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Abstract

This is an introductory survey of the passage from groups to groupoids and their higher
dimensional versions� with most emphasis on calculations with crossed modules and the con�
struction and use of homotopy double groupoids�

Introduction

This article is a slightly revised version of about nine hours of lectures given at the Summer School
on the Foundations of Algebraic Topology� Grenoble� June �� � July �� ����	 The audience had
been prepared in the previous week with basic lectures on algebraic topology	 The intention of the
lectures was to give a feel for what is going on� to encourage the listeners to read more widely in
the area� and hopefully to suggest ways in which they could develop and apply some of these ideas
in novel ways	
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The scope of this article is an introduction to the use of groupoids� higher dimensional groupoids�
and related structures in homotopy theory	 To this end it seems best to explain some motivation�
proofs and applications reasonably fully and so I will concentrate on the use of crossed modules�
double groupoids� and crossed complexes	 Part of the aim is to show that these methods give not
just theoretical understanding� but that they also lead to explicit computations of homotopical
invariants which are unapproachable by other means	 This is in some ways surprising� but in fact
is a consequence of the attention paid to generalisations of the Van Kampen Theorem	

Since I have had to restrict the material� I could only hint at the work with Loday on crossed
squares� tensor products� and the Van Kampen theorem for cubical diagrams of spaces given in

��� ���	 Surveys of this material are given in 
��� �
�	 Thus this article is still very much an
introduction to the area	
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� Groupoids in homotopy theory

The starting point of this study has been to consider the following extensions�

�groups� � �groupoids� � �multiple groupoids��

The basic question is that of the signi�cance of these extensions in the light of �i� the well recognised
notion that groups form a central concept in mathematics� and �ii� the general importance of group
theory for science	

A reason for regarding groups as signi�cant is that they are considered to give the mathematics
of reversible processes	 This explains the connection with symmetry	

By a groupoid we mean simply a small category in which every morphism is an isomorphism	
Thus a group may be considered as a groupoid with one object	 The category of groupoids will now
be written Gpd	

The extension from groups to groupoids starts in a formal sense with the desire to describe
reversible processes which may traverse a number of states	 So the group theory idea is say to
consider a variety of journeys from say Bangor back to Bangor� whereas in groupoid theory one
considers journeys between various cities in the UK� and observe that journeys can be continued or
composed if and only if the starting point of one journey is the end point of the previous one	 This
naive viewpoint gives rise to the heretical suggestion that the natural concept is that of groupoid
rather than that of group� In fact the groupoid idea is forced when one tries to structure a journey�
i	e	 to list the cities travelled	

It is interesting in this respect to note the view of Connes 
��� that Heisenberg discovered
quantum mechanics by considering the groupoid of quantum transitions rather than the group of
symmetry	

The formal de�nition of groupoid can be considered a consequence of the legacy of Gauss� since
it arose from Brandt�s attempts to extend to quaternary forms Gauss� work on the composition of
binary quadratic forms� which has a strong place in Disquitiones Arithmeticae	 Bourbaki 
���� p	����
cites this latter composition as an in�uential early example of a composition law which arose not
from numbers� even taken in a broad sense� but from distant analogues�	 Brandt found that each
quaternary quadratic form of a given norm had a left unit and a right unit� and that two forms were
composable if and only if the left unit of one was the right unit of the other	 This led to his ����
paper on groupoids	 �A modern account of the work on composition of forms is given by Kneser et
al� 
���	� Groupoids were then used in the theory of orders of algebras	 Curiously� groupoids did
not form an example in Eilenberg and Mac Lane�s basic ���� paper on category theory	

�C
est vers cette m�eme �epoque que	 pour le premier fois en Alg�ebre	 la notion de loi de composition s
�etend	 dans
deux directions di��erents	 �a des �elements qui ne pr�esentent plus avec les ��nombres�� �au sens le plus large donn�e
jusque�l�a �a ce mot� que des analogies lointaines� La premi�ere de ces extensions est due �a C�F�Gauss	 �a l
occasion de
ses recherches arithm�etiques sur les formes quadratiques � � �
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��� The fundamental groupoid

Groupoids appear in Reidemeister�s ���� book on topology 
�
��� as the edge path groupoid� and
for handling isomorphisms of a family of structures	 The fundamental groupoid ���X� of a space X
was well known by the ���
�s	 It consists of homotopy classes rel end points of paths in X� with the
usual composition	 Crowell and Fox remark in 
�
� that �It is an interesting curiosity that the notion
of groupoid gives a nice account of the idea of change of base point for the fundamental group	�

��� Covering spaces

Philip Higgins came to his view on the utility of groupoids from reading the account of 
��� on
covering spaces� and deciding this was mainly groupoid theory	 He then proceeded to show the
utility of using presentations of groupoids for applications to groups 
��� ��� �
�	 Basically� he
showed that some of the topological versions of proofs of classical subgroup theorems �Nielsen�
Schreier� Kurosch� Grusko� � � � � could be given an analogous algebraic proof� and generalised in
the case of Grushko�s theorem� using the notion of covering morphism of groupoids	 This we now
de�ne	

First we de�ne the star StH x of a groupoid H at an object x of H to be the set of all arrows of
H starting at x	

De�nition ��� A morphism p � H � G of groupoids is a covering morphism if the induced maps
of stars StH x� StG px are bijective for all objects x of H	

The category of covering morphisms of G� where the morphisms are the commutative triangles�
is written GpdCov�G�	

Two other related categories are the category SetG of functors G� Set� and the category G�Set
of actions or operations of G on sets	 The objects of the latter category are triples �A�w� �� where
A is a set� w � A � Ob�G� is a function and � is a function which assigns to each g � x � y in G
and a � w��x and element a�g � w���y� satisfying the usual action rules a�� � a� a��hg� � �a�g��h
whenever these are de�ned	 The morphisms f � �A�w� �� � �B� v� �� of this category are functions
f � A� B such that vf � w� f�a�g� � �fa��g whenever a�g is de�ned	

The following is a basic result of groupoid theory�

Theorem ��� There are equivalences of categories

GpdCov�G� � SetG � G�Set�

Let TopCov�X� be the category of covering maps of a space X	 The main theorem of topological
covering space theory is�
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Theorem ��� If the space X admits a universal covering space then the fundamental groupoid
functor

�� � TopCov�X� � GpdCov����X��

determines an equivalence of categories�

This gives a complete translation from topology to algebra	 For proofs of these theorems� see for
example 
���	

When G is a group� Theorem �	� can be given in a di�erent form which Peter May has pointed
out is useful in equivariant theory	 We de�ne the category Or�G� to have objects the sets G�H
of cosets for a subgroup H of G and to have morphisms the G�maps	 Recall that a groupoid G is
connected if G�x� y� is non empty for all objects x� y � G	

Theorem ��� If G is a group� then the category Or�G� is a skeleton of the full subcategory of G�Set
consisting of transitive actions� and is also equivalent to the category of connected coverings of the
group G�

Theorems �	�� �	� also have versions for group objects in the respective categories	 This is useful
for discussing the existence of universal covering groups of non connected topological groups 
���	

��� The Van Kampen Theorem

The start of my interest in groupoids came with the following theorem� due in this form to R	H	
Crowell in ����� but in fact for general open covers closed under �nite intersection	

Theorem ��� �Van Kampen Theorem for the fundamental group� Let the space X be the union of
connected open sets U� V with connected intersection W � and let x � W � Then the diagram of group
morphisms induced by inclusions

���W�x� ��

��

���U� x�

��
���V� x� �� ���X� x�

���

is a pushout of groups�

This is often written as an isomorphism of groups

���X� x� �� ���U� x� ����W�x� ���V� x� ���

It is in these forms that the theorem is used in 
�
�� for example	
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The problem with this theorem is that it requires the connectivity condition and so does not
yield the fundamental group of a circle� which in standard expositions is usually determined by the
using the theory of covering spaces applied to the covering map p � R � S�� t �� exp���it�	

The main result of 
��� was that a satisfactory result for non connected spaces could be obtained
by replacing the single base point of the usual theory of the fundamental group by a set of base
points chosen appropriately for the geometry	 In particular� if the space W above is not connected�
we do not know in which component of W to put a base point	 We therefore avoid this choice by
taking at least one �base point� in each component of W 	 So we de�ne for any set A the fundamental
groupoid ���X�A� of X on A to be the full subgroupoid of ���X� on the set A � X	 That is� its
object set is A�X and the arrows are classes of paths in X joining points of A�X� with the usual
composition of arrows being the usual one	

This leads to the theorem�

Theorem ��� 
��� Let the space X be the union of open sets U� V with intersection W � and let A
be a subset of X meeting each path component of U� V�W � Then A meets each path component of
X and the diagram of groupoid morphisms induced by inclusions

���W�A� ��

��

���U�A�

��
���V�A� �� ���X�A�

���

is a pushout of groupoids�

We do not give the proof here as a proof of a ��dimensional version for general covers will be given
later	 An alternative proof is given in 
��� as an application of cohomology with coe�cients in a
groupoid	

It is important to note that information on the way the components of U� V�W intersect is
naturally given in terms of graph theory	 This nicely translates into algebraic information on
groupoids	 The representation of this information in terms of groups alone is much more awkward	

Grothendieck writes in ���� 
����

The idea of making systematic use of groupoids �notably fundamental groupoids of
spaces� based on a given set of base points�� however evident as it may look today� is
to be seen as a signi�cant conceptual advance� which has spread into the most manifold
areas of mathematics	 � � � In my own work in algebraic geometry� I have made extensive
use of groupoids � the �rst one being the theory of the passage to quotient by a �pre�
equivalence relation� �which may be viewed as being no more� no less than a groupoid
in the category one is working in� the category of schemes say�� which at once led me to
the notion �nowadays quite popular� of the nerve of a category	 The last time has been
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in my work on the Teichm�uller tower� where working with a �Teichm�uller groupoid�
�rather than a �Teichm�uller group�� is a must� and part of the very crux of the matter
				

A survey of the use of groupoids up to ���� is given in 
���� and a more recent survey is 
����	

��� Presentations of groupoids

In order to interpret the last theorem� one needs to be able to deal with presentations of groupoids	
Here we can give only the indications of the theory	

The theory of groupoids may be thought of as an algebraic analogue of the theory of groups�
but based on directed graphs rather than on sets	 For some discussion of the philosophy of this� see

���	

����� Free groupoids

The term graph will always mean what is usually called a directed graph	 A graph X consists of two
sets Arr�X�� Ob�X�� of arrows and objects respectively of X� and two functions s� t � Arr�X� �
Ob�X�� called the source and target maps	 A morphism f � X � Y of graphs consists of two
functions Arr�X� � Arr�Y �� Ob�X� � Ob�Y �� which commute with the source and target maps	
This de�nes the category Graph	

