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SPECTRAL ENRICHMENTS OF MODEL CATEGORIES

DANIEL DUGGER

(communicated by Mark Hovey)

Abstract
We prove that every stable, presentable model category can

be enriched in a natural way over symmetric spectra. As a
consequence of the general theory, every object in such a model
category has an associated homotopy endomorphism ring
spectrum. Basic properties of these invariants are established.

1. Introduction

If X and Y are two objects in a model category M, it is well-known that there
is an associated “homotopy function complex” Map(X, Y ) (cf. [8, Ch. 17] or [10,
Section 5.4]). This is a simplicial set, well-defined up to weak equivalence, and it is an
invariant of the homotopy types of X and Y . Following [6] one can actually construct
these function complexes so that they come with composition maps Map(Y, Z)×
Map(X, Y )→ Map(X, Z), thereby giving an enrichment of M over simplicial sets.
This enrichment is an invariant (in an appropriate sense) of the model category M.

This paper concerns analogous results for stable model categories, with the role
of simplicial sets being replaced by symmetric spectra [11, Theorem 3.4.4]. We
show that if M is a stable, presentable model category then any two objects can
be assigned a symmetric spectrum function complex. More importantly, one can
give composition maps leading to an enrichment of M over the symmetric monoidal
category of symmetric spectra. One application is that any object X ∈M has an
associated “homotopy endomorphism ring spectrum” hEnd(X) (where by ring spec-
trum we mean essentially what used to be called an A∞-ring spectrum). These ring
spectra, as well as the overall enrichment by symmetric spectra, are homotopy
invariants of the model category M.

1.1. An application
Before describing the results in more detail, here is the motivation for this

paper. If R is a differential graded algebra, there is a stable model category struc-
ture on (differential graded) R-modules where the weak equivalences are quasi-
isomorphisms and the fibrations are surjections. Given two dgas R and S, when are
the model categories of R- and S-modules Quillen equivalent? A complete answer
to this question is given in [5]. The problem is subtle: even though the categories of
R- and S-modules are additive, examples show that it is possible for them to be
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Quillen equivalent only through a zig-zag involving non-additive model categories.
To deal with this, the arguments in [5] depend on using homotopy endomorphism
ring spectra as invariants of stable model categories. The present paper develops
some of the tools necessary for those arguments.

1.2. Statement of results
A category is locally presentable if it is cocomplete and all objects are small in a

certain sense; see [1]. A model category is called combinatorial if it is cofibrantly-
generated and the underlying category is locally presentable. This class was intro-
duced by Jeff Smith, and the examples are ubiquitous. Background information on
combinatorial model categories can be found in [4]. A model category is presentable
if it is Quillen equivalent to a combinatorial model category.

A model category is called stable if the initial and terminal objects coincide (i.e.,
it is a pointed category) and if the induced suspension functor is invertible on the
homotopy category.

Our results concern enrichments of stable, presentable model categories. Unfor-
tunately we do not know how to give a canonical spectral enrichment for our model
categories. Instead there are many such enrichments, involving choices, but the
choices yield enrichments which are homotopy equivalent in a certain sense. The
machinery needed to handle this is developed in Section 3. There we define a model
enrichment of one model category by another, and give a notion of two model
enrichments being quasi-equivalent. A crude version of our main theorem can be
stated as follows.

Theorem 1.1. Every stable, presentable model category has a canonical quasi-
equivalence class of model enrichments by SpΣ.

Here SpΣ denotes the model category of symmetric spectra from [11], with its
symmetric monoidal smash product. “Canonical” means the enrichment has good
functoriality properties with respect to Quillen pairs and Quillen equivalences.
More precise statements are given in Section 6. We will show that the canoni-
cal enrichment by SpΣ is preserved, up to quasi-equivalence, when you prolong or
restrict across a Quillen equivalence. It follows that the enrichment contains only
“homotopy information” about the model category; so it can be used to decide
whether two model categories are Quillen equivalent.

One simple consequence of the above theorem is the following.

Corollary 1.2. If M is a stable, presentable model category, then Ho(M) is
naturally enriched over Ho(SpΣ).

The above corollary is actually rather weak, and not representative of all that
the theorem has to offer. For instance, the corollary implies that every object of
such a model category has an endomorphism ring object in Ho(SpΣ)—that is, a
spectrum R together with a pairing R ∧R→ R, which is associative and unital up
to homotopy. The theorem, on the other hand, actually gives the following:
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Corollary 1.3. Every object X of a stable, presentable model category has a nat-
urally associated A∞-ring spectrum hEnd(X), called the homotopy endomor-
phism spectrum of X—well-defined in the homotopy category of A∞-ring spectra.
If X ' Y then hEnd(X) ' hEnd(Y ).

The main results concerning these endomorphism spectra are as follows. The first
shows that they are homotopical invariants of the model category M.

Theorem 1.4. Let M and N be stable, presentable model categories. Suppose they
are Quillen equivalent, through a zig-zag where there are no assumptions on the
intermediate model categories. Let X ∈M, and let Y ∈ Ho (N) be the image of X
under the derived functors of the Quillen equivalence. Then hEnd(X) and hEnd(Y )
are weakly equivalent ring spectra.

A model category M is called spectral if it is enriched, tensored, and cotensored
over symmetric spectra in a homotopically well-behaved manner (M is also called an
SpΣ-model category). See Section A.3 for a more detailed definition. The following
result shows that in spectral model categories, homotopy endomorphism spectra
can be computed in the expected way, using the spectrum hom-object MSpΣ(−,−).

Proposition 1.5. Let M be a stable, presentable model category which is also
spectral. Let X be a cofibrant–fibrant object of M. Then hEnd(X) and MSpΣ(X, X)
are weakly equivalent ring spectra.

1.3. The construction
In [6] Dwyer and Kan constructed model enrichments over sSet via their

hammock localization. This is a very elegant construction, in particular not involv-
ing any choices. Unfortunately we have not been clever enough to find a similar
construction for enrichments by symmetric spectra. The methods of the present
paper are more of a hack job: they get us the tools we need at a relatively cheap
cost, but they are not so elegant.

The idea is to make use of the “universal” constructions from [3] and [4], together
with the general stabilization machinery provided by [9]. Every presentable model
category is Quillen equivalent to a localization of diagrams of simplicial sets. Using
the simplicial structure on this diagram category, we can apply the symmetric spec-
tra construction of [9]. This gives a new model category, Quillen equivalent to what
we started with, where one has actual symmetric spectra function complexes built
into the category.

In more detail, given a pointed, presentable model category M one can choose
a Quillen equivalence U+C/S ∼−→M. Here U+C is the universal pointed model
category built from C, developed in Section 5; S is a set of maps in U+C, and
U+C/S denotes the Bousfield localization [8, Section 3.3].

The category U+C/S is a nice, simplicial model category, and we can form sym-
metric spectra over it using the results of [9]. This gives us a new model category
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SpΣ(U+C/S), which is enriched over SpΣ. If M was stable to begin with then we
have a zig-zag of Quillen equivalences

M ∼←− U+C/S ∼−→ SpΣ (U+C/S)

and can transport the enrichment of the right-most model category onto M. Finally,
theorems from [3] allow us to check that the resulting enrichment of M does not
depend (up to quasi-equivalence) on our chosen Quillen equivalence U+C/S →M.

By now, the main shortcoming of this article should be obvious: all the results
are proved only for presentable model categories. This is an extremely large class,
but it is very plausible that the results about spectral enrichments hold in complete
generality. Unfortunately, we have not been able to find proofs in this setting, so it
remains a worthwhile challenge.

1.4. Organization of the paper
Sections 2 and 3 contain the basic definitions of enrichments, model enrichments,

and the corresponding notions of equivalence. The definition of presentable model
categories is given in Section 4. Section 5 deals with the universal pointed model
categories U+C, and establishes their basic properties. The main part of the paper
is Section 6, which gives the results on spectral enrichments and homotopy endo-
morphism spectra. Section 7 returns to the proof of Proposition 3.5: this is a foun-
dational result showing that quasi-equivalent enrichments have the properties one
hopes for. Finally, Section 8 discusses a connection with the main results of [14].

We also give two appendices. Appendix A contains several basic results about
model categories which are enriched, tensored, and cotensored over a monoidal
model category (the main examples for us are simplicial and spectral model cate-
gories). The reader is encouraged to become familiar with this section before tack-
ling the rest of the paper. Appendix B gives a general result about commuting
localization and stabilization.

1.5. Terminology
We assume a familiarity with model categories and localization theory, for which

[8] is a good reference. Several conventions from [3] are often used, so we will
now briefly recall these. A Quillen map L : M→ N is another name for a Quillen
pair L : M À N : R. If L1 and L2 are two such Quillen maps, a Quillen homotopy
L1 → L2 is a natural transformation between the left adjoints, which is a weak
equivalence on cofibrant objects. If M is a model category and S is a set of maps
in M, then M/S denotes the left Bousfield localization [8, Section 3.3].

2. Enrichments in category theory

In this section we review the notion of a category being enriched over a
symmetric monoidal category. Our situation is slightly more general than what
usually occurs in the literature. There is a notion of equivalence which encodes
when two enrichments carry the same information.
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2.1. Basic definitions
Let C be a category, and let (D,⊗, S) be a symmetric monoidal category (where

S is the unit). An enrichment of C by D is a functor τ : Cop × C→ D together
with

(i) For every a, b, c ∈ C a “composition map” τ(b, c)⊗ τ(a, b)→ τ(a, c), natural
in a and c, and

(ii) a collection of maps S → τ(c, c) for every c ∈ C.

