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Abstract
We argue that various braid group actions on triangulated

categories should be extended to projective actions of the cate-
gory of braid cobordisms and illustrate how this works in exam-
ples. We construct actions of both the affine braid group and
the braid cobordism category on the derived category of coher-
ent sheaves on the cotangent bundle to the full flag variety.
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1. Introduction

There are many known and conjectural braid group actions on triangulated cat-
egories, including

• Actions generated by a chain of spherical objects [KS, ST, RZ, HK].

• Action on the derived categories of (constructible) sheaves of vector spaces on
flag varieties [Ro1, Ro3], and related actions onDb(O0), whereO0 is a regular
block of the highest weight category for sln, and on its subcategories [St2].

• Actions on categories of complexes of matrix factorizations [KR].

• Actions on Fukaya-Floer categories of various symplectic manifolds, such as
quiver varieties [SS].

• Actions on derived categories of coherent sheaves on quiver varieties and other
Calabi-Yau manifolds.

We begin by giving a brief survey of these and related actions in Sections 2 and
3. This is meant to convey the diverse areas in which braid group actions arise, but
it is not necessary to understand or even read these sections to follow the rest of
the paper. By a weak action of a group G on a category C we mean an assignment
of an invertible functor Fg : C −→ C to each g ∈ G such that Fg ◦ Fh ∼= Fgh for all
g, h ∈ G. It follows that F1

∼= Id, where 1 ∈ G is the unit element. A weak action
is upgraded to a (genuine) action if the functor isomorphisms Fg ◦ Fh ∼= Fgh are
selected to satisfy the associativity constraint, which says that all diagrams below
are commutative

Ff ◦ Fg ◦ Fh
∼=−−−−→ Ffg ◦ Fhy∼=

y∼=
Ff ◦ Fgh

∼=−−−−→ Ffgh.

(1)

Deligne [De] was the first to discuss braid group action on categories, implicitly
emphasizing the difference between weak and genuine actions, and gave a neat
criterion for when a weak action of a braid group lifts to a genuine action. Some of
the braid group actions reviewed below are genuine and the others are believed to
be genuine.

An action of a group G by exact functors on a triangulated category C induces
an action of G on the Grothendieck group K(C). The exact functor Fg descends to
an endomorphism, denoted [Fg], of the abelian group K(C). Isomorphisms Fg ◦ Fh∼= Fgh become equalities between maps [Fg][Fh] = [Fgh] and we obtain an action of
G on K(C). Often K(C) is a free abelian group and, after tensoring it and all maps
[Fg] with C, we get a complex representation of G, an action of G on the complex
vector space K(C)⊗ C. The operator in K(C)⊗ C associated with g is still denoted
[Fg]. In some cases (for instance, when C is a triangulated category of complexes of
graded modules over a graded ring), K(C) is naturally a Z[q, q−1]-module, and [Fg]
are module maps. Then, to get a complex representation, we tensor K(C) with C
over Z[q, q−1], selecting q ∈ C to be a generic complex number. Alternatively, one
can work with the Z[q, q−1]-module K(C) itself.
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In this paper we specialize to the case when G is the n-stranded braid group
Brn. Quite a few well-known complex representations of the braid group can be
lifted to actions of Brn on triangulated categories, including the Burau representa-
tion [KS, ST], representations that factor through various representations of the
Hecke algebra of the symmetric group (by restricting the braid group action on the
homotopy category of a regular block of O for sln to the subcategories considered
in [KMS]), their q = 1 specializations, etc.

The existence of such actions of Brn on triangulated categories is nontrivial,
and their potential remains underexplored. The synthesis of the braid group, a
manifestly topological object, and triangulated categories, which are strongly rooted
in algebra, looks unusual and perplexing. What can one do with this symbiosis?

Suppose we are given a braid group action on C. To each braid g there is associ-
ated a functor Fg. Given two elements g, h of the braid group, we can form the set
of natural transformations Hom(Fg, Fh) from Fg to Fh in C. Together, they form a
monoidal category with elements of Brn as objects and Hom(Fg, Fh) as morphisms
from g to h. This information about the braid group action on C is lost upon passing
to the Grothendieck group.

At the same time, there exists a monoidal category of purely topological origin
with elements of the braid group Brn as objects. We call it the category of braid
cobordisms and denote it by BCn.

We can think of an n-stranded braid as a cobordism from n fixed points on a
plane to itself, such that the projection onto the vertical direction has no critical
points; see below. Isotopy classes of n-stranded braids constitute the braid group
Brn. Sometimes, isotopy classes are themselves called braids.

1

0

projection

Thus, a braid is a embedding of a 1-manifold which is a disjoint union of closed
intervals into R2 × [0, 1] so that the projection onto [0, 1] has no critical points, and
the boundary of the 1-manifold is mapped to 2n points

(1, 0, 0), (2, 0, 0), . . . , (n, 0, 0), (1, 0, 1), (2, 0, 1), . . . , (n, 0, 1) ∈ R2 × [0, 1].

The first n points on this list belong to the bottom R2, i.e. to R2 × {0}, the last n
points to R2 × {1}.

A braid cobordism between braids g, h ∈ Brn is a compact surface S with bound-
ary and corners, smoothly and properly embedded in R2 × [0, 1]2, such that:
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Figure 1: A depiction of a braid cobordism (mostly of its boundary), and its pro-
jection onto the unit square. Dots in the square are the simple branch points of the
projection. The image of g is the edge [0, 1]× {0} of the square. The image of h is
the edge [0, 1]× {1} of the square. Corners of S are mapped to the vertices of the
square.

• The boundary of S is the union of four 1-manifolds

S ∩ (R2 × [0, 1]× {0}) = g,

S ∩ (R2 × [0, 1]× {1}) = h,

S ∩ (R2 × {0} × [0, 1]) = {1, 2, . . . , n} × {0} × [0, 1],
S ∩ (R2 × {1} × [0, 1]) = {1, 2, . . . , n} × {1} × [0, 1].

• The projection of S onto [0, 1]2 is a branched covering with simple branch
points only.

A braid cobordism is schematically depicted in Figure 1.

Braid cobordisms which are isotopic rel boundary via an isotopy through braid
cobordisms are called equivalent. Let BCn be the category with n-stranded braids
as objects and isotopy classes (rel boundary) of braid cobordisms as morphisms.
Composition of a morphism S1 from g to h with a morphism S2 from h to k is
the braid cobordism S2S1 given by concatenating S2 and S1 along their common
boundary h; see Figure 1.

Note that in BCn two isotopic braids are isomorphic, but not equal. The category
BCn is monoidal, since given a morphism S1 from g1 to h1 and a morphism S2 from
g2 to h2, we can concatenate them to a morphism S2 ◦ S1 from g2g1 to h2h1. The
concatenation is done by gluing the top portion of ∂(S1) to the bottom portion of
∂(S2). The monoidal structure is not strictly associative, since braids g3(g2g1) and
(g3g2)g1 are isotopic but not equal.
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Figure 2: Composition of braid cobordisms.

In addition, the operation of placing braid cobordisms in parallel gives us a
bifunctor

BCn × BCm −→ BCn+m. (2)

Braid cobordisms are called simple braided surfaces in [Ka, Section 16], and
originally appeared in Rudolph [Ru]. Braid cobordisms from the trivial braid to
itself, with corners smoothed out, are called simple surface braids in the literature
[Ka], [CS2, Section 3], and were introduced by O. Viro.

In Section 3.1 we recall a combinatorial version of BCn, following [CS1], [CS2,
Section 3]. A braid cobordism can be described diagrammatically, via Carter and
Saito’s braid movies. This leads to a category, denoted BCcn, with braid words as
objects and braid movies, modulo braid movie moves, as morphisms. We call BCcn
the category of combinatorial braid cobordisms. The categories BCn and BCcn are
equivalent.

In the beginning of Section 2 we define rings An, suitable triangulated categories
C(An) of complexes of graded An-modules, and recall how to construct a weak braid
group action on C(An). With every braid word g we associate a functor Fg such that
Fg ∼= Fh if g, h define the same braid in Brn+1. Let Fun(An) be the category with
objects the exact endofunctors in C(An) and morphisms the natural transformations
of functors.

Theorem 1.1. The braid group action on C(An) extends to a projective monoidal
functor from the category BCcn+1 of combinatorial braid cobordisms to the category
Fun(An).
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To every braid cobordism S between braid words g and h we assign a natural
transformation FS : Fg −→ Fh, well-defined up to overall minus sign. The presence
of the minus sign explains why we use the word projective in the statement of the
theorem. There are equalities of natural transformations

FS2FS1 = ±FS2S1

for any pair of braid cobordisms S1 from g to h and S2 from h to k.
The functor F intertwines the monoidal structures of the two categories: Fgh∼= Fg ◦ Fh and FS2 ◦ FS1 = ±FS2◦S1 for any cobordisms S1, S2 between g1, h1 and

g2, h2, respectively.
Composing our functor with the equivalence BCn+1

∼= BCcn+1, we obtain a projec-
tive monoidal functor from the topological category BCn+1 of braid cobordisms to
the algebraic category Fun(An) of natural transformations between exact functors
in C(An).

This example serves as the first illustration of the principle:
Interesting braid group actions on triangulated categories extend to projective

representations of the category of braid cobordisms.
In Sections 2 and 3 we list many additional examples when a braid group action

on a triangulated category can be nontrivially extended to braid cobordisms. This
multitude of examples motivates us to elevate the above principle to the definition
of categorification of a braid group action. From here on by a categorification of a
braid group representation we mean a projective functor from BCn to the category
of exact endofunctors in a triangulated category, as outlined above and defined in
Definition 3.3 of Section 3.1 below.

Our requirement that the representation F of braid cobordisms be only a projec-
tive functor is similar to considering weak braid group actions only, while requiring
that F be a functor should be analogous to considering genuine braid group actions.
We expect that most, if not all, of the projective functors BCn F−→ Fun(C) can
be turned into genuine functors. The diagram below summarizes how the authors
currently think about braid group actions on triangulated categories, each arrow
denoting a structural upgrade.

on a triangulated category
Weak braid group action

Projective representation of

by exact functors and 
natural transformations

the braid cobordism category

on a triangulated category
Genuine braid group action

by exact functors and 
natural transformations

Representation of the category 
of braid cobordisms
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At the end of Section 3.3 we sketch the relation between Rouquier’s definition of
a categorification of a braid group action and ours.

In the last two sections we turn to coherent sheaves, where the proofs become
more technical but the ideas are essentially the same. In Section 4 we exhibit an
action of Brn on Db(T ∗Fl), the derived category of coherent sheaves on the cotan-
gent bundle to the variety of full flags in Cn. The functors we use are family ver-
sions of the Dehn twists about −2-curves of [KS, ST], as considered in [Ho, Sz1].
Locally, away from some closed subsets of T ∗Fl, the subschemes we twist about
form a family An−1-chain in the sense of [Sz2], but, since they all contain the zero
section Fl ⊂ T ∗Fl, the proof of the braid relations is much more complicated than
in [ST, Sz2] (due to the extra term Uij in Proposition 4.10, for instance).

Given an An-chain of −2-curves in a surface, it is fairly easy to show that the
structure sheaf of the whole chain (twisted by an appropriate line bundle) gives a
spherical object whose Dehn twist extends the braid group action of [ST] to an
affine braid group action [ST, Example 3.9]. While such a simple description does
not generalise to T ∗Fl, one can show that the extra twist is given by a certain
product of the original generators conjugated by tensoring by a line bundle. The
resulting formula does generalise (23), so in Section 4.5 we extend our action to one
of the affine braid groups on Db(T ∗Fl).

In Section 5.1 we extend the braid group action [ST] on the derived category of
coherent sheaves of certain surfaces to a projective action of the braid cobordism
category.

Theorem 1.2. Fix a smooth quasiprojective complex surface X with an An-chain
of −2-curves. Then the weak braid group action on Db(X) of [ST] extends to a
projective action of BCcn+1.

Finally in Section 5.2 we show how to do the same for Db(T ∗Fl). We expect
these two generalisations of the braid group action on Db(T ∗Fl) to be compatible,
giving a genuine action of the affine braid cobordism category.

Theorem 1.3. There is a projective action of BCcn on the derived category of coher-
ent sheaves on the cotangent bundle of the full flag variety.

When the second author spoke about the braid group action on Db(T ∗Fl) in
Leeds in November 2005, Raphaël Rouquier informed us of another way to produce
a braid group action (which is hard to make explicit and so difficult to confirm is
the same as ours). Start with the braid group action on the derived category of
constructible sheaves on the flag variety (see for example [Ro1]). This is induced
by kernels of constructible sheaves on the product. Their associated mixed Hodge
modules (see for instance page 18 of [Ro2]) interpolate between (derived categories
of) constructible sheaves and C∗-equivariant coherent sheaves on the cotangent
bundle. This gives C∗-equivariant kernels generating a braid group action on the
derived category of coherent sheaves on the cotangent bundle of the flag variety.

Recently Bezrukavnikov, Mirković and Rumynin [BMR] have also produced an
affine braid group action (for any group, not just of type An) by very different and
sophisticated finite characteristic methods which we cannot claim to understand.
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Assuming that their action, which also seems to be hard to make explicit, coincides
with the explicit action of Section 4 then we show it extends to an action of the
braid cobordism category.
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2. Examples of actions of braid groups and braid cobordisms
on triangulated categories

Example 2.1 (Spherical objects). Let An, for n > 2, be the quotient of the path ring
of the quiver

2 n 1

by the relations

(i|i+ 1|i+ 2) = 0, 1 6 i 6 n− 2,
(i|i− 1|i− 2) = 0, 3 6 i 6 n,

(i|i− 1|i) = (i|i+ 1|i), 2 6 i 6 n− 1.

We define A2 as the quotient of the above quiver ring, for n = 2, by the relations
(1|2|1|2) = 0 = (2|1|2|1). Let A1 = Z[X1]/(X2

1 ).
The ring An is a free abelian group of rank 4n− 2 and has a basis given by

(i), 1 6 i 6 n, which are length zero paths and minimal idempotents, all possible
paths of length one (which are (i|i± 1)), and

Xi
def= (i|i− 1|i), i > 2, X1 = (1|2|1).

Denote this basis by B(An). The center of An is a free abelian group with the basis

1 =
∑

16i6n
(i), X1, X2, . . . , Xn.

The ring An is naturally graded by path length. Let

Pi
def= An(i), iP

def= (i)An.
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These are indecomposable left, respectively right, projective An-modules. Consider
the complexes of An-bimodules

Ri : 0 −→ Pi ⊗ iP
βi−→ An −→ 0,

R′i : 0 −→ An
γi−→ Pi ⊗ iP −→ 0,

with An placed, in both complexes, in cohomological degree 0. Here βi is the com-
position of the inclusion and multiplication

Pi ⊗ iP ⊂ An ⊗An −→ An,

while γi is determined by

γi(1) =
∑

α1 ⊗ α2,

the sum being over all α1, α2 ∈ B(An) such that α2α1 = Xi. Thus, if 1 < i < n,

γi(1) = (i− 1|i)⊗ (i|i− 1) + (i+ 1|i)⊗ (i|i+ 1)
+(i)⊗ (i|i+ 1|i) + (i|i+ 1|i)⊗ (i).

The projectives Pi, iP are examples of spherical objects, so-called since homologi-
cally they resemble spheres,

End(Pi) ∼= Z[Xi]/(X2
i ) ∼= H∗(Sk,Z)

(where k = 2 if we use the path length grading onAn), and satisfy a duality property,
which in this example manifests itself in An being a symmetric ring.

Consider the category of complexes of An-bimodules up to chain homotopies (the
homotopy category, for short). Recall from [KS] that the following isomorphisms
hold in this category:

Ri ⊗R′i ∼= An ∼= R′i ⊗Ri, (3)
Ri ⊗Ri+1 ⊗Ri ∼= Ri+1 ⊗Ri ⊗Ri+1, (4)

Ri ⊗Rj ∼= Rj ⊗Ri, |i− j| > 1. (5)

The tensor products above are taken over An. Let C(An) be one of the triangulated
categories formed out of complexes of left An-modules, such as the derived category
Db(An−mod), the homotopy category of complexes of An-modules, etc. Tensoring
M ∈ C(An) with the complexes Ri, R′i produces complexes of An-modules

Ri ⊗An M, R′i ⊗An M ∈ C(An).
We denote the resulting endofunctors in C(An) by Ri, R′i:

Ri(M) def= Ri ⊗An M, R′i(M) def= R′i ⊗An M.

The earlier bimodule isomorphisms translate into functor isomorphisms

Ri ◦ R′i ∼= Id ∼= R′i ◦ Ri, (6)
Ri ◦ Ri+1 ◦ Ri

∼= Ri+1 ◦ Ri ◦ Ri+1, (7)
Ri ◦ Rj

∼= Rj ◦ Ri, |i− j| > 1, (8)

implying that the (n+ 1)-stranded braid group Brn+1 acts weakly on C(An). It is
proved in [KS] that this action is faithful (faithfulness in the case n = 2 was shown
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in [RZ]). Theorem 1.1 states that this action extends to braid cobordisms.

Braid cobordisms are a subset of tangle cobordisms [BL]. Tangle cobordisms
constitute a 2-category T, with nonnegative integers as objects, tangles as mor-
phisms, and tangle cobordisms as 2-morphisms. There are several known projective
2-functors from T to the 2-category of triangulated categories. In the latter trian-
gulated categories are objects, exact functors are 1-morphisms and natural trans-
formations are 2-morphisms. Any such 2-functor restricts to a projective functor
from the category of n-stranded braid cobordisms to the category of functors and
natural transformations in some triangulated category. Examples 2.2–2.6 below are
of this nature.

Example 2.2 (The rings Hn). A certain family of rings Hn was introduced in [Kh1]
and used in [Kh1, Kh2] to define a projective 2-functor from a suitable version
of the category T of tangle cobordisms to the 2-category of exact functors (and
natural transformations) between the categories C(Hn), over various n > 0. Here
C(Hn) is defined similarly to C(An). For instance, C(Hn) could be the derived
category Db(Hn−mod).

In this construction, there is a sign indeterminacy in the natural transformation
associated with a tangle cobordism.

Restricting from tangles to braids and from tangle cobordisms to braid cobor-
disms yields a projective functor from BC2n to Fun(Hn), the category of exact
functors in C(Hn) and natural transformations between them. To a 2n-stranded
braid we assign a complex of Hn-bimodules; tensoring with this complex is an
endofunctor in C(Hn). To a braid cobordism there is assigned a homomorphism
between complexes of Hn-bimodules, inducing a natural transformation between
the corresponding functors.

If we take C(Hn) to be the homotopy category of complexes of finitely-generated
graded projective Hn-modules (the rings Hn are graded), then its Grothendieck
group, after tensoring with C over Z[q, q−1], become isomorphic to the space of
Uq(sl2)-invariants in V ⊗2n, the 2n-th tensor power of the defining representation
of the quantum group Uq(sl2). Thus, we obtain a categorification, in the sense of
Definition 3.3, of the braid group action on Inv(V ⊗2n).

Example 2.3. Bar-Natan’s invariant of tangle cobordisms [BN] can be restricted
to braid cobordisms and viewed in the framework of triangulated categories which
are similar to but more general than C(Hn). His construction also restricts to a
categorification of the braid group action on Inv(V ⊗2n).

Example 2.4. An invariant of tangle cobordisms via highest weight categories was
constructed by Stroppel [St1, St2], following conjectures in [BFK]. Restricting her
invariant to braids and braid cobordisms results in a projective functor from BCn
to Fun(Db(On)), the category of exact endofunctors in the derived category of On,
the latter a direct sum of certain parabolic subcategories of a regular block of the
highest weight category for sln. In this example the projectivity (indeterminacy)
takes values in C∗, due to C being the ground field. The Grothendieck group of (the
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graded version of) On is isomorphic to V ⊗n, and the projective functor

BCn −→ Fun(Db(On))
is a categorification of the braid group action on V ⊗n.

Example 2.5. A categorification [Kh4] of the quantum sl3 link invariant was
extended to tangles and tangle cobordisms by MacKaay and Vaz [MV]. After
restricting their structure to braid cobordisms one should obtain a categorification
of the action of the 3n-stranded braid group on Inv(V ⊗3n), the 3n-th tensor power
of the fundamental representation V of quantum sl3. More generally, their construc-
tion conjecturally categorifies spaces of invariants in arbitrary tensor products of V
and its dual V ∗. The braid group Brn acts on V ⊗n, and hence on Inv(V ⊗n ⊗W ),
where W is any tensor product of V ’s and V ∗’s. Following [MV], one should also
obtain a categorification of the braid group action on Inv(V ⊗n ⊗W ), by adding
dummy strands. In this example, the projectivity is only in the minus sign.

Example 2.6. Yet another invariant of tangle cobordisms was introduced in [KR],
based on matrix factorizations. A matrix factorization of f ∈ R, where R is a poly-
nomial algebra, consists of a pair of free R-modules M0, M1 and R-module maps

M0 d−→M1 d−→M0

such that d2(m) = fm for any m ∈M0, M1. The category of matrix factoriza-
tions up to chain homotopy is triangulated. Given a braid word g, the construc-
tion of [KR] associates to it a complex of matrix factorizations in 2n variables
x1, . . . , xn, y1, . . . , yn with

f =
n∑

i=1

xm+1
i − ym+1

i ,

where n is the number of strands. The isomorphism class of this complex in the
category of complexes of matrix factorizations up to chain homotopy is an invari-
ant of the braid. A braid cobordism between braids g, h induces a homomorphism
of corresponding complexes, well-defined up to rescaling by nonzero rational num-
bers. One can easily restate this construction in the language of functors, resulting
in yet another categorification of a braid group action subject to the constraints
of Definition 3.3. We have no clue what representation of the braid group this
categorification categorifies. It should contain a subrepresentation isomorphic to
Inv(V ⊗n ⊗ (V ∗)⊗n), where V is the defining representation of quantum slm and
the braid group acts on the first n factors.