The underlying graph UG of a groupoid G has the same objects� arrows� source and target as
G� but omits the composition and the function Ob�G� � G giving the identities	 This gives the
forgetful functor U � Gpd � Graph	

A basic construction in any algebraic theory is that of free objects	 For groups� the free group
functor F � Set � Groups is left adjoint to the forgetful functor Groups � Set	 In the case of
groupoids� we may de�ne the free groupoid functor to be the left adjoint F � Graph � Gpd to the
forgetful functor U � Gpd � Graph	 So if X is a graph� then the free groupoid F �X� on X consists
of a graph morphism i � X � UF �X� which is universal for morphisms from X to the underlying
graph of a groupoid	

The set of objects of F �X� may be identi�ed with Ob�X�	 There are several ways of explicitly
constructing the set of arrows of F �X�	 The usual way is as equivalence classes of composable words

w � �x�� ��� � � � �xn� �n�� n�
� xi � Arr�X�� � � �

together with empty words � �a� a � Ob�X�� where the word w is composable means that t�xi� �i� �
s�xi��� �i���� i � � � � � n	 �� where

s�x� �� �

���sx if � � ��

tx if � � 	�
t�x� �� �

���tx if � � ��

sx if � � 	�
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The equivalence relation on words� and the composition� to obtain the free groupoid is de�ned in
a manner analogous to the usual de�nition of free group� and the graph morphism i � X � F �X�
sends an arrow x to 
x�� the equivalence class of the word �x���	

A groupoid G is called connected if G�a� b� is non empty for all a� b � Ob�G�	 The maximal
connected subgroupoids of G are called the �connected� components of G	

If a is an object of the groupoid G� then the set G�a� a� inherits a group structure from the
composition on G� and this is called the object group of G at a and is written also G�a�	 The
groupoid G is called simply connected if all its object groups are trivial	 If it is connected and
simply connected� it is called ��connected� or a tree groupoid	

A standard example of a tree groupoid is the indiscrete� or square� groupoid I�S� on a set S	 This
has object set S and arrow set S 
 S� with s� t � S 
 S � S being the �rst and second projections	
The composition on I�S� is given by

�a� b��b� c� � �a� c�� a� b� c � S�

A graph X is called connected if the free groupoid F �X� on X is connected� and is called a forest
if every object group F �X��a� of F �X�� a � Ob�X�� is trivial	 A connected forest is called a tree	 If
X is a tree� then F �X� is a tree groupoid	

����� Retractions

Let G be a connected groupoid	 Let a� be an object of G	 For each object a of G choose an arrow
�a � a� � a� with �a� � �a� 	 Then an isomorphism

� � G� G�a��
 I�Ob�G��

is given by g �� ���a�g��b���� �a� b��� g � G�a� b�� a� b � Ob�G�� The composition of � with the
projection yields a morphism � � G � G�a�� which we call a deformation retraction� since it is
the identity on G�a�� and is in fact homotopic to the identity morphism of G� though we do not
elaborate on this fact here	

It is also standard 
��� �	�	�� that a connected groupoid G is isomorphic to the free product
groupoid G�a�� � T where a� � Ob�G� and T is any wide� tree subgroupoid of G	 The importance
of this is as follows	

Suppose that X is a graph which generates the connected groupoid G	 Then X is connected	
Choose a maximal tree T in X	 Then T determines for each a� in Ob�G� a retraction �T � G� G�a��
and the isomorphisms

G �� G�a�� � I�Ob�G�� �� G�a�� � F �T �

show that a morphism G � K from G to a groupoid K is completely determined by a morphism
of groupoids G�a�� � K and a graph morphism T � K which agree on the object a�	

We shall use later the following proposition� which is a special case of 
��� �	�	���
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Proposition ��	 Let G�H be groupoids with the same set of objects� and let � � G � H be a
morphism of groupoids which is the identity on objects� Suppose that G is connected and a� � Ob�G��
Choose a retraction � � G� G�a��� Then there is a retraction � � H � H�a�� such that the following
diagram� where �� is the restriction of ��

G ���

��
�

G�a��

��
��

H ��
� H�a��

���

is commutative and is a pushout of groupoids�

This result can be combined with Theorem �	� to determine the fundamental group of the circle
S�	

Corollary ��� The fundamental group of the circle S� is a free group on one generator�

Proof We represent S� as the union of two semicircles E�
�� E�

� with intersection f	�� �g	 Then the

fundamental groupoid ���E
�
�� f	�� �g� is easily seen to be isomorphic to the connected groupoid I

with object set f	�� �g and trivial object groups	 In fact this groupoid is the free groupoid on one
generator 	 � 	� � �	 From previous results� we have a pushout diagram� in which f	�� �g denotes
the discrete groupoid on these objects�

f	�� �g ��

��

f�g

��
I �� ���S

�� ��

and the result follows by an easy universal argument	 �

Note that S� may be regarded as a pushout in the category of topological spaces

f	�� �g ��

��

f�g

��

	�� �� �� S�

The correspondence between these last two diagrams was for me a major incentive to exploring
the use of groupoids	 Here we have a successful algebraic model of a space� but of a di�erent type
from that previously considered	 An aspect of its success is that groupoids have structure in two
dimensions� namely 
 and �� and this is useful for modelling the way spaces are built up using
identi�cations in dimensions 
 and �	
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Another advantage of this method is that it yields calculations for which the corresponding
covering space theory is more awkward	 One example is the fundamental group of the non Hausdor�
manifold obtained by identifying all points of two copies of the unit interval except for the mid points	
We �nd� as for S�� that this space has fundamental group isomorphic to Z	 Other examples are
given in 
���	

Another interesting aspect is that the groupoid I is �nite� and it is easy to explore all its
properties	 By contrast� the integers form an in�nite set� and discussion of its properties usually
requires induction	

One problem posed by these results was to �nd analogous methods and results in higher dimen�
sions	

����� Normal subgroupoids and quotient groupoids

Let G be a groupoid	 A subgroupoid N of G is called normal if N is wide in G �i	e	 Ob�N� � Ob�G��
and for any objects a� b of G and g in G�b� a�� g��N�b�g � N�a�	

Let � � G � H be a morphism of groupoids	 Then Ker � is the wide subgroupoid of G whose
elements are all g in G such that �g is an identity of H is a normal subgroupoid of G	 If Ob�f� is
injective then Ker � is totally disconnected� i	e	 �Ker ���a� b� � � if a �� b	

A morphism � � G� H is said to annihilate a subgraph X of G if ��X� is a discrete subgroupoid
of H	 Thus Ker � is the largest subgroupoid of G annihilated by �	 The next proposition gives the
existence of quotient groupoids	

Proposition ��
 Let N be a totally disconnected� normal subgroupoid of G� Then there is a group�
oid G�N and a morphism p � G� G�N such that p annihilates N and is universal for morphisms
from G which annihilate N �

Proof We de�ne Ob�G�N� � Ob�G�	 If a� b � Ob�G� we de�ne �G�N��a� b� to consist of all cosets
N�a�g� g � G�a� b�� The multiplication of G is inherited by G�N � which becomes a groupoid	

The morphism p � G � G�N is the identity on objects� and on elements is de�ned by g ��
N�sg�g	 Clearly p is a morphism and Ker p � N 	

The remainder of the proof is clear	 �

We call G�N a quotient groupoid of G	

����� Presentations of groupoids

We now consider relations in a groupoid	 Suppose given for each object a of the groupoid G a set
R�a� of elements of G�a�� thus R can be regarded as a wide� totally disconnected subgraph of G	
The normal closure N�R� of R is the smallest wide normal subgroupoid of G which contains R	
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This obviously exists since the intersection of any family of normal subgroupoids of G is again a
normal subgroupoid of G	 Further� N�R� is totally disconnected since the family of object groups
of any normal subgroupoid N of G is again a normal subgroupoid of G	

Alternatively� N � N�R� can be constructed explicitly	 Let a be an object of G	 By a consequence
of R at a is meant either the identity of G at a� or any product

� � g��� r��� g� � � � g
��
n r�nn gn� ���

in which n��� gi � G�ai� a� for some object ai of G� �i � �� and ri is an element of R�ai�	 Clearly�
the set N�a� of consequences of R at a is a subgroup of G�a� and the family N � �N�a� � a � Ob�G�
of these groups is a totally disconnected normal subgroupoid of G containing R	 Clearly N � N�R�	

The projection p � G � G�N�R� has the following universal property� if f � G � H is any
morphism which annihilates R then there is a unique morphism f � G�N�R� � H such that fp � f �
We call G�N�R� the groupoid G with the relations r � �� r � R�

In applications� we are often given G� R as above and wish to describe the object groups of
G�N�R�	 These are determined by the following result	

Proposition ���
 
��� �	�	�� Let G be connected� let a� � Ob�G� and let � � G � G�a�� be a
deformation retraction� Let H � G�N�R�� Then H�a�� is isomorphic to the group G�a�� with the
relations

��r� � �� r � R�

Proof The proof follows from Proposition �	�� with H � G�N and � � p � G� G�N the quotient
morphism	 Details are given in 
���	 �

We can now indicate how to combine covering groupoids and presentations of groups to obtain
results on groups	

Let H be a subgroup of a group G	 The G acts on the set of cosets G�H and so we obtain an
associated covering morphism p � K � G with object set of K equal to G�H and object group
K���� where � denotes the coset H� mapped by p isomorphically to H	 Suppose given a presentation
�X R� of the group G	 Then we obtain a lifted presentation �Y  S� of the covering groupoid K� but
Y is here a connected directed graph	 We can choose a retraction � � K � K��� associated to this
graph� for example by choosing a maximal tree in Y 	 This gives a presentation of K���� by the last
proposition� and so a presentation of the subgroup H	 This is the method used in 
��� ���� and was
in fact earlier used by Hasse in 
���	 The details of the above argument require veri�cations on the
lifting of presentations� and this we have to omit	 It is worth pointing out that this methodology
gives a stronger version of Grusko�s theorem than had previously been known 
���	

Again� Cayley graphs for presentations of groups are widely used� but it not so widely known
that a convenient context for this is as the free generating graph p���X� of the free groupoid K
in the covering morphism p � K � F �X� determined by the kernel of F �X� � G� together with



Homology� Homotopy and Applications� vol��� No��� ���� ��

the labelling given by the graph morphism p���X� � X	 This description� with a corresponding
��dimensional version� is exploited in 
���	

Presentations of groupoids are used to obtain new results on cross ratio in projective geometry
in 
���	

��� Orbit spaces and orbit groupoids

Another reason for choosing groupoids rather than groups concerns the equivariant theory� that
is the case of actions of a group ! on a space X	 If there is no �xed point for the action then
information on the action cannot be re�ected by any fundamental group ���X� x�	 By contrast the
group ! acts on the fundamental groupoid ���X�	 The utility of this for calculations is shown below	

An action of the group ! on the space X is called discontinuous if the stabiliser of each point of
X is �nite� and each point x in X has a neighbourhood Vx such that any element 
 of ! not in the
stabiliser of x satis�es �
 