This data is required to satisfy the associativity and unital rules for composition,
which are so standard that we will not write them down. We also require that for
any map f : a→ b in C, the square

S //

²²

τ(a, a)

f

²²
τ(b, b)

f // τ(a, b)

commutes.
Note that if C = {∗} is the trivial category and Ab is the category of abelian

groups, then an enrichment of C by Ab is just another name for an associative and
unital ring.

If τ and τ ′ are two enrichments of C by D, a map τ → τ ′ is a natural
transformation τ(a, b)→ τ ′(a, b) compatible with the unit and composition maps.

Remark 2.1. The above definition differs somewhat from related things in the
literature. According to [2, Section 6.2], a D-category is a collection of objects I

together with a Hom-object I(i, j) ∈ D for every i, j ∈ I, etc. This corresponds to
our above definition in the case where C has only identity maps.

If C is a category (i.e. a Set-category), one can define a D-category SC with the
same object set as D and SC(a, b) =

∐
C(a,b) S. To give an enrichment of C by D in

the sense we defined above is the same as giving a D-category with the same objects
as C, together with a D-functor from SC to this D-category.

Example 2.2. If M is a simplicial model category, the assignment X, Y 7→
Map(X, Y ) is an enrichment of M by sSet. If M is a general model category, the
hammock localization assignment X, Y 7→ LHM(X, Y ) from [6, Section 3.1] is also
an enrichment of M by sSet.

2.2. Bimodules
Let σ and τ be two enrichments of C by D. By a σ − τ bimodule we mean a

collection of objects M(a, b) ∈ D for every a, b ∈ C, together with “multiplication
maps”

σ(b, c)⊗M(a, b)→M(a, c) M(b, c)⊗ τ(a, b)→M(a, c),

which are natural in a and c. We again assume associativity and unital conditions
which we will not write down, as well as the property that for any a, b, c, d ∈ C, the



“v8n1a1” — 2005/11/8 — 12:00 — page 6 — #6
i

i

i

i

i

i

i

i

Homology, Homotopy and Applications, vol. 8(1), 2006 6

two obvious maps
σ(c, d)⊗M(b, c)⊗ τ(a, b) ⇒ M(a, d)

are equal.
Note that a bimodule has a natural structure of a bifunctor Cop × C→ D. For

instance, if f : a→ b is a map in C then consider the composite S → σ(a, a)→
σ(a, b). We then have S ⊗M(a′, a)→ σ(a, b)⊗M(a′, a)→M(a′, b), giving a map
M(a′, a)→M(a′, b) induced by f . Similar considerations give functoriality in the
first variable.

Remark 2.3. For a more precise version of the definition of bimodule, see
Section 7.2. Earlier parts of Section 7 also define the notions of left and right
σ-module, which we have for the moment skipped over.

To understand the following definition, observe that two rings R and S are iso-
morphic if and only if there is an R− S bimodule M together with a chosen ele-
ment m ∈M such that the induced maps r → rm and s→ ms give isomorphisms
of abelian groups R→M ← S.

Definition 2.4. Let σ and τ be two enrichments of C by D.

(a) By a pointed σ − τ bimodule, we mean a bimodule M together with a
collection of maps S →M(c, c) for every c ∈ C, such that for any map a→ b
the square

S //

²²

M(a, a)

²²
M(b, b) // M(a, b)

commutes.
(b) We say that σ and τ are equivalent if there is a pointed σ − τ bimodule

M : Cop × C→ D for which the composites

σ(a, b)⊗ S → σ(a, b)⊗M(a, a)→M(a, b) and
S ⊗ τ(a, b)→M(b, b)⊗ τ(a, b)→M(a, b)

are isomorphisms for every a, b ∈ C.

Remark 2.5. A σ − τ bimodule is, by restriction, an SC − SC bimodule. Note that
SC has an obvious structure of SC − SC bimodule. The definition of pointed σ − τ
bimodule says that there is a map of SC − SC bimodules SC →M .

Lemma 2.6. Assume that D has pullbacks. Two enrichments σ and τ are equiv-
alent if and only if there is an isomorphism σ ∼= τ .

Proof. If there is an isomorphism σ ∼= τ , then we let M = τ and regard it as a
σ − τ bimodule. This shows σ and τ are equivalent.
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If we instead assume that σ and τ are equivalent via the pointed bimodule M ,
define θ(a, b) to be the pullback

θ(a, b) //

²²

τ(a, b)

²²
σ(a, b) // M(a, b)

Here the lower horizontal map is the composite

σ(a, b) ∼= σ(a, b)⊗ S → σ(a, b)⊗M(a, a)→M(a, b)

and the right vertical map is defined similarly. The universal property of the pullback
allows one to see that θ is naturally an enrichment of C by D, and that θ → σ and
θ → τ are maps of enrichments.

Now, our assumption that σ and τ are equivalent via M includes the condition
that the bottom and right maps in the above pullback square are isomorphisms. So
all maps in the square are isomorphisms, which means we have σ ∼= θ ∼= τ . ¤

Remark 2.7. Since the notions of equivalence and isomorphism coincide, one might
wonder why we bother with the former. The answer is in the next section, where
the homotopical analogs of these two notions slightly diverge.

3. Enrichments for model categories

We now give model category analogs for the material from the last section. There
is the notion of model enrichment, together with two notions of equivalence:
these are called quasi-equivalence and direct equivalence. Direct equivalences
have the property of obviously preserving the “homotopical” information in an
enrichment; but quasi-equivalences are what seem to arise in practice. Fortunately,
the two notions are closely connected—see Proposition 3.5.

The material in this section is a simple extension of techniques from [14], which
dealt with enrichments over symmetric spectra.

3.1. Model enrichments
Let M be a model category and let V be a symmetric monoidal model category

[10, Definition 4.2.6]. A model enrichment of M by V is an enrichment τ with
the property that whenever a→ a′ is a weak equivalence between cofibrant objects
and x→ x′ is a weak equivalence between fibrant objects, then the induced maps

τ(a′, x)→ τ(a, x) and τ(a, x)→ τ(a, x′)

are weak equivalences.

Example 3.1. Suppose that M is a V-model category, as defined in Appendix A.
Then X, Y 7→MV(X, Y ) is a model enrichment.
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A quasi-equivalence between two model enrichments σ and τ consists of a
pointed σ − τ bimodule M such that the compositions

σ(a, b)⊗ S → σ(a, b)⊗M(a, a)→M(a, b) and
S ⊗ τ(a, b)→M(b, b)⊗ τ(a, b)→M(a, b)

are weak equivalences whenever a is cofibrant and b is fibrant.

Definition 3.2. Let ME0(M, V) be the collection of equivalence classes of model
enrichments, where the equivalence relation is the one generated by quasi-
equivalence.

Remark 3.3. There are, of course, set-theoretic difficulties in the above definition.
One can get around these by only considering model enrichments defined over small,
full subcategories of M (which we will do in Proposition 3.5 anyway) and by using
universes. But, as we will only be using ME0(−,−) in fairly minor ways—essentially
to simplify the statements of our results—we will ignore these issues altogether.

Example 3.4. Let M be a simplicial model category, and let τ(X, Y ) be the
simplicial mapping space between X and Y . This is a model enrichment of M

by sSet. Let QX ∼−³ X be a cofibrant-replacement functor for M, and define
τ ′(X, Y ) = τ(QX, QY ). This is another model enrichment of M, but note that there
are no obvious maps between τ and τ ′. There is an obvious quasi-equivalence, how-
ever: define M(X, Y ) = Map(QX, Y ). This is a τ − τ ′ bimodule, and the maps
QX → X give the distinguished maps ∗ →M(X, X).

This example illustrates that quasi-equivalences arise naturally, more so than the
notion of “direct equivalence” we define next.

3.2. Direct equivalences
A map of model enrichments τ → τ ′ is a direct equivalence if τ(a, b)→ τ ′(a, b)

is a weak equivalence whenever a is cofibrant and b is fibrant.
To say something about the relationship between quasi-equivalence and direct

equivalence, we need a slight enhancement of our definitions. If I is a full subcategory
of M, we can talk about model enrichments defined over I, meaning that τ(a, b)
is defined only for a, b ∈ I. In the same way we can talk about “direct equivalences
over I”, and so on.

Now we can give the following analog of Lemma 2.6. This is the most important
result of this section.

Proposition 3.5. Let V be a combinatorial, symmetric monoidal model category
satisfying the monoid axiom [13, Definition 3.3]. Assume also that the unit S ∈
V is cofibrant. Let σ and τ be model enrichments of M by V. Let I be a small,
full subcategory of M consisting of cofibrant–fibrant objects. If σ and τ are quasi-
equivalent over I, then there is a zig-zag of direct equivalences (over I) between σ
and τ .
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The assumptions about V and the smallness of I are needed so that there is a
model structure on certain categories of modules and bimodules, a key ingredient
of the proof.

Proof. The proof can be adapted directly from [14, Lemma A.2.3], which dealt with
the case where V is symmetric spectra and I has only identity maps. Essentially the
proof is a homotopy-theoretic version of the pullback trick in Lemma 2.6.

Let M be a bimodule giving an equivalence between σ and τ . When the maps
σ(a, b)→M(a, b) are trivial fibrations, the pullback trick immediately gives a
zig-zag of direct equivalences between σ and τ . For the general case, one uses certain
model structures on module categories to reduce to the previous case. A full discus-
sion requires quite a bit of machinery, so we postpone this until Section 7. ¤

For the following corollaries we assume that V is a combinatorial, symmetric
monoidal model category satisfying the monoid axiom, and that the unit S is
cofibrant.

