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Abstract
In a paper that has attracted little notice, Priddy showed

that the Brown-Peterson spectrum at a prime p can be con-
structed from the p-local sphere spectrum S by successively
killing its odd dimensional homotopy groups. This seems to be
an isolated curiosity, but it is not. For any space or spectrum
Y that is p-local and (n0−1)-connected and has πn0(Y ) cyclic,
there is a p-local, (n0 − 1)-connected “nuclear” CW complex
or CW spectrum X and a map f : X → Y that induces an
isomorphism on πn0 and a monomorphism on all homotopy
groups. Nuclear complexes are atomic: a self-map that induces
an isomorphism on πn0 must be an equivalence. The construc-
tion of X from Y is neither functorial nor even unique up to
equivalence, but it is there. Applied to the localization of MU
at p, the construction yields BP .

In 1999, the third author gave an April Fool’s talk on how to prove that BP is an
E∞ ring spectrum or, in modern language, a commutative S-algebra. As explained
in [20], he gave a quite different April Fool’s talk on the same subject two years
earlier. His new idea was to exploit the remarkable paper of Stewart Priddy [23],
in which Priddy constructed BP by killing the odd degree homotopy groups of the
sphere spectrum. The hope was that by mimicking Priddy’s construction in the
category of commutative S-algebras, one might arrive at a construction of BP as
a commutative S-algebra. As the first two authors discovered, that argument fails.
However, the ideas are still interesting. As we shall explain, Priddy’s construction of
BP is not an accidental fluke but rather a special case of a very general construction.
The elementary space and spectrum level construction is given in Section 1. The
more sophisticated E∞ ring spectrum analogue and its specialization to MU are
discussed in Section 2.
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1. Cores of spaces and spectra

To set context, we begin by recalling some standard properties of spaces and
spectra that still have not been fully explored. The following successively stronger
conditions are studied in Wilkerson [24]. We assume that all spaces and spectra are
p-local for a fixed prime p and of the homotopy types of p-local CW objects of finite
type. Thus we require that each πn(Y ) be a finitely generated Z(p)-module. Spaces
are to be based and simply connected and spectra are to be bounded below. Unless
otherwise specified, cohomology is to be taken with mod p coefficients.

Definition 1.1. Let X be a space or a spectrum, as above.

(i) X is indecomposable if X admits no non-trivial product decomposition.

(ii) X is irreducible if it admits no non-trivial retracts.

(iii) X is H∗-prime if, for a map f : X −→ X, either f∗ : H∗(X) −→ H∗(X) is an
isomorphism or f∗ : Hq(X) −→ Hq(X) is nilpotent for each q > 0.

The term “indecomposable” is suggested by the analogy with module theory.
Clearly an H∗-prime space is irreducible and an irreducible space is indecompos-
able. Additional hypotheses on X which ensure that irreducible implies H∗-prime
are given in [24, 3.4, 3.5]. Since retracts of spectra split in the stable category,
where finite wedges are equivalent to finite products, indecomposable spectra are
irreducible. An elementary space level analogue is that if A is a retract of a co-H-
space X, with A −→ X a cofibration, then X is equivalent to A ∨X/A.

Definition 1.2. Assume further that X is (n0 − 1)-connected, where we assume
henceforward that n0 > 2 in the case of spaces, and that πn0(X) is a cyclic module
over Z(p).

(i) X is atomic if a map f : X −→ X that induces an isomorphism on πn0(X) is
an equivalence.

(ii) X is H∗-monogenic if H∗(X) is a cyclic algebra (in the case of spaces) or
module (in the case of spectra) over the Steenrod algebra.