 Vx�� Vx � �	 An example of such an action is that of a �nite group on a
Hausdor� space	

If a group ! acts on a groupoid G� it is easy to de�ne the notion of orbit groupoid as a !�morphism
p � G � H of !�groupoids such that ! acts trivially on H and p is universal for this property� i	e	
if p� � G � H � is any !�morphism of !�groupoids such that ! acts trivially on H �� then there is a
unique morphism � � H � H � of groupoids such that �p � p�	

The following theorem is due to R	 Brown and P	J	 Higgins and is proved in Chapter � of 
���	 It
gives a convenient formulation of work of A	 Armstrong on the fundamental group of orbit spaces	

Theorem ���� If X is a Hausdor� space on which the group ! acts discontinuously� and X admits
a universal covering space� then the induced morphism p� � ��X � ���X�!� makes ���X�!� the
orbit groupoid of ��X by the action of !�

This theorem gives a complete translation from topology to algebra� and it is then necessary to
work out methods of calculating orbit groupoids	 This has been done by Higgins and Taylor 
���
and Taylor 
����� whose work motivated the above theorem	

��� The category of groupoids

One way of evaluating the extension of categories

Groups � Gpd

from the viewpoint of the user is to consider any desirable properties which the larger category has
which are not held by the smaller one	
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We have already seen that there is a notion of covering morphism of groupoids� which for the
case of groups reduces simply to an isomorphism	 There is also a notion of �bration of groupoids

���� which for the case of groups reduces to an epimorphism	 The exact sequences arising from a
�bration are useful even in group theory 
���	

The categories Gpd and Groups are both complete and cocomplete� i	e	 they admit limits and
colimits	 However a useful formal advantage of the bigger category is that for any groupoids H�K
there is also a groupoid GPD�H�K� whose objects are the morphisms H � K and whose arrows
f � g are simply the natural equivalences	 In the case H�K are groups this means that an arrow
f � g in GPD�H�K��f� g� is a pair �f� k� such that k � K and for all x � H� g�x� � k��f�x�k�
that is� the arrows are conjugation by elements of K	

Theorem ���� For any groupoids G�H�K there is a natural bijection

Gpd�G
H�K� �� Gpd�G�GPD�H�K���

Thus the category Gpd is cartesian closed	 This result is a special case of the cartesian closedness
of the category of small categories	 A generalisation of this property to groupoids over a given
groupoid has been exploited even to give information about groups 
���	

This cartesian closed property is also useful in combination with the classifying space functor

B � Gpd � Top�

To de�ne this� recall that the nerve of a groupoid G may be de�ned to be the simplicial set NG such
that �NG�� � Ob�G� and whose n�simplices for n�� are the groupoid morphisms ���"

n� �"n��� �
G� where �"n�� denotes the 
�skeleton of "n	 Then �n�BG� x� � 
 for n��� x � Ob�G�� while
���BG�Ob�G�� �� G	

Let X be a CW �complex� and let G be a groupoid	 It may be also proved that then there is a
natural weak equivalence

B�GPD����X�� G�� � �BG�X �

where the latter space is the space of functions X � BG with the compact�open topology	 This leads
immediately on taking path components to a homotopy classi�cation theorem for maps X � BG�
which may be written


X�BG� �� 
���X�� G�

where the left hand side is the set of homotopy classes of maps� and the right hand side is the set
of conjugacy classes of morphisms of groupoids	 From this it may be shown that there is a map
X � B���X� inducing an isomorphism of fundamental groupoids	 It is in this sense that groupoids
model homotopy ��types	 These last two results are special cases of results on crossed complexes
given in 
��� �see section �
�	

Another advantage of groupoids is that they have a satisfactory homotopy theory 
���� since the
groupoid I can be regarded as a model for groupoids of the unit interval	
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��� The role of groupoids in algebraic topology and mathematics

By this time it should be easy for you to be convinced that replacing the fundamental group by the
fundamental groupoid leads to a more powerful and more elegant theory� and that groupoids give
the natural and convenient exposition of the major facts of ��dimensional homotopy theory	 This
was the viewpoint taken in my ���� book 
���	

This immediately raised questions about higher dimensions	 If groupoids are useful in dimension
�� how useful are they� or should they be� in higher dimensions#

There are two extreme possibilities	

�	 Groupoids are useful in dimension � but are not more useful� or even useless� in higher dimen�
sions	

�	 Groupoids can become more useful with increasing dimension	

It was to attempt to decide on these possibilities that I began in the mid ���
s to investigate
notions of higher dimensional groupoids	 It turned out much more di�cult to move from dimension
� to dimension � than I expected and the �rst papers were not published till ���� 
�
� ���	

It should be emphasised that for purely practical reasons the aim of this study could not be
to solve other people�s problems	 The intention was to investigate this world� and to see what
was there	 It would clearly be a bonus if the theory solved old problems� and one could always
hope� but the only way forward was to investigate the new territory	 Fortunately� connections with
classical concepts kept on appearing� and this was some comfort on a long road across a kind of
desert before a lush countryside was reached	 Also� at the beginning there were only a few clues as
to the road to take	 The only published information seemed to be the de�nition in Ehresmann�s
book published near that time 
��� which gave a de�nition of double category and the example of
the double category of commuting squares in a category	

There was also a gut feeling of the potential importance of such a study	 The Principal Hypothesis
was that the resulting theory would eventually come to bear to ordinary group theory a relation similar
to that of many variable analysis to ��variable analysis	 This was the intention of this development
of algebra to model geometry	 The advantage of considering this hypothesis was that obstructions
to it were also likely to be of interest� and that it suggested a range of areas for investigation	

Thus the study of multiple groupoids and their applications could be thought of as a higher
dimensional� or many variable� theory� which would be expected to yield�

� a range of new algebraic structures� with new applications

� better understanding� from a higher dimensional viewpoint� of some phenomena in group
theory
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� new algebraic understanding of the structure of certain geometric situations and hence new
geometric theorems

� new computations with these objects� and hence also in the areas in which they apply	

It is thus reasonable to ask if these aims have already been achieved� and if not to ask how they
might� if at all� be achieved	

The main applications of results derived from multiple groupoids have been in homotopy theory�
as indicated here� di�erential topology �see for example 
��� ������ and combinatorial group theory
�see for example 
��� ��� ����	 A chief aim is to use these areas as test beds for the methods	 For
example� the fact that in homotopy theory one can achieve results not currently obtainable by other
methods is an advertisement for these new local�to�global techniques� particularly in view of the
di�culties in these areas	 Indeed� a principal aim of this exposition is to give the background and
intuition for some of these homotopical results	 The overall aim of the investigation is is still to
open up new modes of thought and questions	

The term �higher dimensional group theory� 
��� which was suggested in ���� was also expected
to be part of a wider theory of �higher dimensional algebra�� and this is now widely investigated
�see for example 
�� �� ���	 This term also encompasses investigation of structures satisfying weaker
axioms than the strict structures which are the main subject of these lectures	
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� A search for higher order versions of the

fundamental group in homotopy theory

One of the origins of the ideas for �higher dimensional group theory� is Poincar$e�s de�nition of the
fundamental group� in his ���� paper 
�

�	 The motivation for the fundamental group in this paper
seems to be from the notion of monodromy� that is the change in the value of a meromorphic function
of many complex variables as it is analytically continued along a loop avoiding the singularities	 This
change in value depends only on the homotopy class of the loop	 So Poincar$e was led to the notion
of the group ���X� a� of homotopy classes of loops at a� where the group structure arises from
composition of loops	 He called this group the fundamental group� and the fundamental group
���X� a�� for a space X and base point a� with its relation to covering spaces� surface theory� and
the later combinatorial group theory� came to play an increasing r%ole in the geometry and analysis
of the next hundred years	

An early result was the relation with the �rst homology group� namely that for a connected
simplicial complex X� the �rst homology group H��X� is the fundamental group made abelian�

H��X� � ���X� a�ab�

It was thus clear that the non abelian fundamental group gave much more information than the
�rst homology group	 However� the homology groups were de�ned in all dimensions	 So there was
pressure to �nd a generalisation to all dimensions of the fundamental group	

According to 
���� Dehn had some ideas on this in the ���
�s� as would not be surprising	 The �rst
published attack on this question is the work of &Cech	 He submitted his paper on higher homotopy
groups �n�X� a� to the International Congress of Mathematicians at Zurich in ����	 The story is
that Alexandro� and Hopf quickly proved that these groups were commutative for n��� and then
persuaded &Cech to withdraw his paper� on the grounds that the higher homotopy groups clearly did
not generalise the non abelian fundamental group	 Presumably it was considered unreasonable that
the structure proposed to model homotopy in dimensions larger than � should be simpler than that
for � itself	 All that appeared in the Proceedings of the Congress was a brief paragraph 
���	

It is helpful to give the reason why the higher homotopy groups are Abelian	 It is a corollary of
the following result	

Theorem ��� Let X be a set with two monoid structures ��� �� each of which is a morphism for
the other� Then the two structures coincide and are commutative�

Proof The condition that the structure �� is a morphism for �� is that the function

�� � �X� ���
 �X� ��� � �X� ���

is a morphism of monoids� where �X� ��� denotes X with the monoid structure ��� This condition
is equivalent to the statement that for all x� y� z� w � X

�x �� y� �� �z �� w� � �x �� z� �� �y �� w�
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which can be interpreted as saying that the diagram

�
x y
z w

�
�� �

�� �
���

has only one composition	 This law is the well known interchange law	

We now use some special case of the interchange law	 Let e�� e� denote the identities for the
structures ��� ��	 We now consider the matrix�

e� e�
e� e�

�
���

This yields easily that e� � e�� We write then e for e��

Now we consider the matrix composition �
x e
e w

�
���

Interpreting this in two ways yields
x �� w � x �� w�

So we write � for ���

Finally we consider the matrix composition�
e y
z e

�
���

and �nd easily that y � z � z � y� This completes the proof	

Incidentally� it will also be found that associativity comes for free	 We leave this to the reader	
�

This result seemed to kill any possibility of �higher dimensional group theory�� or of any gener�
alisations to higher dimensions of the fundamental group	 In ����� Hurewicz published the �rst of
his celebrated notes on higher homotopy groups� and the latter are often referred to as the Hurewicz
homotopy groups	 The abelian higher homotopy groups came to be accepted� a considerable amount
of work in homotopy theory has moved as far as possible from group theory and the non abelian
fundamental group� and the original concern about the commutative nature of the higher homotopy
groups came to be seen as a quirk of history	

The writing of the �rst edition of the book 
��� made it natural to consider what happens to
Theorem �	� if the word �monoid� is replaced by �category� or �groupoid�	 The proof then shows that
a double category contains a family of abelian monoids	 So double groupoids do not necessarily
reduce to �abelian� objects� and in fact it is now known that n�fold groupoids become increasingly
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complicated as n increases	 This suggested the interest in searching for higher dimensional versions
of the fundamental groupoid� that is for higher homotopy groupoids	