Corollary 3.6. Let σ and τ be model enrichments of M by V. Let X be a cofibrant–
fibrant object of M. If σ and τ are quasi-equivalent, then the V-monoids σ(X,X) and
τ(X,X) are weakly equivalent in V (meaning there is a zig-zag between them where
all the intermediate objects are monoids in V, and all the maps are both monoid
maps and weak equivalences).

Proof. This is an application of Proposition 3.5, where I is the full subcategory of
M whose sole object is X. ¤

Corollary 3.7. Let σ be a model enrichment of M by V. Let I be a small
category, and let G1, G2 : I→M be two functors whose images lie in the cofibrant–
fibrant objects. Assume there is a natural weak equivalence G1

∼−→ G2. Then the
enrichments on I given by σ(G1i, G1j) and σ(G2i, G2j) are connected by a zig-zag
of direct equivalences.

Proof. Call the two enrichments σ1 and σ2. Define a σ2 − σ1 bimodule by M(i, j) =
σ(G1i, G2j). The maps G1i

∼−→ G2i give rise to maps S →M(i, i), making M into
a pointed bimodule. One readily checks that this is a quasi-equivalence between σ2

and σ1, and then applies Proposition 3.5. ¤

Remark 3.8. A special case of the above Corollary 3.7 is when I is the category with
one object and an identity map. It follows that if X, Y ∈M are cofibrant–fibrant
and weakly equivalent then σ(X, X) and σ(Y, Y ) are weakly equivalent V-monoids.
The prototype for this result is in [14, Corollary A.2.4].

3.3. Homotopy invariant enrichments
We give a few other basic results about model enrichments.
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Proposition 3.9. Let Qa ∼−³ a be a cofibrant-replacement functor in M, and let
x ∼½ Fx be a fibrant-replacement functor. If τ is a model enrichment of M, then
τ(Qa,Qb) and τ(Fa, Fb) give model enrichments which are quasi-equivalent to τ .

Proof. Left to the reader (see Example 3.4). ¤

A model enrichment τ of M by V will be called homotopy invariant if whenever
a→ a′ and x→ x′ are weak equivalences then the maps τ(a′, x)→ τ(a, x)→
τ(a, x′) are both weak equivalences as well. Note that there is no cofibrancy–fibrancy
assumption on the objects.

Corollary 3.10. Every model enrichment is quasi-equivalent to one which is
homotopy invariant.

Proof. Let τ be a model enrichment of M by V. By Proposition 3.9 (used twice),
the enrichments τ(a, b), τ(Qa,Qb) and τ(QFa, QFb) are all quasi-equivalent. The
latter is homotopy invariant. ¤

Recall that the monoidal product on Ho (V) is defined by v1 ⊗L v2 = Cv1 ⊗ Cv2,
where C is some chosen cofibrant-replacement functor in V. It is easy to check that
a homotopy invariant enrichment τ induces an enrichment of Ho (M) by Ho (V),
where the composition maps are the composites

τ(b, c)⊗L τ(a, b)→ τ(b, c)⊗ τ(a, b)→ τ(a, c).

We note the following:

Corollary 3.11. If two homotopy invariant enrichments σ and τ are quasi-
equivalent, then the induced enrichments of Ho (M) by Ho (V) are equivalent.

Proof. First, note that if M is a quasi-equivalence between σ and τ then M is
automatically homotopy invariant itself (in the obvious sense)—this follows from
the two-out-of-three property for weak equivalences. Therefore M may be extended
to a functor on the homotopy category, where it clearly gives an equivalence between
the enrichments induced by σ and τ .

To say that σ and τ are quasi-equivalent, though, does not say that such an
M necessary exists—it only says that there is a chain of such M ’s. Note that the
intermediate model enrichments in the chain need not be homotopy invariant. To
get around this, we do the following. If µ is a model enrichment of M by V, let µh be
the model enrichment µh(a, b) = µ(QFa, QFb). We have seen that this is homotopy
invariant and quasi-equivalent to µ. If M is a quasi-equivalence between µ1 and µ2,
note that Mh (with the obvious definition) is a quasi-equivalence between µh

1 and
µh

2 . It follows readily that if our σ and τ are quasi-equivalent then they are actually
quasi-equivalent through a chain where all the intermediate steps are homotopy
invariant. Now one applies the first paragraph to all the links in this chain. ¤
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3.4. Transporting enrichments
Let G : M→ N be a functor, and suppose τ is an enrichment of N. Define an

enrichment G∗τ of M by the formula G∗τ(m1,m2) = τ(Gm1, Gm2). Call this the
pullback of τ along G.

Lemma 3.12. Let M and N be model categories, and let G : M→ N be a functor
which preserves weak equivalences and has its image in the cofibrant–fibrant objects
of N. If τ is a model enrichment of N, then G∗τ is a model enrichment of M.
Moreover, G∗ preserves quasi-equivalence: it induces G∗ : ME0(N, V)→ ME0(M, V).

Proof. Routine. ¤

Lemma 3.13. Let M and N be model categories, and let τ be a homotopy invariant
enrichment of N. Suppose G1, G2 : M→ N are two functors which preserve weak
equivalences, and assume there is a natural weak equivalence G1

∼−→ G2. Then G∗1τ
and G∗2τ are model enrichments of M, and they are quasi-equivalent.

Proof. The quasi-equivalence is given by M(a, b) = τ(G1a,G2b). The weak equiv-
alences G1a→ G2a give the necessary maps S →M(a, a). Details are left to the
reader. ¤

Recall that a Quillen map L : M→ N is an adjoint pair L : M À N : R in
which L preserves cofibrations and trivial cofibrations (and R preserves fibra-
tions and trivial fibrations). Choose cofibrant-replacement functors QMX ∼−³ X
and QNZ ∼−³ Z as well as fibrant-replacement functors A ∼½ FMA and B ∼½ FNB.
If τ is a model enrichment of N by V, we can define a model enrichment on
M by the formula L∗τ(a, x) = τ(FNLQMa, FNLQMx). Similarly, if σ is a model
enrichment of M by V we get a model enrichment on N by the formula L∗σ(c, w) =
σ(QMRFNc, QMRFNw).

Proposition 3.14.

(a) The constructions L∗ and L∗ induce maps L∗ : ME0(N, V)→ ME0(M, V)
and L∗ : ME0(M, V)→ ME0(N, V).

(b) The maps in (a) do not depend on the choice of cofibrant- and fibrant-
replacement functors.

(c) If L,L′ : M→ N are two maps which are Quillen-homotopic, then L∗ = L′∗
and L∗ = (L′)∗ as maps on ME0(−,V).

(d) If L : M→ N is a Quillen equivalence, then the functors L∗ and L∗ are
inverse bijections ME0(M,V) ∼= ME0(N, V).

(e) Suppose M and N are V-model categories, with the associated V-enrichments
denoted σM and σN. If L : M→ N is a V-Quillen equivalence, then
L∗(σM) = σN and L∗(σN) = σM as elements of ME0(−, V).

For the notion of “V-Quillen equivalence” used in part (e), see Section A.5.
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Proof. We will only prove the results for L∗; proofs for L∗ are entirely similar.
Part (a) follows from Lemma 3.12, as the composite functor FNLQM preserves

weak equivalences and has its image in the cofibrant–fibrant objects.
For part (b), suppose Q1X

∼−³ X and Q2X
∼−³ X are two cofibrant-replacement

functors for M. Write L∗1 and L∗2 for the resulting maps ME0(N,V)→ ME0(M, V).
By Corollary 3.10, it suffices to show that L∗1(τ) = L∗2(τ) for any homotopy invari-
ant enrichment τ . Let Q3X = Q1X ×X Q2X. There is a zig-zag of natural weak
equivalences Q1

∼←− Q3
∼−→ Q2. The result now follows by Lemma 3.13, applied to

the composites FLQ1, FLQ3, and FLQ2.
For part (c), it again suffices to prove L∗(τ) = (L′)∗(τ) when τ is homotopy

invariant. The Quillen homotopy is a natural transformation L→ L′ which is a
weak equivalence on cofibrant objects. The result is then a direct application of
Lemma 3.13.

For (d) we will check that if τ is a homotopy invariant enrichment of N then
L∗(L∗τ) = τ in ME0(N,V). The enrichment L∗(L∗τ) is the pullback of τ along the
composite functor FLQQRF : N→ N. There is a zig-zag of natural weak equiva-
lences

FLQQRF ∼←− LQQRF ∼−→ F ∼←− Id

(the second being the composite LQQRF → LRF → F , which is a weak equivalence
because we have a Quillen equivalence). Each of the functors in the zig-zag preserves
weak equivalences, so the result follows from Lemma 3.13.

Finally, we prove (e). By (d), it suffices just to prove L∗σM = σN. By Propo-
sition A.9, our assumption gives us a map of enrichments σN(FX, FY )→
σM(RFX,RFY ). Using this, M(X, Y ) = σM(QRFX,RFY ) becomes a bimod-
ule with respect to the two enrichments σM(QRFX, QRFY ) and σN(FX, FY ).
One readily checks that this is a quasi-equivalence. But Proposition 3.9 says that
σN(FX, FY ) is quasi-equivalent to σN. So we are done. ¤

4. Presentable model categories

In this section, we review the notion of a “presentable” model category. This
class includes most model categories commonly studied.

