[ω|ab1|α|b2|β]

= [ω|ab|α|β].

where we used Lemma A.5.
Suppose that x = b. We induct on ]w. The case ]w = 1, ω and β empty was

treated in Lemma A.3 and the general case of ]w = 1 is an easy calculation using
Lemma A.4.

Suppose that (dh+ hd)(u) = σq(u) + u for all words u such that ]u < n. Let w
be a word with ]w = n. Write w = [ω|b|α|β]. Note that the inductive hypothesis
applies to [b|α] and to [ω|α|b|β]. Thus

(dh+ hd)(w) = d
(
[w](h[b|α])[β]

)
+ dh[ω|α|b|β]

+ h
(
(d[ω])[b|α|β] + [ω](d[b|α])[β] + [ω|b|α]d[β]

)

= (d[ω])(h[b|α])[β] + [ω](dh[b|α])[β] + [ω](h[b|α])d[β]
+ dh[ω|α|b|β] + (d[ω])(h[b|α])[β] + h

(
(d[ω])[α|b|β]

)

+ [ω](hd[b|α])[β] + h
(
[ω](d[α|b])[β]

)
+ [ω](h[b|α])d[β]

+ h
(
[ω|α|b]d[β]

)

= [ω]
(
[α|b] + [b|α]

)
[β] + σq[ω|α|b|β] + [ω|α|b|β]

= (σq + 1)(w)

where we have used Lemma A.4 and the fact that σq[ω|α|b|β] = σq(w).

A.4. Elementary properties
Proposition A.7. The natural homotopy h satisfies

1. qh = 0,

2. hσ = 0, and

3. h2 = 0.

Proof. Properties (1) and (2) follow from the definitions. Property (3) is proved by
an induction on ]w and the length of the last block of letters from A.
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