Such an idea does not seem to have been put forward till its mention in the Introduction to 
���	
The claim for a proof given there in ���� of a higher dimensional Van Kampen Theorem might be
considered premature� since there was no theorem formulated	 In fact� the next eight or nine years
of work were an idea of a proof in search of a theorem� and the move from dimension � to dimension
� turned out to require a number of new ideas	 It was however very satisfactory that the intuition
for the proof found in ���� was exactly embedded in the �nal theorem found with Philip Higgins
in ����� which was submitted in ���� and published in ���� 
���	

� Whitehead�s work on crossed modules

Henry Whitehead was steeped in the combinatorial group theory of the ���
�s� and much of his work
can be seen as trying to extend the methods of group theory to higher dimensions� still keeping the
interplay with geometry and topology	 These attempts led to greatly signi�cant work such as the
theory of simple homotopy types	 His ideas on crossed modules have taken longer to come into wide
use but they can be regarded as equally signi�cant	

One of his starting points was the Van Kampen Theorem for the fundamental group	 This tells
us how the fundamental group is a�ected by the attaching of a cell� or of a family of ��cells� to a
space	 Namely� if X � A�fe�igi�I � where the ��cell e�i is attached by a map which for convenience we
suppose is fi � �S�� �� � �A� x�� then each fi determines an element �i in ���A� x�� and a consequence
of the Van Kampen Theorem for the fundamental group is that the group ���X� x� is obtained from
the group ���A� x� by adding the relations �i� i � I	 This can be put in a more general format and
easily proved using the results on presentations of groupoids given earlier	

The next problem is to determine the e�ect on the higher homotopy groups of adding cells to a
space	 If we could solve this in general� then we would in particular be able to calculate all homotopy
groups of spheres	 Work over the last �
 years has shown the enormous di�culty of this task	

One of the results Whitehead was able to obtain in ���� 
���� gave information on second
homotopy groups of X although it is only recently that it has been possible to develop this to a
kind of algorithm 
���	 His results were clari�ed and reformulated by him in two subsequent papers

���� ���� using the notion �rst of crossed module and then of free crossed module	 This formulation
became the key to higher order Van Kampen Theorems� as we shall see later	

We start with the basic de�nition of crossed module	

A crossed module is a morphism of groups � � M � P together with an action �m� p� �� mp of
P on M satisfying the two axioms

CM�� ��mp� � p����m�p
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CM�� n��mn � m�n

for all m�n �M� p � P�

Standard algebraic examples of crossed modules are�

�i� an inclusion of a normal subgroup� with action given by conjugation 

�ii� the inner automorphism map � � M � Aut M� in which �m is the automorphism n �� m��nm 

�iii� the zero map M � P where M is a P �module 

�iv� an epimorphism M � P with kernel contained in the centre of M  

�v� the free crossed P �module

 � C�w� � P

determined by a function w � R � P � where R is a set	 The group C�w� is generated by R 
 P
with the relations

�r� p����s� q����r� p��s� qp���wr�p�

the action is given by �r� p�q � �r� pq� and the boundary morphism is given by 
�r� p� � p���wr�p�
for all �r� p�� �s� q� � R 
 P 	 This construction will be seen later as a special case of the crossed
P �module induced from the identity crossed F �R��module F �R� � F �R� of the free group on R by
the morphism w� � F �R� � P determined by w	

Simple consequences of the axioms for a crossed module � � M � P are�

��� Im � is normal in P �

��� Ker � is central in M and is acted on trivially by Im �� so that Ker � inherits an action of
M�Im ��

The major geometric example of crossed module can be expressed in two ways	

Let �X�A� x� be a based pair of spaces	 Whitehead showed that the boundary map


 � ���X�A� x� � ���A� x�� ��
�

together with the standard action of ���A� x� on ���X�A� x�� has the structure of crossed module	
Later Quillen put this in the form that if F � E � B is a based �bration� then the induced
morphism of fundamental groups ��F � ��E may be given the structure of crossed module	

Because of the �rst of these examples� it is convenient and sensible to regard crossed modules
� � M � P as ��dimensional versions of groups� with P�M being respectively the �� and ��
dimensional parts	
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The category XMod of crossed modules has objects all crossed modules with morphisms the
commutative diagrams

M ��g

��
�

N

��
�

P ��
f

Q

in which the vertical maps are crossed modules� and the pair g� f preserve the action in the sense
that for all m � M� p � P we have g�mp� � �gm�fp�

Now we see that we have a functor

'� � �based pairs of spaces� � XMod

which sends the based pair �X�A� x� to the crossed module given in ��
� above	 �Later we shall
formulate a groupoid version of this functor� but at the �rst shot we wish to keep things as simple
as possible	�

��� The classifying space of a crossed module

In order to see the relevance of crossed modules to homotopy types we indicate a de�nition and
state some properties of a classifying space functor B 
��� ��� assigning to a crossed module M �
�� � M � P � a connected� pointed CW �space BM with the following properties�

��� The homotopy groups of the classifying space of the crossed module � � M � P are given by

�i�B�M � P �� ��

�����
Coker � for i � �
Ker � for i � �

 for i � ��

��� The classifying space B�� � P � is the usual classifying space BP of the group P � and BP is a
subcomplex of B�M � P �� Further� there is a natural isomorphism of crossed modules

'��B�M � P �� BP � �� �M � P �� ����

��� �Loday 
����see also 
���� Let X be a reduced CW �complex� let Z be a connected space with
���Z� � 
� and suppose given a map f � Z � X which is surjective on fundamental groups� Let
M � P be the crossed module ���F �f�� � ���Z�� where F �f� is the homotopy �bre of f � Then
there is a map

X � B�M � P � ����

inducing an isomorphism of �� and ���



Homology� Homotopy and Applications� vol��� No��� ���� ��

In this last result� it is easy to construct such a Z� for example it could be the ��skeleton X� of X
so that M �� ���X�X

��	 If X � B�M � P �� for a crossed module M � P � then we could take
Z � BP 	

It is in these senses that it is reasonable to say that crossed modules model all pointed homotopy
��types	 This result is due originally to Mac Lane and Whitehead 
��� �they use the term ��type
for what is now called ��type�	

It is useful to indicate how B�M � P � is constructed as the geometric realisation of a simplicial
set K � Nerv�M � P �	 Later we shall give an elegant description of the simplices of this nerve�
but here we shall give a sketch of their de�nition as in 
���� and which in fact goes back to Blakers
in 
���	

First K� � 
� K� � P 	 The ��simplices of K are quadruples k � �m p� q� r� such that m �
M� p� q� r � P and �m � qpr�� with 
�k � p� 
�k � r� 
�k � q	 The ��simplices of K are quadruples
�k�� k�� k�� k�� of ��simplices such that if ki � �mi pi� qi� ri�� i � 
� � � � � �� then

mp�
� m�m

��
� m��

� � �� ����

and the edges of the ��simplices ki match up to form a ��simplex	 For n��� an n�simplex of K
is an �n � ���tuple of �n 	 ���simplices of K� whose faces match up appropriately	 In essence� the
construction is de�ned by the so�called �homotopy addition lemma�	 We omit further details at this
stage	 �See section �	�	� The construction in 
��� is in terms of bisimplicial groups� but this is more
di�cult to use for homotopy classi�cation results	

Clearly another problem is to give useful calculations of a crossed module representing the ��type
of a space	 Our next result gives an essential ingredient for this	

� The ��dimensional Van Kampen Theorem

The ��dimensional version of the Van Kampen Theorem is a theorem yielding pushouts of crossed
modules or� more generally� colimits of crossed modules �see section �	� for the more general version�	

First� we say the pair �X�A� is connected if A and X are path connected and the induced map of
fundamental groups ���A� x� � ���X� x� is surjective	 This last condition is� with the connectivity
of A� equivalent to saying that the homotopy �bre over x of the inclusion A� X is path connected	

The following theorem will be proved in section �	�	

Theorem ��� �Brown and Higgins 
���� Suppose that the commutative diagram of based pairs of



Homology� Homotopy and Applications� vol��� No��� ���� ��

spaces

�W�WA� ��f

��
i

�U� UA�

��
��

�V� VA� ��
�f

�X�A�

satis�es one of the two following hypotheses�

HYPOTHESIS A� the maps i� f�(�� (f are inclusions of subspaces� X is the union of the interiors of
the sets U and V � W � U � V � and VA � A � V� UA � A � U�WA � A �W 	

HYPOTHESIS B� the maps i � W � V� iA � WA � VA are closed co�brations� WA � W � VA� and
X�A are the adjunction spaces U �f V� UA �fA VA�

Suppose also that all the pairs �U� UA�� �V� VA�� �W�WA� are connected� Then�

�C� The pair �X�A� is connected�

�I� The following diagram induced by inclusions

'��W�WA� ��

��

'��U� UA�

��
'��V� VA� �� '��X�A�

����

is a pushout of crossed modules�

The interest in this theorem is at least six fold	

� The theorem is a very useful computational tool and gives information unobtainable so far by
other sources	

� The theorem is an example of a local�to�global theorem	 Such theorems play an important
r%ole in mathematics and its applications	

� The theorem deals with non abelian objects� and so cannot be proved by traditional means of
algebraic topology	

� The two available proofs use groupoid notions in an essential way	

� The existence of the theorem con�rms the value of the crossed module concept� and of the
methods used in its proof	 We should be interested in algebraic structures for which this kind
of result is true	

� It shows the di�culty of homotopy theory since one has� it appears� to go through all this just
to determine the second homotopy groups of certain mapping cones	

A further point is that the proof we shall give later �section �	�� does not assume the existence of
pushouts in the category XMod	 Instead the proof directly veri�es the required universal property�
and in fact the theorem deals with covers with any number of elements	
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� Computation with crossed modules and second relative

homotopy groups

The ��dimensional van Kampen Theorem �Theorem �	�� shows the interest in computing pushouts
of crossed modules	 A general treatment of this is in 
��� but for explicit calculations there have so
far been two main streams of results� namely induced crossed modules� and coproducts of crossed
P �modules for a �xed P 	 We will be concerned here mainly with the former� partly because the
results are newer and also because there is information and more references on the latter case in

���	

��� Induced crossed modules I� Algebra

Consider the situation of theorem �	�� so that X � U � V but in which we set A � U 	 Then we
have a pushout of pairs in which W � V � A�

�W�W � ��

��

�A�A�

��
�V�W � �� �X�A�

����

The inclusion of pairs � � �V� V � A� � �V � A�A� is known as the excision map� since the smaller
pair is obtained from the bigger one by �excising� AnV 	 A chief reason why homology is computable
is that this map induces an isomorphism in relative homology in all dimensions if� for example� U� V
are open in X	 By contrast� the excision map in relative homotopy is not an isomorphism even in
dimension �	 In order to see what happens we interpret theorem �	� for this situation in the next
section	 This interpretation uses the notion of induced crossed module which was �rst described in