Recall from [13] that if C is a small category, then UC denotes the model category
of simplicial presheaves on C, with fibrations and weak equivalences defined object-
wise. This is the “universal model category built from C”. If S is a set of maps
in UC, we let UC/S denote the left Bousfield localization of UC at the set S [8,
Definition 3.3.1].

Definition 4.1. A model category M is presentable if there exists a small cate-
gory C, a set of maps S in UC, and a Quillen equivalence UC/S →M. This equiv-
alence is called a presentation for M.

Proposition 4.2. The class of presentable model categories is closed under
Quillen equivalence: that is, if M is Quillen equivalent to N and M is presentable,
then so is N.
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Proof. This follows from [3, Proposition 5.10]. One chooses a Quillen equivalence
UC/S →M and then inductively lifts this map across the zig-zag of Quillen equiv-
alences connecting M to N. ¤

Theorem 4.3. A model category M is presentable if and only if there is a zig-zag
of Quillen equivalences between M and a combinatorial model category.

Proof. The categories UC are locally presentable, and so UC/S is always a combi-
natorial model category. This proves the (⇒) direction. The other direction follows
from Proposition 4.2 together with [4, Theorem 1.1] which proved that every com-
binatorial model category is presentable. ¤

Remark 4.4. As a sample application of the above result, note that the model
category of S-modules studied in [7] is presentable. This follows from the paper
[12] which showed that it is Quillen equivalent to the model category of symmetric
spectra from [11]. The latter is a combinatorial model category, so we may apply
the above theorem.

5. Universal pointed model categories

If C is a small category, then there is a “universal model category” built from C.
This was developed in [3]. The present section deals with a pointed version of that
theory. The category of functors from C to pointed simplicial sets plays the role of
a universal pointed model category built from C.

5.1. Basic definitions
Recall the definition of UC from the last section. One has the Yoneda embedding

r : C ↪→ UC where rX is the presheaf Y 7→ C(Y, X).
Let U+C be the category of functors from Cop into pointed simplicial sets, with

the model structure where weak equivalences and fibrations are again objectwise.
This can also be regarded as the undercategory (∗ ↓ UC).

There is a Quillen map UC→ U+C where the left adjoint sends F to F+ (adding
a disjoint basepoint) and the right adjoint forgets the basepoint. Write r+ for the
composite C ↪→ UC→ U+C.

Finally, if S is a set of maps in UC then let S+ denote the image of S under
UC→ U+C. Note that if all the maps in S have cofibrant domain and codomain,
then by [8, Proposition 3.3.18] one has an induced Quillen map UC/S → U+C/(S+).

The following simple lemma unfortunately has a long proof.

Lemma 5.1. Let S be a set of maps between cofibrant objects in UC, and suppose
that the map ∅ → ∗ is a weak equivalence in UC/S. Then UC/S → U+C/(S+) is a
Quillen equivalence.

Proof. Write M = UC and M+ = U+C = (∗ ↓M) (the lemma actually holds for
any simplicial, left proper, cellular model category in place of UC). Let us write
F : M À M+ : U for the Quillen functors. We will start by showing that a map in
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M+/(S+) is a weak equivalence if and only if it is a weak equivalence in M/S.
Unfortunately, the proof of this fact is somewhat lengthy.

An object X ∈M+ is (S+)-fibrant if it is fibrant in M+ (equivalently, fibrant
in M) and if the induced map on simplicial mapping spaces MapM+

(B+, X)→
MapM+

(A+, X) is a weak equivalence for every A→ B in S. By adjointness, how-
ever, MapM+

(A+, X) ∼= MapM(A,X) (and similarly for B). It follows that X ∈M+

is (S+)-fibrant if and only if X is S-fibrant in M.
Suppose C is a cofibrant object in M. Using the fact that M/S is left proper

and that ∅ → ∗ is a weak equivalence, it follows that C → C q ∗ is also a weak
equivalence in M/S. As a consequence, if C → D is a map between cofibrant objects
which is a weak equivalence in M/S, then C+ → D+ is also a weak equivalence
in M/S.

Now consider the construction of the localization functor LS+ for M+/(S+). This
is obtained via the small object argument, by iteratively forming pushouts along
the maps

[Λn,k → ∆n]⊗+ [A+ → B+].

Here “⊗+” denotes the simplicial tensor in the pointed category M+, that is to
say K ⊗+ A = (K+ ⊗A)/((∗ ⊗A)q (K+ ⊗ ∗)) for K ∈ sSet and A ∈M. The above
maps are then readily identified with the maps

[
(Λn,k ⊗B)qΛn,k⊗A (∆n ⊗A)

]
+
→ (∆n ⊗B)+.

As [(Λn,k ⊗B)qΛn,k⊗A (∆n ⊗A)]→ (∆n ⊗B) is a map between cofibrant objects
which is a weak equivalence in M/S, so is the displayed map above. It follows that
for any X ∈M+, the map X → LS+X is a weak equivalence in M/S (in addition
to being a weak equivalence in M+/(S+), by construction).

Let X → Y be a map in M+. Consider the square

X //

²²

Y

²²
LS+X // LS+Y

The vertical maps are weak equivalences in both M/S and M+/(S+). If X → Y is a
weak equivalence in M+/(S+), then the bottom map is a weak equivalence in M+.
This is the same as being a weak equivalence in M, and therefore X → Y is also a
weak equivalence in M/S (going back around the square, using the two-out-of-three
property). Similarly, if X → Y is a weak equivalence in M/S then so is the bottom
map. But, the objects LS+X and LS+Y are fibrant in M/S, so the bottom map
is actually a weak equivalence in M (and also in M+). It follows that X → Y is a
weak equivalence in M+/(S+).

This completes the proof that a map in M+/(S+) is a weak equivalence if and
only if it is so in M/S.

To show that M/S →M+/(S+) is a Quillen equivalence we must show two things.
If A is a cofibrant object in M and A+ → X is a fibrant replacement in M+/(S+),
we must show that A→ X is a weak equivalence in M/S. But from what we have
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already shown we know A→ A+ and A+ → X are weak equivalences in M/S, so
this is obvious. We must also show that if Z is a fibrant object in M+/(S+) and
B → Z is a cofibrant replacement in M/S, then B+ → Z is a weak equivalence in
M+/(S+). This is the same as showing it is a weak equivalence in M/S. But in the
sequence B → B+ → Z, the first map and the composite are both equivalences in
M/S; so the map B+ → Z is an equivalence as well. ¤

5.2. Basic properties
Proposition 5.2. Suppose that L : UC/S →M is a Quillen map, where S is
a set of maps between cofibrant objects. If M is pointed, there is a Quillen map
L+ : U+C/(S+)→M such that the composite UC/S → U+C/(S+)→M is L. If L
is a Quillen equivalence, then so is L+.

Proof. For any A ∈ C, write Γ∗A for the cosimplicial object [n] 7→ L(rA⊗∆n).
Recall that the right adjoint to L sends an X ∈M to the simplicial presheaf
A 7→M(Γ∗A,X). Since M is pointed, this simplicial presheaf is also pointed. Let
Sing∗ : M→ U+C be this functor.

If F ∈ U+C, define L+(F ) to be the pushout of ∗ ← L(∗)→ L(F ). This is readily
seen to be left adjoint to Sing∗. It is also easy to check that L+ : U+C→M is a
Quillen map and the composite UC→ U+C→M equals L.

To obtain the map U+C/(S+)→M one only has to see that L+ maps
elements of S+ to weak equivalences in M. But this is obvious: if A ∈ UC then
L+(Aq ∗) ∼= L(A), and L takes elements of S to weak equivalences.

Finally, assume that L is a Quillen equivalence. Since M is pointed, it follows
that ∅ → ∗ is a weak equivalence in UC/S (using that L(∅) = ∗ and R(∗) = ∗). So
by the above Lemma 5.1, UC/S → U+C/(S+) is a Quillen equivalence; therefore L+

is one as well. ¤

The next two propositions of this section accentuate the roll of U+C as the
universal pointed model category built from C. These results are direct generaliza-
tions of [3, Propositions 2.3 and 5.10].

Proposition 5.3. Let C be a small category, and let γ : C→M be a functor from
C into a pointed model category M. Then γ “factors” through U+C, in the sense that
there is a Quillen pair L : U+C À M : R and a natural weak equivalence L ◦ r+

∼−→
γ. Moreover, the category of all such factorizations—as defined in [3, p. 147]—is
contractible.

Proof. Let D′ be the category of factorizations of γ through U+C and let D be the
category of factorizations of γ through UC. It is easy to write down an equivalence
of categories between D and D′, using Proposition 5.2 in the case S = ∅. It was
shown in [3, Proposition 2.3] that D is contractible, so D′ is as well. ¤

For future reference, note that it follows from the above proof that to give a
factorization of γ through U+C is the same as giving a cosimplicial resolution on γ,
just as in [3, Proposition 3.4].
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Proposition 5.4. Suppose L : U+C/S → N is a Quillen map, and P : M ∼−→ N

is a Quillen equivalence between pointed model categories. Then there is a Quillen
map L′ : U+C/S →M such that P ◦ L′ is Quillen homotopic to L. Moreover, if M

is simplicial then L′ can be chosen to be simplicial.

Proof. The proof of the first statement is exactly the same as [3, Proposition 5.10].
The second statement was never made explicit in [3], but follows at once from
analyzing the proof of [3, Proposition 2.3]. To define L′ one first gets a map f : C→
M with values in the cofibrant objects, and then L′ can be taken to be the unique
colimit-preserving functor characterized by L′(rA⊗K) = f(A)⊗K, where A ∈ C

and K ∈ sSet. This is clearly a simplicial functor. ¤

Proposition 5.5. Let M be a pointed, presentable model category.