If X is H∗-monogenic, then X is atomic. If X is atomic, then X is indecompos-
able. If the entire image of the Hurewicz homomorphism of X is concentrated in the
Hurewicz dimension, then X is atomic. We are interested in an especially rigid type
of atomic space or spectrum. In general, when studying atomic spaces or spectra,
it seems most natural to work with p-complete rather than just p-local objects, but
this paper is concerned with cellular constructions, which work more naturally in
the p-local context. Thus we consider p-local CW objects (spaces or spectra) of
finite type, and we agree to call such CW objects “complexes” throughout. Let Sn

denote a p-local n-sphere. Such spheres are the domains of the attaching maps of
our complexes. In the case of spaces, we require attaching maps to be based. Thus,
if X is a complex, then its (n + 1)-skeleton is the cofiber of a map jn : Jn −→ Xn,
where Jn is a wedge of finitely many copies of Sn.

Priddy used the term “irreducible” for a version of the following concept, but it
seems more sensible to reserve that term for the standard notion defined above.
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Definition 1.3. A complex is nuclear of Hurewicz dimension n0 if its (n0 − 1)-
skeleton is trivial, its n0-skeleton is Sn0 , it has finitely many n-cells for each n > n0,
and

Ker(jn∗ : πn(Jn) −→ πn(Xn)) ⊂ p · πn(Jn) (1.4)

for each n > n0. When n = n0, this implies that Jn0 is either ∗ or Sn0 . Thus the
attaching maps of X are detected by mod p homotopy. If η : Sn0 −→ X is the
inclusion, it induces an epimorphism η∗ : πn0(S

n0) −→ πn0(X).

The following result is based on a proposition of Priddy [23, §1].

Proposition 1.5. A nuclear complex is atomic.

Proof. Let X be nuclear and let f : X −→ X be a map that induces an isomorphism
on πn0 . We must prove that f is a homotopy equivalence. We may assume that f
is cellular, and we prove that f restricts to a homotopy equivalence Xn −→ Xn

for all n. Thus assume inductively that f : Xn −→ Xn is a homotopy equivalence.
This holds trivially if n < n0 and is easily checked if n = n0. We deduce that
f : Xn+1 −→ Xn+1 is a homotopy equivalence. Take homology with coefficients in
Z(p). It suffices to prove that

f∗ : Hq(Xn+1) −→ Hq(Xn+1)

is an isomorphism for q = n and q = n+1. It is easy to check (using the Freudenthal
suspension theorem) that f induces a map from the cofiber sequence

Jn −→ Xn −→ Xn+1

to itself. There results a commutative diagram

0 // Hn+1(Xn+1) / /

f∗
��

Hn(Jn) //

f∗
��

Hn(Xn) //

∼= f∗
� �

Hn(Xn+1) //

f∗
��

0

0 // Hn+1(Xn+1) / / Hn(Jn) // Hn(Xn) // Hn(Xn+1) // 0

with exact rows. By the five lemma, it suffices to prove that

f∗ : Hn(Jn) −→ Hn(Jn)

is an isomorphism. By the Hurewicz theorem, it suffices to prove that

f∗ : πn(Jn) −→ πn(Jn)

is an isomorphism. We have a commutative diagram with exact rows

πn(Jn) //

f∗
��

πn(Xn) //

∼= f∗
��

πn(Xn+1) //

f∗
��

0

πn(Jn) // πn(Xn) // πn(Xn+1) // 0.

The right arrow f∗ is an epimorphism by the diagram and is therefore an isomor-
phism since any epimorphic endomorphism of a finitely generated module over a
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PID is an isomorphism. It follows that the right arrow is an isomorphism in the
commutative diagram

0 // ker jn∗
i

/ /

� �

πn(Jn) //

f∗
� �

im jn∗ / /

∼=
��

0

0 // ker jn∗
i

/ / πn(Jn) // im jn∗ / / 0

In view of (1.4), the inclusion i becomes 0 after tensoring over Z/p. Therefore
f∗ ⊗ Z/p is an isomorphism. This implies that f∗ is an isomorphism.

The following construction is a generalization of Priddy’s construction [23] of
the Brown-Peterson spectrum by killing the odd dimensional homotopy groups of
the (p-local) sphere spectrum. He was motivated by the fact that the homotopy
groups of MU are concentrated in even degrees, but MU played no role in his
actual construction. We change the point of view. We consider a preassigned space
or spectrum Y under a sphere Sn0 , and we kill the homotopy groups of the kernel
of the given map Sn0 −→ Y .