���� and which we now develop	

De�nition ��� Let M � �� � M � P � be a crossed module� which we abbreviate to �M�P � when
convenient� and let 	 � P � Q be a morphism of groups	 The crossed module induced from M by 	
is 	�M � �
 � 	�M � Q� de�ned by the pushout of crossed modules

��� P � ��
��� 	�

��

��� Q�

��
�M�P � ��

�(	� 	�
�	�M�Q�

����

It can be proved from general considerations that the category XMod is complete and cocomplete�
and in particular admits all pushouts	 However� we will give below a presentation of the induced
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crossed module which can be used for speci�c calculations� and is also helpful for the calculation of
colimits	

First we give another way of expressing the universal property of induced crossed modules using
pullback crossed modules	 Let 	 � P � Q be a morphism of groups	 Let � � N � Q be a crossed
Q�module	 Let � � � 	�N � P be the pullback of N by 	� so that 	�N � f�p� n� � P 
 N j	p � �ng�
and � � � �p� n� �� p� Let P act on 	�N by �p�� n�p � �p��p�p� n

	p�� The veri�cation of the axiom CM��
is immediate� while CM�� is proved as follows�

Let �p� n�� �p�� n�� � 	�N� Then

�p� n����p�� n���p� n� � �p��p�p� n
��n�n�

� �p��p�p� n
�n
� �

� �p��p�p� n
	p
� �

� �p�� n��
���p�n��

This can be expressed functorially	 If P is a group� then the category XMod�P of crossed
P �modules is the subcategory of XMod whose objects are the crossed P �modules and in which a
morphism g � M � N of crossed P �modules is a morphism of groups such that �g � � and g
preserves the action in the sense that g�mp� � �gm�p� for all m �M� p � P 	

Proposition ��� Pullback by 	 de�nes a functor 	� � XMod�Q � XMod�P for which the induced
module functor 	� � XMod�P � XMod�Q is a left adjoint�

Proof The proof is not hard� using the universal property of the pushout	 �

In terms of the last result� the universal property of induced crossed modules is the following	
Let � � M � P� 
 � C � Q be crossed modules	 In the diagram

M ��f

��

�
��(	 DD

DD
DD

DD
C

��


	�M

��
� CC

CC
CC

CC

g
���

�
�

�

P ��
	 Q

����

the pair (	� 	 is a morphism of crossed modules such that for any crossed Q�module 
 � C � Q and
morphism of crossed modules f� 	� there is a unique morphism g � 	�M � C of crossed Q�modules
such that g(	 � f�

It is a consequence of this universal property that if � � F �R� � F �R� is the identity crossed
module for the free group F �R� on a set R� and if w � R � Q is the restriction of 	 to the set R�
then 	�F �R� is the free crossed module on w� in the sense of Whitehead 
���� �see also 
��� ��� �
���	
Constructions of this free crossed module were given in these papers	
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The following presentation for crossed modules induced by a morphism 	 is given in Proposition
� of 
���	

Proposition ��� Let � � M � P be a crossed P �module and let 	 � P � Q be a morphism of
groups� Then the induced crossed Q�module D � 	�M is generated� as a group� by the set M 
 Q
with de�ning relations

�i� �m�� q��m�� q� � �m�m�� q��

�ii� �mp� q� � �m� �	p�q��

�iii� �m�� q��
���m�� q���m�� q�� � �m�� q�q

���	�m��q���

for m�� m�� m �M� q�� q�� q � Q� p � P� The morphism 
 � D � Q is given by 
�m� q� � q���	
m�q�
the action of Q on D by �m� q��

q � �m� q�q�� and the canonical morphism (	 � M � D by (	�m� �
�m� ���

Proof One veri�es directly that this recipe de�nes a crossed Q�module and that �(	� 	� � �M�P� �� �
�D�Q� 
� is a morphism of crossed modules with the required universal property	 �

The following is a consequence of this explicit presentation of the induced crossed module	

Corollary ��� If 	 � P � Q is the inclusion of the subgroup P of Q� then the image of the boundary

 � 	�P � Q of the crossed module induced from �P � P � P is the normal closure of P in Q�

Thus in the case of a subgroup P of Q the induced crossed module construction replaces the usual
normal closure NQ�P � of P in Q by a group 	�P which is in general larger than the normal closure
NQ�P � and has additional structure satisfying a universal property	 The kernel of the boundary
map 	�P � Q has topological interest since it can be given as a second homotopy group �Corollary
�	��� but so far it has no independent algebraic construction	

We will need two more results from 
���	

Proposition ��� 
��� Proposition �� If 	 � P � Q is a surjection� and � � M � P is a crossed P�
module� then 	�M �� M�
M�K�� where K � Ker 	� and 
M�K� denotes the subgroup of M generated
by all m��mk for all m �M� k � K�

The proof is a direct exercise in verifying that �	 determines a morphism M�
M�K� � Q which
may be given the structure of crossed Q�module which satis�es the required universal property	 We
leave this for the reader	

The next results in this section come from 
���	 We use the following term and notation	 Let
P be a group and let T be a set	 We de�ne the copower P �� T to be the free product of groups
Pt� t � T� each with elements �p� t�� p � P� and isomorphic to P under the map �p� t� �� p� If Q is a
group� then P �� Q will denote the copower of P with the underlying set of the group Q�
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Proposition ��� If 	 � P � Q is an injection� and � � M � P is a crossed P�module� let T be a
right transversal of 	P in Q� Let Q act on the copower M �� T by the rule �m� t�q � �mp� u�� where
p � P� u � T� and tq � �	p�u� Let � � M �� T � Q be de�ned by �m� t� �� t���	�m�t� Let S be a set
of generators of M as a group� and let SP � fxp � x � S� p � Pg� Then

	�M � �M �� T ��R

where R is the normal closure in M �� T of the Pei�er commutators

h�r� t�� �s� u�i � �r� t����s� u����r� t��s� u�
�r�t� �r� s � SP � t� u � T ��

Proof Let N � M �� T� Proposition �
 of 
��� yields that 	�M is the quotient of N by the
subgroup hN�Ni generated by hn� n�i � n��n��� nn
n� � n� n� � N� and which is called in 
��� the
Pei�er subgroup of N 	 Now N is generated by the set �SP � T � � f�sp� t� � s � S� p � P� t � Tg� and
this set is Q�invariant since �sp� t�q � �spp

�

� u� where u � T� p� � P satisfy tq � �	p��u� It follows from
Proposition � of 
��� that hN�Ni is the normal closure of the set h�SP � T �� �SP � T �i of basic Pei�er
commutators	 �

Example ��	 The dihedral crossed module We show how this works out in the following case�
which exhibits a number of typical features	 We let Q be the dihedral group Dn with presentation
hx� y � xn � y� � xyxy � �i� and let M � P be the cyclic subgroup C� of order � generated by y�
Let Cn � f
� �� �� � � � � n 	 �g be the cyclic group of order n� A right transversal T of C� in Dn is
given by the elements xi� i � Cn� Hence 	�C� has a presentation with generators ai � �y� xi�� i � Cn�
and relations given by a�i � �� i � Cn� together with the Pei�er relations	 Now �ai � x�iyxi � yx�i�
Further the action is given by �ai�

x � ai��� �ai�
y � an�i� Hence �ai�


aj � a�j�i� so that the Pei�er
relations are ajaiaj � a�j�i� It is well known that we now have a presentation of the dihedral
group Dn� in which we get the standard presentation hu� v � un � v� � uvuv � �i by setting
u � a�a�� v � a�� so that ui � a�ai� Then

�u � x�� �v � y�

so that y acts on 	�C� by conjugation by v� However x acts by

ux � u� vx � vu�

Note that this is consistent with the crossed module axiom CM�� since

vx
�

� �vu�x � vuu � u��vu�

We call this crossed module the dihedral crossed module	 It follows from these formulae that �
in the induced crossed module � � Dn � Dn is an isomorphism if n is odd� and has kernel and
cokernel isomorphic to C� if n is even	 In particular� if n is even� then by results of section �	��
���BDn � !BC�� has one non�trivial element which can be regarded as being represented by un��	
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Corollary ��� Assume 	 � P � Q is injective� If M has a presentation as a group with g generators
and r relations� the set of generators of M is P�invariant� and n � 
Q � 	��M��� then 	�M has a
presentation with gn generators and rn � g�n�n	 �� relations�

Another corollary determines induced crossed modules under some abelian conditions	 This
result has useful applications	 If M is an abelian group� or P �module� and T is a set we de�ne the
copower of M with T � written M �� T � to be the sum of copies of M one for each element of T�

Corollary ��
 Let � � M � P be a crossed P �module and 	 � P � Q a monomorphism of groups
such that M is abelian and 	��M� is normal in Q� Then 	�M is abelian and as a Q�module is just
the induced Q�module in the usual sense�

Proof We use the result and notation of Proposition �	�	 Note that if u� t � T and r � S then
u��r� t� � ut���	�r�t � �	�m�ut��t � �	�m�u for some m � M� by the normality condition	 The
Pei�er commutators given in Proposition �	� can therefore be rewritten as

�r� t����s� u����r� t��s� u�
�r�t� � �r��� t��s� u����r� t��sm� u��

Since M is abelian� sm � s� Thus the basic Pei�er commutators reduce to ordinary commutators	
Hence 	�M is the copower M �� T� and this� with the given action� is the usual presentation of the
induced Q�module	 �

Example ���
 Let M � P � Q be the in�nite cyclic group� which we write Z� and let 	 � P � Q
be multiplication by �	 Then 	�M �� Z� Z� and the action of a generator of Q on 	�M is to switch
the two copies of Z	 This result could also be deduced from known results on free crossed modules	
However� our results show that we get a similar conclusion simply by replacing each Z in the above
by for example C�	

We also note the following theorem from 
���� whose proof is omitted	

Theorem ���� 
��� Let � � M � P be a crossed module and let 	 � P � Q be a morphism of
groups� Suppose that M and the index of 	�P � in Q are �nite� Then the induced crossed module
	�M is �nite�

The main di�culty in the proof is in the case when 	 � P � Q is injective	

Theorem �	�� suggests that the computation of induced crossed modules should be accessible to
symbolic computation	 This has been realised as one of the functions in the GAP package XMOD

���� and in this way a number of calculations have been made 
���	

The following theorem gives another useful instance of the determination of induced crossed mod�
ules	 For any group G� let I�G� denote its augmentation ideal� i	e	 the kernel of the augmentation
map ZG� Z	
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Theorem ���� 
��� Let M � P be normal subgroups of Q� so that Q acts on P and M by con�
jugation� Let � � M � P� 	 � P � Q be the inclusions and let M denote the crossed module
�� � M � P � with the conjugation action� Then the induced crossed Q�module 	�M is isomorphic
as a crossed Q�module to