Example 2.7 (Highest weight categories and flag varieties). We start with the trian-
gular decomposition sln = n+ ⊕ h⊕ n− of the Lie algebra sln, where n+, respectively
n−, are the Lie algebras of strictly upper-triangular, respectively lower-triangular,
matrices, and h the Lie algebra of traceless diagonal matrices. The category O
is a full subcategory of the category of finitely-generated sln-modules. A finitely-
generated sln-module M belongs to the highest weight category O if and only if
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h acts semisimply and n+ locally-nilpotently on M ; see [BG]. The trivial one-
dimensional sln representation defines a central character χ : Z −→ C, a homomor-
phism from the center of U(sln) to C. Define O0, the trivial central character block
of O, as the full subcategory of O consisting of modules annihilated by some power
of ker(χ) ⊂ Z. This category is equivalent to the category of finite-dimensional mod-
ules over some finite-dimensional Koszul C-algebra Bn, although a simple descrip-
tion of Bn is not known even for n = 5.

The category O0 has n! isomorphism classes of simple modules. There are exact
self-adjoint endofunctors θi in O0 (called translation across the i-th wall, 1 6 i
6 n− 1) which come with natural transformations θi −→ Id and Id −→ θi. Let
C(O0) be either the derived category of O0 or the category of complexes of objects
in O0 up to chain homotopies. Taking an object M ∈ C(O0) to the total complex of

0 −→ θiM −→M −→ 0

is an invertible functor Ri in C(O0), with the inverse functor R′i taking M to the
total complex of

0 −→M −→ θiM −→ 0.

It follows from [MS1], [MS2, Proposition 10.1] that the functors Ri satisfy the
braid relations (6)–(8) and define a weak braid group action on C(O0).

A similar braid group action in the Koszul dual case of Zuckerman functors
(rather than translation functors) acting on Db(O0) was given a detailed treatment
by Rouquier [Ro1, Ro3], who showed, in particular, that the action is genuine.
The derived category Db(O0) embeds into the derived category Db(Y ) of sheaves
of vector spaces on the variety Y of full flags in Cn. For each i = 1, . . . , n− 1 there
exists a correspondence Yi ⊂ Y × Y which consists of pairs of flags that coincide
except at the i-th term. The convolution with the constant sheaf on Yi extended by
0 to the entire Y × Y is an invertible functor Ri in Db(Y ). These functors generate
a genuine action of the braid group on Db(Y ); see [Ro1].

This construction admits a variation where, for each decomposition µ =
(µ1, . . . , µk) of n, we consider the variety Yµ of partial flags in Cn, of dimen-
sions µ1, µ1 + µ2, . . . , n− µk, and construct an invertible functor from Db(Yµ) to
Db(Ysiµ), where siµ is the decomposition given by transposing µi and µi+1. The
functor is given by convolution with Yi ⊂ Yµ × Ysiµ, where the latter consists of
pairs of flags that coincide except at the i-th term, while the intersection of the i-th
terms is the smallest possible. These functors, which appeared in [Kh3, Proposition
7], satisfy braid relations, and the same argument as in Rouquier [Ro1] implies that
the braid group action on the derived category of sheaves on the disjoint union of
Ysµ, over all elements s of the symmetric group Sk+1, is genuine. For generic µ, this
action can only be extended trivially to braid cobordisms with branch points, due
to the absence of nonzero natural transformations between F1 and Fσi .

A closely related example of braid group categorification via Rouquier complexes
will be discussed below in Section 3.3.
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2 2 nii +11i+1 ni1

Figure 3: On the left: braid σi. On the right: braid σ−1
i .

3. Invariants of braid cobordisms

3.1. Braid cobordisms and braid group categorifications

Combinatorial braid cobordisms. The category BCn of n-stranded braid cobor-
disms admits a combinatorial version which we denote BCcn. Its objects are n-
stranded braid words, i.e. arbitrary finite sequences of generators σi, 1 6 i 6 n− 1,
and their inverses σ−1

i ; see Figure 3.
A morphism between braid words is a finite sequence of transformations of two

types:

I. Reidemeister moves of braid words, including

τ1σiσ
−1
i τ2 ↔ τ1τ2,

τ1σiσjτ2 ↔ τ1σjσiτ2, |i− j| > 1,
τ1σiσi+1σiτ2 ↔ τ1σi+1σiσi+1τ2.

τ1 and τ2 are arbitrary braid words. The empty word is allowed. Each move has
several versions, and we will not write all of them, instead referring the reader to
[CS2, Section 3] for details. For instance, in the second move above we could have
substituted σ−1

i for σi, and, independently, σ−1
j for σj .

II. Addition or removal of a single σi or σ−1
i to or from a word:

τ1τ2 ↔ τ1σ
±1
i τ2.

A braid movie is a finite sequence of transformations of types I and II. Morphisms
in the category BCcn are braid movies modulo equivalence relations of two types:
movie moves, shown in Figures 4–6, and locality moves. The first ten movie moves
are equations on sequences of Reidemeister moves of braids, while each sequence
in moves 11 through 14 contains a unique type II transformation. A type II trans-
formation is indicated by placing two little black triangles where a pair of adjacent
vertical lines turns into σ±1

i . In the figures, movies run from top to bottom, and
represent a morphism in BCcn; moves of these movies run left to right, representing
equivalences between morphisms.

Each movie move has several variants, given by changing overcrossings to under-
crossings and vice versa, whenever possible; reading each of the two sequences from
bottom to top rather than from top to bottom (the latter is our default); reflecting
all diagrams in a movie move about a vertical axis (if this results in a different
version of the move), etc. Again, we refer to Carter and Saito [CS2, Section3] for
complete explanations.
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 1  2

 3  4

 5  6

Figure 4: Carter and Saito’s braid movie moves 1–6.
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 10 9

 7  8

Figure 5: Braid movie moves 7–10.
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 11  12

 13  14

Figure 6: Braid movie moves 11–14.
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 15

Figure 7: A locality movie move.

Locality moves are

(τ1τ2, τ ′1τ2, τ
′
1τ
′
2) = (τ1τ2, τ1τ ′2, τ

′
1τ
′
2),

where each of the pairs τ1, τ ′1 and τ2, τ ′2 are related by a single braid move, of either
type. An example is depicted in Figure 7, where τ1 = 1, the trivial braid word,
τ ′1 = σ1

i+3, τ2 = σiσi+1σi, and τ ′2 = σi+1σiσi+1. We will refer to locality moves as
braid movie moves of type 15.

Morphisms between braid words w1 and w2 are finite sequences of braid words
related by type I and II transformations modulo the equivalence relation generated
by braid movie moves and locality relations.

To explain the meaning of type II transformations, we describe a functor from
BCcn to BCn, the category of braid cobordisms. To each braid word we assign a
braid in the usual way. To type I transformations we assign braid cobordisms given
by isotopies of braids. Type II transformations correspond to elementary braid
cobordisms which contain a single simple branch point when projected onto [0, 1]2.
Our cryptic way of depicting type II transformations is deciphered in Figure 8.
These cobordisms embed only in four dimensions rather than three – only after
applying the twist on the right-hand side of Figure 8 in the fourth dimension can
we embed the rest of the cobordism into three dimensions as the standard simple
cobordism between a 1-manifold and its surgery (the second and third frames of the
last movie in Figure 8) provided by a Morse function on a surface with an index
one critical point (saddle point).

Since each braid movie move corresponds to a braid cobordism the above con-
struction is a functor from BCcn, the category of combinatorial braid cobordisms, to
BCn, the category of braid cobordisms.

Proposition 3.1. This functor is an equivalence of categories: BCcn ∼= BCn.
Proof. See [CS2] for a proof.
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= = =

Figure 8: A type II braid transformation.

Polarization of braid cobordisms. Recall that a braid is positive if it can be
represented as a product of σi, for 1 6 i 6 n− 1. Likewise, a braid is called negative
if it can be written as a product of σ−1

i , for 1 6 i 6 n− 1. For braid cobordisms
there also exists an analogue of positivity. We say that a simple branch point of a
braid cobordism is positive if, when represented combinatorially via a type II move,
it increases braid positivity. Namely, positive type II moves are

τ1τ2 −→ τ1σiτ2,

τ1σ
−1
i τ2 −→ τ1τ2.

Negative type II moves are

τ1τ2 −→ τ1σ
−1
i τ2,

τ1σiτ2 −→ τ1τ2.

Each type II move is thus either positive or negative. Notice that type II moves
appear only in braid movie moves 11–15, and the property of being positive or
negative is preserved by these movie moves.

Given a morphism S in BCcn, the numbers p+(S), respectively p−(S), of positive,
respectively negative, type II transformations are invariants of S. Likewise, given
a morphism S in BCn, the numbers p+(S), respectively p−(S), of positive, respec-
tively negative, double branch points are invariants of S. A braid cobordism is a
braid isotopy if and only if p+(S) = p−(S) = 0. We say that a morphism S in BCcn
or BCn is positive if p−(S) = 0 and negative if p+(S) = 0. Positive braid cobor-
disms constitute a subcategory in BCn (and the same for negative cobordisms).
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Figure 9: On the left: two movies of a positive branch point. On the right: two
movies of a negative branch point.
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Figure 10: Moving branch points.

Positive braid movies constitute a subcategory in BCcn (and the same for negative
braid movies). Our equivalence of categories BCcn ∼= BCn takes positive, respectively
negative, braid movies to positive, respectively negative, braid cobordisms.

Proposition 3.2. Any braid cobordism can be written, in more than one way, as a
composition of a positive and a negative braid cobordism (in either order).

Proof. Project a braid cobordism S onto the unit square, as in Figure 1. Next, isotop
branch points so that the negative branch points are to the left of the positive ones;
see Figure 10, and lift this isotopy to an isotopy of S. We can now write S as the
composition of two cobordisms, S = S+S−, with S+ positive and S− negative (this
decomposition is not unique even when S has no double points). Likewise, we can
write S as S′−S

′
+ where S′− is negative and S′+ is positive.

A braid cobordism is positive if and only if it can be realized, à la Rudolph [Ru],
as a piece of an algebraic curve in C2. The local model of a simple positive cobordism
is the algebraic curve

z2
2 = z1 (9)

in C2 ∼= R4 with its projection to (x1, y1) = (Re z1, Im z1). For any fixed (x1, y1) the
z2 coordinate gives two points in C which wind round each other as x1 varies, giving
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a braid for y1 6= 0. When y1 = 0 the two strands cross. This shows the essential four-
dimensionality of positive type II transformations. Similarly the simple negative
type II transformation has local model z2

2 = z̄1.

Categorification of the braid group.

Definition 3.3. A categorification of a complex representation V of the braid group
Brn is a (projective) monoidal functor F from BCn to the category of exact functors
Fun(C) in a triangulated category C, and an isomorphism V ∼= K(C)⊗ C of braid
group representations.

Thus, to each braid g there is assigned an exact endofunctor Fg in C and to each
braid cobordism S from g to h a natural transformation FS : Fg −→ Fh, well-defined
up to rescaling by invertible elements of the ground ring of C. These must satisfy
consistency conditions. The linear operator [Fg] on K(C)⊗ C must coincide with
the action of g on V under the above isomorphism of these two complex vector
spaces.

A genuine action of a braid group on C extends in a trivial way to a categorifi-
cation in our sense, by making FS = 0 whenever S has a double point and defining
V to be K(C)⊗ C. Likewise, given a categorification as above, we can modify it, by
setting FS = 0 if, say, S has a negative branch point, and otherwise doing nothing to
FS . More generally, given a categorification and two elements λ+, λ− of the ground
ring of C, we can rescale FS by λp+(S)

+ λ
p−(S)
− to get another categorification.

Naturally, we would like our categorifications to carry nontrivial information
about braid cobordisms, and, whenever possible, we will avoid trivial or semi-trivial
categorifications. By a semi-trivial categorification of a braid group representation
we mean one with FS = 0 for all S with a negative branch point, or for all S with
a positive branch point.

3.2. Categorification from the rings An
We now construct a categorification of the reduced Burau representation via the

rings An. The braid group action on the homotopy category C(An), described in the
previous section, lifts to the action on the homotopy category of complexes of graded
An-modules. Indeed, An has the natural grading by path length. The bimodules An
and Pi ⊗ iP are graded, and the bimodule maps βi and γi have degrees 0 and 2
respectively. Hence, we can upgrade Ri and R′i to complexes of graded bimodules,
shifting the grading of Pi ⊗ iP in R′i down by 2 to make the differential preserve
the grading:

R′i : 0 −→ An
γi−→ Pi ⊗ iP{−2} −→ 0.

Tensoring with Ri and R′i induces a braid group action on the category of com-
plexes of graded An-modules up to chain homotopy. We restrict to bounded com-
plexes and denote the resulting category also by C(An). It is easy to see that on the
Grothendieck group the braid group action descends to the reduced Burau repre-
sentation of the braid group.

To extend to braid cobordisms, we assign a natural transformation of functors
to each morphism in BCn+1, i.e. to each braid movie. This transformation will be
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defined up to an overall minus sign, resulting in a projective functor from BCn+1 to
Fun(C(An)). The functors associated to braid words are given by tensor products
with complexes of graded bimodules. The latter complexes are tensor products of the
complexes Ri and R′i. Denote by R(σ) the complex of graded bimodules associated
with the braid word σ, and by Fσ the functor of tensoring with R(σ).

A homomorphism of complexes of bimodules induces a natural transformation
of the corresponding functors, and our natural transformations will be of this form.

To a Reidemeister move of braid words we associate an isomorphism in the homo-
topy category of complexes of graded An-bimodules, namely, isomorphisms (3), (4),
(5). Each of these isomorphisms is unique up to an overall minus sign. Indeed, sup-
pose we are given two invertible complexes of graded bimodules over a graded ring
A and an isomorphism u between these complexes. Then any isomorphism between
these complexes has the form m(z)u where m is the multiplication by a degree 0
invertible element of the center of A (see [Kh2, Section 3], for instance). The degree
0 part of An is just Z, its invertible elements are 1 and −1, and the above claim
follows.

To type II transformations we associate the following homomorphisms of com-
plexes of bimodules.

The homomorphism w1 from R(∅) to R(σi) = Ri:

0 −−−−→ 0 −−−−→ An −−−−→ 0
y

y
yid

y
0 −−−−→ Pi ⊗ iP

βi−−−−→ An −−−−→ 0.

(10)

Here R(∅) ∼= An is the identity bimodule complex, associated with the empty braid
word ∅, corresponding to the trivial braid.

The homomorphism w2 from R(σ−1
i ) to R(∅):

0 −−−−→ An
γi−−−−→ Pi ⊗ iP −−−−→ 0

y
yid

y
y

0 −−−−→ An −−−−→ 0 −−−−→ 0.

(11)

Notice that the above two homomorphisms are assigned to elementary movies of
positive branch points. In both cases, the map is the identity on An.

The homomorphism w3 from R(σi) to R(∅):

0 −−−−→ Pi ⊗ iP
βi−−−−→ An −−−−→ 0

y
y

yδi

y
0 −−−−→ 0 −−−−→ An −−−−→ 0,

(12)

where δi(1) = Xi−1 −Xi+1. This condition determines the bimodule homomor-
phism δi uniquely. Notice that δiβi = 0.
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The homomorphism w4 from R(∅) to R(σ−1
i ):

0 −−−−→ An −−−−→ 0 −−−−→ 0
y

yδi

y
y

0 −−−−→ An
γi−−−−→ Pi ⊗ iP −−−−→ 0.

(13)

Thus, to the four braid movies in Figure 9 we assign the homomorphisms w1,
w2, w3, w4 correspondingly (from left to right).

Given a braid movie S from braid word g to braid word h we assign to S the
homomorphism R(S) : R(g) −→ R(h) of complexes of graded bimodules, the latter
a composition of homomorphisms, described above, corresponding to elementary
braid movies. This homomorphism preserves cohomological degree of complexes,
and has internal degree 2p−(S), since the bimodule homomorphism δi, correspond-
ing to a movie of a negative branch point, has degree 2.

Proof of Theorem 1.1. We show that the above assignment extends to a projec-
tive functor from BCn+1 to Fun(C(An)). This is equivalent to checking that the
assignment is compatible with the braid movie moves 1–15. Each braid movie move
contains two movies S1, S2 from a braid word g to a braid word h and we need to
prove the identity R(S2) = ±R(S1), i.e. that R(S2) is homotopic to either R(S1) or
−R(S1).

Movie moves 1–10 are easy to take care of. In each of these moves the movies S1

and S2 are invertible (have no branch points), being a sequence of braid
Reidemeister moves, and the corresponding bimodule homomorphisms R(S1), R(S2)
are invertible. Two isomorphisms R(S1), R(S2) between invertible graded An-
bimodules R(g), R(h) differ by multiplication by an invertible degree 0 central
element of An. Hence R(S2) = ±R(S1). (This argument was used in [Kh2, BN]
and [St1] when proving that certain invariants of tangle cobordisms are well-defined
up to rescaling.)

Movie move 15 (locality moves) follow at once from the following observation.
Given four bimodules over a ring A and bimodule homomorphisms u : N1 −→ N2

and v : N3 −→ N4, the bimodule homomorphism u⊗ v : N1 ⊗N3 −→ N2 ⊗N4 can
be written as (u⊗ Id) ◦ (Id⊗ v), as well as (Id⊗ v) ◦ (u⊗ Id).

Movie move 11 follows easily, since the canonical isomorphisms of bimodule com-
plexes Ri ⊗Rj ∼= Rj ⊗Ri, Ri ⊗R′j ∼= R′j ⊗Ri, etc. are compatible with the homo-
morphisms w1, . . . , w4.

This leaves us with braid movie moves 12–14. Each of the two movies in each of
these three moves contains a unique type II transformation, which could be either
positive or negative.

We first deal with the simpler case of a positive type II transformation. Then the
two movies S1, S2 in any of the movie moves 12–14 go from a braid word g to a braid
word h obtained from g by either inserting a positive braid σi or deleting a negative
braid σ−1

i . Each movie S1, S2 is a composition of Reidemeister braid moves and a
single homomorphism (either w1 or w2, see above) of bimodule complexes. It is easy
to check that the space of grading-preserving homomorphisms from R(∅) to R(σi)
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is Z, with generator w1. Likewise, the space of grading-preserving homomorphisms
from R(σ−1

i ) to R(∅) is Z, with generator w2. This implies that the space of grading-
preserving homomorphisms from R(g) to R(h) is Z, with R(S1), R(S2) both being
generators. Hence R(S2) = ±R(S1), which takes care of movie moves 12–14 in the
positive case.

All possible versions of the movie move 12 with the negative type II transforma-
tion follow by direct computation. A sample computation for the version in Figure 6
is included below.

The maps F (S1), F (S2) go from the bimodule An to R′i. The first map is given
by the composition written below

0 −−−−→ 0 −−−−→ An −−−−→ 0 −−−−→ 0
y

y
y(id,γi,0)

t

y
y

0 −−−−→ P
d−−−−→ An ⊕ P{−2} ⊕ P

d−−−−→ P{−2} −−−−→ 0y
y

y((Xi−1−Xi+1)id,0,0)

yid

y
0 −−−−→ 0 −−−−→ An

γi−−−−→ P{−2} −−−−→ 0,

(14)

where P is a shorthand for Pi ⊗ iP , while the map F (S2) is just w3. Clearly, F (S1)
= F (S2).

To treat movie moves 13–14 with a negative type II transformation we need to
do some preliminary work.

Given an endofunctor F on C(An) and a central element a ∈ An, we denote by
la the natural transformation F −→ F given by left multiplication by a :

F ∼= Id ◦ F a◦idF // Id ◦ F ∼= F.

Likewise, denote by ra the natural transformation F −→ F given by right multipli-
cation by a :

F ∼= F ◦ Id
idF ◦a // F ◦ Id ∼= F.

Suppose now that a is a linear combination of Xjs,

a =
n∑

j=1

ajXj ,

and take F = Ri or R′i.

Proposition 3.4. For any a as above and 1 6 i 6 n,

(la − ra−ai(Xi−1+2Xi+Xi+1))Ri = 0
and (la − ra−ai(Xi−1+2Xi+Xi+1))R

′
i = 0

in Fun(An).

In other words, the endomorphism la − ra−ai(Xi−1+2Xi+Xi+1) of the complexes
Ri and R′i of bimodules is zero homotopic.
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Figure 11: The endomorphisms lX1 and rX1+X2 of R′1 ⊗R′2

Proof. Consider the homotopy h from Ri to itself which takes Ai to Pi ⊗ iP via γi
and Pi ⊗ iP to 0. Then the zero homotopic endomorphism hd+ dh of Ri is given
on generators (i)⊗ (i) ∈ Pi ⊗ iP and 1 ∈ An by

(hd+ dh)((i)⊗ (i)) = Xi ⊗ (i) + (i)⊗Xi,

(hd+ dh)(1) = Xi−1 + 2Xi +Xi+1.

Next, we compute

(la − ra−ai(Xi−1+2Xi+Xi+1))((i)⊗ (i)) = aiXi ⊗ (i) + ai(i)⊗Xi,

(la − ra−ai(Xi−1+2Xi+Xi+1))(1) = ai(Xi−1 + 2Xi +Xi+1).