Construction 1.6. Let Y be n0−1 connected with a given map η : Sn0 −→ Y . We
construct a nuclear complex X together with a map f : X −→ Y under Sn0 that
induces a monomorphism on all homotopy groups. We start with Xn0 = Sn0 and
fn0 = η : Xn0 −→ Y . Assume inductively that we have constructed Xn and a map
fn : Xn −→ Y that induces a monomorphism on homotopy groups in dimension
less than n. Choose a minimal (finite) set of generators for the kernel of fn∗ :
πn(Xn) −→ πn(Y ), let Jn be the wedge of a copy of Sn for each chosen generator,
and let jn : Jn −→ Xn represent the chosen generators. Define Xn+1 to be the
cofiber of jn. Choose a null homotopy hn of the composite fn ◦ jn and use it to
extend fn to a map fn+1 : Xn+1 −→ Y . The cofibration Xn −→ Xn+1 induces
an isomorphism on πi for i < n and an epimorphism on πn, and fn+1 induces a
monomorphism on πi for i 6 n. On passage to colimits, we obtain f : X −→ Y that
induces a monomorphism on all homotopy groups. The minimality of our chosen
sets of generators ensures that (1.4) holds.

Note that spheres are obviously nuclear and a two cell complex (with cells in dif-
ferent dimensions) is either nuclear or a wedge (trivial attaching map). The obvious
mechanism for a finite complex not to be nuclear is to have at least one cell with a
trivial attaching map. Some later cell might attach both to this one and to another
cell lower down. Construction 1.6 then gives a space with smaller homotopic groups
and no non-trivial attaching maps. For example, with Y = Sn0 × Sn, n > n0, the
construction just gives Sn0 .

The construction is most interesting when πn0(Y ) is cyclic. Here it shows that
Y has a core, in the sense of the following definition.

Definition 1.7. Let Y be n0 − 1 connected with πn0(Y ) cyclic. A core of Y is a
nuclear complex X together with a map f : X −→ Y that induces an isomorphism
on πn0 and a monomorphism on all homotopy groups.



Homology, Homotopy and Applications, vol. 3(2), 2001 345

The homotopy groups of the fiber Ff are then πq(Ff) ∼= πq+1(Y )/f∗πq+1(X),
and the Hurewicz dimension of Ff is at least n0. However, Ff need not have a
cyclic bottom homotopy group. For spectra, we can use cofibers rather than fibers,
and this leads to the following inductive construction.

Construction 1.8. Let Y = Y0 be an (n0−1)-connected spectrum. We construct a
nuclear decomposition of Y . Choose a (finite) minimal set of generators for πn0(Y ).
Construct a nuclear complex X0 and a map f0 : X0 −→ Y0 from a representative
map η : Sn0 −→ Y0 for one of these generators. Let Y1 be the cofiber of f0. The
remaining generators of πn0(Y ) give generators of πn0(Y1), and we can repeat the
construction starting with Y1. Iterating, we kill πn0 after finitely many steps, and we
then continue by killing πn0+1 similarly. Iterating, we obtain nuclear complexes Xi

and maps fi : Xi −→ Yi with cofibers Yi+1 such that each fi induces a monomor-
phism on all homotopy groups. The homotopy groups of Yi+1 are the quotients of
the homotopy groups of Yi by the images of the homotopy groups of Xi, and the
colimit of the sequence of cofibrations Yi −→ Yi+1 is trivial.

These constructions are related to early work of Freyd, Margolis, and Wilkerson
[16, 19, 24] on cancellation and unique decomposition of finite p-local or p-complete
spectra and spaces. In the case of spaces, little seems to be known about which
spaces admit factorizations as products of indecomposable spaces. The notion of
an atomic space, which is due to Cohen, arose in connection with the work of
Selick, Cohen, Neisendorfer, and Moore on exponents of homotopy groups. Some
of the relevant papers are [1, 6, 7, 8, 9, 11, 12, 13, 14, 25, 26]. These papers
identify many particular spaces that arise in applications as being atomic, examine
the relationship between atomicity of spaces and atomicity of their loop spaces,
and study the relationship of atomicity of spaces to the structure of their monoids
of self-maps. There are many open questions about these concepts. For example,
Cohen points out that it is not known whether or not the suspension spectra of
K(Z/2, n) or of the p− 1 wedge summands of ΣK(Z/p, n), p odd, are atomic. Our
constructions raise many new questions. Here are a few general ones.