�� � M 
 �Mab � I�Q�P �� � Q�

where for m�n �M� x � I�Q�P � �

�i� ��m� 
n�� x� � m � Q	

�ii� the action of Q is given by

�m� 
n�� x�q � �mq� 
mq�� �(q 	 �� � 
nq�� x(q��

The universal map i � M � M 
 �Mab � I�Q�P �� is given by m �� �m� 
�� and if ��� 	� is a
morphism from M to the crossed module C � �� � C � Q�� then the morphism

C

��

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

M

��
�

��
i

��



nnnnnnnnnnnnnn
Z

��
�

�

��

P ��
	 Q

����

� � M 
 �Mab � I�Q�P �� � C induced by � is� for m�n �M� q � Q� given by

��m� 
n�� �(q 	 ��� � ��m� ��n���
�
�
�
nq

��
��q

� ����

The proof given in 
��� is a direct veri�cation of the universal property	 The description of the
action in �ii� of the last theorem is important and in�uences strongly the homotopy type of the
classifying space X of the induced crossed module	 Correspondingly� you should avoid thinking
that it is only the additive structure of the second homotopy group ���X� which is of interest	 I
remember Whitehead saying that it was the action which especially fascinated the early workers
in homotopy theory	 Of course the deeper structures such as that given by the action� and by the
crossed module itself� are of even more interest when there is some means of getting information on
them in speci�c examples	

��� Induced crossed modules II� Topological applications

The following theorem is an easy consequence of Theorem �	�	
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Theorem ���� Suppose that the commutative square

W ��f

��
i

A

��
(�

V ��
(f

X

of based spaces satis�es one of the two following hypotheses�

HYPOTHESIS A� the maps i� f�(�� (f are inclusions of subspaces� W � V � A� and X is the union
of the interiors of V and A	

HYPOTHESIS B� the map i is a closed co�bration and X is the adjunction space A �f V�

Suppose also that �V�W � is ��connected and A is path connected� Then�

�C� �X�A� is ��connected	

�I� ���X�A� is the crossed ���A��module induced from ���V�W � by the morphism f� � ���W � �
���A��

Proof Under these conditions we may take A � UA � U and VA � WA � W in Theorem �	�	
Writing P � ���W �� Q � ���A��M � ���V�W �� and N � ���X�A� we �nd that

�
� P� 
� ��
�
� 	�

��

�
� Q� 
�

��
�M�P� �� ��

�(	� 	�
�N�Q� 
�

is a push�out of crossed modules� and this is equivalent to the assertion that N is the induced module
	�M 	 �

We shall discuss below the relation with what is usually called the �homotopy excision theorem�
�Example �	���� but here move on to some other direct applications	

Corollary ���� �Relative Hurewicz Theorem in dimension �� Suppose the pair �V�W � is ��connected�
Then the space V �CW is ��connected and the group ���V �CW � is isomorphic to the group ���V�W �
factored by the action of ���W ��
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Proof This follows from Theorem �	�� with f the inclusion W � CW � Proposition �	�� and the
fact that ���V � CW�CW � �� ���V � CW �	 �

This may seem odd since it is a relative Hurewicz Theorem without mention of homology	
However� since V � CW is ��connected� the absolute Hurewicz Theorem implies ���V � CW � ��
H��V �CW � and this last group is isomorphic to H��V�W � �by the excision theorem for homology�	

It is di�cult to envisage any proof of the following theorem except that given here	

Corollary ���� Let X � A �f CW be the mapping cone of a map f � W � A� and suppose
that A�W are connected� Then �X�A� is ��connected and the crossed ���A��module ���X�A� is
isomorphic to 	����W �� where 	 � ���W � � ���A� is induced by f � In particular� if ���A� � 
� then
���X� is isomorphic to the kernel of 
 � 	����W � � ���A��

Proof The statements about ���X�A� follow from Theorem �	��� and the �nal statement follows
from the homotopy exact sequence of the pair �X�A�	 �

As pointed out earlier� in the case P is a free group F �R� on a set R� and � is the identity� then
the induced crossed module 	�P is the free crossed Q�module on the function 	jR � R � Q	 Thus
the last corollary implies Whitehead�s theorem�

Theorem ���� Let X � A � fe��g��	 be obtained from the connected space A by attaching ��cells�
Then the second relative homotopy group ���X�A� may be described as the free crossed ���A��module
on the ��cells�

Whitehead�s original proof involved arguments of transversality and knot theory� and was devel�
oped over the papers 
���� ���� ����	

A considerable amount of work has been developed from this result� because of the connections
with identities among relations� and methods such as transversality theory and �pictures� which
developed from Whitehead�s proof have proved successful �
��� �
���� particularly in the homotopy
theory of ��dimensional complexes 
���	 However� the only route so far available to the wider
geometric applications of induced crossed modules is Theorem �	��	

We now give some other applications of Theorem �	��	

Corollary ���	 Let � � M � P be a crossed module� and let 	 � P � Q be a morphism of groups�
Let � � BP � B�M � P � be the inclusion� Consider the pushout

BP

��



��B	 BQ

��
B�M � P � ��


�
X�

��
�
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Then the fundamental crossed module of the pair �X�BQ� is isomorphic to the induced crossed
module 	�M � Q� and there is a map

X � B�	�M � Q�

inducing an isomorphism of ��� ���

This shows that we have given a local�to�global computation of a homotopy ��type	 That this can be
done at all is remarkable	

Further� for many speci�c �nite examples the resulting induced crossed module can be computed
completely	

Corollary ���� Let 	 � P � Q be a morphism of groups� Then the fundamental crossed module
'��BQ�B	 CBP�BQ� is isomorphic to the induced crossed module 	�P � Q� and hence the second
homotopy group ���BQ �B	 C�BP �� is isomorphic to Ker �	�P � Q�� In particular� if P is normal
in Q� then this second homotopy group is isomorphic to P ab � I�Q�P ��

Thus information about even such an apparently simple computation as a second absolute ho�
motopy group of this mapping cone is tightly bound to information on crossed modules	 There is at
present no alternative description of this second homotopy group in algebraic terms	 This highlights
some basic di�culties of homotopy theory� and also suggests that homotopy theory is an essentially
non abelian subject	 The abelian homotopy groups� even as modules over the fundamental group�
give only a pale shadow of the homotopical structures	

Part of the aim of �nding models of these homotopical structures is the generic importance of
the notion of homotopy� or deformation� as a means of classi�cation	 New methods developed here
should prove their value in general areas of mathematics� in a manner similar to that of the general
applications of homological algebra	

Example ���
 Theorem �	�� implies the homotopy excision theorem 
��� p	���� in dimension �	
For suppose the based space X is the union of subspaces A� V � with A� V and W � A� V all path�
connected	 Assume either Hypothesis A or Hypothesis B� � A and V are closed and i � W � V is a
co�bration� Let 	 � ���W � � ���A� be induced by inclusion	 If ���V�W � � 
� then ���W � � ���V �
is surjective� and by Theorem �	��� ���X�A� � 	����V�W � this gives an algebraic description of
the excision map � � ���V�W � � ���X�A�	 If also ���A�W � � 
� then 	 is surjective and we obtain
from Proposition �	� the surjectivity of � which is one part of the usual excision theorem but we
can also� by Theorem �	�� and Proposition �	�� state the further result that if K � Ker 	� then K
acts on M � ���V�W �� and Ker � � 
M�K�	 Suppose further that


 � ���A�W � � ���W �

is trivial �for example if ���A�W � � 
� then 	 � ���W � � ���A� is an isomorphism and hence so
also is �� This is the �nal part of homotopy excision under hypotheses slightly weaker than the usual
ones	
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Example ���
 Let W�A�X be as in Corollary �	��� and suppose that f� � ���W � � ���A� is
surjective with kernel K	 An application of Proposition �	� to the conclusion of Theorem �	�� gives
���X�A� � ���W ��
���W �� K�� and it follows from the homotopy exact sequence of the pair �X�A�
that there is an exact sequence

���A� � ���X� � K�
���W �� K� � 
� ����

It follows from this exact sequence that if W � K�P� �� and A � K�Q� ��� so that we have an
exact sequence � � K � P � Q � � of groups� then ���X� �� K�
P�K�	 Since X is simply
connected� we get the same result for H��X�	 Now the homology exact sequence of the co�bre
sequence W � A� X gives an exact sequence

H��P � � H��Q� � K�
P�K� � H��P � � H��Q� � 


�originally due to Stallings�	 In particular if P � F � a free group� or one with H��F � � 
� then we
obtain an exact sequence


 � H��Q� � K�
F�K� � F ab � Qab � 
�

This gives the famous Hopf formula

H��Q� ��
K � 
F� F �


K�F �

which is one of the starting points of homological algebra	

As another application of ���� we note that if ���A� � ���A� � 
� then ���X� � ���W �ab� But
���X� �� H��X� �� H��W �� and so we obtain the absolute Hurewicz Theorem in dimension �� if W
is connected� then H��W � �� ���W �ab�

The interest in this type of deduction of a well known and elementary result is as a model for
other situations� where the notion of abelianisation is less transparent	

Example ���� Let M be a normal subgroup of the group P and let 	 � P � Q be a morphism of
groups	 Let X be the homotopy pushout in the diagram

BP ��Bf

��

BQ

��
B�P�M� �� X

����

Then the homotopy ��type of X is described by the induced crossed module 	�M � Q	 This crossed
module is determined completely in the case 	 is an inclusion and M�P are both normal in Q in
Theorem �	��� from 
���	
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Remark ���� These results set the scene for later generalisations	 In particular� the proof given
here of the relative Hurewicz Theorem in dimension � led to its deduction in dimension n from a
Generalised Van Kampen Theorem for crossed complexes �see Corollary �	��	 This in turn suggested
an r�adic Hurewicz Theorem as a deduction from an r�adic Van Kampen Theorem� via an r�cubical
version of excision	 This version of the Hurewicz Theorem 
��� �
� has currently no other proof	
Again� the above proof of the Hopf formula led to a higher dimensional version of the Hopf formula
given by Brown and Ellis in 
���� whose proof again uses the r�adic Hurewicz Theorem	

��� Coproducts of crossed P 	modules

Here we give a brief review of another application of Theorem �	� to direct computation of homotopy
groups	

Theorem ���� Let M�N be normal subgroups of a group P � and let the space X be given as the
homotopy pushout in the following diagram� where BP denotes the classifying space of the discrete
group P �

BP ��

��

B�P�M�

��
B�P�N� �� X

����

Then the �rst two homotopy groups of X are given by

�i�X� ��

���P�MN if i � ��

�M �N��
M�N � if i � ��
����

The proof uses an explicit description of the coproduct in the category XMod�P of crossed
P �modules � for more details� see 
��� ���	 In fact the results in 
��� are more complete since the
crossed module representing the ��type of the homotopy pushout X in Theorem �	�� is described
completely as the coproduct of the two crossed P �modules M � P�N � P 	