Therefore,

(la − ra−ai(Xi−1+2Xi+Xi+1))Ri = ai(hd+ dh)Ri,

and the left-hand side is homotopic to zero. A similar argument works for R′i, using
βi in the homotopy.

Remark. When i = 1 or i = n we should omit Xi−1, respectively Xi+1, from the
above formulas and computations.

Remark. The braid group action on C(An) descends to an action on the center
of An which happens to factor through the action of the symmetric group and is
given by the above formulas. The generator si of the symmetric group takes a to
a− ai(Xi−1 + 2Xi +Xi+1). This action also appears, in a similar context, in [FKS,
Section 6].

Corollary 3.5. The following endomorphisms of the bimodule complexes Ri and
R′i are null-homotopic:

lXi−1+Xi + rXi+Xi+1 , lXi+Xi+1 + rXi−1+Xi , lXi−1−Xi+1 + rXi+1−Xi−1 .

We depict the endomorphisms lXi−1+Xi and rXi−1+Xi of a bimodule complex
associated with a braid word by a dot placed near the end of the i-th top, respectively
bottom, strand; see an example in Figure 11. One of the cases of the corollary is
written in Figure 12.
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+ = 0

Figure 12: The endomorphisms lXi+Xi+1 and −rXi−1+Xi
of Ri are chain homotopic.

P i

P  i P  iP i+1

i i+1

ii −1

P i P  i

ii i

i i +1

−1 +1

Figure 13: Graphical notation for projective modules Pi, iP and their tensor prod-
ucts.

We now consider the instance of braid movie move 13 depicted in Figure 6 and,
for convenience, introduce additional graphical notation in Figure 13.

Next, we rewrite F (S1) in graphical form, as in Figure 14. The map ν0 is right
multiplication by Xi−1 −Xi+1. The second row in the figure presents the complex
R(σ−1

i σ−1
i+1σ

−1
i ) as the cone of the map of complexes

0 −→ R(σ−1
i σ−1

i+1)
ρ1−→ R(σ−1

i σ−1
i+1)⊗An Pi ⊗ iP −→ 0,

where ρ1 = Id⊗ γi. The map π1 is a homotopy equivalence of complexes, given by
taking the quotient of R(σ−1

i σ−1
i+1)⊗An Pi ⊗ iP by a contractible direct summand.

The map ν1 is a homotopy equivalence. The map ν−1
2 is the inverse of the quotient

map ν2, depicted in the lower half of Figure 15. The map ν2 is the identity on
R(σ−1

i σ−1
i+1) = R′i ⊗R′i+1 and the quotient map π2 (analogous to π1) on the second

term of the cone. Since ν2 is a homotopy equivalence, its inverse is well-defined.
In Figure 15 we depict the composition of F (S2) with ν2. The map ν3 is left mul-

tiplication by Xi −Xi+2. The equation F (S1) = ±F (S2) is equivalent to ν2F (S1)
= ±ν2F (S2). The map ν2F (S1) is right multiplication by Xi−1 −Xi+1 and ν2F (S2)
is left multiplication by Xi −Xi+2; see Figure 16. The endomorphisms rXi−1−Xi+1

and −lXi−Xi+2 of R′i ⊗R′i+1 are chain homotopic (apply Corollary 3.5 several
times), via a degree 2 homotopy h. We need to show that rXi−1−Xi+1 + lXi−Xi+2 is
null-homotopic when viewed as a homomorphism from R′i ⊗R′i+1 to the complex
depicted at the bottom of Figure 16.
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ρ 30 0

ρ20 0

0 0

ρ 1

ν 2
−1

id π  1 ν 1

ν 0

0 0

Figure 14: The map F (S1) in move 13 presented in graphical form.

ρ20 0

0 0

ρ 30 0

ν 3

π 2 ν 2id

Figure 15: The map ν2F (S2) in move 13 written in graphical form.
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0 0

ρ20 0

F(S  )  1ν 2 F(S  )  2ν 2

Figure 16: The maps ν2F (S1) and ν2F (S2).

A direct but nontrivial computation, which requires explicitly writing down the
complex R′i ⊗R′i+1 and which we leave to the reader, shows that the relation

dh+ hd = rXi−1−Xi+1 + lXi−Xi+2

implies ρ2h = 0 as a map of abelian groups. Consequently,

ν2(F (S1) + F (S2)) = rXi−1−Xi+1 + lXi−Xi+2

is null-homotopic as a map between the complexes in Figure 16. Thus, F (S1)
+ F (S2) = 0 and this instance of braid movie move 13 follows.

Three other cases of movie move 13 with a negative branch point and with the
top frame being one of the braids σiσi+1, σi+1σi, σ−1

i+1σ
−1
i (instead of σ−1

i σ−1
i+1)

follow via nearly identical arguments. The remaining instances of movie move 13
with a negative branch point are obtained by reading the frames in the above four
cases from bottom to top. These instances follow (on the topological level) from the
first four cases and from some of the moves 1–12.

Finally, we deal with braid movie move 14. The instance of this move shown in
Figure 6 is equivalent to the move depicted in Figure 17 (we formed the product of
this move with the identity cobordism on σ−1

i ).
Look at the branch point indicated by the two triangles on the top strand of

the left-hand movie of Figure 17. Move 13 allows us to drag this branch point up
and across the third strand of the braid. Thus, the left-hand movie is equivalent to
the movie where the branch point is created to the right of this strand, just like in
the other movie in Figure 17. These two movies are equivalent via a composition of
several earlier moves. Other cases of move 14 follow in the same fashion, implying
that move 14 is redundant. A complete derivation of move 14 from move 13 and
other moves can be found in Figure 18, kindly provided to us by Scott Carter.

Our proof of Theorem 1.1 ends here.

3.3. Categorification via Rouquier complexes
Consider the polynomial algebra k[x1, . . . , xn] over a field k and its subalgebra

A = k[x1 − x2, x2 − x3, . . . , xn−1 − xn] of polynomials in xi − xi+1, 1 6 i 6 n− 1.
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Figure 17: A modified braid movie move 14.

The symmetric group Sn acts on the set {x1, . . . , xn} by permuting the indices,
and we consider the induced action on A. Let Ai be the subalgebra of polynomials
invariant under the action of the permutation si = (i, i+ 1). We make A and Ai

graded by giving each xj degree 1, and consider the following complexes Ri and R′i
of graded A-bimodules:

Ri : 0 −→ A⊗Ai A
m−→ A −→ 0 −→ 0,

R′i : 0 −→ 0 −→ A
ηi−→ A⊗Ai A{−1} −→ 0,

with A in cohomological degree 0 in both complexes, m the multiplication map, and

ηi(1) = (xi − xi+1)⊗ 1 + 1⊗ (xi − xi+1).

Rouquier [Ro1] introduced these complexes (for an arbitrary Coxeter group) and
showed that they induce a genuine braid group action on the homotopy category of
complexes of graded A-modules.

We now extend Rouquier’s construction to an invariant of braid cobordisms. To
the two movies of a positive double point (see Figure 9) we assign the homomor-
phisms

0 −−−−→ 0 −−−−→ An −−−−→ 0y
y

yid

y
0 −−−−→ A⊗Ai A

m−−−−→ A −−−−→ 0,

(15)
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2 1 2

1 2 1

22

1

121

22

1

121

2 1 2

1 2 1

Figure 18: (courtesy of Scott Carter) Move 14 follows from the other moves. Dia-
grams on the right-hand side are notations in [CS2] for braid cobordisms.
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and
0 −−−−→ A

ηi−−−−→ A⊗Ai A −−−−→ 0
y

yid

y
y

0 −−−−→ An −−−−→ 0 −−−−→ 0

(16)

of the corresponding bimodule complexes. To a negative double point we should
assign a homomorphism from A to (possibly shifted) R′i. Since ηi is injective, the
only bimodule homomorphism from A to R′i is zero, while any homomorphism from
A to R′i[−1] is null-homotopic. Thus, we are forced to assign the zero homomorphism
of complexes to any braid cobordism which contains a negative branch point.

Proposition 3.6. The above assignment is a semi-trivial categorification of a braid
group representation.

Proof. Indeed, we know from [Ro1] that the complexes Ri, R′i produce a braid
group action. Arguments analogous to the ones in the first half of the proof of
Theorem 1.1 imply that the braid movie move relations hold and our data extends to
a projective monoidal functor from BCcn to Fun(C(A)), where C(A) is the homotopy
category of complexes of graded A-modules. If we restrict to bounded complexes of
finitely-generated graded A-modules, then the Grothendieck group will be a rank
one free Z[q, q−1]-module with generator [A], and σi will act by σi[A] = −q[A].

Remark. The categorification is semi-trivial since any negative braid cobordism has
the trivial invariant. Such terminology does not do justice to this categorification,
since the bimodules in Ri and their tensor products carry an enormous amount of
information, can be used to reconstruct a regular block of the category O for sln (see
[So]) and serve as building blocks for a triply-graded link homology theory [Kh5].

Remark. Since we can work over Z rather than over k, the projectivity is at most
in the minus sign.

The above example of a braid group action led Rouquier to define the notion of
a braid group categorification (working in the context of Coxeter braid groups; we
specialize his construction to the case of the usual braid group Brn). For each braid
σ choose a representative R(σ) in the isomorphism class of complexes of graded A-
bimodules assigned to σ. Rouquier considers a monoidal category BSn with objects
σ and graded bimodule homomorphisms Hom(R(σ), R(τ)) as morphisms from σ to
τ . He then defines a braid group categorification as a monoidal functor from BSn

to Fun(C), for a triangulated category C.
Recall that our definition of a categorification of a braid group representation

requires a (projective) monoidal functor from BCn to Fun(C). In both categories,
BCn and BSn , isomorphism classes of objects are in bijection with braids. For BSn

this is a nontrivial result, which says that R(σ) ∼= R(τ) implies σ = τ ; see [Ro1,
Remark 3.9]. The morphisms in the two categories are quite different, though. In
BCn they are braid cobordisms, a purely topological construct, while in BSn they
are homomorphisms of certain bimodules.
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A few paragraphs above we defined a (projective) monoidal functor from BCn to
BSn , trivial on any cobordism which contains a negative branch point. Using this
functor we can convert any braid group categorification in the sense of Rouquier
into a semi-trivial categorification of a braid group representation in our sense. This
conversion is the closest relation that we were able to find between Rouquier’s notion
of categorification of braid group representations and ours.

3.4. Categorification in Fukaya-Floer categories
A semi-trivial action of the braid cobordism category. Braid group Brn
actions arise naturally in symplectic geometry as groups of symplectomorphisms
generated by Dehn twists about An−1-chains of Lagrangian spheres [Se2,Appendix].
Following [KS] we describe the local model as monodromy on Milnor fibers of
k-dimensional An−1 singularities (for any k). Passing to the derived Fukaya-Floer
category one gets braid group actions on triangulated categories, categorifying the
usual monodromy representations on (co)homology. We then describe an extension
to a semi-trivial representation of the braid cobordism category. Throughout we
are assuming that all the technicalities involved in the existence of the (derived)
Fukaya-Floer category are overcome; since our local examples are exact symplectic
manifolds with c1 = 0, Paul Seidel’s forthcoming book [Se6] justifies this carefully
(and allows us to use Floer cohomology consisting of finite-dimensional graded C-
vector spaces, rather than relatively or periodically graded modules over Novikov
rings), but there are probably parts of the discussion below that available technical
results do not yet quite fully justify.

Thinking of Brn as the fundamental group of the configuration space Cn of n
unordered points p = {pj}nj=1 in C, we can associate a k-dimensional symplectic
manifold to every point p ∈ Cn:

Xp =



(x1, . . . , xk, t) ∈ Ck × C :

k∑

i=1

x2
i =

n∏

j=1

(t− pj)



 . (17)

We give Xp the symplectic structure ω that it inherits from Ck+1. Via the t variable
Xp fibers over C with fibers affine quadrics

∑k
i=1 x

2
i = a (which are symplectically

just T ∗Sk−1s) except at the critical points t = pj where the Sk−1s collapse to points
in the singular fibers

∑k
i=1 x

2
i = 0.

Therefore for every loop in Cn we get an S1-family of such symplectic manifolds
with a fiberwise symplectic closed 2-form on the total space. There is a natural
connection on the bundle whose horizontal subspaces are the orthogonals, with
respect to the 2-form, to the fibers; see [Se4] or [Se5]. The induced symplectic par-
allel transport along the fibration gives us monodromy in the symplectomorphism
group Aut(Xp, ω). (There is a technical issue here due to the noncompactness of the
fibers; this is resolved in a related example in [SS, Section 4A].) Isotopic loops give
hamiltonian isotopic symplectomorphisms (since the curvature of the connection is
hamiltonian) producing a homomorphism

Brn = π1(Cn) → π0(Aut(Xp, ω)).

In particular the positive generators of Brn can be described as follows. Order the
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points pj ∈ C and pick paths in C between consecutive points, which do not intersect
in their interiors. Over these paths lie canonical Lagrangian spheres
Sk ⊂ Xp (fibered by the Sk−1s in the T ∗Sk−1 fibers of Xp). Then rotating two
adjacent points anticlockwise through 180 degrees about the path between them
gives rise to the monodromy transformation that is the Dehn twist about the asso-
ciated Lagrangian sphere. This can be thought of as monodromy around the singu-
lar variety one gets by collapsing this Lagrangian sphere by moving the two points
together. (In other words we can fill in the S1-family to a family over the disc D2

whose central fiber has an ordinary double point given by setting two pjs to be
equal in (17).)

Roughly speaking, symplectomorphisms of Xp act on the Fukaya-Floer category
of Xp since the latter is a symplectic invariant constructed out of the Lagrangian
submanifolds of Xp and their Floer cohomologies. More precisely, since c1(Xp)
= 0, there is an A∞-category whose objects are those graded Lagrangian submani-
folds [Se3] (carrying flat unitary bundles) whose Floer cohomology is well-defined
[FO3]. Seidel also shows that the above Dehn twists furnish graded symplectomor-
phisms [Se3], and so act (as equivalences) on the derived Fukaya-Floer category
Db(Fuk(Xp)) of Xp. Hamiltonian isotopies between symplectomorphisms induce
natural transformations between their corresponding functors on Db(Fuk(Xp)) (see
below), so we end up with an induced representation

Brn = π1(Cn) → π0(Aut(Xp, ω)) → Auteq(Db(Fuk(Xp))).

In particular, the action of the Dehn twist TL about the Lagrangian sphere L (the
twist being independent of the grading on L) on the object [L′] ∈ Db(Fuk(Xp)) can
be described as follows [Se4]. Think of the identity in HF ∗(L,L′)∗ ⊗HF ∗(L,L′)
as a morphism from HF ∗(L,L′)⊗ [L] to [L′] in Db(Fuk(Xp)), and take its cone:

TL[L′] = Cone
(
HF ∗(L,L′)⊗ L→ L′

)
. (18)

(See (77), which is what this should correspond to under mirror symmetry.)
We explain how this can be extended to a semi-trivial representation of the

braid cobordism category. For any braid cobordism with a negative braid move we
set to zero the natural transformation between the two corresponding functors on
Db(Fuk(Xp)). Braid cobordisms with no positive or negative moves (i.e. isotopies
between two braids) induce natural transformations between the two functors asso-
ciated to those braids (as claimed above) as follows. The isotopy gives a family of
symplectic manifolds Xp over the annulus, with the two boundary S1-families being
those associated to the two braids. Call their monodromies ψ and φ. The family car-
ries a closed 2-form which is fiberwise symplectic; we add on a large multiple of the
pullback of a symplectic form on the annulus to produce a symplectic total space.
Then Seidel [Se5] defines what he calls the relative Gromov invariant of this family,
counting pseudoholomorphic sections (in an appropriate compatible almost com-
plex structure) interpolating between horizontal sections over each boundary (i.e.
generators of the Floer cochain complexes of the boundary symplectomorphisms ψ
and φ) to produce a canonical element of the Floer cohomology HF ∗(ψ−1 ◦ φ) of
the symplectomorphism ψ−1 ◦ φ. This element provides the required natural trans-
formation by pairing it with 1 ∈ HF 0(ψ(L), ψ(L)) using the cup product in Floer
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cohomology:

HF ∗(ψ(L), ψ(L))⊗HF ∗(φ ◦ ψ−1) → HF ∗(ψ(L), φ(L)).

(This is best described, as Ivan Smith pointed out to us, on the product (Xp, ω)
× (Xp,−ω), where the above groups become HF ∗(ψ(L1)× ψ(L2),∆Xp),
HF ∗(∆Xp ,Γφ◦ψ−1), and HF ∗(ψ(L1)× ψ(L2),Γφ◦ψ−1) respectively, and the cup
product becomes the ordinary cup product on Lagrangian Floer cohomology defined
by holomorphic triangles. Here ∆Xp ⊂ Xp ×Xp is the diagonal Lagrangian, and
Γφ◦ψ−1 is the graph of φ ◦ ψ−1.)

Given a braid cobordism which is a composition of braid isotopies and positive
braid moves, there is a corresponding fibration over the annulus, the fibers of which
are either manifolds or have complex ordinary double points. This is because the
family (17) over Cn extends by the same formulae over the partial compactification
Cn where pairs of points are allowed to collide, over which Xp acquires an ordinary
double point. The local model (9) for positive braid moves corresponds [Ru] locally
to a holomorphic map from the base (the z1 axis in (9)) to Cn that intersects
the double point locus transversally and positively. So for an appropriate choice of
oriented complex structure on our annulus the pullback family (17), with the closed
2-form pulled back from Ck+1, is a Lefschetz fibration over the annulus in the sense
of [Se5, Definition 1.5].

Adding a large oriented symplectic form pulled back from the annulus, we get
a Lefschetz fibered symplectic manifold. Using pseudoholomorphic sections of this
Lefschetz fibration with an appropriate almost complex structure, Seidel extends
the Gromov invariant to such fibrations [Se5, Section 3] to give a chain map between
the Floer cochain complexes of the two boundary symplectomorphisms. This is our
natural transformation.

For instance, in the case of the braid cobordism with one positive braid move
from the identity to the Dehn twist about a Lagrangian sphere L, we get the natural
transformation from the identity to TL that comes from mapping [L′] into the second
term of (18) (inducing, for instance, the horizontal map of [Se5, Theorem 1]). This
is the analogue for Fukaya categories of the positive natural transformations (105).

Since all of the positive braid movie moves of Section 3.1 arise from isotopies
of maps of the annulus into Cn through maps which are orientedly transverse to
the double point locus, they give rise to isomorphic natural transformations. This is
because in Seidel’s theory, two homotopies between symplectomorphisms that are
themselves homotopic induce homotopic maps on Floer cochain complexes.

We do not currently know a natural way to extend this nontrivially to negative
branch points, as the geometry involved would be locally anti-holomorphic. Seidel
and Smith have some ideas about how one might proceed, however.

The Fukaya-Floer category of T ∗Fl. In discussions with Paul Seidel in 1998
about the braid group action on the derived category of coherent sheaves on the
cotangent bundle of the flag variety of Section 4, he explained what should be the
translation of the action under mirror symmetry. The Ni of Section 4 are coisotropic
submanifolds (in the standard symplectic structure on T ∗Fl) whose characteristic
foliation is a fibration by isotropic S2s; therefore one can do generalised Dehn twists
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about them ([Se1, Section 1.4], [Pe, Section 2.3]), yielding symplectomorphisms Ti.
Seidel conjectures that these satisfy the braid relations, and so give a representation
of the braid group on the Fukaya category of K.

One should be able to extend this to a semi-trivial action of the braid cobordism
category in the same way as described above for the manifolds Xp. In place of
the ordinary double point degenerations of the Xp one would use normal crossings
degenerations of T ∗Fl in which the Ni collapse to the basesKi of their characteristic
S2 foliations. This would require a family version of Seidel’s theory [Se5].

The examples of Seidel-Smith and Manolescu. There are other naturally
occurring families of symplectic manifolds fibering over Cn whose Fukaya-Floer cat-
egories are related to knot theory and link homology [Kh1, Kh3]. Seidel and Smith
[SS] consider a certain nilpotent slice of the set of sl2n matrices, with the fibration
to C 0

2n (configurations with center of mass zero) given by the set of eigenvalues of
the matrix. The symplectic monodromy of the fibers gives a representation of the
braid group in the group of symplectomorphisms up to isotopy, and the Seidel-Smith
braid invariant is the Floer cohomology of a certain Lagrangian with its image under
this representation; they then show that this is in fact a link invariant.

This example is closely related to the example of the Fukaya-Floer category of
T ∗Fl above, by the deformation of adjoint orbits into the cotangent bundle of the
flag variety (by taking the usual simultaneous resolution of the degeneration to
the nilpotent cone). Manolescu [Ma1] shows that it is also closely related to the
example (17), as it sits inside the Hilbert scheme of points on the two dimensional
version of (17). (In this picture, Seidel-Smith’s Lagrangian is the product of n of the
Lagrangian S2s described above, fibered over n nonintersecting arcs joining disjoint
pairs of points in C2n.) In [Ma2] he also produces other more complicated manifolds
fibering over configuration space giving rise to more complicated link invariants by
the same procedure.

In all of these examples the fibrations extend to fibrations with singular fibers
over the partial compactification Cn in which pairs of points are allowed to coin-
cide. Instead of a Lefschetz fibration with vanishing cycles of Lagrangian spheres
collapsing over the discriminant locus to ordinary double points, the example of
[SS] exhibits a family version of this behaviour. That is, the singular fibers contain
a locus S of singularities, and are locally holomorphically modelled on S times by
a surface ordinary double point. The smooth fibers contain coisotropic families of
isotropic vanishing S2s fibering over the copy of S to which they collapse under par-
allel transport to the singular fiber. Something similar happens in [Ma1] (with some
extra singularities thrown in for good measure) and in [Ma2], with S2s replaced by
Pks and the surface ordinary double points (locally the contraction of P1 ⊂ T ∗P1)
replaced by singularities modelled on the contraction of Pk ⊂ T ∗Pk.