Questions 1.9. Assume that Y is (n0 − 1)-conected and πn0(Y ) is cyclic.

(i) For which Y is the core of Y unique?
(ii) Can one classify the cores of Y ?
(ii) Can one explicitly identify cores of some interesting spaces?
(iii) Is every atomic space equivalent to a nuclear complex?

The ideas so far are due to the third author, who tried hard to prove that
the core of Y is unique. The first and second authors provided a spectrum level
counterexample: see Example 1.17 below. The point is that, in Construction 1.6,
there are many choices for the homotopy class of fn+1, which differ by elements in
Im([ΣJn, Y ] −→ [Xn+1, Y ]). Changing the choice can change the kernel that one is
killing at the next stage, and different choices can lead to very different cores.

We also expect the answer to question (iii) to be no: it seems likely that nuclear
complexes give a special class of atomic spaces. This is strongly suggested by the
following example, which is due to Fred Cohen.
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Example 1.10. A map f : X −→ Y between atomic spaces that induces an
isomorphism on the bottom homotopy group and a monomorphism on all homotopy
groups need not be an equivalence. For a counterexample, take Y = Ω2S5 at the
prime 2. Clearly π6(Y ) = π8(S5) ∼= Z/8 with generator ν. The class 4ν is detected
in cohomology by a map g : Y −→ K(Z/2, 6), so that g induces an epimorphism on
homotopy groups. Let f : X −→ Y be the homotopy fiber of g. Then f induces an
isomorphism on π3 and a monomorphism on all homotopy groups. The space Y is
atomic by [11]. Cohen [unpublished] has shown that X is also atomic.

Definition 1.11. Say that an atomic space Y is minimal if a map f : X −→ Y from
an atomic space X into Y that induces an isomorphism on the bottom homotopy
group and a monomorphism on all homotopy groups is necessarily an equivalence.

Clearly, if Y is a minimal atomic space, then a core f : X −→ Y is an equivalence.
Thus minimal atomic spaces are equivalent to nuclear complexes.

Question 1.12. Is every nuclear complex a minimal atomic space?

Assume that Y is (n0 − 1)-connected and that πn0(Y ) is cyclic in the following
two lemmas. The first is immediate from the definitions. The second shows that the
core of Y is unique under very restrictive hypotheses on Y .

Lemma 1.13. If g : Y −→ Z is a map that induces an isomorphism on πn0 and
a monomorphism on all homotopy groups and if f : X −→ Y is a core of Y , then
g ◦ f : X −→ Z is a core of Z.

Lemma 1.14. If the homotopy groups and p-local cohomology groups of Y are
concentrated in even degrees, then the core of Y is a retract of Y and is unique.

Proof. Let f : X −→ Y be a core. Then Hn+1(Y ; πn(X)) = 0 for all n since the
homotopy groups of X and the cohomology groups of Y are both concentrated in
even degrees. By obstruction theory, there is a map g : Y −→ X under Sn0 . The
composite g ◦f : X −→ X is an equivalence by Proposition 1.5. Thus X is a retract
of Y , hence also has p-local cohomology groups concentrated in even degrees. If
f ′ : X ′ −→ Y is another core, there are no obstructions to constructing maps
i : X −→ X ′ and j : X ′ −→ X under Sn0 . The composites j ◦ i and i ◦ j are
equivalences by Proposition 1.5, hence X and X ′ are equivalent.

Since BP is irreducible, these lemmas imply a version of Priddy’s result [23].

Proposition 1.15. BP is the core of MU .