(a) There is a Quillen equivalence U+C/S →M for some small category C and
some set of maps S in U+C.

(b) Let N be a pointed model category, and let M ∼←−M1
∼−→ · · · ∼←−Mn

∼−→ N

be a zig-zag of Quillen equivalences (where the intermediate model categories
are not necessarily pointed). Then there is a simple zig-zag of Quillen equiv-
alences

M ∼←− U+C/S ∼−→ N

for some C and S.
(c) In the context of (b), the simple zig-zag can be chosen so that the derived

equivalence Ho (M) ' Ho (N) is isomorphic to the derived equivalence spec-
ified by the original zig-zag.

In part (b), note that we have replaced a zig-zag of Quillen equivalences—in which
the intermediate steps are not necessarily pointed—by one in which the intermediate
steps are pointed. For (c), recall that two pairs of adjoint functors L : C À D : R
and L′ : C À D : R′ are said to be isomorphic if there is a natural isomorphism
LX ∼= L′X for all X ∈ C (equivalently, if there is a natural isomorphism RY ∼= R′Y
for all Y ∈ D).

Proof. Let M be a pointed, presentable model category. Then there is a Quillen
equivalence UC/S →M for some C and S. Proposition 5.2 shows there is an induced
Quillen equivalence U+C/(S+)→M. This proves (a).

Parts (b) and (c) follow by applying Proposition 5.4. ¤

5.3. Application to stabilization
Suppose M is a stable model category, and we happen to have a Quillen

equivalence U+C/S →M. It follows in particular that U+C/S is also stable.
Now, U+C/S is a simplicial, left proper, cellular model category. So, using [9,
Sections 7 and 8] we can form the corresponding category of symmetric spectra
SpΣ(U+C/S) (with its stable model structure). This comes with a Quillen map
U+C/S → SpΣ(U+C/S), and since U+C is stable this map is a Quillen equivalence
[9, Theorem 9.1]. Finally, the category U+C/S satisfies the hypotheses of Hovey [9,



“v8n1a1” — 2005/11/8 — 12:00 — page 17 — #17
i

i

i

i

i

i

i

i

Homology, Homotopy and Applications, vol. 8(1), 2006 17

Theorem 8.11], and so SpΣ(U+C/S) is a spectral model category (in the sense of
Section A.3). We have just proven part (a) of the following.

Proposition 5.6. Let M be a stable model category, and suppose U+C/S →M is
a Quillen equivalence.

(a) There is a zig-zag of Quillen equivalences M ∼←− U+C/S ∼−→ SpΣ(U+C/S).
(b) If U+D/T →M is another Quillen equivalence, there is a diagram of Quillen

equivalences

M U+C/Soo //

²²

SpΣ(U+C/S)

²²
U+D/T

bbEEEEEEEEE
// SpΣ(U+D/T )

where the left vertical map is a simplicial adjunction, the right vertical map
is a spectral adjunction, the square commutes on-the-nose, and the triangle
commutes up to a Quillen homotopy.

Proof. We have left only to prove (b). Given Quillen equivalences L1 : U+C/ S →
M and L2 : U+D/T →M, it follows from Proposition 5.6 that there is a Quillen
map F : U+C/S → U+D/T making the triangle commute up to Quillen homotopy.
Since U+D/T is a simplicial model category, we can choose F to be simplicial. But,
this ensures that SpΣ(U+C/S)→ SpΣ(U+D/T ) is spectral. ¤

6. The main results

In this section we attach to any stable, presentable model category M a model
enrichment τM over symmetric spectra. This involves choices, but these choices
only affect the end result up to quasi-equivalence. We also show that a zig-zag of
Quillen equivalences between model categories M and N must carry τM to τN. So
the canonical enrichments τ give rise to invariants of model categories up to Quillen
equivalence. Finally, we specialize all these results to establish basic properties of
homotopy endomorphism spectra.

The present results are all direct consequences of work from previous sections.
Our only job is to tie everything together.

6.1. Construction of spectral enrichments
Let M be a stable, presentable model category. By Propositions 5.5 and 5.6(a)

there is a zig-zag of Quillen equivalences

M
L←− U+C/S

F−→ SpΣ (U+C/S) .

The right-most model category comes equipped with a spectral enrichment σ. We
define τM ∈ ME0(M, SpΣ) to be L∗(F ∗σ).
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Proposition 6.1. The element τM ∈ ME0(M, SpΣ) does not depend on the choice
of C, S, or the Quillen equivalence U+C/S ∼−→M.

Proof. Applying ME0(−,SpΣ) to the diagram from Proposition 5.6(b) gives
a commutative diagram of bijections, by Proposition 3.14. The result follows
immediately from chasing around this diagram and using Proposition 3.14(e). ¤

Choose a homotopy invariant enrichment quasi-equivalent to τM. By
Corollary 3.10 this induces an enrichment of Ho (M) by Ho (SpΣ), and different
choices lead to equivalent enrichments. This proves Corollary 1.2.

We now turn our attention to functoriality:

Proposition 6.2. Suppose L : M→ N is a Quillen equivalence between stable,
presentable model categories. Then L∗(τN) = τM and L∗(τM) = τN.

Proof. Choose a Quillen equivalence U+C/S →M, by Proposition 5.5(a). We then
have a diagram of Quillen equivalences

SpΣ (U+C/S)←− U+C/S −→M −→ N.

Applying ME0(−, SpΣ) to the diagram yields a diagram of bijections by
Proposition 3.14. The result follows from chasing around this diagram. ¤

Remark 6.3. The above result is more useful in light of Proposition 5.5(b). Suppose
M and N are stable, presentable model categories, which are Quillen equivalent.
This includes the possibility that the Quillen equivalence occurs through a zig-zag,
where there are no assumptions on the intermediate steps. So the above result
does not apply directly, as the intermediate steps may not be pointed (and hence,
not “stable”). However, Proposition 5.5(b) shows that any such zig-zag may be
replaced by a simple zig-zag where the intermediate step is pointed, and hence is
also stable (as it is Quillen equivalent to a stable model category). One example of
this technique is given in the proof of Theorem 1.4 below.

Proposition 6.4. Assume that M is stable, presentable, and a spectral model
category. Then τM is quasi-equivalent to the enrichment σ provided by the spectral
structure.

Proof. As M is spectral, it is in particular simplicial (cf. Section A.3). So, one may
choose a Quillen equivalence L : U+C/S →M consisting of simplicial functors (see
discussion in the proof of Proposition 5.6). We have the Quillen maps

U+C/S //

²²

M

SpΣ(U+C/S)
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We claim there is a spectral Quillen equivalence SpΣ(U+C/S)→M making the tri-
angle commute. This immediately implies the result we want: applying ME0(−, SpΣ)
to the triangle gives a commutative diagram of bijections by Proposition 3.14(d),
and the diagonal map sends the canonical spectral enrichment of SpΣ(U+C/S) to
the given spectral enrichment of M by Proposition 3.14(e).

We are reduced to constructing the spectral Quillen map SpΣ(U+C/S)→M.
Note that objects in SpΣ(U+C) may be regarded as presheaves of symmetric spec-
tra on C. That is, we are looking at the functor category Func(Cop, SpΣ). By
Proposition A.9, the composite C→ U+C→M induces a spectral Quillen map
Re: Func(Cop, SpΣ) À M : Sing, where the functor category is given the object
wise model structure. Said differently, we have a Quillen map Re: SpΣ(U+C)→M.
Note that the composite of right adjoints M→ SpΣ(U+C)→ U+C is indeed the
right adjoint of L, and so the composite of left adjoints is isomorphic to L.

We need to check that (Re, Sing) give a Quillen map SpΣ(U+C/S)→M. By
Proposition B.1, the domain model category is identical to (SpΣU+C)/Sstab (nota-
tion as in Appendix B). But to show a Quillen map SpΣ(U+C)→M descends to
(SpΣU+C)/Sstab, it is sufficient to check that the left adjoint sends elements of Sstab

to weak equivalences in M.
A typical element of Sstab is a map Fi(A)→ Fi(B) where A→ B is in S (Fi(−)

is defined in Appendix B). Certainly Re sends F0A→ F0B to a weak equivalence,
since Re ◦F0 is the map L : U+C→M and this map sends elements of S to weak
equivalences by construction. For i ≥ 1, note that the ith suspension of FiA→ FiB
is F0A→ F0B. As M is a stable model category, the fact that Re sends F0A→
F0B to a weak equivalence therefore immediately implies that it does the same for
FiA→ FiB.

At this point we have constructed our Quillen map Re: SpΣ(U+C/S)→M, so
we are done. ¤

6.2. Homotopy endomorphism spectra
Let M be a stable, presentable model category, and let X ∈M be a cofibrant–

fibrant object. Consider the ring spectrum τM(X, X). By Corollary 3.6, the iso-
morphism class of this ring spectrum in Ho(RingSpectra) only depends on the
quasi-equivalence class of τM.

Now let W be an arbitrary object in M, and let X1 and X2 be two cofibrant–
fibrant objects weakly equivalent to W . Then there exists a weak equivalence
f : X1 → X2. Let I be the category with one object and an identity map, and
consider the two functors I→M whose images are X1 and X2, respectively.
Applying Corollary 3.6 to this situation, we find that τM(X1, X1) and τM(X2, X2)
are weakly equivalent ring spectra. So, the corresponding isomorphism class in
Ho(RingSpectra) is a well-defined invariant of W . We will write hEnd(W ) for any
ring spectrum in this isomorphism class.