Thus an extension of Seidel’s theory [Se5] from Lefschetz fibrations to fibra-
tions with these fibered singularities would give a family Gromov invariant defining
a natural transformation between the symplectic monodromy of a braid (and its
associated functor on the Fukaya-Floer category) and that of the braid composed
with a simple positive braid cobordism. To reiterate: such a positive braid move cor-
responds to a map of the annulus into Cn with one transverse positively oriented
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intersection with the double point locus of Cn. Thus the map can be made holomor-
phic at this point by an isotopy through maps with the same transversality to the
double point locus. Pulling back the family over Cn and pulling back a large posi-
tively oriented symplectic form from the base we get a symplectic manifold fibering
over the annulus with one singular fiber with singularity of a fixed standard holo-
morphic fibered model (compatible with the symplectic form, which is Kähler in a
neighbourhood of the singular locus). Denote the symplectic monodromies around
the two boundary circles of the annulus by ψ and φ. Then an extension of [Se5] to
this setting would provide us with an element of HF ∗(φ ◦ ψ−1) and a natural trans-
formation between the actions of φ and ψ on the derived Fukaya-Floer categories
of the fiber.

3.5. More on polarization
In our examples of categorifications there tend to exist big discrepancies between

the invariants F (S) of positive and negative braid cobordisms S. Often, the invari-
ant is nontrivial on any positive braid cobordism but trivial on a negative braid
cobordism with just a few branch points. The invariant described in Theorem 1.1
serves as a model example. Recall that to any braid cobordism S between braid
words g and h we assigned a homomorphism ±F (S) of An-bimodule complexes
R(g) and R(h).

Proposition 3.7. F (S) is nonzero in the homotopy category for any positive braid
cobordism S.

Proof. Composing S with the identity cobordism from g−1 to itself, we can assume
that g = 1 and F (S) is a homomorphism from An to the complex R(h). The latter
complex consists of a single bimodule An and the sum of terms isomorphic to
Pi ⊗ jP , for various i and j. Thus, R(h) decomposes, R(h) ∼= An ⊕ Y (h), as a
bimodule, not as a complex, where Y is a direct sum of terms Pi ⊗ jP .

Any composition of bimodule maps

An −→ Pi ⊗ jP −→ An

takes 1 ∈ An to the ideal I of An generated by X1, . . . , Xn. Hence, given any chain
homotopy α from An to R(h), dα+ αd will take 1 ∈ An to an element of the ideal
I plus an element of Y (h).

The map F (S) is the composition of maps F (Sk) : R(gk) −→ R(gk+1) corre-
sponding to the Reidemeister moves and positive branch points. Here 1 = g0,
g1, . . . , gm = h is the sequence of braid words in some movie of S. Each of these
maps F (Sk) takes 1 ∈ An ⊂ R(gk) to ±1 + yk ∈ An ⊕ Y (gk+1) (this follows by a
simple case-by-case verification). Therefore, F (S) takes 1 to ±1 + y ∈ An ⊕ Y (h)
and cannot be null-homotopic, since ±1 does not lie in the ideal I.

This argument fails if S has a negative branch point, since then the corresponding
map takes 1 to ±(Xi−1 −Xi+1), which does belong to I, plus an element of Y (gk+1).
In fact, F (S) = 0 if S is the cobordism from the trivial braid to the braid word
σ−2
i which creates two adjacent negative branch points, for the simple reason that
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(Xi−1 −Xi+1)2 = 0 in An. We do not know a necessary and sufficient topological
condition for F (S) to be zero.

An extreme version of the above positive-negative braid cobordism discrepancy
is manifested in semi-trivial categorifications, sometimes the only ones available
to extend a braid group action. For instance, in the categorification via Rouquier
complexes, F (S) = 0 for any cobordism with a negative branch point, but the argu-
ment in the proof of Proposition 3.7 seems to have its counterpart for Rouquier
complexes, showing that F (S) 6= 0 for any positive braid cobordism.

A similar positive-negative imbalance exists for the invariants of braid cobordisms
coming from the rings Hn and from complexes of matrix factorizations (Examples
2.2 and 2.6 in Section 2).

Positive braid cobordisms can be realized via complex curves [Ru] and negative
cobordisms via antiholomorphic curves in C2. We believe that the positive-negative
asymmetry in our examples will ultimately prove to be of the same nature as in
Donaldson theory, where his invariants exhibit a markedly different behaviour on
algebraic surfaces (where they are always nontrivial) and on their antiholomor-
phic counterparts. The same notions of positivity extend from complex to symplec-
tic geometry, and conjecturally Donaldson’s invariants never vanish on symplectic
manifolds (Taubes has proved this for the Seiberg-Witten invariants). One way that
positivity arises in symplectic geometry is in the monodromy of Donaldson’s sym-
plectic Lefschetz fibrations involving only positive Dehn twists. (This is directly
related to the nonvanishing of Donaldson invariants, or at least Seiberg-Witten
invariants, by the work of Donaldson and Smith on pseudoholomorphic multisec-
tions of such fibrations.) This manifests itself in that it was relatively easy to define
positive braid moves on Fukaya-Floer categories in Section 3.4, but harder to define
nontrivial representations of the negative moves.

3.6. When Definition 3.3 fails
There are several known and conjectural examples where a braid group (or a

Coxeter braid group) acts naturally on a triangulated category C which decomposes
nontrivially into a direct product of its indecomposable pieces, C = ⊕

µ∈J
Cµ, for J

being some index set; for instance, the set of weights of an irreducible representations
of a simple Lie algebra. The braid group action induces a nontrivial permutation
homomorphism Brn −→ SJ to the group of permutations of the set J . Definition 3.3
is ill-suited for such actions, since if Fσi(Cµ) ⊂ Cµ′ for µ′ 6= µ, the only natural
transformation from the identity functor on Cµ to Fσi is zero. We do not know any
good substitute for Definition 3.3 which would deal with braid group actions of
these type. Instead, we list several such actions below.
• The braid group action on the derived category of sheaves on disjoint unions

of partial flag varieties in Section 2, Example 2.7.
• Examples 2.5 and 2.6 in Section 2 can be extended by looking at oriented

tangles with “out” orientation at k1 endpoints and “in” orientation at k2

endpoints. The braid group on k1 + k2 strands acts by braiding tangles along
their endpoints. Triangulated categories then are direct sums of categories, one
for each lineup of in and out orientations, and the braid group action induces a
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permutation action of the symmetric group Sk1+k2 on the set of these lineups.
The braid group action extends to an invariant of oriented tangles and tangle
cobordisms, and a substitute for Definition 3.3 in this case can presumably be
found by restricting to a suitable subcategory of braid cobordisms.

• In a remarkable paper [CR], Chuang and Rouquier gave the definition and
deep analysis of sl2-categorification and, as a result of their work, intro-
duced certain derived equivalences Θ between blocks of cyclotomic Hecke
algebras, symmetric and general linear groups over finite fields, category O,
etc. It is natural to conjecture that these equivalences organize into braid
group actions on direct sums of suitable blocks. In the cyclotomic Hecke alge-
bra case these actions should categorify braid group actions on irreducible
Uq(sln)-representations and affine braid group actions on integrable Uq(ŝln)-
representations (if the categories are not graded, set q = 1), enriching Ariki’s
categorification [A] of these representations in the q = 1 case. Derived equiva-
lences similar to the ones in [CR] should exists in derived categories of coherent
sheaves on Nakajima varieties [Nk], giving rise to Coxeter braid group actions
on these categories.

4. An affine braid group action on Db(T ∗Fl)

4.1. Notation and statement of results
Fix an n-dimensional complex vector space V , and denote by Fl its full flag

variety
Fl = Fl(V ) = {0 = V0 < V1 < · · · < Vn−1 < Vn = V }.

Let πi : Fl→ Fli denote the quotient given by forgetting the i-th flag, so Fli is
the variety of nested subspaces (Vj)j 6=i with dimVj = j. Fl therefore carries the
tautological bundles Vj , all of them except Vi being the pullbacks of tautological
bundles (also denoted Vj) on Fli. We let Li = ΛiV ∗i denote the determinants of
their duals.

We work on K def= T ∗Fl with the divisors Ni
def= π∗i T

∗Fli ⊂ K and their induced
projections pi to T ∗Fli. Letting Ki denote T ∗Fli, we get diagrams

Ni
ιi
↪→ K

↓pi

Ki.

(19)

Suppressing some obvious pullback maps for clarity, Ni is the zero locus of the
canonical section of the fiberwise cotangent sheaf T ∗πi

= ωπi given by projecting
the tautological section of T ∗Fl on K = T ∗Fl to T ∗πi

. We always use ω to denote
(relative) canonical bundles. Since Fl is the projective bundle P(Vi+1/Vi−1) over
Fli, we see that Tπi

∼= Hom(Vi/Vi−1, Vi+1/Vi). Thus

O(Ni) ∼= ωπi
∼= ωpi

∼= L−2
i ⊗ Li−1 ⊗ Li+1. (20)

Define the exact functors

ai
def= ιi∗p

∗
i : Db(Ki) → Db(K),
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and their right adjoints

bi
def= pi∗ι!i : D

b(K) → Db(Ki).

Here ι!i = O(Ni)⊗ ι∗i [−1] is the right adjoint of ιi∗ by Serre duality, and is such
that ιi∗ι

!
i
∼= HomOK

(ONi , · ).
The right adjoint of pi∗ is ωpi ⊗ p∗i [1] by Serre duality, and the right adjoint of

ι∗i is ιi∗, so that of ι!i is ιi∗(−Ni)[1]. Therefore the right adjoint of bi is

ιi∗(−Ni)[1](ωpi ⊗ p∗i )[1] = ιi∗p∗i [2] = ai[2]

by (20).
That is we have adjunctions ai a bi a ai[2], and so, in particular, the counit

evi : aibi → id and unit ev′i : id[−2] → aibi. We define functors

Ui
def= aibi : Db(K) → Db(K), i = 1, . . . , n− 1, (21)

and

Ti
def= Cone

(
Ui

evi−→ id
)
, T ′i

def= Cone
(
id

ev′i−→ Ui[2]
)
[−1]. (22)

In Section 4.4 we will prove the following.

Theorem 4.1. TiT ′i ∼= id ∼= T ′iTi, and the Ti satisfy the braid relations:
• TiTj ∼= TjTi for |i− j| > 1, and
• TiTjTi ∼= TjTiTj for |i− j| = 1.

Then in Section 4.5 we will define an extra invertible functor by

T
def= (L1T1T2 . . . Tn−2)Tn−1(T ′n−2 . . . T

′
2T

′
1L−1

1 ), (23)

where L1 denotes the functor L1 ⊗ ( · ). Calling this T0 = T = Tn in a cyclic order-
ing, it extends the above braid group action to one of the affine braid group:

Theorem 4.2. The functor T commutes with Ti for 2 6 i 6 n− 2, and braids with
T1 and Tn−1:

T0T1T0
∼= T1T0T1 and TnTn−1Tn ∼= Tn−1TnTn−1.

In fact we use Fourier-Mukai transforms (Section 4.2) rather than functors, giv-
ing a representation of the braid group in the group of invertible Fourier-Mukai
transforms. Applying the Fourier-Mukai functor gives the above (slightly weaker)
results.

4.2. Fourier-Mukai transforms
In places, using Fourier-Mukai kernels makes this part of the paper rather a

triumph of notation over clarity. For instance, the rest of this section derives the
Fourier-Mukai kernels for the above functors, and is long and formal. But it can be
safely skipped: the later sections show that composition of these kernels satisfies the
relations of the braid group. This will satisfy most readers, without seeing a proof
that the corresponding braid group of Fourier-Mukai functors is the one described
above.
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We will often suppress pullback maps applied to line bundles, and pushforwards
applied to structure sheaves when the map is an embedding: given ι : D ↪→ K we
often denote ι∗OD by Oι(D) or OD to save on notation.

If D1 and D2 are divisors on spaces X1 and X2 respectively, we use the notation
O(D1, D2) for the line bundle O(D1) £O(D2) on any fiber productX1 ×B X2 ofX1

and X2. When X1 = X = X2 we let ∆X (or sometimes just ∆) denote the diagonal
copy of X in X ×B X.

In several places we will have A,B ⊂ X whose intersection A ∩B is a Cartier
divisor in A with OA(A ∩B) ∼= L|A for some line bundle L over A ∪B. Then we
will repeatedly use the connecting homomorphism OB(L) → OA[1] of the standard
exact sequence

0 → OA → OA∪B(L) → OB(L) → 0,

i.e. the morphism representing the Ext1 class of the above extension.
Db(X) denotes the bounded derived category of coherent sheaves on a smooth

quasi-projective variety X, and all functors between such categories will be the
derived functors (though we omit the Ls and Rs). We denote the derived dual
Hom(F ,O) of an object F by F∨.

Notoriously, cones are in general not functorial in derived categories because
given an arrow one must pick a representative of its quasi-isomorphism class to
take the cone on. For instance, working with the homotopy category of complexes
of quasi-coherent injective sheaves with coherent cohomology, we have to pick a
map of complexes in a homotopy class before taking its cone, and this choice is not
functorial.

For us, however, just as in [ST], there is a functorial choice of map since all of
our maps are evaluation (and co-evaluation) maps. Thus all of our cones will be
chosen functorially.

We recommend [Hu] for the theory of Fourier-Mukai transforms. A Fourier-
Mukai transform is an exact functor Db(X1) → Db(X2) induced by an object
(Fourier-Mukai kernel) P ∈ Db(X1 ×X2) on the product. (So, importantly, we do
not insist on our Fourier-Mukai transforms being invertible.) Using the obvious
projections

X1 ×X2
π2 //

π1

²²

X2

X1,

(24)

the functor is
ΦP

def= π2∗
(
P ⊗ π∗1( · )

)
.

The structure sheaf O∆ of the diagonal ∆ ⊂ X ×X represents the identity on
Db(X), and, more generally, given a morphism f : X → Y , the functors f∗ and f∗

are represented byO(id×f)X ∈ Db(X × Y ) and O(f×id)X ∈ Db(Y ×X) respectively.
It is a foundational result of Orlov that in fact all fully faithful exact functors arise
in this way for projective Xi, though we shall not need this (our manifolds are only
quasi-projective, but all the functors we use have obvious Fourier-Mukai kernels).
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However, this natural transformation Φ fromDb(X1 ×X2) to Fun(Db(X1), Db(X2))
is neither full nor faithful (see for example [Ca]), though it can be made to be so
by working with dg-categories instead [To]. Again, this will not affect us; all of the
natural transformations that we use are induced by obvious maps of kernels.

The composition of two Fourier-Mukai transforms

Db(X1)
ΦP−→Db(X2)

ΦQ−→Db(X3)

is [Hu, Proposition 5.10] ΦQ?P ∼= ΦQ ◦ ΦP : Db(X1) → Db(X3), where Q ? P ∈
Db(X1 ×X3) is the convolution

Q ? P = π13∗
(
π∗12P ⊗ π∗23Q

)
. (25)

Here πij is the projection from X1 ×X2 ×X3 onto Xi ×Xj .
The right adjoint of the functor ΦP is

ΦP∨⊗ωX1 [−x1], (26)

where we are identifying X1 ×X2 and X2 ×X1 in the obvious way, suppressing
the pullback π∗1 on the canonical bundle ωX1 , and setting xi = dimXi. By (25) the
composition ΦP ◦ ΦP∨⊗ωX1 [−x1] is represented by the kernel

(P∨ ⊗ ωX1 [−x1]) ? P = π13∗ (π∗12P
∨ ⊗ ωX1 [−x1]⊗ π∗23P ) , (27)

where π13 : X2 ×X1 ×X2 → X2 ×X2 is the projection to the first and third factors.
Let δ : X1 ×X2 ↪→ X1 ×X2 ×X1 be the product of X1’s diagonal and the iden-

tity on X2. Then the counit ΦP ◦ ΦP∨⊗π∗1ωX1 [−x1] → id of the adjunction is repre-
sented by the morphism of Fourier-Mukai kernels given by the following composition.
We restrict (27) to the image of δ before applying π13∗, then take the trace map
and the isomorphism π13∗ωX1

∼= O[−x1]:

π13∗ (π∗12P
∨ ⊗ ωX1 [−x1]⊗ π∗23P ) → π13∗ (δ∗(P∨ ⊗ P )⊗ ωX1 [−x1])

tr−→ π13∗
(Oδ(X1×X2) ⊗ ωX1 [−x1]

) ∼= O∆. (28)

Using these facts we can deduce the Fourier-Mukai kernels for our functors Ui
and Ti. The reader unconcerned with the relationship to the functors (21, 22) could
omit this and proceed to the next section where the functors are forgotten and only
their Fourier-Mukai kernels (29, 32) are used to give a braid group representation
in the group of invertible Fourier-Mukai kernels.

Lemma 4.3. The functor Ui (21) has Fourier-Mukai kernel

Ui
def
= O(ιi×ιi)(Ni×Ki

Ni)(Ni, 0)[−1] ∈ Db(K ×K). (29)

Proof. This is proved in a number of steps, at each stage composing Fourier-Mukai
functors using (25).

• pi∗ : Db(Ni) → Db(Ki) is represented by the FM kernel

O(id×pi)Ni
∈ Db(Ni ×Ki).

• p∗i is represented by O(pi×id)Ni
∈ Db(Ki ×Ni).
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• Therefore, the composition p∗i pi∗ has kernel

π13∗
[O((id×pi)Ni)×Ni

⊗ONi×(pi×id)Ni

]
, (30)

where π13 : Ni ×Ki ×Ni → Ni ×Ni is the projection.

• The intersection of ((id×pi)Ni)×Ni (of codimension dimKi) and Ni
× (pi × id)Ni (codimension dimKi) in Ni ×Ki ×Ni is Ni ×Ki Ni, which is
smooth of the expected codimension 2 dimKi. Therefore the (derived) tensor
product of the structure sheaves equals the structure sheaf of the (transverse)
intersection.

• Since π13 restricted to Ni ×Ki
Ni ⊂ Ni ×Ki ×Ni is an embedding, map-

ping it into Ni ×Ni as id×Ki
id, (30) shows that the kernel for p∗i pi∗ is

O(id×Ki
id)(Ni×Ki

Ni) ∈ Db(Ni ×Ni).

Next we compose with ι!i:

• ι!i = ι∗i (Ni)[−1] : Db(K) → Db(Ni) is represented by the Fourier-Mukai kernel
O(ιi×id)Ni

(Ni, 0)[−1] ∈ Db(K ×Ni).

• Therefore the composition p∗i pi∗ι
!
i is represented by

π13∗
[O((ιi×id)Ni)×Ni

(Ni, 0)[−1]⊗OK×(id×Ki
id)(Ni×Ki

Ni)

]
,

where π13 : K ×Ni ×Ni → K ×Ni is the projection.

• The intersection of ((ιi × id)Ni)×Ni and K × (id×Ki id)(Ni ×Ki Ni) in
K ×Ni ×Ni is Ni ×Ki Ni, embedded via (a, b) 7→ (ιi(a), a, b). This is smooth
of the expected dimension, so the (derived) tensor product of the structure
sheaves equals the structure sheaf of the (transverse) intersection.

• Composing with π13 embeds Ni ×Ki Ni in K ×Ni via ιi × id, so p∗i pi∗ι
!
i has

kernel O(ιi×id)(Ni×Ki
Ni)(Ni, 0)[−1] ∈ Db(K ×Ni).

Finally we can compose with ιi∗, whose kernel is O(id×ιi)Ni
∈ Db(Ni ×K), in the

same way. The upshot is, unsurprisingly, that the Fourier-Mukai kernel for ιi∗p∗i pi∗ι
!
i

is the pushforward of the kernel for p∗i pi∗ι
!
i from Db(K ×Ni) to Db(K ×K), i.e.

O(ιi×ιi)(Ni×Ki
Ni)(Ni, 0)[−1], as claimed.

There is an obvious exact sequence

0 → O∆ → O∆∪ ((ιi×ιi)(Ni×Ki
Ni))(Ni, 0) → O(ιi×ιi)(Ni×Ki

Ni)(Ni, 0) → 0,

where ∆
ι∆
↪→ K ×K is the diagonal and the last arrow is the restriction map. This

gives the connecting homomorphism

O(ιi×ιi)(Ni×Ki
Ni)(Ni, 0)[−1] → O∆. (31)

Proposition 4.4. The natural transformation Ui
ev−→ id is represented by the mor-

phism (31) in Db(K ×K). Thus its cone, the functor Ti (22), has the Fourier-Mukai
kernel

Ti
def
= O∆∪ (ιi×ιi)(Ni×Ki

Ni)(Ni, 0) ∈ Db(K ×K). (32)
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Proof. We first claim that the counit p∗i pi∗ → id of the adjunction p∗i a pi∗ is the
evaluation map evpi induced by the map

O(id×Ki
id)(Ni×Ki

Ni) → O∆ (33)

given by restriction to the diagonal ∆ ⊂ Ni ×Ki Ni ⊂ Ni ×Ni. This is just a nota-
tional chase and the reader might want to take it on trust, or observe that it does
the right thing when applied to any object of Db(Ni).