Remark 1.16. In Lemma 1.14, we are only claiming that X is unique up to equiva-
lence, not that a map f : X −→ Y that identifies X as the core of Y is unique. For
example, BP is the core of BP ∧BP , as is displayed by both the left and the right
unit maps BP −→ BP ∧BP .

The conclusion of Lemma 1.14 fails if we drop the hypothesis about cohomology.
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Example 1.17. The units of BP and HZ(p) induce maps

BP //BP ∧HZ(p) HZ(p),oo

both of which induce monomorphisms on all homotopy groups and an isomorphism
on π0. Since BP and HZ(p) are each their own cores, it follows from Lemma 1.13
that both are cores of BP ∧HZ(p).

The following analogue of Proposition 1.15 must be true, but even this does not
seem to be quite trivial.

Conjecture 1.18. For p odd, BP 〈1〉 is the core of ku.

Certainly the first non-zero positive dimensional homotopy group of a core X is
π2p−2(X), since the first cell that we attach to S kills π2p−3(S).

Warning 1.19. We can construct cores similarly for integral or rational spaces or
spectra, rather than just for p-local ones. However, these constuctions will not be
compatible with the p-local construction. For example, the rational core of MU is
S rather than BP , and it is unclear what the integral core of MU is. Whatever it
is, it is unique by the proof of Lemma 1.14. Comparison with the versions of BP
and MU in Boardman’s papers [2, 3] may be of interest.

2. Cores of E∞ ring spectra
The ideas of the previous section can be adapted to a variety of frameworks in

which one has a notion of CW objects. We shall illustrate this by presenting the
construction used in the third author’s failed attempt to prove that BP is an E∞
ring spectrum. The construction surely gives rise to new E∞ ring spectra, but it is
hard to analyze what they look like. We work in the context of [15], replacing E∞
ring spectra by weakly equivalent commutative S-algebras. Again, we work p-locally.
Recall from [15, VIII.2.2] that localizations of commutative S-algebras are commu-
tative algebras over the p-local sphere spectrum, which we denote henceforward by
S. We let Sn be a p-local cofibrant n-sphere in the category of S-modules.

Everything done for spectra in §1 could equally well and perhaps more sensibly
have been done in the category M of S-modules. We let C denote the category of
commutative S-algebras; our constructions below have evident analogues for non-
commutative S-algebras (or A∞-ring spectra). Note that S is cofibrant in C but not
in M ; [15] explains how to deal with such homotopical details. We have a forgetful
functor C −→ M with left adjoint free functor P : M −→ C . Let ν : X −→ PX
denote the unit of the adjunction. Let CX denote the cone on an S-module X and
let ι : X −→ CX be the canonical inclusion.

Construction 2.1. Let R be a connective cofibrant commutative S-algebra whose
unit S −→ R induces an isomorphism on π0 and whose homotopy groups are finitely
generated Z(p)-modules. We construct a map of S-algebras g : Q −→ R, which we
call a core of R as a commutative S-algebra, by inductively killing homotopy groups.
Let Q0 = S and let g0 : Q0 −→ R be the unit of R. Assume that we have constructed
an S-algebra Qn and a map of S-algebras gn : Qn −→ R. Let Kn be the wedge of
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one copy of Sn for each element in a chosen (finite) minimal set of generators for
the kernel of gn∗ : πn(Qn) −→ πn(R). Let kn : Kn −→ Qn be a map of S-modules
that realizes these generators. By minimality,

Ker(kn∗ : πn(Kn) −→ πn(Qn)) ⊂ p · πn(Kn). (2.2)

The induced map k̃n : PKn −→ Qn of S-algebras gives Qn a structure of PKn-
algebra. Define

Qn+1 = PCKn ∧PKn Qn.

Thus, as in [15, II.3.7], Qn+1 is the pushout of the diagram

PCKn PKn
Pι

o o

k̃n
//Qn (2.3)

in the category of commutative S-algebras. By construction, gn ◦ kn is null homo-
topic. Choose a null homotopy hn : CKn −→ R and let h̃n : PCKn −→ R be
the induced map of S-algebras. By the universal property of pushouts, there re-
sults a map gn+1 : Qn+1 −→ R of S-algebras that restricts to gn on Qn. Define
Q = colim Qn and let g : Q −→ R be the map of S-algebras obtained by passage to
colimits from the gn. By construction, the induced map of homotopy groups

g∗ : π∗(Q) −→ π∗(R)

is a monomorphism of Z(p)-algebras.