The two main results about homotopy endomorphism ring spectra were stated
as Theorem 1.4 and Proposition 1.5. We now give the proofs.

Proof of Theorem 1.4. If two stable, presentable model categories M and N are
Quillen equivalent through a zig-zag, then by Proposition 5.5(b and c), there is
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a simple zig-zag M ∼←− U+C/S ∼−→ N inducing an isomorphic derived equivalence
of the homotopy categories. Now we apply Proposition 6.1 (twice) to connect τM

to τN. Finally, the required equivalence of homotopy endomorphism ring spectra
follows from Corollary 3.6. ¤

Proof of Proposition 1.5. This follows directly from Corollary 3.6 and
Proposition 6.1. ¤

7. A leftover proof

In this section we complete the proof of Proposition 3.5. Essentially, this amounts
to just explaining why the proof has already been given in [14, Lemma A.2.3]. The
differences between our situation and that of [14] are (1) our indexing categories are
not necessarily discrete (i.e., they have maps other than identities), and (2) we are
dealing with a general symmetric monoidal model category rather than symmetric
spectra. It turns out that neither difference is significant.

7.1. Modules
Let V be a symmetric monoidal category. Let C be a category, and let σ be an

enrichment of C by V. A left σ-module is a collection of objects M(c) ∈ V (for each
c ∈ C) together with maps σ(a, b)⊗M(a)→M(b) such that the following diagrams
commute:

σ(b, c)⊗ σ(a, b)⊗M(a) //

²²

σ(b, c)⊗M(b)

²²

S ⊗M(a) //

''OOOOOOOOOOO
σ(a, a)⊗M(a)

²²
σ(a, c)⊗M(a) // M(c) M(a)

As for the case of bimodules (see Section 2.2), M inherits a natural structure of a
functor C→ V. (An SC-module is precisely a functor M : C→ V, and so the map
SC → σ gives every left σ-module a structure of functor by restriction.)

Remark 7.1. A more concise way to phrase the above definition is to say that
a left σ-module is a V-functor from the V-enriched category C to the V-enriched
category V.

We now record several basic facts about modules and functors. To begin with,
one can check that colimits and limits in the category of σ-modules are the same
as those in the category of functors Func(C,V).

For each c ∈ C, note that the functor σ(c,−) : C→ V has an obvious structure
of left σ-module. It is the “free” module determined by c. For A ∈ V we write
σ(c,−)⊗A for the module a 7→ σ(c, a)⊗A.

The canonical map SC → σ induces a forgetful functor from σ-modules to SC-
modules, which is readily checked to have a left adjoint: we will call this adjoint
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σ ⊗ (−). Let T : (SC −mod)→ (SC −mod) be the resulting cotriple. It is useful to
note that if M : C→ V is a functor then σ ⊗M is the co-equalizer of

∐

a→b

σ(b,−)⊗M(a) ⇒
∐
a

σ(a,−)⊗M(a)

(the co-equalizer can be interpreted either in the category of σ-modules or the
category of functors, as they coincide).

Given two functors M, N : C→ V, one can define F (M,N) ∈ V as the equalizer
of

∏
a V(M(a), N(a)) ⇒

∏
a→b V(M(a), N(b)). Together with the objectwise

definitions of the tensor and cotensor, this makes Func(C, V) into a closed V-module
category (see Appendix A for terminology).

If M : C→ V is a functor and X ∈ V, one notes that there is a canonical isomor-
phism T (M ⊗X) ∼= (TM)⊗X; this follows from the explicit description of σ ⊗ (−)
given above. The map of functors M ⊗ F (M,N)→ N therefore gives rise to a map
TM ⊗ F (M, N)→ TN , or a map ηM,N : F (M,N)→ F (TM, TN) by adjointness.

If M and N are σ-modules, then they come equipped with maps of functors
TM →M and TN → N . One defines Fσ(M, N) ∈ V as the equalizer of the two
obvious maps F (M, N) ⇒ F (TM,N) (to define one of the maps one uses ηM,N ).
With this definition—as well as the objectwise definitions for the tensor and coten-
sor, the category of σ-modules becomes a closed V-module category. The adjunction
(SC −mod) À (σ −mod) is a V-adjunction. Using this together with the obser-
vation that σ(a,−) = σ ⊗ SC(a,−), one sees that there are natural isomorphisms
Fσ(σ(a,−),M) ∼= M(a).

Proposition 7.2. Assume C is small and V is a combinatorial, symmetric
monoidal model category satisfying the monoid axiom. Let σ be an enrichment of
M by V. Then there is a cofibrantly-generated model structure on the category of
left σ-modules, in which a map M →M ′ is a weak equivalence or fibration precisely
when M(a)→M ′(a) is a weak equivalence or fibration for every a ∈ C. This makes
the category of left σ-modules into a V-model category. If the unit S ∈ V is cofibrant,
then the free modules σ(a,−) are cofibrant.

Proof. Take the generating cofibrations (respectively trivial cofibrations) to be
maps σ(a,−)⊗A→ σ(a,−)⊗B where A→ B is a generating cofibration (respec-
tively trivial cofibration) of V and a ∈ C is any object. Checking that this gives
rise to a cofibrantly-generated model structure is a routine application of [8,
Theorem 11.3.1]. The other statements are routine verifications as well. See also
[14, Theorem A.1.1]. ¤

Remark 7.3. Of course everything above also works for right σ-modules.

7.2. Bimodules
Suppose σ is an enrichment of C by V, and τ is an enrichment of D by V. Define

σ ⊗ τ to be the enrichment on C×D given by (σ ⊗ τ)((c1, d1), (c2, d2)) = σ(c1, c2)⊗
τ(d1, d2). Define σop to be the enrichment of Cop given by σop(a, b) = σ(b, a), with
the obvious composition pairing (using the twist map). Finally, define a σ − τ
bimodule to be a left τop ⊗ σ-module.
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Remark 7.4. Upon unraveling the above definition, the reader will find that it is
equivalent with the more naive (and concrete) version given in Section 3 for the
case C = D. The notational conventions of that naive definition dictated the use of
τop ⊗ σ rather than σ ⊗ τop in the above definition.

It follows from Proposition 7.2 that the category of σ − τ bimodules has a model
structure in which weak equivalences and fibrations are determined objectwise.

Note that if M is a σ − τ bimodule, then for any a ∈ C the functor M(a,−) is a
left σ-module and the functor M(−, a) is a right τ -module.

7.3. Main proof
Exactly following [14, Lemma A.2.3], we can now conclude the following.

Proof of Proposition 3.5. We will sketch the proof for the reader’s convenience.
Suppose σ and τ are model enrichments of M by V, defined over some small cate-
gory I consisting of cofibrant–fibrant objects. Assume there is a quasi-equivalence
between them given by the pointed bimodule M . If the composites σ(a, b)⊗ S →
σ(a, b)⊗M(a, a)→M(a, b) are all trivial fibrations (or if the corresponding maps
τ(a, b)→M(a, b) are all trivial fibrations) then the proof is exactly as in [loc. cit].

For the general case, we first replace M with a fibrant model in the category
of σ − τ bimodules over I; this makes M objectwise fibrant. For each a ∈ I, the
identity map S →M(a, a) gives a map of right τ -modules Fa = τ(−, a)→M(−, a).
We apply our functorial factorization in the model category of right τ -modules
to obtain Fa ½ Na

∼−³ M(−, a). As the factorization is functorial, for every map
a→ b in I there is an induced diagram of right τ -modules

Fa
// //

²²

Na
∼ // //

²²

M(−, a)

²²
Fb

// // Nb
∼ // // M(−, b)

Note that each Na is both cofibrant and fibrant as a τ -module: the fibrancy is
immediate, but the cofibrancy uses that Fa is cofibrant (which in turn depends
on the unit S ∈ V being cofibrant). Let E be the model enrichment of I given by
E(a, b) = Fτ (Na, Nb).

Define U to be the σ − E bimodule U(a, b) = Fτ (Na,M(−, b)) and define W to
be the E− τ bimodule given by W (a, b) = Fτ (Fa, Nb). The fact that W is a right
τ -module uses the existence of maps τ(i, j)→ Fτ (Fi, Fj), which is easily established.
One sees that U and W are naturally pointed, and give quasi-equivalences between
σ and E and between E and τ , respectively. Moreover, we are now in the case
handled by the first paragraph of this proof, because for U and W the appropriate
maps are trivial fibrations. So we get a zig-zag of four direct equivalences between
σ and τ . ¤

8. Addendum on module categories

This section should be considered as a small addendum to [14]. We assume
familiarity with the notation and terminology of that paper.
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In the paper [14], it is proven that a large class of stable model categories are
Quillen equivalent to categories of modules over a ringoid in symmetric spectra. See
[14, Theorems 3.1.1 and 3.3.3]. There it is assumed, however, that the stable model
categories are simplicial, cofibrantly-generated, and proper. It was pointed out by
Shipley that during the course of the present paper we have shown that some of
these hypotheses can be removed.

Let M be a stable, presentable model category and choose a particular model
enrichment in the quasi-equivalence class of τM. We will also denote this model
enrichment as τM, by abuse. If P is a set of objects in M then we write E(P) for
the spectral category whose objects are those of P and where the morphisms from
P to Q are τM(P, Q).

The following result is a generalization of [14, Theorem 3.3.1].

Theorem 8.1. Let M be a stable, presentable model category with a set of compact
generators. Then M is Quillen equivalent to the model category of E(P)-modules.