We prove it using adjoints and the counits of (28). Since Ni is noncompact the
formulae for composition (25) and counit (28) will only work if we work relative
to Ki (notice pi : Ni → Ki does have compact fibers) and use relative, instead of
absolute, Serre duality. That is we replace the diagram (24) by

Ki ×Ki
Ni

π2 //

π1

²²

Ni

Ki,

with respect to which p∗i is represented by the kernel OKi×Ki
Ni . Since Ki ×Ki Ni∼= Ni and π1 and π2 are just pi and id respectively, this statement is the tautology

that
π2∗

(OKi×Ki
Ni ⊗ π∗1( · )

)
= id (p∗i ( · )) = p∗i .

Then, by the relative version of (26), its right adjoint pi∗ is represented by the
functor

O∨Ni×Ki
Ki
⊗ ωKi/Ki

[0] = ONi×Ki
Ki ,

since the relative dimension of Ki over Ki is zero. Using, as usual, πij to denote
the projection of Ni ×Ki Ki ×Ki Ni → Ni ×Ki Ni onto its i-th and j-th factors, by
(25) the composition p∗i pi∗ is represented by

π13∗
(
π∗12ONi×Ki

Ki ⊗ π∗23OKi×Ki
Ni

)
= π13∗ONi×Ki

Ki×Ki
Ni = ONi×Ki

Ni ,

and the counit p∗i pi∗ → id is represented by the composition (cf. (28))

π13∗ONi×Ki
Ki×Ki

Ni → π13∗(δ∗O) ∼= O∆,

where δ : Ni ×Ki Ki ↪→ Ni ×Ki Ki ×Ki Ni is the product of the diagonal on Ni and
the identity on Ki. The trace map is just the identity since we only are pushing
down the dimension zero identity map Ki → Ki. Thus the natural transformation
p∗i pi∗ → id is represented by the restriction map ONi×Ki

Ni → O∆. Pushing this
forward from Db(Ni ×Ki Ni) to Db(Ni ×Ni) gives (33).

Next we have to do the same for ιi∗ and its right adjoint ι!i. To handle the
noncompactness we this time work relative to K, considering Ni as a variety over
K (of relative dimension −1). So (24) becomes

Ni ×K K
π2 //

π1

²²

Ni

K,
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with ιi∗ represented by the kernel ONi×KK . That is Ni ×K K ∼= Ni and π1, π2 are
id, ιi, respectively, so

π2∗ (ONi×KK ⊗ π∗1( · )) = ιi∗(id) = ιi∗.

The Fourier-Mukai kernel for its right adjoint ι!i is then

O∨Ni×KK ⊗ ωNi/K [−1] = ONi
(Ni)[−1] ∈ Db(K ×K Ni).

Working in Db(K ×K Ni ×K K) in the usual notation (25) gives the kernel for the
composition ιi∗ι!i as

π13∗
(
π∗12ONi(Ni)[−1]⊗ π∗23ONi

)
= π13∗ONi(Ni)[−1]

= ONi(Ni)[−1] ∈ Db(K ×K K) = Db(K).

(Pushing forward Db(K ×K K) → Db(K ×K) gives its more usual absolute, rather
than relative, Fourier-Mukai kernel O(ιi×ιi)Ni

(Ni, 0)[−1].)
Finally by (28) the counit ιi∗ι!i → id is represented by the following morphism

of Fourier-Mukai kernels. Firstly, restriction to the product (over K) of Ni and the
diagonal of K in K ×K Ni ×K K is the identity (since both are just Ni). Using the
fact that π13 is ιi, we are left with the trace map

ONi(Ni)[−1] tr−→ OK .
That is, we want to know what the relative Serre duality trace morphism

ωNi/K [−1] tr−1

−→ OK is in dimension −1 = dimNi − dimK. (Equivalently we want
to describe the natural evaluation map O∨Ni

→ OK .) It is of course the connecting
homomorphism of the triangle

ONi(Ni)[−1] → OK → OK(Ni) → ONi(Ni). (34)

Pushing forward from K = K ×K K to K ×K we find that ιi∗ι!i → id is represented
by

O(ιi×ιi)Ni
(Ni, 0)[−1] → O∆,

with the morphism the pushforward of the connecting homomorphism (34) by the
diagonal map ι∆ : ∆ → K ×K.

We are finally ready to describe the counit ιi∗p∗i pi∗ι
!
i → id. By (33),

evpi : ιi∗p∗i pi∗ι
!
i → ιi∗ι!i

is represented by the restriction map

O(ιi×ιi)(Ni×Ki
Ni)(Ni, 0)[−1] → O(ιi×ιi)Ni

(Ni, 0)[−1]. (35)

Composing with the pushforward by ι∆ of the connecting homomorphism of (34)
(representing ιi∗ι!i → id) we obtain the counit ιi∗p∗i pi∗ι

!
i → id (by the obvious com-

position property of units). So this is represented by the connecting morphism of
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the natural exact triangle

O(ιi×ιi)(Ni×Ki
Ni)(Ni, 0)[−1]

→ O∆ → O∆∪ (ιi×ιi)(Ni×Ki
Ni)(Ni, 0) → O(ιi×ιi)(Ni×Ki

Ni)(Ni, 0). (36)

Thus its cone, representing Ti, is O∆∪ ((ιi×ιi)(Ni×Ki
Ni))(Ni, 0).

Finally, similar and equally tedious working shows that the functor id
ev′i−→ Ui[2]

is represented by the morphism

O∆ → O(ιi×ιi)(Ni×Ki
Ni)(Ni, 0)[1] (37)

in Db(K ×K) which is the connecting homomorphism of the exact sequence

0 → O(ιi×ιi)(Ni×Ki
Ni)(Ni, 0) → O∆∪ (ιi×ιi)(Ni×Ki

Ni)(L
−1
i , Li) → O∆ → 0, (38)

whose second arrow is the restriction to ∆. We use the claim that

∆ ∩ (ιi × ιi)(Ni ×Ki Ni) = ∆Ni

def= (ιi × ιi)Ni

is a divisor in Ni ×Ki Ni in the class of (the restriction to Ni ×Ki Ni of)
(Li ⊗ L−1

i+1 ⊗ L−1
i−1, Li). By (20), this is in turn (L−1

i (−Ni), Li).
The claim is proved by noting that the pushdown of (Li ⊗ L−1

i+1 ⊗ L−1
i−1, Li) from

Ni ×Ki Ni to Ki is
(
Vi+1

/
Vi−1

)∗ ⊗ (
Vi+1

/
Vi−1

)∗ ⊗ Λ2
(
Vi+1

/
Vi−1

) ∼= End(Vi+1

/
Vi−1

)
, (39)

since the pushdown of (Vi/Vi−1)∗ = Li ⊗ L−1
i−1 from Ni to Ki is (Vi+1/Vi−1)∗ (as

everything is a pullback from the pushdown Fl→ Fli, which is the projective bundle
P(Vi+1/Vi−1) over Fli). Under this isomorphism, id ∈ End(Vi+1/Vi−1) gives a global
section of (39) corresponding to a global section of (Li ⊗ L−1

i+1 ⊗ L−1
i−1, Li) which

has zero locus the diagonal ∆Ni (this can be checked fiberwise, where it is just the
diagonal P1 ⊂ P1 × P1).

Taking cones then, T ′i (22) has kernel

O∆∪ (ιi×ιi)(Ni×Ki
Ni)(L

−1
i , Li). (40)

4.3. First results
We now forget all about functors and work exclusively with the kernels (29, 32,

40). To streamline notation we suppress inclusion maps when they are the obvious
ones, for instance writing ONi×Ki

Ni(Ni, 0)[−1] for Ui (29) and O∆∪ (Ni×Ki
Ni)(Ni, 0)

for Ti (32).

Proposition 4.5. There is an exact triangle of kernels

Ui
a−→ Ui ? Ui

b−→ Ui[−2] (41)

in Db(K ×K). It is split by either id ? ev′i or ev′i ? id : Ui[−2] → Ui ? Ui, and sim-
ilarly by either id ? evi or evi ? id : Ui ? Ui → Ui, giving isomorphisms Ui ? Ui ∼=
Ui ⊕ Ui[−2].
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Remark. This is one place where using functors would have been easier and more
informative. In the notation of the introduction, the natural transformation induced
by a is the unit id → biai of ai a bi, premultiplied by ai and postmultiplied by bi.
A similar procedure produces b from the counit biai → id[−2] of bi a ai[2], and the
statements about splitting then follow from standard facts about composing units
and counits of adjoint functors.

Proof. In the usual notation (25),

Ui ? Ui = π13∗
(ONi×Ki

Ni×K(Ni, 0, 0)[−1]⊗OK×Ni×Ki
Ni

(0, Ni, 0)[−1]
)
.

The intersection of the two supports is Ni ×Ki
Ni ×Ki

Ni, which is smooth but
has excess intersection dimension one. Therefore the derived tensor product of the
two structure sheaves has both Tor0 (the structure sheaf of the intersection) and
Tor1. By a standard local Koszul resolution calculation the latter is given by the
structure sheaf of the intersection tensored with the excess conormal bundle, which
by adjunction is

O(−Ni + ωKi ,−Ni, 0)⊗O(0,−Ni,−Ni + ωKi)⊗O(Ni − ωKi , Ni, Ni − ωKi)
∼= O(0,−Ni, 0). (42)

So we have an exact triangle

π13∗ONi×Ki
Ni×Ki

Ni(Ni, 0, 0)[−1] a−→ Ui ? Ui (43)
b−→ π13∗ONi×Ki

Ni×Ki
Ni(Ni, Ni, 0)[−2], (44)

where Ni ×Ki Ni ×Ki Ni is embedded in K ×K ×K in the obvious way via
ιi × ιi × ιi. On restriction to this, π13 is a P1-bundle over Ni ×Ki Ni: the pullback
of pi : Ni → Ki to the base Ni ×Ki Ni. Thus it has relative canonical bundle the
pullback of ωpi

∼= O(Ni), which is O(0, Ni, 0). Since pi∗O ∼= O and pi∗ωpi
∼= O[−1]

by Serre duality, (43) becomes

O(ιi×ιi)(Ni×Ki
Ni)(Ni, 0)[−1] → Ui ? Ui → O(ιi×ιi)(Ni×Ki

Ni)(Ni, 0)[−3],

which by (29) gives (41).

The morphism 1 ? ev′i : Ui[−2] → U2
i in Db(K ×K) is

π13∗
(ONi×Ki

Ni×K(Ni, 0, 0)[−1]⊗OK×∆[−2]

−→ ONi×Ki
Ni×K(Ni, 0, 0)[−1]⊗OK×Ni×Ki

Ni(0, Ni, 0)[−1]
)
, (45)

where the map is the identity on the left-hand sides of the tensor products and ev′i
of (37) on the right-hand sides.

We wish to show that the composition of this map with Ui ? Ui
b→ Ui[−2] is the

identity. But b was defined by projecting the second derived tensor product in (45)
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to its degree zero (Tor0) part. That is, the composition is given by

π13∗
(ONi×Ki

∆Ni
(Ni, 0, 0)[−3] → ONi×Ki

Ni×Ki
Ni

(Ni, Ni, 0)[−2]
)
, (46)

where the map is the connecting homomorphism of the natural divisor exact se-
quence

0 → O(Ni, Ni, 0) → O(Ni, Ni, 0)(Ni ×Ki
∆Ni

) → ONi×Ki
∆Ni

(Ni, 0, 0) → 0,

(cf. (38)) pushed forward from Ni ×Ki
Ni ×Ki

Ni to K ×K ×K and shifted by
[−3].

So the cone on (46) is

π13∗
(ONi×Ki

Ni×Ki
Ni

(Ni, Ni, 0)(Ni ×Ki
∆Ni

)[−2]
) ∼= 0,

because O(Ni, Ni, 0)(Ni ×Ki
∆Ni

) is a line bundle of degree −1 on the P1-fibers of
π13|Ni×Ki

Ni×Ki
Ni .

Thus the induced map in (46),

ONi×Ki
Ni

(Ni, 0)[−3] → ONi×Ki
Ni

(Ni, 0)[−3],

must be a nonzero multiple of the identity, and so isomorphic to the identity, as
required.

The proof that ev′i ?1 also splits (41) is very similar.

To analyse evi ?1: Ui ? Ui → Ui we tensor the following exact sequence (the prod-
uct of (36) with K) with OK×Ni×Ki

Ni(0, Ni, 0):

0 → O∆×K → O(
∆∪ (Ni×Ki

Ni)
)
×K(Ni, 0, 0) → ONi×Ki

Ni×K(Ni, 0, 0) → 0.

Taking π13∗ of the connecting homomorphism and shifting by [−2] gives evi ?1.
Now the intersection of K ×Ni ×Ki Ni with both of

(
∆ ∪ (Ni ×Ki Ni)

)×K and
Ni ×Ki Ni ×K is the same (Ni ×Ki Ni ×Ki Ni), so in the long exact sequence of
Tors the final two terms are the same with the restriction map between them an
isomorphism. Thus the next two terms to the left give the exact sequence

Tor1
(ONi×Ki

Ni×K ,OK×Ni×Ki
Ni

)
(Ni, Ni, 0) → O∆Ni

×Ki
Ni(Ni, 0, 0) → 0.

Now recall (43) that the inclusion of this Tor1 term into the full derived tensor
product is precisely what gives the map a : Ui → Ui ? Ui; i.e. applying π13∗[−1] to
the above two terms gives (evi ?1) ◦ a. We also computed this Tor1 in (42); the
upshot is that (evi ?1) ◦ a is

π13∗
[ONi×Ki

Ni×Ki
Ni → O∆Ni

×Ki
Ni

]
(Ni, 0)[−1],

with the map inside the brackets the surjection of structure sheaves. Thus this map
is isomorphic to the restriction map; when we apply π13∗ we get

[ONi×Ki
Ni → ONi×Ki

Ni

]
(Ni, 0)[−1]

on K ×K, with the map the identity. So (evi ?1) ◦ a is isomorphic to the identity
map Ui → Ui, and evi ?1 splits (41). The proof for 1 ? evi is very similar.

We are now ready to prove invertibility of our functors. This can by now be
proved in many ways. It follows as a special case of the results of Horja [Ho] or
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similar ideas of Szendröi [Sz1], for instance, and the quickest proof is probably by
adapting Ploog’s method [Pl, Hu] for the invertibility of the spherical twists [ST]
to this family situation. We give a proof inspired by purely categorical methods and
the earlier invertibility proofs in [KS, ST] and the more general result proved by
Rouquier [Ro1], at the level of Fourier-Mukai transforms.

Proposition 4.6. In Db(K ×K) we have quasi-isomorphisms Ti ? T
′
i
∼= O∆∼= T ′i ? Ti.

Proof. T ′i ? Ti is the total complex of

Ui[−1]
evi //

ev′i ? id

²²

O∆[−1]

ev′i
²²

Ui ? Ui[1]
id ? evi // Ui[1].

(47)

We map the trivial cone Ui[1] id→ Ui[1] into the bottom row of (47) by the map a[1]
on the first factor and the identity on the second. By Proposition 4.5 this is indeed
a morphism in Db(K ×K) and taking the cone makes T ′i ? Ti isomorphic to the
total complex of

Ui
evi //

b◦(ev′i ? id)

²²

O∆

Ui,

where now the first Ui is in degree 1 and the other two terms are in degree 0. By
Proposition 4.5 the vertical arrow is isomorphic to the identity, so T ′i ? Ti ∼= O∆.
The proof that Ti ? T ′i ∼= O∆ is very similar.

Defining Flij , i 6= j, to be the quotient of Fl given by forgetting both the i-th
and j-th subspaces, we have natural maps

Fl

πij

²²

πi

||yyyyyy πj

""EE
EE

EE

Fli

ρij !!DD
DD

DD
Flj

ρji||zz
zz

zz

Flij .

(48)

πi and πj are P1-bundles, and if |i− j| > 1 then ρij and ρji are also; in this case
the diagram is Cartesian, i.e. πij is the fiber product of ρij and ρji. (For |i− j| = 1,
ρij and ρji are P2-bundles.)

We also define Nij to be the (transverse) intersection Ni ∩Nj inside K. For

|i− j| > 1 this is the pullback π∗ijT
∗Flij . Finally we set Kij

def= ρ∗ijT
∗Flij , a divisor

in Ki = T ∗Fli, the zero set of the canonical section of T ∗ρij . It is the image of Nij
under pi : Ni → Ki = T ∗Fli.

With this notation we can prove the following.
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Proposition 4.7. For |i− j| > 1 we have Ti ? Tj ∼= Tj ? Ti ∈ Db(K ×K).

Proof. In the usual notation we calculate Ti ? Tj as

π13∗
(
OK×(∆∪(Ni×Ki

Ni))(0, Ni, 0)⊗O(∆∪(Nj×Kj
Nj))×K(Nj , 0, 0)

)
. (49)

Both supports have codimension dimK in K ×K ×K, and their intersection is

(id× id× id)K ∪ (∆Ni
×Ki

Ni) ∪ (Nj ×Kj
∆Nj

) ∪ (Nj ×Kj
Nij ×Ki

Ni).

The last component Nj ×Kj Nij ×Ki Ni is Nij ×Kji Nij ×Kij Nij , which in turn
equals Nij ×T∗Flij

Nij by pulling back T ∗Flij to both sides of the isomorphism
Fl ×Flj Fl ×Fli Fl ∼= Fl ×Flij

Fl (which amounts to the statement that (48) is
Cartesian).

Therefore all four irreducible components are of codimension 2 dimK, the inter-
section is a local complete intersection and the derived tensor product of the struc-
ture sheaves is just the structure sheaf of the intersection. Moreover, π13 restricted
to each component is an embedding into K ×K, yielding

Ti ? Tj ∼= O∆∪ (Ni×Ki
Ni)∪ (Nj×Kj

Nj)∪ (Nij×T∗F lij
Nij)(Dij). (50)

We claim that O(Dij) is O(Ni +Nj , 0), i.e. that O(0, Ni, 0) in (49) is isomorphic
to O(Ni, 0, 0) on restriction to the intersection. This is obvious on the first two
irreducible components of the intersection, and on the latter two it follows from
the fact that ONj (Ni) is pulled back from Kj (for |i− j| > 1: it is the pullback of
OKj (Kji)).

So Dij and therefore also (50) are symmetric in i and j.

4.4. The Yang-Baxter equation
In this section we fix j = i+ 1 and prove the final braid relation Ti ? Tj ? Ti∼= Tj ? Ti ? Tj .
The geometry and notation become especially nasty in this section, and the

interested reader is advised to set n = 3 and i, j = 1, 2, so that Fl = Fl(C3) fibers
by π2 over Fl2 = P2 and by π1 over Fl1 = P2∗. In this case Mij below is just
the zero section Fl ⊂ T ∗Fl, while Kij = P2 ⊂ T ∗P2 = K2 and Kji = P2∗ ⊂ T ∗P2∗

= K1. Lemma 4.8 is then just the Mukai flop. The geometry that results in this
special case is where all the action takes place in the general case (which is a bundle
over T ∗Flij with fiber the n = 3 geometry).

We refer to the diagram (48). As before we define Nij to be the (transverse)

intersection Ni ∩Nj inside K, and we set Mij
def= π∗ijT

∗Flij . Since |i− j| = 1 these
are not equal, but Mij ⊂ Nij is a divisor, in fact an exceptional divisor:

Lemma 4.8. The map qi
def
= pi|Nij is the blow-up of Ki = T ∗Fli in

Kij
def
= ρ∗ijT

∗Flij ,

and Mij is the exceptional divisor.

Symmetrically, qj
def
= pj |Nij is the blow-up of Kj = T ∗Flj in Kji = ρ∗jiT

∗Flij
with the same exceptional divisor Mij ⊂ Nij.
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Proof. Thinking of Nij as the zero set of the canonical section of T ∗πj restricted to
Ni = π∗i T

∗Fli, we see that the functions that are linear on the fibers of its projection
to Fl are

π∗i TF li
Tπj

.

These generate the ideal of the zero section Fl; the subset of those that vanish on
the divisor Mij = π∗ijT

∗Flij ⊂ Nij is

ker
(
π∗i TF li
Tπj

−→ π∗ijTF lij

)
=
π∗i Tρij
Tπj

=
Hom(Vj/Vi−1, Vj+1/Vj)
Hom(Vj/Vi, Vj+1/Vj)

=Hom
(
Vi
Vi−1

,
Vj+1

Vj

)
=

(
Vi
Vi−1

)∗
⊗

(
Vj+1

Vj

)
.

Thinking of πi : Fl→ Fli as the projective bundle P(Vj/Vi−1) → Fli with tau-
tological line bundle OP(−1) = Vi/Vi−1, we see that the pushdown of (Vi/Vi−1)∗

= OP(1) is (Vj/Vi−1)∗. Therefore, the pushdown of the above ideal is
(
Vj
Vi−1

)∗
⊗

(
Vj+1

Vj

)
= Hom

(
Vj
Vi−1

,
Vj+1

Vj

)
= Tρij .

But this is the subset of the linear functions TF li on Ki = T ∗Fli that vanish on
ρ∗ijT

∗Flij = Kij . Thus we have shown that

qi∗
(ONij (−Mij)

)
= IKij⊂Ki .

Since everything in sight is smooth, this is the defining relation of the blow-up of
Ki in Kij .

We will also need the following.

Lemma 4.9. The natural projection Mij ×Kji Mij → Kij ×T∗Flij Kij is the blow-
up of Kij ×T∗Flij Kij in the diagonal Kij.