Example 2.4. Arguing exactly as in Example 1.17, but with BP there replaced
by MU since we do not know that BP is a commutative S-algebra, we obtain an
explicit counterexample that shows that cores of commutative S-algebras are not
unique. At p = 2, we will identify a core of MU in Theorem 2.12 below.

Recall that colimits of sequences of S-algebras are computed as the colimits of
the underlying sequences of S-modules [15, VII.3.10]. By construction, Q is a cell
S-algebra and is thus cofibrant. The analogue of Lemma 1.13 is obvious.

Lemma 2.5. Let h : R −→ T be a map of commutative S-algebras such that
h∗ : π∗(R) −→ π∗(T ) is a monomorphism. If g : Q −→ R is a core of R, then h ◦ g
is a core of T .

If the homotopy groups of R are concentrated in even degrees, then so are the
homotopy groups of Q. In particular, we are then killing all of the odd dimensional
homotopy groups of S in our inductive construction of Q. In a small range of
dimensions the homotopy groups of Qn+1 agree with those of the cofiber of k̃n, as
we see, for example, from the spectral sequence

E2
p,q = Torπ∗(PKn)

p,q (π∗(S), π∗(Qn)) =⇒ πp+q(Qn+1) (2.6)

of [15, IV.4.1]. Cores of commutative S-algebras are nuclear, in the following sense.

Definition 2.7. A commutative S-algebra Q is nuclear if Q = colim Qn where
Q0 = S and, inductively, Qn+1 is the pushout of a diagram of the form (2.3), where
Kn is a wedge of finitely many copies of Sn and kn : Kn −→ Qn is a map of
S-modules that satisfies (2.2).
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Definition 2.8. A connective commutative S-algebra Q whose unit induces an
isomorphism on π0 is atomic if any map of S-algebras f : Q −→ Q is a weak
equivalence.

It is plausible but not obvious that the analogue of Proposition 1.5 holds.

Conjecture 2.9. A nuclear commutative S-algebra is atomic.

It might also seem plausible that a core of an S-algebra R is also a core of its
underlying S-module, but we shall see that that is false. We do have the following
comparison, which is what remains of the third author’s original program.

Proposition 2.10. For any core g : Q −→ R of commutative S-algebras, there
exists a core f : X −→ R of S-modules and a map ξ : X −→ Q of S-modules such
that f = g ◦ ξ. In particular, ξ induces a monomorphism on homotopy groups.

Proof. We construct a commutative diagram

Jn
jn

//

µn

##

H

H

H

H

H

H

H

H

H

ι

��

Xn

��

ξn

$$

H

H

H

H

H

H

H

H

H

PKn
k̃n

//

Pι

��

Qn

gn

��

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

��

CJn / /

νn
# #

H

H

H

H

H

H

H

H

H

Xn+1

ξn+1

##

H

H

H

H

H

H

H

H

H

PCKn //

h̃n
+ +

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

Qn+1
gn+1

" "

E

E

E

E

E

E

E

E

R.

The front part of the diagram displays underlying S-modules in our construction
of the S-algebra core g : Q −→ R. The back square of the diagram is a pushout
in M that will display the inductive step of a construction of an S-module core
f : X −→ R such that fn = gn ◦ ξn for a map ξn : Xn −→ Qn of S-modules that
induces a monomorphism on πq for q 6 n. We have X0 = S0 and Q0 = S, and we
let ξ0 : X0 −→ Q0 be a weak equivalence of S-modules (a cofibrant approximation).
We let f0 = ξ0 ◦ g0, where g0 is the unit of R. Assume inductively that we have
constructed ξn : Xn −→ Qn and let fn = gn ◦ ξn. Let Jn be a wedge of copies
of Sn, one for each element in a chosen minimal set of generators for the kernel of
(fn)∗ : πn(Xn) −→ πn(R), and let jn : Jn −→ Xn represent these generators. Recall
that Kn is a wedge of copies of Sn, one for each element in a chosen minimal set
of generators for the kernel of (gn)∗ : πn(Qn) −→ πn(R), and that kn : Kn −→ Qn

represents these generators. The cofiber Ckn is the pushout in M of the diagram

CKn Kn
ι

oo

kn
//Qn,
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and the universal property of pushouts in M gives a canonical map