Proof. Choose a presentation L : U+C/S ∼−→M and consider the chain of Quillen
equivalences

M
L←− U+C/S

F−→ SpΣ (U+C/S) .

Let σ denote the spectral enrichment on the latter category, and for each P ∈ P let
P ′ denote a cofibrant–fibrant object in SpΣ(U+C/S) which corresponds to P under
the Quillen equivalences. Write E′(P) for the spectral category with object set P

whose morphisms from P to Q are σ(P ′, Q′).
Note that the objects P ′ form a set of compact generators for SpΣ(U+C/S), as

this property is preserved under Quillen equivalence. So by [14, Theorem 3.9.3],
the model category SpΣ(U+C/S) is Quillen equivalent to the model category of
E′(P)-modules. Therefore M is also Quillen equivalent to this category of modules.

Now, we have shown in Proposition 6.1 that τM is quasi-equivalent to L∗F ∗(σ).
Using this together with Corollary 3.6 (where I is the set P regarded as a category
with only identity maps) one sees that E(P) and E′(P) are connected by a zig-zag of
direct equivalences. Using [14, Theorem A.1.1(iii)], we have that the corresponding
model categories of modules are Quillen equivalent. ¤

Appendix A: D-model categories

In the body of the paper, we need to deal with spectral model categories. These
are model categories which are enriched, tensored, and cotensored over the model
category of symmetric spectra and where the analog of SM7 holds. In this appendix
we briefly review some very general material relevant to this situation. We assume
the reader already has some experience in this area (for instance, in the setting of
simplicial model categories), and for that reason only give a broad outline.

A.1. Basic definitions
Let D be a closed symmetric monoidal category. The “symmetric monoidal”

part says we are given a bifunctor ⊗, a unit object 1D, together with associativity,
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commutativity, and unital isomorphisms making certain diagrams commute (see
[10, Definitions 4.1.1 and 4.1.4] for a nice summary). The “closed” part says that
there is also a bifunctor (d, e) 7→ D(d, e) ∈ D together with a natural isomorphism

D(a,D(d, e)) ∼= D(a⊗ d, e).

Note that, in particular, this gives us isomorphisms D(1D,D(d, e)) ∼= D(1D ⊗
d, e) ∼= D(d, e).

We define a closed D-module category to be a category M equipped with
natural constructions, which assign to every X, Z ∈M and d ∈ D objects

X ⊗ d ∈M, F (d, Z) ∈M, and MD(X, Z) ∈ D.

One requires, first, that there are natural isomorphisms (X ⊗ d)⊗ e ∼= X ⊗ (d⊗ e)
and X ⊗ 1D

∼= X making certain diagrams commute (see [10, Definition 4.1.6]).
Note that one of these diagrams is a pentagon for four-fold associativity. We also
require natural isomorphisms [10, Definition 4.1.12]

M(X ⊗ d, Z) ∼= M(X,F (d, Z)) ∼= D(d, MD(X, Z)). (A1)

Remark A.1. Taking d = 1D, note that we obtain isomorphisms M(X, Z) ∼=
M(X ⊗ 1D, Z) ∼= D(1D, MD(X,Z)).

Proposition A.2. Suppose D is a symmetric monoidal category, and M is a
closed D-module category. Then one has canonical isomorphisms

MD(X ⊗ d, Z) ∼= MD(X,F (d, Z)) ∼= D(d, MD(X, Z))

of objects in D. Applying D(1D,−) to these isomorphisms yields the isomorphisms
in (A1).

Proof. The Yoneda Lemma says that two objects a, b ∈ D are isomorphic if and
only if there is a natural isomorphism D(e, a) ∼= D(e, b), for e ∈ D. The proof of the
proposition is straightforward using this idea. ¤

Proposition A.3. Suppose D is a symmetric monoidal category, and M is a
closed D-module category. Then there are “composition” maps

MD(Y, Z)⊗MD(X, Y )→MD(X, Z),

natural in X, Y , and Z. These maps satisfy associativity and unital conditions. The
induced map

D(1D,MD(Y,Z))×D(1D,MD(X, Y ))→ D(1D,MD(X, Z))

coincides with the composition in M under the isomorphisms from Remark A.1.

Proof. We will only construct the maps, leaving the other verifications to the
reader. The adjointness isomorphisms from equation (A1) give rise to natural maps
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X ⊗MD(X, Y )→ Y (adjoint to the identity MD(X, Y )→MD(X, Y )). There is a
corresponding map Y ⊗MD(Y, Z)→ Z. Now consider the composite

X ⊗ [MD(X, Y )⊗MD(Y,Z)] ∼= [X ⊗MD(X,Y )]⊗MD(Y, Z)
→ Y ⊗MD(Y, Z)→ Z.

Adjointness now gives MD(X, Y )⊗MD(Y, Z)→MD(X,Z), and finally, one uses
that D is symmetric monoidal. ¤

Remark A.4. The basic definition of a D-module category does not really need D

to be symmetric monoidal. In fact, in [10] this is not assumed. However, the above
propositions definitely need the symmetric hypothesis.

A symmetric monoidal model category consists of a closed symmetric monoidal
category M, together with a model structure on M, satisfying two conditions:

(1) the analog of SM7, as given in either [10, Definition 4.2.1] or [10,
Lemma 4.2.2(2)], and

(2) a unit condition given in [10, Definition 4.2.6(2)].

Finally, let D be a symmetric monoidal model category. A D-model category
is a model category M which is also a closed D-module category, and where the two
conditions from [10, Definition 4.2.18] hold: these are again the analog of SM7 and
a unit condition.

A.2. Lifting module structures
Suppose that C and D are symmetric monoidal model categories and that L : C À

D : R is a Quillen pair. One says this adjunction is strong symmetric monoidal
if there are isomorphisms L(1C) ∼= 1D and L(X ⊗ Y ) ∼= LX ⊗ LY compatible with
the associativity, commutativity, and unital isomorphisms in C and D.

Lemma A.5. Assume that L : C À D : R is a strong symmetric monoidal Quillen
adjunction. Let M be a D-model category. Then M also becomes a C-model category
by setting

X ⊗ c = X ⊗ L(c), FC(c, Y ) = F (Lc, Y ), and MC(X,Y ) = R
[
MD(X, Y )

]
.

Proof. Routine. ¤

A.3. Spectral model categories
Let SpΣ = SpΣ(sSet+) be the usual category of symmetric spectra [11]. This is

a symmetric monoidal model category. We will call an SpΣ-model category simply
a spectral model category.

Note that there are adjoint functors sSet+ À SpΣ where the left adjoint is K 7→
Σ∞(K) and the right adjoint is Ev0, the functor sending a spectrum to the space
in its 0th level. The functor Σ∞ is called F0 in [11]. These functors are strong
symmetric monoidal (see [11, Proposition 2.2.6]). Therefore any spectral model
category becomes an sSet+-model category in a natural way, via Lemma A.5.
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The adjoint functors sSet À sSet+ (which are also strong monoidal) in turn
show that any sSet+-model structure gives rise to an underlying simplicial model
structure.

A.4. Diagram categories
Let I be a small category. If D is cofibrantly-generated, then DI has a model

structure in which the weak equivalences and fibrations are defined objectwise. If
X ∈ DI and d ∈ D, define the two objects X ⊗ d and F (d,X) ∈ DI as follows:

X ⊗ d : i 7→ X(i)⊗ d, F (d,X) : i 7→ F (d,X(i)).

Also, if X, Z ∈ DI define DI
D(X, Z) ∈ D to be the equalizer of

∏

i

D(X(i), Z(i)) ⇒
∏

j→k

D(X(j), Z(k)).

Lemma A.6. Assume D is a cofibrantly-generated, symmetric monoidal model
category. With the above definitions, DI is a D-model category.

Proof. Straightforward. ¤

A.5. Adjunctions

Lemma A.7. Let M and N be closed D-module categories, and let L : M À N : R
be adjoint functors. The following are equivalent:

(a) There are natural isomorphisms ND(LX, Y ) ∼= MD(X, RY ) which after
applying D(1D,−) reduce to the adjunction N(LX, Y ) ∼= M(X, RY ).

(b) There are natural isomorphisms L(X ⊗ d) ∼= L(X)⊗ d which reduce to the
canonical isomorphism for d = 1D.

(c) There are natural isomorphisms R(F (d, Z)) ∼= F (d,RZ) which reduce to the
canonical isomorphism when d = 1D.

Proof. Left to the reader. ¤

In the situation of the above lemma, we will say that the adjoint pair is a weak
D-adjunction between M and N. If in addition the isomorphisms in (b) are com-
patible with the associativity isomorphisms in M and N (meaning that an easily-
obtained pentagonal diagram commutes), one says that (L,R) is a D-adjunction—
see also [10, Definition 4.1.7].

When M and N are D-model categories, M→ N is a D-Quillen map (respec-
tively D-Quillen equivalence) if it is both a Quillen map (respectively Quillen
equivalence) and a D-adjunction. In this paper we mostly need simplicial and spec-
tral Quillen functors, i.e. the cases where D = sSet or D = SpΣ.

Remark A.8. Note that in the situation of a weak D-adjunction one may form the
following composite, for any A,B ∈ N:

ND(A,B)→ ND(LRA,B)
∼=−→MD(RA, RB).
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Similarly, one has a natural map MD(X, Y )→ ND(LX, LY ) for X, Y ∈M. It
is a routine exercise to check that the adjunction isomorphism ND(LA, X)

∼=−→
MD(A,RX) is equal to the composite

ND(LA,X)→ ND(RLA, RX)→ ND(A,RX),

just as for ordinary adjunctions.