Proof. This is proved by pulling back T ∗Flij to

Fl ×Flj Fl ∼= Bl∆F li
(Fli ×Flij Fli). (51)

To prove (51) we exhibit a rational map Fli ×Flij Fli //___ Flj that blows up the
diagonal ∆Fli . This map takes the Vj subspaces of V in the two copies of Fli and
intersects them to define the Vi subspace of V in Flj , and so is ill-defined over the
diagonal where this intersection is too big.

We define the map through sections of line bundles, and work relative to Flij .
Think of Flj → Flij as the projective bundle P(Vj+1/Vi−1) with its tautological line
bundle OP(−1) = Vi/Vi−1, and work with the line bundle Λ3(Vj+1/Vi−1)⊗OP(1)
on Flj . Its pushdown to Flij is

Λ3(Vj+1/Vi−1)⊗ (Vj+1/Vi−1)∗ ∼= Λ2(Vj+1/Vi−1). (52)

Similarly we think of Fli → Flij as the projective bundle P((Vj+1/Vi−1)∗) with
tautological line bundle OP(−1) = (Vj+1/Vj)∗. The pushdown on OP(1) is then
Vj+1/Vi−1.
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Thus the sections of O(1, 1) on Fli ×Flij
Fli over Flij are

(Vj+1/Vi−1)⊗ (Vj+1/Vi−1),

containing the sections (52) as the antisymmetric tensors. These latter sections
vanish precisely (scheme theoretically) on the diagonal ∆Fli and generate its ideal,
so we get the blow-up claimed.

The resulting map Bl∆F li
(Fli ×Flij

Fli) → Flj is the projection

Fl ×Flj Fl→ Flj

since a flag is determined by its projections to Fli and Flj (i.e. πi × πj :
Fl→ Fli × Flj is an embedding).

We compute Ui ? Uj in the usual way (25):

Ui ? Uj = π13∗
(
ONj×Kj

Nj×K(Nj , 0, 0)[−1]⊗OK×Ni×Ki
Ni

(0, Ni, 0)[−1]
)
.

Both supports have codimension in K ×K ×K equal to dimK, and their intersec-
tion

Nj ×Kj Nij ×Ki Ni ⊂ K ×K ×K (53)

is smooth (being a P1 × P1-bundle over Nij) of codimension 2 dimK. Thus the
intersection is transverse, and

Ui ? Uj = π13∗
(
ONj×Kj

Nij×Ki
Ni(Nj , Ni, 0)

)
[−2].

On restriction to (53), π13 maps (a, b, c) to (ιi(a), ιj(c)) ∈ K ×K. A point of the
image determines a and c (since ιi and ιj are injections) and so qj(b) and qi(b) as
pj(a) and pi(c) respectively. But this determines b completely and so the map is
injective. In fact it is an embedding because ιi, ιj and qi × qj : Nij ↪→ Ki ×Kj are
(the latter because πi × πj : Fl ↪→ Fli × Flj is). Therefore

Ui ? Uj = ONj×Kj
Nij×Ki

Ni(D)[−2] ∈ Db(K ×K), (54)

where Nj ×Kj Nij ×Ki Ni is embedded into K ×K as described above, and D is the
divisor thereon given by restricting O(Nj , Ni, 0) from K ×K ×K via the inclusion
(53).

Recall the description of the morphism evi as a connecting homomorphism (31).
Chasing this through the above derivation of Ui ? Uj shows that id ? evj : Ui ? Uj
→ Ui is given by (the shift by [−2] of) the connecting homomorphism of the exact
sequence

0 → ONi×Ki
Ni(Ni, 0) → O(Ni×Ki

Ni)∪Nij×Ki
Ni

(Nj×Kj
Nij×Ki

Ni)(D)

→ ONj×Kj
Nij×Ki

Ni(D) → 0 (55)

that arises from the fact that Ni ×Ki Ni and Nj ×Kj Nij ×Ki Ni intersect in
Nij ×Ki Ni, which is a divisor in both. Here O(D) is the line bundle on the union
which is ONi×Ki

Ni(Ni +Nj , 0) glued to ONj×Kj
Nij×Ki

Ni(D) across Nij ×Ki Ni by
their common restriction to ONij×Ki

Ni(L
−2
i + Li−1 +Nj , Lj) (by (20) and the fact
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that Lj is pulled back from a line bundle Lj on Ki and so can be dragged across
the first fiber product).

We introduce one more piece of notation. Just as the kernel Ui represents a
functor ιi∗p

∗
i pi∗ι

!
i arising naturally from the diagram (19), the diagram

Mij

ιij

↪→ K
↓pij

T ∗Flij

induces the functor ιij∗p
∗
ijpij∗ι

!
ij on Db(K). By much the same working as in Propo-

sition 4.3 this can be shown to be represented by the kernel

Uij
def= OMij×T∗F lij

Mij
(ωFl/F lij

, 0)[−3] ∈ Db(K ×K).

Proposition 4.10. There is an isomorphism Ui ? Uj ? Ui ∼= Ui[−2]⊕ Uij, such that

the composition of Ui ? Uj ? Ui
evj−→ Ui ? Ui and the map Ui ? Ui

b→ Ui[−2] of Propo-
sition 4.5 acts as the identity on Ui[−2].

Proof. By (54) and (25), in the notation above Ui ? Uj ? Ui is

π13∗
(
ONi×Ki

Ni×K(Ni, 0, 0)[−1]⊗OK×(Nj×Kj
Nij×Ki

Ni)(0, D)[−2]
)
.

Both supports have codimension dimK in K ×K ×K. Their intersection

Ni ×Ki Nij ×Kj Nij ×Ki Ni ⊂ K ×K ×K, (56)
(a, b, d, c) 7→ (a, b, c),

has b = d except over the exceptional locus Mij ×Kj Mij ⊂ Nij ×Kj Nij where the
projections qi : Nij → Ki and qj : Nij → Kj are not isomorphisms. Therefore (56)
is the union A ∪B of two irreducible components; the first where b = d,

A = Ni ×Ki Nij ×Ki Ni,

the second the closure of the locus where b 6= d,

B = Mij ×Kij Mij ×Kji Mij ×Kij Mij . (57)

These both have codimension 2 dimK, so that the derived tensor product of the
structure sheaves is the structure sheaf of A ∪B, and

Ui ? Uj ? Ui ∼= π13∗
(OA∪B(Ni, 0, 0)(0, D)

)
[−3]. (58)

Set E def= A ∩B = Mij ×Kij Mij ×Kji Mij , a divisor in both A and B. We will show
that the inclusion of the natural subsheaf OA(−E)⊕OB(−E) ↪→ OA∪B induces an
isomorphism

π13∗
(OA(Ni, 0, 0)(0, D)(−E)

) ⊕ π13∗
(OB(Ni, 0, 0)(0, D)(−E)

)
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'−→ π13∗
(OA∪B(Ni, 0, 0)(0, D)

)
. (59)

It is therefore sufficient to show that

π13∗
(OA(Ni, 0, 0)(0, D)(−E)

) → π13∗
(OA(Ni, 0, 0)(0, D)

)
(60)

and

π13∗
(OB(Ni, 0, 0)(0, D)(−E)

) → π13∗
(OB(Ni, 0, 0)(0, D)

)
(61)

are isomorphisms.

On restriction to A, π13 projects out the b-variable to Ni ×Ki
Ni. As such it is

the pullback via Ni ×Ki Ni → Ki of the map qi : Nij → Ki (i.e. the basechange of
qi from Ki to Ni ×Ki

Ni).
By Lemma 4.8 qi is the blow-up of Ki in Kij of codimension two, so ωqi

is the
exceptional divisor ONij (Mij). Pulling back to A we get OA(E), where E is the
exceptional divisor of π13|A; i.e. E = Mij ×Kij

Mij ×Kij
Mij = A ∩B.

Since ωKi
∼= OKi

, this relative canonical bundle is also ωNij
, which by adjunction

is O(Ni +Nj)|Nij , i.e. O(0, N1 +Nj , 0) on pullback to A. But since b = d on A we
also have O(0, D)|A = O(0, Ni +Nj , 0) from its definition (54). The upshot is that

ONij (Mij) ∼= O(Ni +Nj)|Nij and OA(0, D) = OA(E). (62)

It follows that (60) is π13∗
(OA(Ni, 0, 0)

) → π13∗
(OA(Ni, 0, 0)(E)

)
. Since E

is exceptional this is an isomorphism ONi×Ki
Ni(Ni, 0) '−→ ONi×Ki

Ni(Ni, 0) as
required.

Something similar happens for B. The map π|B projects B to Mij ×T∗Flij Mij ⊂
K ×K, contracting only the exceptional divisor E = A ∩B. It is the basechange
via Mij ×T∗Flij Mij → Kij ×T∗Flij Kij of

Mij ×Kji Mij → Kij ×T∗Flij Kij ,

which by Lemma 4.9 is the blow-up of Kij ×T∗Flij Kij in the diagonal Kij .
Since this diagonal has codimension two, O(E) is the relative canonical bundle,
which by computation is (ω−1

Fli/F lij
, Nj , Ni, 0) (written in terms of the four factors

of B (57)).
Therefore the line bundle O(Ni, 0, 0)(0, D)|B = OB(Ni, Nj , Ni, 0) is isomorphic

to (ωFli/F lij
(Ni), 0, 0, 0)(E) = (ωFl/F lij

, 0, 0, 0)(E). Thus (61) is

π13∗
(OB(ωFl/F lij

, 0, 0, 0)
) → π13∗

(OB(ωFl/F lij
, 0, 0, 0)(E)

)
,

which is an isomorphism with both equal toOMij×T∗F lij
Mij (ωFl/F lij

, 0) since E ⊂ B

is exceptional.

So now (59) follows from (60) and (61), and (58) has become

Ui ? Uj ? Ui ∼= ONi×Ki
Ni(Ni, 0)[−3] ⊕ OMij×T∗F lij

Mij (ωFl/F lij
, 0)[−3].

But this is Ui[−2]⊕ Uij , as claimed.
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Finally we describe the map id ? evj ? id. By (55) we consider (the shift by [−2]
of) the connecting homomorphism of the exact sequence

0 → OK×Ni×Ki
Ni

(0, Ni, 0) → O(K×Ni×Ki
Ni)∪K×Nij×Ki

Ni
(K×Nj×Kj

Nij×Ki
Ni)(0, D)

→ OK×Nj×Kj
Nij×Ki

Ni
(0, D) → 0.

We must take the derived tensor product with ONi×Ki
Ni

(Ni, 0, 0)[−1] and then
apply π13∗. This derived tensor product has Tor0 and Tor1 terms, as shown above;
the Tor0 terms (i.e. the ordinary tensor product) sit inside the exact sequence

0 → ONi×Ki
Ni×Ki

Ni(Ni, Ni, 0) → O(Ni×Ki
Ni×Ki

Ni)∪B(Ni, 0, 0)(0, D) (63)

→ OA∪B(Ni, 0, 0)(0, D) → 0, (64)

in the above notation. Only the last term arises from a transverse intersection; i.e.
the last term is the full derived tensor product.

Now by mapping the complexes representing the full tensor products to this
exact sequence of Tor0 s, a simple argument valid in any derived category shows
the following. The connecting homomorphism of the above exact sequence is the
same as the connecting homomorphism in the exact triangle of full tensor products,
composed with the projection from the full tensor product on the left-hand side to
its Tor0 term. But the map b of Proposition 4.5 is precisely (π13∗ of) this projection
from π∗12Ui ⊗ π∗23Ui to Tor0(π∗12Ui, π

∗
23Ui).

So we take π13∗ of the exact sequence (63). We showed above that the
inclusion of Ui[−2] into Ui ? Uj ? Ui ∼= Ui[−2]⊕ Uij is induced by the inclusion of
OA(Ni, 0, 0)(0, D)(−E) ∼= OA(Ni, 0, 0) (by (62)) into OA∪B(Ni, 0, 0)(0, D), whose
fiber product with (63) gives the exact sequence

0 → ONi×Ki
Ni×Ki

Ni(Ni, Ni, 0) → IE⊂Ni×Ki
Ni×Ki

Ni(Ni, 0, 0)(0, D)

→ OA(Ni, 0, 0) → 0.

Taking π13∗ of this sequence gives an isomorphism

R0π13∗OA(Ni, 0, 0) ∼= R1π13∗ONi×Ki
Ni×Ki

Ni(Ni, Ni, 0),

which by the above working is the morphism b ◦ (id ? evj ? id)|Ui[−2] : Ui[−2] ∼−→
Ui[−2] after shifting by [−2].

Remark. One can show that the previous result is equivalent to the following fact
about Mukai flops. (We restrict attention to the n = 3 case for sake of exposition; in
higher dimensions we just get a family version of this case.) We let N12 be the total
space of the O(−1,−1)-bundle over Fl(C3). This has maps q1, q2 to T ∗(P2)∗, T ∗P2

which are both the blow-up of their image in the zero section. Then on Db(T ∗P2),
q2∗ωq∗1q1∗q

∗
2 = id ⊕H∗(ι∗P2( · )(−1)

)⊗ ιP2∗OP2(−2), where ω is the canonical bun-
dle of N12 (and therefore of the qi). This gives a perhaps more conceptual reason
why q1∗q∗2 : Db(T ∗P2) → Db(T ∗(P2)∗) is not an equivalence [Kw, Nm]; if it were
its adjoint q2∗ωq∗1 would be its inverse.
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Proposition 4.11. The compositions

Ui ? Uj ? Ui id ? id ? evi

--[[[[[[[[[[[[[[[

Uij

22eeeeeeeeee
,,YYYYYYYYYY Ui ? Uj

Uj ? Ui ? Uj evj ? id ? id

11ccccccccccccccc

are the same map, which we call τij.

Proof. The key to this result is that there is a canonical morphism τij in

Hom0(Uij , Ui ? Uj) = Ext1
(OMij×T∗F lij

Mij
(ωFl/F lij

, 0),ONj×Kj
Nij×Ki

Ni
(D)

)
.

Letting P and Q denote Nj ×Kj
Nij ×Ki

Ni and Mij ×T∗Flij
Mij respectively, it is

the connecting homomorphism of the standard exact sequence

0 → OP (D) → OP∪Q(2Ni + 2Nj , 0) → OQ(ωFl/F lij
, 0) → 0. (65)

Here we are using a number of easily checked facts. Firstly, on P , O(D) (54) is
isomorphic to O(ωFl/F lij

,−Ni −Nj , 0) (written with respect to the three factors of
Nj ×Kj Nij ×Ki Ni). This can be proved by expanding everything in terms of the
Li using (20) and ωFl/F lij

∼= L−2
i L−2

j Li−1Lj+1 = O(2Ni + 2Nj), and then moving
Lk 6=j across the first fiber product using the fact that such line bundles are pulled
back from Kj .

Secondly, P ∩Q = Mij ×Kij Mij ×Kji Mij is a divisor in both P and Q, and as a
divisor in Q it defines the line bundle OQ(0, Ni +Nj , 0). This is because P ∩Q ⊂ Q
is the pullback of Mij ⊂ Nij under Nj ×Kj Nij ×Ki Ni → Nij , and ONij (Mij) is
O(Ni +Nj)|Nij (62).

By symmetry, both maps of Proposition 4.11 must be the same multiple of this
canonical morphism τij , but for completeness we check that this multiple is 1.

Using the description (31) of Ui → O∆ as the connecting homomorphism of the
exact sequence

0 → O∆ → O∆∪ (Ni×Ki
Ni)(Ni, 0) → ONi×Ki

Ni(Ni, 0) → 0,

we pull back by π∗12 to K ×K ×K, tensor with π∗23(Ui ? Uj) and pushdown by
π13∗ to give id ? id ? evi : Ui ? Uj ? Ui → Ui ? Uj . The proof of Proposition 4.10 com-
putes this tensor product and pushdown in detail so we follow our morphism (31)
through that proof. We see that id ? id ? evi is represented by π13∗ of the connecting
homomorphism (shifted by [−3]) of the exact sequence

0 → O∆Nj
×Kj

Nij×Ki
Ni(0, Nj , Ni, 0)

→ O(∆Nj
×Kj

Nij×Ki
Ni)∪ (A∪B)(Ni, Nj , Ni, 0) → OA∪B(Ni, Nj , Ni, 0) → 0,

in the notation of the proof of Proposition 4.10.
Uij → Ui ? Uj ? Ui is induced by the inclusion of OB(Ni, Nj , Ni, 0)(−E) into the

last sheaf in the above exact sequence. Therefore we pull back the exact sequence
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by this map to give

0 → O∆Nj
×Kj

Nij×Ki
Ni(0, Nj , Ni, 0)

→ O(∆Nj
×Kj

Nij×Ki
Ni)∪B(Ni, Nj , Ni, 0)(L) → OB(Ni, Nj , Ni, 0)(L) → 0,

whose connecting homomorphism gives (after applying π13∗[−3]) the composition
Uij → Ui ? Uj ? Ui → Ui ? Uj we require. Here

L = O(∆Nj
×Kj

Nij×Ki
Ni)∪B(0, L−1

j Lj+1, L
−1
j Li, 0)

is the line bundle defined by minus the divisor given by the intersection of A with
∆Nj ×Kj Nij ×Ki Ni.

Pushing down as in the proof of Proposition 4.10 gives the exact sequence (65),
so the composition we require is its connecting homomorphism – our canonical
morphism τij .

By symmetry the same is true of the other morphism.

Theorem 4.12. There is an isomorphism Ui ? Tj ? Ti ∼= Tj ? Ti ? Uj which inter-
twines the evaluation maps evi ? id ? id and id ? id ? evj from the two kernels to
Tj ? Ti.

Taking cones on these two maps, Ti ? Tj ? Ti ∼= Ti ? Tj ? Ti for |i− j| = 1.

Proof. Expanding out Ui ? Tj ? Ti gives the cone on

Ui ? Uj ? Ui
id ? id ? evi //

id ? evj ? id

²²

Ui ? Uj

id ? evj

²²
Ui ? Ui

id ? evi

// Ui.

(66)

If we use id ? evi to split Ui ? Ui as in Proposition 4.5, then by Propositions 4.10,
4.11 and 4.5 we get

Uij ⊕ Ui[−2]
τij ⊕u1 //

id ? evj ? id

²²

Ui ? Uj

id ? evj

²²
Ui ⊕ Ui[−2]

id⊕ 0
// Ui.

(67)

where the exact form of u1 will not concern us.
We map

Cone
(
Uij

τij−→ Ui ? Uj
)

(68)

into the cone on (67) as follows. Uij maps to the first term of (67) as the first
summand. Ui ? Uj maps to the top right term via the identity and to the bottom
left term by id ? evj ⊕ 0. To check this is really a morphism in Db(K ×K) we need
only check that the first vertical arrow of (67) acts on Uij as (id ? evj) ◦ τij ⊕ 0. But
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the first factor of this map is determined by the commutativity of (66), while for
the second we note that

Hom0(Uij , Ui[−2]) ∼= Hom0
(
OMij×T∗F lij

Mij (ωFl/F lij
, 0),ONi×Ki

Ni(Ni, 0)
)

vanishes, since there are no morphisms OA → OB unless there is an irreducible
component of B contained in A.

This morphism is a quasi-isomorphism, since by the second part of Proposition
4.10 what remains is

Ui[−2]

u2⊕id

²²
Ui ⊕ Ui[−2]

id⊕ 0
// Ui,

for some u2, by Proposition 4.10. But this is quasi-isomorphic to zero.

So by symmetry there is a similar quasi-isomorphism from Cone
(
Uij

τij−→ Ui ? Uj
)

to Tj ? Ti ? Uj , making the latter isomorphic to Ui ? Tj ? Ti.
Composing evi ? id ? id : Ui ? Tj ? Ti → Tj ? Ti with the quasi-isomorphism from

(68) gives the morphism of cones

Uij
τij //

τji

99K
M

P
S V Y \ _ b e h k n

q
s

Ui ? Uj
id ? evj

))TTTTTTTTTTT

evi ? id

&&
n

k i f d a _ ] Z X U S P
N

Uj ? Ui
id ? evi //

evj ? id

²²

Uj

evj

²²
Ui evi

// id .

But by similar working this is exactly the morphism of cones that comes from
composing id ? id ? evj : Tj ? Ti ? Uj → Tj ? Ti with the quasi-isomorphism from

Cone
(
Uij

τij−→ Ui ? Uj
)

to Tj ? Ti ? Uj .

Remark. We note in passing that the faithfulness results of [KS, ST] can be used
to show that our braid group action on Db(T ∗Fl) is faithful. The transverse slice
to a subregular nilpotent matrix gives a surface X in K = T ∗Fl with an An chain
of −2-spheres Ci. The Ci are the transverse intersection of the subvarieties Ni with
the surface. It follows that the Fourier-Mukai kernels (29, 32) for Ui and Ti restrict,
on X ×X ⊂ K ×K, to the standard kernels for the Dehn twists [ST] about the
structure sheaves OCi of the Ci—see (77, 78) where these are reviewed.

Therefore the two types of derived category twist, and the braid group actions
they generate, are intertwined by restriction from K to X; i.e. the following diagram
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commutes.

Db(K)
Ti //

²²

Db(K)

²²
Db(X)

Ti // Db(X).

Thus the faithfulness of the lower action implies the same of the upper action.

4.5. Extension to the affine braid group
As noted in [ST, Example 3.9], the braid group action of that paper on the

derived category of coherent sheaves on a surface with an An−1-chain of −2-curves
Ci can be extended to an action of the affine braid group. If we take generators of
the braid group to be Ti

def= TOCi
, the Dehn twists about the structure sheaves OCi

described in Section 5.1, then we define the extra generator

T = T0 = Tn
def= TOE(1,...,1). (69)

This is the Dehn twist about OE(1, . . . , 1), the structure sheaf of the entire chain
E = ∪iCi twisted by the line bundle on E which has degree 1 on each Ci. This
commutes with Ti for 2 6 i 6 n− 2 and braids with T1 and Tn−1, so defines an
affine braid group action.