ρ : Ckn −→ Qn+1,

which is a (2n − 1)-equivalence by inspection or use of (2.6). Since gn ◦ ξn = fn,
(ξn)∗ : πn(Xn) −→ πn(Qn) restricts to a homomorphism Ker(fn)∗ −→ Ker(gn)∗.
Choosing preimages in πn(Kn) of the images under (ξn)∗ ◦ (jn)∗ of the generators
of πn(Jn), we obtain a homomorphism πn(Jn) −→ πn(Kn). We can realize this
homomorphism by a map γn : Jn −→ Kn such that the left square commutes up to
homotopy in the diagram

Jn
jn

//

γn

��

Xn / /

ξn

��

Xn+1 //

ξ′n+1

��

ΣJn

Σγn

��

Kn kn

// Qn / / Ckn
// ΣKn

A standard comparison of cofibration sequences argument in M gives a map ξ′n+1
such that the middle square commutes and the right square commutes up to homo-
topy. Moreover, ξ′n+1 induces an monomorphism on πq for q 6 n, since in degree n
it induces the inclusion Im(fn)∗ −→ Im(gn)∗ (up to isomorphism). Define

ξn+1 = ρ ◦ ξ′n+1 : Xn+1 −→ Qn+1

and define µn and νn to be the evident composites

Jn
γn

//Kn
ν

//PKn and CJn
Cγn

/ /CKn
ν

//PCKn.

Then the cube in our main diagram is a commutative diagram in M . The composite
h̃n ◦ νn in the diagram coincides with the composite hn ◦ Cγn, which is a null
homotopy of fn ◦ jn. The map fn+1 = gn+1 ◦ ξn+1 is induced by this null homotopy,
in agreement with our inductive prescription of a core of the S-module R. Passing
to colimits, we obtain the maps ξ and f of the conclusion.

Thus an S-algebra core has larger homotopy groups than the corresponding S-
module core. In particular, with R = MU , for any S-algebra core g : Q −→ MU ,
we have a factorization of an S-module core f : BP −→ MU as g ◦ ξ for a map
ξ : BP −→ Q of S-modules that induces a monomorphism on homotopy groups. It
is easy to see that the lowest positive degree homotopy group of Q must be 2p− 2,
so it seems reasonable to hope that ξ is an equivalence. However, that is false: ξ
cannot be an equivalence, since that would contradict the following observation of
the first two authors.

Proposition 2.11. There is no map g : BP −→ MU of commutative S-algebras.

Proof. If there were such a map g, it would commute with units and so induce
an isomorphism on π0. Therefore, since BP is atomic, the composite of g and a
splitting map MU −→ BP would be a self-equivalence of BP , so that g would be
the inclusion of a retract. The map g∗ : H∗(BP ) −→ H∗(MU) on mod p homology
would be a monomorphism that commutes with Dyer-Lashof operations. The Thom
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isomorphism θ : H∗(MU) −→ H∗(BU) commutes with Dyer-Lashof operations
by a result of Lewis [18, IX.7.4]. Kochman [17] and Priddy [22] have computed
the Dyer-Lashof operations in H∗(BU) and thus on H∗(MU). Write H∗(MU) =
P [ai|deg ai = 2i], where ai is the standard generator coming from H∗(BU(1)). If
p = 2, then Q5(a1) ≡ a5 mod decomposables, and, if p > 2, then Qp(ap−1) ≡
a(p+1)(p−1) mod decomposables, by [22] or [10, II.8.1]. Here ap−1 is in the image of
H∗(BP ), but H∗(BP ) has no indecomposable elements in degree 10 if p = 2 or in
degree 2(p + 1)(p− 1) if p > 2.