Proposition A.9. If (L,R) is a D-adjunction then the diagram

ND(B, C)⊗ND(A,B)

²²

// ND(A, C)

²²
MD(RB, RC)⊗MD(RA,RB) // MD(RA,RC)

commutes.

Proof. This is a routine but annoying exercise in categorical diagramming. To
save the reader some trouble we will give a brief sketch. Suppose given maps d→
ND(B, C) and e→ ND(A,B). By adjointness these correspond to maps B ⊗ d→ C
and A⊗ e→ B. Note that these induce maps f : RB ⊗ d→ RC and g : RA⊗ e→
RB; the first, for instance, is the composite

RB ⊗ d→ RL[RB ⊗ d]
γ−→ R[LRB ⊗ d]→ R[B ⊗ d]→ RC.

Here (and below), γ denotes our prescribed isomorphisms L(X ⊗ c)
∼=−→ LX ⊗ c.

Starting with d⊗ e→ ND(B, C)⊗ND(A,B) and going the two ways around the
above square gives two maps d⊗ e→MD(RA,RC), or two maps RA⊗ (d⊗ e)→
RC. The adjoints of the latter maps are the two ways of going around the outer
edge of the following diagram:

L[RA⊗ (d⊗ e)]
γ //

∼=
²²

LRA⊗ (d⊗ e)

∼=
²²

// A⊗ (d⊗ e)

∼=
²²

L[RA⊗ (e⊗ d)]
γ //

∼=

²²

LRA⊗ (e⊗ d) //

∼=
²²

A⊗ (e⊗ d)

∼=
²²

(LRA⊗ e)⊗ d // (A⊗ e)⊗ d

²²
L[(RA⊗ e)⊗ d]

γ //

g ))RRRRRRRRRRRRR
L(RA⊗ e)⊗ d

γ
66llllllllllll

g // LRB ⊗ d // B ⊗ d

²²
L[RB ⊗ d]

f
//

γ
66lllllllllllll
LRC // C

The maps in the diagram labeled f and g are induced by f and g in the obvious way.
We are reduced to showing that the above diagram commutes. Inside, one finds

four “squares” and three “pentagons”. The squares obviously commute. The largest
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pentagon commutes because of the assumption that (L,R) is a D-adjunction—this
is the condition that the maps γ respect the associativity isomorphisms. The two
smaller pentagons are essentially the same as each other: the top one just has an
extra (−)⊗ d on it. The fact that they commute follows readily from the definition
of f and g, using standard properties of adjunctions. ¤

Let D be a cofibrantly-generated, symmetric monoidal model category, and let
M be a D-model category. Suppose I is a small category and γ : I →M is a functor.
Define Sing : M→ Func(Iop, D) by sending X ∈M to the functor i 7→MD(γ(i), X).
This has a left adjoint Re: Func(Iop,D)→M, which sends a functor A to the co-
equalizer ∐

j→k

γ(j)⊗A(k) ⇒
∐

i

γ(i)⊗A(i).

Proposition A.10. The adjoint pair Re: Func(Iop, D) À M : Sing is a
D-adjunction. If the image of γ : I →M lies in the cofibrant objects, then Re is
a D-Quillen map, where the functor category is given the model structure of (A.6).

Proof. The first statement is proven in two steps. First, one readily checks con-
dition (c) in Lemma A.7 to obtain a weak D-adjunction. The second step is to
verify that a certain pentagon commutes, expressing the two ways of relating
Sing[F (d, F (e, Z))] to F (d, F (e,Sing Z)). The commutativity of this diagram fol-
lows from that of a similar diagram in M, dual to the diagram expressing four-
fold associativity of the tensor—see the definition of closed D-module category in
Section A.1.

The second statement of the proposition is immediate, as Sing clearly preserves
fibrations and trivial fibrations. ¤

Appendix B: Stabilization and localization

Let M be an sSet+-model category which is pointed, left proper, and cellular.
Under these conditions one may form the stabilized model category SpΣM [9], and
this is again a left proper and cellular model category. Recall that there are Quillen
pairs Fi : M À SpΣM : Evi, for every i ≥ 0 (F0X is also written Σ∞X, and FiX is
morally the ith desuspension of F0X).

If S is a set of maps between cofibrant objects in M, let

Sstab = {Fi(A)→ Fi(B) |A→ B ∈ S and i ≥ 0}.
Our goal is the following basic result about commuting stabilization and localization.

Proposition B.1. In the above situation, the model categories SpΣ(M/S)
and (SpΣM)/Sstab are identical.

Proof. The stable model structure on SpΣM is formed in two steps. One starts with
the projective model structure SpΣ

projM where fibrations and weak equivalences are
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level-wise (and cofibrations are forced). Then one localizes this projective structure
at a specific set of maps given in [9, Definition 8.7]. Call this set TM. It is important
that TM depends only on the generating cofibrations of M.

So SpΣ(M/S) is the localization of SpΣ
proj(M/S) at the set TM/S . Likewise,

(SpΣM)/Sstab is the localization of (SpΣ
projM)/Sstab at the set of maps TM. But

as the generating cofibrations of M and M/S are the same, we have TM = TM/S . In
this way we have reduced the proposition to the statement that the model structures
SpΣ

proj(M/S) and (SpΣ
projM)/Sstab are identical.

The trivial fibrations in a model category and its Bousfield localization are always
the same. This shows that the trivial fibrations in the following categories are the
same:

SpΣ
proj(M/S), SpΣ

projM, and (SpΣ
projM)/Sstab.

An immediate corollary is that the cofibrations are also the same in these three
model categories. Note also that these are all simplicial model categories, with
simplicial structure induced by that on M—and in particular that the simplicial
structures are identical.

Since the trivial fibrations in SpΣ
proj(M/S) and (SpΣ

projM)/Sstab are the same,
it will suffice to show that trivial cofibrations are also the same. But a cofibration
A ½ B is trivial precisely when the induced map on simplicial mapping spaces
Map(B, X)→ Map(A,X) is a weak equivalence for every fibrant object X. Since
the model categories have the same simplicial structures, we have reduced to showing
that they have the same class of fibrant objects.

A fibrant object in SpΣ
proj(M/S) is a spectrum E such that each Ei is fibrant in

M/S; this means Ei is fibrant in M and for every A→ B in S the induced map
Map(B, Ei)→ Map(A,Ei) is a weak equivalence (recall that S consists of maps
between cofibrant objects).

A fibrant object in (SpΣ
projM)/Sstab is a fibrant spectrum E ∈ SpΣ

projM (mean-
ing only that each Ei is fibrant in M) which is Sstab-local. The latter condition
means that for every A→ B in S and for every i, the map Map(Fi(B), E)→
Map(Fi(A), E) is a weak equivalence. But the adjoint pair (Fi, Evi) is a simpli-
cial adjunction: one readily checks condition (b) or (c) of Lemma A.7. So we have
Map(Fi(B), E) ∼= Map(B, Evi(E)) and the same for A. This verifies that the two
classes of fibrant objects are the same, and completes the proof. ¤

Acknowledgments

Readers should note that the present paper owes a large debt to both [9] and
[14]. I am also grateful to Brooke Shipley for several conversations.

References

[1] J. Adamek, J. Rosicky, Locally Presentable and Accessible Categories,
London Math. Society Lecture Note Series, Vol. 189, Cambridge University
Press, 1994.



“v8n1a1” — 2005/11/8 — 12:00 — page 30 — #30
i

i

i

i

i

i

i

i

Homology, Homotopy and Applications, vol. 8(1), 2006 30

[2] F. Borceux, Handbook of Categorical Algebra 2: Categories and Structures,
Cambridge University Press, 1994.

[3] D. Dugger, Universal homotopy theories, Adv. Math. 164(1) (2001),
144–176.

[4] D. Dugger, Combinatorial model categories have presentations, Adv. Math.
164(1) (2001), 177-201.

[5] D. Dugger, B. Shipley, Topological equivalences for differential graded
algebras, preprint, 2005.

[6] W.G. Dwyer, D.M. Kan, Function complexes in homotopical algebra,
Topology 19 (1980), 427–440.

[7] A.D. Elmendorf, I. Kriz, M.A. Mandell, J.P. May, Rings, modules, and alge-
bras in stable homotopy theory. With an appendix by M. Cole. Mathematical
Surveys and Monographs, Vol. 47. American Mathematical Society, Provi-
dence, RI, 1997.

[8] P. Hirschhorn, Model categories and their localizations, Mathematical Surveys
and Monographs, Vol. 99, Amer. Math. Soc., 2003.

[9] M. Hovey, Spectra and symmetric spectra in general model categories, J. Pure
Appl. Algebra 165(1) (2001), 63–127.

[10] M. Hovey, Model categories, Mathematical Surveys and Monographs, Vol. 63,
Amer. Math. Soc. 1999.

[11] M. Hovey, B. Shipley, J. Smith, Symmetric spectra, J. Am. Math. Soc. 13(1)
(1999), 149–208.

[12] S. Schwede, S-modules and symmetric spectra, Math. Ann. 319(3) (2001),
517–532.

[13] S. Schwede, B. Shipley, Algebras and modules in monoidal model categories,
Proc. Lond. Math. Soc. 80 (2000), 491–511.

[14] S. Schwede, B. Shipley, Stable model categories are categories of modules,
Topology 42 (2003), 103–153.

Daniel Dugger ddugger@math.uoregon.edu

Department of Mathematics
University of Oregon
Eugene, Oregon 97403
USA

This article is available at http://intlpress.com/HHA/v8/n1/a1/