Now it is an easy calculation that TOCi

(OCi+1∪...∪Cn−1(0, 1, . . . , 1)
)

is isomorphic
to OCi∪...∪Cn−1(0, 1, . . . , 1). Thus, by induction,

L1T1T2 . . . Tn−2(OCn−1) ∼= OE(1, 1 . . . , 1),

where L1 is the functor of tensoring with a line bundle L1 whose restriction to E is
OE(1, 0, . . . , 0) (for the purposes of this motivational section we may assume that
OE(1, 0, . . . , 0) extends to a line bundle L1 on the surface).

Thus, by [ST, Lemma 2.11], the twist T = TOE(1,...,1) can be written as

T = ad(L1T1 . . . Tn−2)TOCn−1
= (L1T1 . . . Tn−2)Tn−1(T ′n−2 . . . T

′
1L−1

1 ). (70)

Returning to the cotangent bundle of the flag variety, the definition (69) does
not easily generalise to our situation, but (70) certainly does.

Define the kernel T = T0 = Tn ∈ Db(K ×K) to be
(
(T1 ? T2 ? . . . ? Tn−2) ? Tn−1 ? (T ′n−2 ? . . . ? T

′
2 ? T

′
1)

)
(L−1

1 , L1). (71)

From now on we will often suppress the ?s in similar long formulae. We also
introduce the notation that if L is a line bundle on K then L def= O∆ ⊗ π∗1L =
O∆ ⊗ π∗2L is the kernel for L⊗ ( · ). That is, L is the line bundle L supported on
the diagonal of K ×K, and we have S ? L = S(L, 0), L ? S = S(0, L) for any kernel
S. Thus (71) can be rewritten

T = (L1T1T2 . . . Tn−2)Tn−1(T ′n−2 . . . T
′
2T

′
1L−1

1 ). (72)

For i 6= j, Li is pulled back from Kj , so the line bundles (Li, 0) and (0, Li) are iso-
morphic on restriction to ∆ ∪ (Nj ×Kj Nj). Thus Tj(0, Li) = Tj(Li, 0), i.e.
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Li ? Tj = Tj ? Li for i 6= j. Using this and the braiding we have already proved,
we automatically get the following.

Proposition 4.13. For 2 6 i 6 n− 2, we have T ? Ti ∼= Ti ? T .

Proof. As explained above we can commute Ti past L−1
1 in (72), and then past

T ′j , j < i− 1 using Propositions 4.7 and 4.6. This gives

T ? Ti ∼= (L1T1T2 . . . Tn−2)Tn−1(T ′n−2 . . . T
′
iT

′
i−1)Ti(T

′
i−2 . . . T

′
2T

′
1L−1

1 ).

But Ti and Ti−1 braid, so that T ′iT
′
i−1Ti

∼= Ti−1T
′
iT

′
i−1, and then this new Ti−1

commutes past T ′j and Tj for j > i, yielding

(L1T1 . . . Ti−1Ti)Ti−1(Ti+1 . . . Tn−2)Tn−1(T ′n−2 . . . T
′
iT

′
i−1T

′
i−2 . . . T

′
1L−1

1 ).

So using Ti−1TiTi−1
∼= TiTi−1Ti we get

(L1T1 . . . Ti−2TiTi−1TiTi+1 . . . Tn−2)Tn−1(T ′n−2 . . . T
′
1L−1

1 ).

Commuting Ti past L1T1 . . . Ti−2 gives Ti ? T , as required.

Similarly the next braid relation is also a pure algebraic formality now that we
know that Tn−1 commutes with L1:

Proposition 4.14. T ? Tn−1 ? T ∼= Tn−1 ? T ? Tn−1.

Proof. T ? Tn−1 ? T is

(L1T1 . . . Tn−2)Tn−1(T ′n−2 . . . T
′
1L−1

1 )Tn−1(L1T1 . . . Tn−2)Tn−1(T ′n−2 . . . T
′
1L−1

1 ).

We commute the middle Tn−1 past T ′n−3 . . . T
′
1L−1

1 to give

(L1T1 . . . Tn−2)Tn−1T
′
n−2Tn−1Tn−2Tn−1(T ′n−2 . . . T

′
1L−1

1 ).

Because Tn−2 and Tn−1 braid, T ′n−2Tn−1Tn−2Tn−1T
′
n−2

∼= Tn−1, leaving

(L1T1 . . . Tn−2)Tn−1Tn−1(T ′n−3 . . . T
′
1L−1

1 ). (73)

Similarly, Tn−1 ? T ? Tn−1 is

(L1T1 . . . Tn−3)Tn−1Tn−2Tn−1T
′
n−2Tn−1(T ′n−3 . . . T

′
1L−1

1 ),

which by the braiding of Tn−2 and Tn−1 is

(L1T1 . . . Tn−3)Tn−2Tn−1Tn−1(T ′n−3 . . . T
′
1L−1

1 ).

But this is (73).

The final braid relation is not quite such a formality, but also requires the obser-
vation from (32, 40) that T ′i ∼= Ti(LiL−1

i−1, LiL
−1
i+1), i.e.

T ′i ∼= Li ? L−1
i+1 ? Ti ? Li ? L−1

i−1. (74)

Proposition 4.15. T ? T1 ? T ∼= T1 ? T ? T1.
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Proof. By the same reasoning as in Proposition 4.14, T1 braids with

S
def= (Ln−1Tn−1 . . . T2)T1(T ′2 . . . T

′
n−1L−1

n−1),

i.e. T1 ? S ? T1
∼= S ? T1 ? S. But we know that T1 commutes with L2, so the above

also equals

S = (Ln−1Tn−1 . . . T2L2)T1(L−1
2 T ′2 . . . T

′
n−1L−1

n−1). (75)

We can rewrite T (71) as

T = (L1T
′
n−1 . . . T

′
2)T1(T2 . . . Tn−1L−1

1 ),

by using the braid relations first for Tn−1 and Tn−2, then Tn−2 and Tn−3 on the
result, all the way down to T2 and T1. Commuting L1 with Ti for all i > 2, this can
be rewritten

T = (T ′n−1 . . . T
′
2L1)T1(L−1

1 T2 . . . Tn−1). (76)

But by (74), T ′n−1 . . . T
′
2L1 = Ln−1L−1

n Tn−1Tn−2 . . . T2L2 and Ln is trivial, so we
can rewrite (76) as (75). Thus T = S, which braids with T1.

5. Actions of the braid cobordism category on derived cate-
gories of coherent sheaves

We now extend the braid group actions of [ST] (on surfaces X with An-chains of
−2-spheres Ci) and Section 4 (on T ∗Fl) to actions of the braid cobordism category.
The latter case proceeds along similar lines to the former, which we tackle now.

We are guided by the action of the braid cobordism category on the homotopy
category C(An) of Section 2. Using the formality result of [KS] it is shown in [ST]
that the differential graded algebra RHom(⊕iOCi ,⊕iOCi) is quasi-isomorphic to
An ⊗ C, so that its derived category of differential graded modules is equivalent
is that of An ⊗ C. Under this equivalence, OCi is mapped to Pi, the twists Ti, T ′i
reviewed below (77, 78) map to Ri, R′i, and evi, ev′i become βi, γi.

So the work in the next section is to lift the positive (10, 11) and negative (12,
13) braid moves on C(An) to Db(X). This is done in (105) and (106) respectively.
The positive moves are fairly easy, the negative moves require some technical work,
in particular Proposition 5.5.

5.1. Surfaces with chains of rational curves
Let X be a smooth quasi-projective surface with an An-chain of −2-spheres Ci:

the exceptional set of the minimal resolution of an An surface singularity. Then ωX
is trivial in a neighbourhood of E = ∪iCi; for simplicity we will assume that ωX
is globally trivial and ix a trivialisation θ ∈ H0(ωX) (with a little more work what
follows can be pushed through using a trivialisation defined only on some Zariski
open subset U ⊃ E of X).

A (weak) braid group action is constructed on the bounded derived category of
coherent sheaves Db(X) on X in [ST], with generators Ti fitting into distinguished
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triangles

Ui(F) def= OCi ⊗ RHom(OCi ,F) evi−→ F → Ti(F), (77)

and inverses T ′i

T ′i (F) → F ev′i−→ OCi
⊗ RHom(OCi

,F)[2] = Ui(F)[2]. (78)

Using very similar (but easier) methods to those in Section 4.2 one shows that these
are represented by the Fourier-Mukai kernels Ui

def= O∨Ci
£OCi

∼= OCi×Ci
(Ci, 0)[−1],

Ti
def= O∆∪(Ci×Ci)(Ci, 0) and T ′i

def= O∆∪(Ci×Ci)(Li)

on X ×X (cf. (32) and (40)). Here Li is O∆ glued across ∆Ci to

OCi×Ci(Ci, 0)(−∆Ci),

using the fact that the latter restricts on ∆Ci to Ω1
Ci

(Ci) which is isomorphic to
O∆Ci

using adjunction and the trivialisation θ of ωX |Ci
.

The exact triangles (77) and (78) then arise from the exact sequences of Fourier-
Mukai kernels

0 → O∆ → O∆∪(Ci×Ci)(Ci, 0) r→ OCi×Ci(Ci, 0) → 0 (79)

and
0 → OCi×Ci(Ci, 0) i→ O∆∪(Ci×Ci)(Li) → O∆ → 0. (80)

Taking the Yoneda product of these two extensions gives the connecting morphism
evi ◦ ev′i : O∆ → O∆[2] in the exact triangle

O∆[1] → Cone
(
O∆∪(Ci×Ci)(Ci, 0) i◦r−→ O∆∪(Ci×Ci)(Li)

)
→ O∆ (81)

which arises from the exact sequence given by splicing (79) and (80) together:

0 → O∆ → O∆∪(Ci×Ci)(Ci, 0) i◦r−→ O∆∪(Ci×Ci)(Li) → O∆ → 0.

The sheaf OCi×Ci(Ci, 0)(−∆Ci) naturally injects into both terms of the Cone in
(81); take cokernels to give the following.

Lemma 5.1. The natural transformation evi ◦ ev′i : id → id[2] is represented by the
morphism evi ◦ ev′i : O∆ → O∆[2] in the exact triangle

O∆[1] → Cone
(
O∆(∆Ci)

i◦r−→ O∆∪ 2∆Ci

)
→ O∆ → O∆[2],

where 2∆Ci denotes the thickening of ∆Ci in Ci × Ci only; i.e. the pushforward to
X ×X of the subscheme of Ci × Ci defined by the ideal sheaf I 2

∆Ci
. ¤

It is a result of Gerstenhaber and Schack [K] that there is a canonical isomor-
phism

Exti+j(O∆,O∆) ∼=
⊕

i+j=k

Hi(Extj(O∆,O∆)) ∼=
⊕

i+j=k

Hi(ΛjT∆).

In our situation, fixing i+ j = 2 and contracting with the trivialisation θ of ωX
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gives
Ext2(O∆,O∆) ∼= H0(Ω2

X)⊕H1(Ω1
X)⊕H2(OX). (82)

Later it will be important that here we have fixed an identification of TX with the
normal bundle to ∆; our convention is that in the splitting TX×X |∆ ∼= TX ⊕ TX
induced by the two factors, TX maps to the normal bundle as the image of

TX 3 v 7→ (v,−v) ∈ TX ⊕ TX . (83)

As a divisor, Ci ⊂ X defines a de Rham class [Ci] ∈ H1(Ω1
X) in the follow-

ing way (which gives the usual cohomology class [Ci] ∈ H1,1(X) if X is com-
pact). Think of H1(Ω1

X) as Ext1(OX ,Ω1
X), which has a map from Ext1(OCi

,Ω1
X)

= H0(Ext1(OCi ,Ω
1
X)) = H0(Ω1

X(Ci)) = Hom(TX , νCi
). The canonical element of

the latter (projection of a tangent vector to the normal bundle) defines the extension

0 → Ω1
X → Ω1

X(logCi) → OCi
→ 0,

where the last map takes the residue of logarithmic forms on Ci. The map
OX → OCi pulls this back to the extension

0 → Ω1
X → Ω1

X(logCi)×OCi
OX → OX → 0, (84)

whose extension class is [Ci] ∈ H1(Ω1
X).

Proposition 5.2. The class of evi ◦ ev′i ∈ Ext2(O∆,O∆) of Lemma 5.1 can be
described, via the isomorphism (82), as the de Rham class

[Ci] ∈ H1(Ω1
X) ⊂ Ext2(O∆,O∆).

Proof. Dualising (84) shows that [Ci] ∈ H1(Ω1
X) = Ext1(TX ,OX) defines the exten-

sion
0 → OX → F → TX → 0, (85)

where F is the dual of
{
(σ, f) ∈ Ω1

X(logCi)⊕OX : ResCiσ = f |Ci ∈ OCi

}
= Ω1

X(logCi)×OCi
OX .

Thus it is easy to see that F is
{
(v, s) ∈ TX ⊕O(Ci) : π(v) = s|Ci

}
= TX ×νCi

O(Ci), (86)

where π : TX → νCi
is the canonical projection to OCi(Ci). It therefore also sits

inside the exact sequence

0 → TX(− logCi) → F → O(Ci) → 0, (87)

where TX(− logCi)
def= ker(TX

π→ νCi
) is the dual of Ω1

X(logCi).
Meanwhile Ext1X×X(O∆,O∆) ∼= Ω1

∆ is represented by the universal extension

0 → Ω1
∆ → O2∆ → O∆ → 0, (88)

which contraction with θ ∈ H0(ωX) makes into

0 → T∆ → O2∆ → O∆ → 0. (89)

Therefore [Ci] ∈ H1(Ext1(O∆,O∆)) ⊂ Ext2(O∆,O∆) is represented by the splicing
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together of the exact sequences (89) and (the pushforward to ∆ of) (85):

0 → O∆ → F → O2∆ → O∆ → 0. (90)

Now TX(− logCi) injects into F (87) and under θ it injects into Ω1
X as

Ω1
X(logCi)(−Ci), with quotient Ω1

Ci
. Therefore it injects into O2∆ with quotient

O∆∪ 2∆Ci
, with Ci thickened only inside Ci × Ci as described in Lemma 5.1. So

taking the quotient of the central two terms of (90) by TX(− logCi) gives, by (87),
the exact sequence

0 → O∆ → O∆(∆Ci
) → O∆∪ 2∆Ci

→ O∆ → 0.

But this is exactly what represents evi ◦ ev′i, by Lemma 5.1.

So an element of H1(Ω1
X) ⊂ Ext2(O∆,O∆) = Hom0(O∆,O∆[2]) induces, by the

Fourier-Mukai transform, a morphism F → F [2] for any F ∈ Db(X). In particular,
for every proper curve D ⊂ X we induce an element of Ext2(OD,OD) = H1(Ω1

D),
which is described as one might expect.

Lemma 5.3. The diagram

H1(Ω1
X) Â Ä //

²²

Ext2(O∆,O∆)

²²
H1(Ω1

D) Ext2(OD,OD)

commutes, where the vertical arrows are restriction to D and the Fourier-Mukai
action, respectively.

Proof. Working through the Fourier-Mukai transform this is basically the statement
that the induced map on normal bundles ν∆ → νD×X (on the intersection ∆D)
gives, after contraction with θ, the restriction map Ω1

X → Ω1
D on cotangent bundles.

More explicitly, recall (90) that a class σ ∈ H1(Ω1
X) gives rise to an extension 0 →

OX → Fσ → TX → 0 (85) which can be spliced together with 0 → Ω1
∆ → O2∆ →

O∆ → 0 (89) by pushing the former forward under the diagonal map, and identifying
TX with Ω1

∆ using θ. This gives [σ] ∈ Ext2(O∆,O∆).
Applying this as a Fourier-Mukai transform to OD means taking the derived

tensor product of it with OD×X and pushing down to the second X factor. Since
D ×X is transverse to ∆ we take the usual tensor product, yielding the splicing
together of the exact sequences

0 → OD → Fσ|D → TX |D → 0 (91)

(pushed forward by ∆D ⊂ X ×X), and

0 → Ω1
∆|D → O2∆D⊂D×X → O∆D

→ 0. (92)

The central sheaf above denotes the (pushforward to X ×X of the) thickening of
∆D inside D ×X.
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Now in the first of the above exact sequences (91), taking the kernel of the
surjections of the last two terms to νD gives

0 → OD → Fσ|D → TD → 0, (93)

where Fσ|D is the sheaf on D given by the extension

σ|D ∈ H1(Ω1
D) = Ext1(TD,OD).

In the second (92), this surjection corresponds, under θ, to Ω1
∆|D → Ω1

∆D
. This

does not lift to a map from the second term of (92) to Ω1
∆D

, but it does once we
pushdown to the second X factor. That is, the pushdown of (92) to X gives

0 → Ω1
X |D → J1

X(OD) → OD → 0, (94)

where J1
X(OD) is the first jet space on X of OD (which is, by definition, the Fourier-

Mukai transform of OD by O2∆). J1
X(OD) surjects onto (the pushforward to X of)

J1
D(OD) (since 2∆ surjects onto the pushforward to X ×X of 2∆D ⊂ D ×D) and

the latter splits as OD ⊕ Ω1
D since the Atiyah class on D of OD vanishes – the

trivial line bundle on D clearly admits a holomorphic connection. The resulting
map J1

X(OD) → Ω1
D induces via (94) the standard surjection Ω1

X |D → Ω1
D, and

taking the kernels of these surjections to Ω1
D turns (94) into

0 → ν∗D → O2D → OD → 0. (95)

Thus the pushdowns of (91) and (92) both have commuting surjections to Ω1
D
∼= νD,

so their spliced representative of Ext2(OD,OD) has a map to the trivial complex
{Ω1

D
id→ Ω1

D}; taking kernels shows that it is quasi-isomorphic to the splicing of (93)
and (95) via the isomorphism θ : TD ∼= ν∗D. But this is precisely the sequence

0 → OD → Fσ|D → O2D → OD → 0

defining [σ|D] ∈ H1(Ω1
D) = Ext2(OD,OD).

So everything is governed by intersection numbers. Let

Cij
def= Ci.Cj =




−2 i = j,
1 |i− j| = 1,
0 |i− j| > 1,

(96)

be the (n× n) intersection matrix of the An-chain of curves Ci, with inverse Dij .
In fact one can calculate that

Dij =
−1
n+ 1

min(i, j)
(
n−max(i, j) + 1

)
. (97)

Thus the classes Di
def=

∑n
i=1Dij [Cj ] ∈ H1(Ω1

X) are the dual basis to the Ci for the
span of the Ci in H1(Ω1

X) under the intersection pairing (96): Di.Cj = δij .
We are finally ready to define the extra natural transformations id → id[2] that

we need to extend the braid group action to a representation of the braid cobordism
category.
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Definition 5.4. Let

Xi : O∆ → O∆[2] (98)

be defined by the above dual basis Di ∈ H1(Ω1
X) ⊂ Ext2(O∆,O∆). That is, Xi

=
∑n
i=1Dij [Cj ].

For any F ∈ Db(X) we also let Xi : F → F [2] denote the morphism induced by
(98) by Fourier-Mukai transform.

For a proper irreducible curve C ⊂ X let θC : OC → OC [2] denote the generator
corresponding to 1 in Ext2(OC ,OC) ∼= H1,1(C) ∼= C.

Proposition 5.5. The morphisms Xi : OCj → OCj [2] are 0 for i 6= j and θj for
j = i. There are isomorphisms

evi ◦ ev′i ∼= Xi−1 − 2Xi +Xi+1 : O∆ → O∆,

ev′i ◦ evi ∼= Xi £ id− id £Xi : Ui → Ui[2].

Remarks. Here we have set X0 = 0 = Xn+1, and id £Xi (for instance) maps
F £ G → F £ G[2] in Db(X ×X) by the identity on F and Xi on G. Since Ui =
OCi×Ci(Ci, 0)[−1] is of the form F £ G this explains the notation above.

Proof. The first statement follows directly from Lemma 5.3 and the definition of the
Di. Since [Ci] = Di−1 − 2Di +Di+1 ∈ H1(Ω1

X) by construction, the second state-
ment is just a rephrasing of Proposition 5.2.

So it remains to prove the last isomorphism. Splicing together (79) and (80) (in
the opposite order from before) gives the following exact sequence representing the
morphism ev′i ◦ evi : OCi×Ci(Ci, 0) → OCi×Ci(Ci, 0)[2]:

0 → OCi×Ci(Ci, 0)
→ O∆∪(Ci×Ci)(Li) → O∆∪(Ci×Ci)(Ci, 0) → OCi×Ci(Ci, 0) → 0.

O∆(−∆Ci) injects into the central two terms; taking their cokernels shows that
{ev′i ◦ evi : Ui → Ui[2]} is quasi-isomorphic to

{
OCi×Ci(Ci, 0)(∆Ci) → O2∆Ci

∪ (Ci×Ci)(Ci, 0)
}
. (99)

Here 2∆Ci is the thickening of ∆Ci inside Ci × Ci, and the central map above is
the restriction map to O∆Ci

(Ci, 0)(∆Ci) ∼= O∆Ci

∼= I∆Ci
⊂2∆Ci

(Ci, 0).