So, if BP is not a core of MU , what is? The first two authors succeeded in
answering this question when p = 2.

Theorem 2.12. If p = 2, then M(Sp/U) is a core of MU , regarded as a commu-
tative S-algebra.

Proof. We have an infinite loop map Sp/U −→ BU , and work of Lewis [18, IX]
gives an E∞-ring Thom spectrum M(Sp/U), a map α : M(Sp/U) −→ MU of E∞-
ring spectra, and compatible Thom isomorphisms that commute with Dyer-lashof
operations. It is standard that Sp/U has no 2-torsion and that H∗(Sp/U), with
coefficients in Z(2) or Z/2, is a polynomial algebra on generators of degrees 4r + 2,
r > 0, that map to generators of these degrees in H∗(BU). By [22] or [10, II.8.1],
Q4r(a1) ≡ a2r+1 mod decomposables for r > 1 in H∗(MU). It follows that Q4r

maps the generator of degree 2 in H∗(M(Sp/U)) to a generator in degree 4r + 2.
Thus, intuitively, the image of H∗(M(Sp/U)) is the smallest possible subalgebra of
H∗(MU) that contains a1 and is closed under the Dyer-Lashof operations.

The composite of α with the canonical map MU −→ BP induces an epimorphism
on homology, hence a monomorphism on cohomology. A theorem of Milnor and
Moore [21, 4.4] shows that H∗(M(Sp/U)) is a free A/(β)-module, and a theorem
of Brown and Peterson [4] shows that M(Sp/U) is a wedge of suspensions of copies
of BP . Therefore α induces a monomorphism on homotopy groups since it induces a
monomorphism on homology groups. By Lemma 2.5, the composite of α and a core
g : Q −→ M(Sp/U) of the commutative S-algebra M(Sp/U) is a core of MU . It is
clear by construction that b1, 2-locally, must be in the image of g∗, and it follows
by consideration of Dyer-Lashof operations that g induces an epimorphism on mod
2 homology and therefore on 2-local homology. Moreover, Lemmas 1.13 and 1.14
imply that BP is the core of M(Sp/U) as an S-module. By Proposition 2.10, we
can factor a core BP −→ M(Sp/U) through g, giving a composite map, necessarily
an equivalence

BP //Q
g

//M(Sp/U) //MU / /BP.

Now BP is complex oriented, and the image of its orientation gives Q a complex
orientation. Since Q is a 2-local commutative and associative ring spectrum, the
complex orientation can be modified if necessary to give a 2-typical formal group
law, and then there is a map of ring spectra BP −→ Q that is compatible with
the orientation. In particular, this gives Q a structure of BP -module spectrum.
Enumerate the wedge summands ΣniBP of M(Sp/U) so that ni 6 nj if i < j,
where i > 1. Via the unit of BP , each summand is determined by an element
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µi ∈ πni(M(Sp/U)). We claim that the generators lift to elements νi ∈ πni(Q).
Using the BP -module structure, the νi determine maps ΣniBP −→ Q that together
give a map ν : M(Sp/U) −→ Q such that g ◦ ν ' id. This implies that g induces
an epimorphism and therefore an isomorphism on homotopy groups.

Thus assume inductively that µi lifts to νi for i < j. Let N be the wedge of the
ΣniBP , i < j, choose a splitting map π : M(Sp/U) −→ N , and let L be its fiber.
We may regard µi as an element of πni(L). Let K be the fiber of π ◦ g : Q −→ N .
Comparing fiber sequences, we obtain a map f : K −→ L. Inductively, g induces an
isomorphism of homotopy groups in degrees less than n. Therefore K, like L, must
be (ni−1)-connected. Now, since g induces an epimorphism on 2-local homology, so
does f . Since the 2-local Hurewicz homomorphism for K and L is an isomorphism
in degree nj , we may lift µj to πnj (K) and therefore to πnj (Q).
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