Now Ext2(OCi×Ci(Ci, 0),OCi×Ci(Ci, 0)) = Ext2(OCi×Ci ,OCi×Ci) is isomorphic
to H1(νCi×Ci

) ∼= H1(Ω1
Ci×Ci

) ∼= H1(Ω1
Ci

)⊕H1(Ω1
Ci

), with the penultimate isomor-
phism given by contraction with the two form θ1 + θ2, where θj is the pullback of θ
from the j-th factor of X ×X. Under this isomorphism it is clear that the classes
Di ⊕ 0 and 0⊕Di correspond to Xi £ id and id £Xi respectively.

These classes are, as usual, described the (pushforward from Ci × Ci to X ×X of
the) extension class 0 → OCi×Ci → F → TCi×Ci → 0 corresponding to an element
of H1(Ω1

Ci×Ci
), composed with the universal extension 0 → ν∗Ci×Ci

→ O2(Ci×Ci)

→ OCi×Ci → 0 by using θ1 + θ2 to identify TCi×Ci
∼= ν∗Ci×Ci

. That is, these classes
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OCi×Ci
→ OCi×Ci

[2] are quasi-isomorphic to

{F → O2(Ci×Ci)}. (100)

If the H1(Ω1
Ci×Ci

) class is the fundamental class [D] of an effective divisor D ⊂
Ci × Ci then we have seen that we can describe F as TCi×Ci

×νD
OCi×Ci

(D) (86).
Then we divide both terms in (100) by TCi×Ci(− logD) and tensor with O(Ci, 0) to
show that the morphism [D] : OCi×Ci

(Ci, 0) → OCi×Ci
(Ci, 0)[2] is quasi-isomorphic

to the complex

{OCi×Ci(D)(Ci, 0) → O(Ci×Ci)∪ 2D(Ci, 0)}, (101)

where 2D is the first order thickening of D in the directions perpendicular to TD
under θ1 + θ2 (which contain one more direction other than those of TCi×Ci

).
Picking D = ∆Ci ⊂ Ci × Ci we get ∆Ci thickened inside ∆ in (101), which is not

quite (99). But if we change the identification TCi×Ci
∼= ν∗Ci×Ci

by using θ1 − θ2
instead of θ1 + θ2, then we get D thickened in the directions perpendicular to TD
under θ1 − θ2 in (101). This now describes the Ext2 class corresponding not to
[D] ∈ H1(Ω1

Ci×Ci
) but to its image under the map multiplying its second component

in its Künneth decomposition by −1.
Applying this to D = ∆Ci , whose class in H1(Ω1

Ci×Ci
) has degree 1 on both

factors, proves that the Ext2 class described by the cohomology class (Di,−Di)
corresponds to the complex (101) with D = ∆Ci thickened inside Ci × Ci. But this
is precisely (99), so that (Xi £ id)− (id£Xi) ∼= ev′i ◦ evi.

Given a kernel K ∈ Db(X ×X) we denote by lXi : K → K[2] the following mor-
phism (giving rise to a natural transformation between the Fourier-Mukai functors
associated to K and K[2]):

K ∼= O∆ ? K
Xi?id // O∆[2] ? K ∼= K[2] . (102)

Similarly rXi : K → K[2] is

K ∼= K ?O∆
id ?Xi // K ?O∆[2] ∼= K[2] . (103)

It is clear that on O∆, lXi and rXi act as the same morphism. Given a linear
combination a =

∑
j ajXj of the Xi we also set

la
def=

∑

j

aj lXj and ra
def=

∑

j

ajrXj .

Then we have the following analogue of Proposition 3.4.

Proposition 5.6. The morphisms Ti → Ti[2] and T ′i → T ′i [2] given by

la − ra+ai(Xi−1−2Xi+Xi+1)

are both zero. For instance for i 6= j, lXj and rXj act as isomorphic morphisms on
Ti and as zero on Ui.
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Proof. We first claim that on Ui = OCi
(Ci)[−1] £OCi

, the functors lXi
and rXi

act as id £Xi and −Xi £ id respectively. For instance rXi acts as

Ui ?O∆
id ?Xi // Ui ?O∆[2] ,

which is, in the usual notation of Section 4.2 (cf. (25)),

π13∗
[
O∆×X ⊗OX×Ci×Ci(0, Ci, 0)[−1]

π∗12Xi ⊗ id // O∆×X ⊗OX×Ci×Ci(0, Ci, 0)[1]
]
,

which is

π13∗
[
O∆Ci

×Ci(0, Ci, 0)[−1] −→ O∆Ci
×Ci(0, Ci, 0)[1]

]
.

Here the arrow is pulled back from the first and second factors, so the result is of
the form

OCi×Ci(Ci, 0)[−1] Z£id // OCi×Ci(Ci, 0)[1] ,

where, by the above working, Z is

π1∗
[
O∆ ⊗OX×Ci(0, Ci)[−1]

Xi⊗id // O∆ ⊗OX×Ci(0, Ci)[1]
]
. (104)

This is where the sign comes in, as this is not Xi : OCi(Ci)[−1] → OCi(Ci)[1], the
latter being by definition the map of Fourier-Mukai transforms

ΦO∆(OCi(Ci)[−1])
ΦXi−→ ΦO∆[2](OCi(Ci)[−1]),

which is

π2∗
[
O∆ ⊗OCi×X(Ci, 0)[−1]

Xi⊗id // O∆ ⊗OCi×X(Ci, 0)[1]
]
.

Comparing with (104), the two differ just by swapping the two factors of X ×X,
which sends Xi to −Xi because it reverses the identification of the normal bundle
of ∆ with T∆ (83).

For lXi the working is the same but easier, without the swapping of the X ×X
factors.

Now la acts on Ti as

Cone
(
OCi×Ci(Ci, 0)[−1]

evi //

la

²²

O∆

)

la

²²

Cone
(
OCi×Ci(Ci, 0)[1]

evi // O∆[2]
)
,
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which, by the above and the first part of Proposition 5.5 is

Cone
(
OCi×Ci(Ci, 0)[−1]

evi //

ai id £Xi

²²

O∆

)

a=
P

j ajXj

²²

Cone
(
OCi×Ci

(Ci, 0)[1]
evi // O∆[2]

)
.

Now use the homotopy h which maps the top right corner to the bottom left by
ev′i, so that dh+ hd is ev′i ◦ evi on the left and evi ◦ ev′i on the right. Adding ai
times this to the given maps and using Proposition 5.5, we find that la : Ti → Ti is
homotopic to

Cone
(
OCi×Ci

(Ci, 0)[−1]
evi //

ai id £Xi+ai(Xi£id− id £Xi) = aiXi£id

²²

O∆

)

a+ai(Xi−1−2Xi+Xi+1)

²²

Cone
(
OCi×Ci(Ci, 0)[1]

evi // O∆[2]
)
.

Since the coefficient of Xi in a+ ai(Xi−1 − 2Xi +Xi+1) is −ai, this is

ra+ai(Xi−1−2Xi+Xi+1) : Ti → Ti.

The proof for T ′i is almost identical, using evi in the homotopy.

We define the morphisms (between Fourier-Mukai kernels, inducing natural trans-
formations between the corresponding functors) associated to positive and negative
braid moves as follows.

For a positive braid move we define the morphisms

O∆ → Ti and T ′i → O∆ (105)

by the first morphism of (79) and the second morphism of (80) respectively.
For the negative braid moves we write Ti = O∆∪(Ci×Ci)(Ci, 0) as the cone on

OCi×Ci(Ci, 0)[−1] evi−→ O∆ by (79), and then define δi : Ti → O∆[2] by

Cone
(
OCi×Ci(Ci, 0)[−1]

evi // O∆

)

Xi+1−Xi−1

²²
O∆[2].

(106)

To check this really defines a morphism in Db(X ×X) we need to know that

(Xi−1 −Xi+1) ◦ evi ∼= 0.

In fact we claim that

Hom0(OCi×Ci(Ci, 0)[−1],O∆[2]) = 0. (107)

To prove (107), note that Ci × Ci and ∆ intersect with excess dimension one and
excess normal bundle O∆Ci

(Ci). Therefore a standard Koszul resolution argument
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shows that the only nonzero Ext i is

Ext1(OCi×Ci(Ci, 0),O∆) ∼= O∆Ci
, (108)

generated by evi. So the local-to-global spectral sequence Hi(Extj) =⇒ Exti+j

shows that Ext3(OCi×Ci(Ci, 0),O∆) = 0.

Similarly, writing T ′i as the cone on O∆[−1]
ev′i−→ OCi×Ci(Ci, 0) by (80), then a

chase around the diagram proving that T ′i ? Ti ∼= O∆ (i.e. a proof of braid movie
move 12, which will be given below) shows that the corresponding morphism
δi : O∆[−2] → T ′i is

O∆[−3]

Xi+1−Xi−1
²²

Cone
(
O∆[−1]

ev′i // OCi×Ci(Ci, 0)
)
.

(109)

Theorem 5.7. The Ti, T
′
i and morphisms described above induce a projective

action of the braid cobordism category on Db(X).

Proof. The braid relations were already proved in [ST]. For the first 10 braid movie
moves of Section 3.1 we use the same trick as in the proof of Theorem 1.1 in
Section 3.2. They each describe two isomorphisms between the same two Fourier-
Mukai kernels (a combination of Tis and T ′js), and we would like to show that these
isomorphisms are projectively equivalent. Composing one with the inverse of the
other (via the operation ? of (25)), we get an isomorphism from one kernel to itself
which we are required to show is a scalar. But the kernel is invertible, so composing
with its inverse we get an isomorphism O∆ → O∆, i.e. an invertible element of
Hom0(O∆,O∆) ∼= H0(OX). This must be a nonzero scalar by the Nullstellensatz.

For the moves 11–15 with one positive branch point, we use the fact that
Hom0(T ′i ,O∆) ∼= C ∼= Hom0(O∆, Ti) with generators the second morphism of (80)
and the first morphism of (79), respectively. This is proved in much the same way as
one computes the other degree parts of (107) (or can be deduced from it). Namely
(108) shows that the morphisms from Ui to O∆ are one-dimensional, generated by
evi. A long exact sequence then gives the result we want.

By composing with invertible Fourier-Mukai kernels we find that the morphisms
from a kernel at the top of any of the movies 11–14 to the one at the bottom are
also one dimensional and generated by the morphism represented by the movie.
Therefore under a braid movie move this can only change by an invertible scalar.

Next we deal with move 11 with one negative branch point using the map δj
(109) by showing that, for instance, for |i− j| > 1 the composition

Ti ∼= Ti ?O∆
δj−→ Ti ? T

′
j [2] ∼= T ′j ? Ti[2] (110)

is the same as the composition

Ti ∼= O∆ ? Ti
δj−→ T ′j ? Ti[2]. (111)

However the first composition (110) is the map rj+1 − rj−1 of the cone Ui
evi−→ O∆
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into the top line of the cone

Ui[2]
evi //

ev′j
²²

O∆[2]

ev′j
²²

Ui ? Uj [4]
evi // Uj [4].

Since this map is zero on the Ui piece (by the last part of Proposition 5.6) and
equal to lj−1 − lj+1 on O∆, and since Ui ? Uj ∼= 0 ∼= Uj ? Ui for |i− j| > 1, we find
it is isomorphic to the map lj−1 − lj+1 of the cone Ui

evi−→ O∆ into the top line of
the cone

Ui[2]
evi //

ev′j
²²

O∆[2]

ev′j
²²

Uj ? Ui[4]
evi // Uj [4].

Reflecting this in its diagonal gives the second composition (111).
For move 12 with one negative branch point we recall the quasi-isomorphism

that makes Ti ? T ′i ∼= id. (This is given in [ST] using functors, but that proof can
be easily translated into Fourier-Mukai transforms, and takes the exact same form
as our proof in Proposition 4.6 since the Uis satisfy the same relations.) Namely
Ui ? Ui ∼= Ui[−2]⊕ Ui, and Ti ? T ′i is the total cone on

Ui
ev′i //

evi

²²

Ui ⊕ Ui[2]

evi

²²
O∆

ev′i // Ui[2]
⇐=

Ui[2]

O∆

ev′i // Ui[2]
=⇒

O∆

with the double arrows the obvious quasi-isomorphisms. Then move 12 says that

the morphism from the first square to the cone
(O∆[2]

ev′i−→ Ui[4]
)

given by zero
on the top row and rXi−1−Xi+1 applied to both terms on the bottom row should
be isomorphic to the morphism from the last square (i.e. just O∆) to the cone
(O∆[2]

ev′i−→ Ui[4]
)

given by rXi−1−Xi+1 from O∆ to O∆[2]. But indeed both are

isomorphic to the morphism from the central square to the cone
(O∆[2]

ev′i−→ Ui[4]
)

given by zero on the top row and Xi−1 −Xi+1 applied to both terms on the bottom
row.

Move 13 we defer to the proofs for Db(T ∗Fl) in the next section; this paper is
quite long enough without repeating proofs twice, so we concentrate on the harder
T ∗Fl case—for surfaces the same proof applies but is much easier since there is no
Uij term involved in proving Theorem 4.12. As we noted before, move 14 follows
from the various versions of move 13.

Finally locality moves 15 with one negative branch point follow from the second
part of Proposition 5.6; we describe how in the example of move 15 drawn in Fig-
ure 7. For that we combine the morphism δk : Tk → O∆[2] of (106) and a standard
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isomorphism φ of Fourier-Mukai kernels K
φ→ K ′ (a composition of one of the braid

relations) consisting of cones of morphisms of kernels with expressions Ui ? . . . ? Uj
involving only Uis with |i− k| > 1 (and one copy of O∆, on which φ acts as the
identity). We would like to show that the compositions of the following vertical
maps of horizontal cones

(
K ? Uk

evk //

φ

²²

K
)

φ

²²

and
(
K ? Uk

evk // K
)

rk−1−rk+1

²²(
K ′ ? Uk

evk //

²²

K ′
)

rk−1−rk+1

²²

K[2]

φ

²²(
0 // K ′[2]

)
K ′[2]

are the same, which is the case if the following compositions are equal:

K
φ // K ′ rk−1−rk+1 // K ′[2] and K

rk−1−rk+1 // K[2]
φ // K ′[2] .

But by Proposition 5.6, rk−1 − rk+1 acts as zero on every term in K and K ′ except
for the O∆ term in each, on which φ acts as the identity and so commutes with
rk−1 − rk+1.

One can show that the central ambiguity in the projective action of the braid
cobordism category is at most ±1 ⊂ C∗, by passing from Db(X) to the homotopy
category C(An ⊗ C) of Section 2, as described at the beginning of this Section. Under
the equivalence [KS, ST] of the derived categories of differential graded modules
over RHom(⊕iOCi ,⊕iOCi) and An ⊗ C, the OCi are mapped to the Pi, Ti to Ri,
T ′i to R′i, and evi, ev′i to βi, γi. The rational numbers Dij (97) that we used become
integers under this equivalence, since by Proposition 5.5 the Xi act on the OCi by
integral generators of H1,1(Cj) ∼= Ext2(OCj ,OCj ).

The subcategory generated by the projective modules Pi is then equivalent to
C(An ⊗ C), and the above positive (105) and negative (106) braid moves map to
those of (10, 11) and (12, 13) respectively: for the positive braid moves this is
obvious, while for the negative ones it follows from Proposition 5.5. Therefore the
C∗ scalar ambiguities in the movie moves in Db(X) map to the scalar ambiguities
±1 in C(An ⊗ C), and so are themselves ±1. Of course we expect that they can all
be shown to be +1, but this would require more work.

5.2. The cotangent bundle of the flag variety
The construction of the last section goes over almost unchanged to Db(T ∗Fl);

we outline the steps here. The kernels Ui, Ti, T ′i from Sections 4 and 5.1 are
obviously analogous, as are the maps between them. Using the holomorphic sym-
plectic structure of K = T ∗Fl we find that TK ∼= Ω1

K , so that the description (82)
of Ext2(O∆,O∆) still holds. The divisors Ni ⊂ K define de Rham classes [Ni] ∈
H1(Ω1

K) ⊂ Ext2(O∆,O∆) by the same formulae as for the [Ci] before (splicing the
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logarithmic one-forms sequence (84) to the doubled diagonal exact sequence (88)
via TK ∼= Ω1

K).

Taking the same linear combinations Dij (97) of these classes as before we define
the Xi ∈ Ext2(O∆,O∆) as

∑
j Dij [Nj ].

The analogue of Lemma 5.3 is that the action of such classes on some ONk

by Fourier-Mukai transform is described by the restriction of the H1(Ω1
K) class

to H1(Ω1
Nk/Kk

) ∼= H1(ONk
(Nk)) ∼= Ext2(ONk

,ONk
). This is proved in exactly the

same way by noting that the natural map TK → ONk
(Nk) becomes, on contraction

with the holomorphic symplectic form, the restriction map Ω1
K → Ω1

Nk/Kk
. (The

fact that Ext2(ONk
,ONk

) ∼= H1(ONk
(Nk)) follows easily from the local-to-global

spectral sequence for Ext and the Leray spectral sequence for Nk → Kk.)

Now in turn, we can calculate H1(Ω1
Nk/Kk

) by the Leray spectral sequence, using
the fact that R1pk∗Ω1

Nk/Kk

∼= OKk
by relative Serre duality, with all other derived

functors zero. Therefore basechange holds, and the fibers of pk : Nk → Kk are com-
pact, so to determine a class in H1(Ω1

Nk/Kk
) ∼= H0(OKk

) we need only determine
its de Rham or singular cohomology class on each fiber, for instance by intersection
theory.

In particular, for |i− j| > 1, Ni ∩Nj = Nij is zero on the generic fiber of Nj →
Kj (being the pullback of the divisor Kij ⊂ Kj) so [Ni]|Nj defines the zero class
in H0(OKj ). (So here it is crucial that the Ext2(ONj ,ONj ) class depends only
on the relative, fiberwise, H2 class of [Ni]|Nj , rather its absolute class, which is
nonzero.) For i− j = 1, Ni ∩Nj = Nij is generically a section of Nj → Kj (away
fromMij ⊂ Nij , by Lemma 4.8) and so defines the canonical generator 1 ∈ H0(OKj )
away from Kij ⊂ Kj , and so in fact everywhere by Hartog’s theorem. Similarly,
considering i = j, Ni has degree −2 on each fiber of Ni → Ki so we find that [Ni]|Ni

is represented, via the Leray spectral sequence, by −2 ∈ H0(OKi).

These numbers coincide, of course, with the intersections of the Ci in Section
5.1. Therefore, by construction of the Dij , (97) we find that the Xi act as zero on
ONj for j 6= i and as the generator of Ext2(ONi ,ONi) ∼= H0(OKi) on ONi .

This gives the correct analogue of the first part of Proposition 5.5. The last part
follows almost verbatim the proof for surfaces. For the second part the proof is also
very similar, using relative de Rham or singular cohomology classes as above instead
of absolute ones. It follows immediately that the corresponding lXi and rXi satisfy
the same result as in Proposition 5.6.

With all of these technical results done, the proofs of the braid movie moves carry
over just as before. For move 11 with one negative branch point we no longer have
Uj ? Ui ∼= 0 ∼= Ui ? Uj for |i− j| > 1, but all we need is that they commute. But
the proof of Proposition 4.7 shows that both Ui ? Uj and Uj ? Ui are isomorphic to
ONij×T∗F lij

Nij (Dij)[−2] in the notation of (50).

We have to prove the following version of move 13 with one negative branch
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point; that for j = i+ 1 the following two compositions

(Ui
evi // id) ? Tj ? Ti

δi

²²

Tj ? Ti ? (Uj
evj // id)

δj

²²
id ?Tj ? Ti[2] Tj ? Ti ? id[2]

become isomorphic maps Ti ? Tj ? Ti → Tj ? Ti[2] upon identifying Ti ? Tj ? Ti ∼=
Tj ? Ti ? Tj by the second part of Theorem 4.12.

By the first part of Theorem 4.12 the isomorphism Ti ? Tj ? Ti ∼= Tj ? Ti ? Tj
comes from an isomorphism Ui ? Tj ? Ti ∼= Tj ? Ti ? Uj of the first two terms in the
two cones on the top line of the above diagram; as proved there this intertwines the
two ev maps on the top line. Since these two terms map to zero in the bottom line,
it remains to prove that the compositions

id ?Tj ? Ti

δi

²²

Tj ? Ti ? id

δj

²²
id[2] ? Tj ? Ti Tj ? Ti ? id[2]

are equal. The left-hand one is (lXi+1 − lXi−1) ? id = lXi+1 ? id by the last part of
Proposition 5.6. By the first part of Proposition 5.6 this is (rXi − rXi+1) ? id =
id ?(lXi − lXi+1).

The right-hand map is id ?(rXj+1 − rXj−1) = id ?(−rXj−1) by the last part of
Proposition 5.6. By the first part of Proposition 5.6 this is also id ?(lXi − lXi+1).

The other negative versions of move 13 are similar; for instance showing that the
following diagram becomes commutative

id[−2] ? T ′j ? T
′
i

δi

²²

T ′j ? T
′
i ? id[−2]

δj

²²
(id

ev′i // Ui) ? T ′j ? T
′
i T ′j ? T

′
i ? (id

ev′j // Uj)

on mapping each T ′j ? T
′
i on the left-hand side by the identity to the corresponding

T ′j ? T
′
i on the right-hand side, and mapping Ui ? T ′j ? T

′
i to T ′j ? T

′
i ? Uj by the iso-

morphism given by taking adjoints in Proposition 4.12. This commutes with maps
on both sides by the adjoint of Proposition 4.12, so we are left with showing that
the maps

(lXi+1 − lXi−1) ? id and id ?(rXj+1 − rXj−1) : T ′j ? T
′
i [−2] → T ′j ? T

′
i

are the same. But this follows as above by using Proposition 5.6.
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