��� The homotopy �	type of a union of spaces

Consider the situation of the ��dimensional Van Kampen Theorem �	�� and suppose that each of
the spaces UA� VA�WA has trivial second homotopy group	 Then the crossed modules '��U� UA��
'��V� VA�� '��W�WA� determine the homotopy ��types of the spaces U� V�W respectively	 Theorem
�	� determines completely the crossed module ���X�A� as the pushout of the other crossed modules	
It is not true in general that A then has trivial second homotopy group� as is clear from the previous
sections	 However if this does hold� then the homotopy ��type of X has been determined	 This
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crossed module may in some cases be quite calculable � for example it might be �nite	 On the other
hand� the second homotopy group� namely the kernel of the boundary map of '��X�A�� may be
di�cult to calculate	

It is often held that the invariant of chief interest is the second homotopy group	 This view
may be because of the long familiarity of this invariant� and the previous di�culty of calculating
an invariant of the homotopy ��type	 In any case� the virtue of algebraic models of homotopy types
is that they �t naturally into algebraic constructions such as colimits and limits� and into more
general theories such as homotopy coherence	
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� Homotopy double groupoids and the proof

of the ��dimensional Van Kampen Theorem

��� Preliminaries on double groupoids

We now start on the de�nition and theory of the double groupoids used in the proof of the ��
dimensional Van Kampen Theorem	 Much of the following exposition is adapted from 
��� �
�	

By a double groupoid we shall always mean a �special double groupoid with special connection�
as de�ned in section � of 
�
�	 We recall this de�nition� adopting a slightly di�erent notation	

A double groupoid G � �G�� G�� G�� has� in the �rst place� the structure of a two�dimensional
cubical complex	 Thus there are face maps 
�i � Gn � Gn�� �� � 
� �� i � �� �� � � � � n� n � �� �� and
degeneracy maps �i � Gn�� � Gn �i � �� �� � � � � n� n � �� �� satisfying the usual cubical relations	

Next� for n � �� �� the pair �Gn� Gn��� has n groupoid structures each with objects Gn�� and
arrows Gn	 The groupoid �in the ith direction� has initial and �nal maps 
�i � 


�
i � Gn � Gn���

and its identity elements are the degenerate elements �iy for y � Gn��	 The notation we use for
these groupoid structures is as follows	 Let a� b � Gn satisfy 
�i a � 
�i b	 If n � � �and therefore
i � �� the composite of the edges a� b is written ab� and the identity edge ��y �y � G�� is written
ey� or e	 If n � � and i � �� the composite of the squares a and b is written a � b� with identity
squares �y � ��y �y � G�� we refer to this as �vertical composition� of squares	 If n � � and i � ��
the composite of a and b is written a � b� with identities 
y � ��y �y � G�� this is �horizontal
composition� of squares	 If a � G�� the inverse of a is written a��� while if a � G�� its inverses with
respect to � and � are written a�� and 	a respectively	 We write �y for the doubly degenerate
square �ey � 
ey �y � G��	 We require also that the face maps G� � G� and the degeneracy maps
G� � G� are morphisms of groupoids in the following sense�

�i� if a � b is de�ned then 
�� �a � b� � �
�� a��
�� b� 

�ii� if a � b is de�ned then 
�� �a � b� � �
�� a��
�� b� 

�iii� if ab is de�ned then 
ab � 
a � 
b and �ab � �a � �b	

The vertical and horizontal compositions of squares are related by the interchange law� namely� that
if a� b� c� d � G� then

�a � b� � �c � d� � �a � c� � �b � d�

whenever both sides are de�ned	 It is convenient to use matrix notation for composition of squares	
If a � G�� a subdivision of a is de�ned to be a rectangular array �aij� ��� i�m� �� j�n� of elements
of G� satisfying

���

�
�ai���j � 
��ai�j ��� i�m� �� j �n��


��ai�j�� � 
��ai�j ��� i�m� �� j �n��
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such that

�a�� � a�� � 
 
 
� a�n� � �a�� � a�� � 
 
 
� a�n� � 
 
 
 � �am� � am� � 
 
 
� amn� � a�

We call a the composite of the array �aij� and write a � 
aij�� The interchange law implies that
if in the array �aij� we partition the rows and columns into blocks Bkl and compute the composite
bkl of each block� then a � 
bkl�� We call the subdivision �aij� a re�nement of �bkl� in this case	 Note

that a � b� a� c can also be written

�
a
b

�
� 
a� c�� and that the two sides of the interchange law can be

written

�
a b
c d

�
�

Before de�ning our further element of structure� we need one example of a double groupoid

��� ���	 Let H be a groupoid	 The double groupoid H of commuting squares in H agrees with H

in dimension � and in dimension � consists of all quadruples � �

�
a
b
d
c

	
of arrows of H such that

ad � bc� and where 
��� � b� 
��� � d� 
��� � a� 
��� � c� The two compositions of these commutative
squares are the usual ones	

A thin structure on a double groupoid G is a morphism ) � G� � G of cubical sets such that
) is the identity in dimensions 
 and �� and in dimension � preserves the two compositions �and
hence preserves identities and inverses also�	 Thus the speci�cation of a thin structure on a double
groupoid G has the e�ect of singling out a set of squares of G with commuting boundary� which we
shall call thin� with the two rules�

T�� any quadruple �a� b� c� d� of elements of G� such that ad � bc is the boundary of a unique thin
square 

T�� any well de�ned composite of thin squares is thin	

This structure is crucial for our proof of the ��dimensional Van Kampen Theorem� and for
relating this proof to standard examples in homotopy theory	

There is clearly a category of double groupoids with thin structure� where the morphisms are
morphisms of double groupoids preserving the thin structure	 This category is written DbGpd	
From now on the term �double groupoid� will mean an object of this category	

We now give a complete algebraic source of such double groupoids	 This requires generalising
the notion of crossed module to the groupoid context	

Let * be a groupoid	 A crossed *�module consists of�

�i� a totally disconnected groupoid M with the same object set as * 

�ii� a morphism � � M � * of groupoids which is the identity on objects and
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�iii� an action of the groupoid * on the right of the groupoid M via �	

This last condition means that if x � *�a� b�� m � M�p�� then mx �M�b� and the usual laws of an
action apply� namely m� � m� �mx�y � mxy� �mn�x � mxnx whenever the terms are de�ned	

The axioms for a crossed module are�

CM�� ��mx� � x����m�x�

CM�� n��mn � m�n�

for all m�n � M�x � * and whenever the terms are de�ned	 Such a crossed *�module is written
�M���*� or � � M � *� or simply as M 	

A morphism from a crossed module � � M � * to a crossed module � � N � + consists of a pair
of morphisms of groupoids f � * � +� g � M � N such that �g � f� and g�mx� � �gm�fx whenever
mx is de�ned	 This yields the category XModGpd of crossed modules and their morphisms	

Let G be a double groupoid in the sense above	 Then we obtain a crossed module 
�G� � �� �
M � G�� as follows	 Its ��dimensional part is just the groupoid G�	 Let x � G�	 Then M�x�
consists of all squares � � G� such that 
��� � 
��� � 
��� � �x� and �� � 
���� The multiplication
in M is given by �	 The action of G on M is given by

�b � 	�b � � � �b�

The rule CM�� for a crossed module is clear� while CM�� can be proved by evaluating in two ways
the composition �

	�b � �b
	� � �

�

The functor � � XModGpd � DbGpd is de�ned as follows	 Let M � �� � M � *� be a crossed

module	 Then �Mi � *i for i � 
� �	 The squares of �M consist of all quintuples

�
m � a

c
b
d

	
such

that m � M� a� b� c� d � * and �m � d��c��ab	 The boundary shell of such a quintuple is just the
part excluding m as should be expected� analogously to the case of commuting squares� and the two
compositions are de�ned by��

m � a
c
b
d

	
�

�
n � d

f
e
g

	
�

�
nme � a

cf
be

g

	
�����

m � a
c
b
d

	
�

�
l � u

b
v
w

	
�

�
mw l � au

c
v
dw

	
����

The axioms for a double groupoid are trivial to verify except for the interchange law	 This turns
out to be equivalent to axiom CM�� for a crossed module	
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Finally the thin squares are those of the form�
� � a

c
b
d

	
�

Theorem ��� �Brown and Spencer 
�
�� Brown and Higgins 
���� The functors 
� � de�ned above
give an equivalence between the categories XMod and DbGpd�

An interesting aspect of the proof is that the hardest part is to construct the natural equivalence
�
 � �	 Usually when one has an equivalence of categories� the result is clear once the functors
are written down	 That is not so in this case� and the problem gets even more di�cult in higher
dimensions	 Essentially� the result says that if G is a double groupoid �with thin structure� then G
can be reconstructed from the crossed module 
G it contains	

��� The homotopy double groupoid of a triple of spaces

Throughout this section X� � �X�X�� X�� will be a triple of spaces� so that X� is a subspace of X
and X� is a subspace of X�	 We shall construct its �homotopy double groupoid� ��X��	

First we construct R � �R�� R�� R�� where R� � X�� R� is the set of maps �I� ,I� � �X�� X���
and R� is the set of maps �I�� ,I�� �I�� � �X�X�� X��� where ,I� is the set of edges and �I� the set of
vertices of the square I�	

X X�X�

X�

X�
X� X�

X� X�

Then R � R�X�� has the structure of a two�dimensional cubical complex	

The set R� has its usual composition of paths in X� with end points in X�	 The set R� has
two similar compositions	 In more detail� for positive integers m�n let �m�n � I� � 

� m� 
 

� n�
be the map �x� y� �� �mx� ny�	 An m 
 n subdivision of a square � � I� � X is a factorization
� � �� � �m�n its parts are the squares �ij � I� � X de�ned by

�ij�x� y� � ���x � i	 �� y � j 	 ���

We then say that � is the composite of the squares �ij� and we write � � 
�ij�� Similar de�nitions
apply to paths and cubes	

Such a subdivision determines a cell�structure on I� as follows	 The intervals 

� m�� 

� n� have
cell�structures with integral points as 
�cells and the intervals 
i� i � �� as closed ��cells	 Then
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� m� 
 

� n� has the product cell�structure which is transferred to I� by ���m�n� We call the ��cell
���m�n�
i	 �� i�
 
j 	 ��� the domain of �ij�

We use the same notation for degenerate squares as in the previous section	 If � � R�� then
����	� denote respectively the elements of R� de�ned by �r� s� �� ���	 r� s�� �r� s� �� ��r� �	 s��

The double groupoid � � ���� ��� ��� is in dimensions 
 and � just the fundamental groupoid
���X�� X��� so that �� � X�� and �� consists of homotopy classes rel vertices of maps �I� ,I� �
�X�� X��� with the usual composition	 For dimension �� the elements of �� are homotopy classes rel
vertices of maps �I�� ,I�� �I�� � �X�X�� X���

We write� for the relation of homotopy on R� and R� and call it f�homotopy �or �lter homotopy��
to distinguish it from homotopy of maps I � X� or I� � X which we write �	 The class in �i of
an element � of Ri is written (�	

An element (� of �� is called thin if it has a representative � such that ��I�� is contained in X�	

Proposition ��� The compositions on R�X�� induce compositions on ��X�� which with the above
thin elements make ��X�� a double groupoid�

Proof Since �� is just the fundamental groupoid� the major task is to prove that the compositions
on R� are inherited by ���

Let (�� (� � �� satisfy 
�� (� � 
��
(�	 Then there is a square h in X� with 
 � 
� h �� de�ned and

with 
��h� 

�
�h constant paths in X�� We let (� � (� � (
 and prove this addition to be well de�ned	

�
��

�
��

�
��

�
�
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�
�
�
�
��
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� h �

�� h� � �

� � �
�
�
��

r

s

t

Figure �

Let 
� � 
�� h� � �� be alternative choices	 Then there exist f�homotopies �t � � � ��� �t � � � � �	
Let k � I 
 ,I� � X� be given by �r� s� 
� �� h�r� s�� �r� s� �� �� h��r� s�� �r� 
� t� �� �t�r� ��� �r� �� t� ��
�t�r� 
�� In terms of Figure �� in which the thin lines denote edges on which the maps are constant�
k is the map de�ned on the four side faces of the central hole	 But k is constant on the edges of the
bottom face� since all the homotopies are rel vertices	 So k extends over f�g
 I� � X� extending k
to �ve faces of I�� By retracting I� onto these �ve faces we obtain a further extension k � I� � X��
The composite cube 
� k �� is an f�homotopy 
 � 
� as required� the key point is that the extension
maps the top face of the middle cube into X�� since that is true for all the other faces	
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It is now easy to see that this addition makes ���� ��� a groupoid with initial and �nal maps 
�� � 

�
�

and identity elements 
s� where s � ��� A similar procedure gives the other groupoid structure	

To verify the interchange law� suppose that (�� (�� (
� (� � �� are such that either of the two
composites �

(� (�
(
 (�

�

are de�ned	 Then there are maps h� h�� k� k� � I� � X� such that the following compositions are
de�ned except for the middle element� 
��� h �

k k�


 h� �


�� �
However because all homotopies are rel vertices� the middle square can be �lled by a constant map
to give a composable array	 Evaluating this in two ways gives the interchange law	

Clearly a thin element of �� has commuting boundary� and any commuting boundary has a thin
�ller	 We have to prove this �ller is unique	

Let f�� f� � �I�� �I�� � �X�� X�� be two maps which agree on ,I�	 De�ne F � I� 
 I � X� as
follows	 On I� 
 ,I� F is de�ned by f�� f�� while on three of the remaining faces of I� � I� 
 I� F
is given by constant homotopies of the corresponding edges of I�	 Now use a retraction of I� onto
these �ve faces to extend these maps to give an f�homotopy F � f� � f� as required	

Finally� it is clear from the homotopy extension property that any composite of thin elements is
thin	 �

The next proposition is one of the keys to our work	 It shows that double groupoids allow a
convenient expression for the homotopy addition lemma in dimension �	 To this end� we introduce
the following convenient notation for certain thin elements�

����

Here a thick line denotes an identity edge	 Because a thin element is entirely determined by its
boundary� which also must be commutative� it is easy to deduce relations between the other edges
of these thin squares	 Also� the two rules for thin elements immediately lead to equations such as�� �

� ����h i
� ����

The �rst of these is known as the transport law since it was borrowed from a related law for path
connections in di�erential topology 
�
�	

Part of the point of this is that ��dimensional algebra is more complicated than ��dimensional
algebra� as one would expect	 In particular� in dimension � the only �thin� elements are identities�
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which correspond to constant paths	 In dimension � we can not only stand still or turn around as in
��dimensional algebra� we can also turn left or right	 This opens up quite new algebraic possibilities	

The last four thin elements of ���� can in �� be de�ned by speci�c squares� of which the basic
one is called a �connection� ! � R� � R�	 It is given by

!��� � �s� t� ��

�����s� if 
� t� s���

��t� if 
�s� t���

Clearly 
��!��� � 
��!��� � � and 
��!��� � 
��!��� � ��y where y � 
���� Also ! satis�es the
transport law ����	

If h � I� � X is a cube in X� then its faces are� as usual� given by 
�i h � h � ��i � where
��i �x�� x�� � �y�� y�� y��� the yj being de�ned by yj � xj for j � i� yi � �� and yj � xj�� for j � i	
Also let -��� �x�� x�� � ��� x�� x��	

Proposition ��� �the homotopy addition lemma�	 Let X�� � be as in Proposition 
��� Let h be a
cube in X with edges in X� and vertices in X�� and let the elements a�� b�� c� of �� represented by
its faces be respectively the classes of h � -��� � h � �

�
� � h � �

�
� �� � 
� ��� Then

c� �


�� ����
	b� c� b�

a�


��
in �� where the corner elements are thin elements as above�

Proof Consider the maps ��� �� � I� � I� de�ned by

�� �


��	!�� �-����
�� !��

	��� ��� ���
	! -��� !


�� � �� �


��	!�� � !��


 ��� 

	! � !


�� �
Then ��� �� agree on ,I� and so� since I� is convex� are homotopic rel ,I�� Hence h � �� � h � �� in
��	 But h � �� is the composite matrix given in the proposition� and h � �� � c�	 �

A map f � X� � Y� of triples clearly de�nes a morphism ��f� � ��X�� � ��Y�� of double
groupoids	

Proposition ��� If f � X� � Y� is a map of triples such that each of f � X � Y� f� � X� � Y�� f� �
X� � Y� are homotopy equivalences� then ��f� � ��X�� � ��Y�� is an isomorphism�

Proof This is an immediate consequence of ��
	��� of 
���	 �In fact the maps Ri�X�� � Ri�Y�� are
then homotopy equivalences� as it is not hard to deduce for i � �� � from the cogluing theorem of

���	� �

From the homotopy double groupoid ��X�� we obtain according to the procedure of the previous
section a crossed module 
���X���	
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Proposition ��� If x � X�� then the group 
���X�����x� may be identi�ed with the group of ho�
motopy classes rel

J� � �I 
 ,I� � �f
g 
 I�

of maps
�I�� f�g 
 I� J�� � �X�X�� x��

i�e� with the usual second relative homotopy group ���X�X�� x��

Proof Clearly there is a group surjection

� � ���X�X�� x� � 
���X�����x��

We have to prove � is injective	 Suppose then that ��(�� � 
	 Then there is an f�homotopy h � � � 
	
We have to prove there is a homotopy of maps of triples h� � � � 
 rel J�� and this is done by using
a �lling argument to deform h to a homotopy h� of the required type	

We write the elements of I� as �r� s� t� u�	 We �rst de�ne

F �r� s� t� 
� � h�r� s� t�

F �r� s� 
� u� � h�r� s� 
� � ��r� s�

F �r� s� �� u� � x

where the �rst says that u � 
 gives the original homotopy� and the second and third say that
h� � � and h� are not altered in the homotopy of h	 Next� the �nal homotopy� i	e	 when u � ��
must be rel J�	 This means that we de�ne

F �
� s� t� �� � F �r� 
� t� �� � F �r� �� t� �� � x�

We need to de�ne F on seven of the ��faces of I� and so far it is de�ned on only three of them�
as well as on three ��faces	 We start an extension process by de�ning F to have value x on the
elements ��� �� t� u�� and �nd that F is well de�ned on �ve of the faces of the ��cube given by s � �	
Hence F may be extended over this ��cube	 In a similar way we get F de�ned on the ��cubes given
in turn by r � 
� next by s � 
� and then by r � �	 Now F is de�ned on seven of the ��faces of
I�� and so extends over I�	 Then F �r� s� t� �� is the required homotopy� since by de�nition it is a
homotopy of � rel J�� and it does map the points ��� s� t� into X�� since all the faces of the ��cubes
over which we extended were mapped into X�	 �

On the face of it� this shows that the theory of the homotopy double groupoid ��X�� is equivalent
to that of the classical second relative homotopy crossed module� and so the question can be fairly
put� Why introduce a new version# The answer is the usual kind of answer� that sometimes the
new version is useful for proving theorems	 In particular� we are unable to prove directly in terms
of crossed modules the version of the ��dimensional Van Kampen theorem which gives a result in
terms of the classical crossed modules	
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The reason for conceiving of the homotopy double groupoid was to �nd an algebraic gadget more
appropriate than groups for giving an

algebraic inverse to subdivision�

This is the slogan underlying the work on higher dimensional Van Kampen Theorems	 Subdivid�
ing a square into little squares has a convenient expression in terms of double groupoids� and much
more inconvenient expressions� if they exist at all� in terms of crossed modules	 The ��dimensional
Van Kampen Theorem was conceived �rst in terms of double groupoids� and it was only gradually
that the link with crossed modules was realised	 In the end� the aim of obtaining Whitehead�s
theorem on free crossed modules �Corollary �	��� as a corollary was a key impetus to forming a
de�nition of a homotopy double groupoid for a pointed pair of spaces� since that theorem involved
a crossed module de�ned for such a pair of spaces	

Further� the connections on double groupoids which were found necessary to make precise the
relations between crossed modules and double groupoids 
�
� turned out also to be exactly what
was needed for the homotopy addition lemma and so allowed Lemma �	�
 in the proof of our ��
dimensional Van Kampen Theorem in the next section	 This lemma shows that a construction of
an element of a particular double groupoid is independent of all the choices made	 Applications of
connections and thin structures for double categories are given in 
�
�� �
��	

The more restricted structure of a homotopy ��groupoid associated to a triple has been indicated
in 
���� but again it is di�cult to prove in a manner similar to that above the ��dimensional Van
Kampen Theorem using this structure	

Our theory gives in a sense an algebraic formulation of di�erent ways which have been classically
used in considering properties of relative homotopy groups	 We �nd that the ��dimensional double
groupoid viewpoint is useful for understanding the theory and for proving theorems� while the
crossed module viewpoint is useful for speci�c calculations� and because of its closer relation to
chain complexes	 The importance of the algebraic formulation of this equivalence is the equivalence
between colimits� and in particular pushouts� in the two categories	

The reader will have noticed the common use of �lling arguments in the above proofs	 These
arguments become even more essential in the proof of results for higher dimensions� as in 
���	

In higher dimensions we have found it necessary to take the connections as basic structures�
since it is relatively easy to de�ne a cubical set with compositions and connections 
���� but quite
di�cult� though necessary� to de�ne inductively the notion of �cube with commuting boundary�	
The centrality of this and analogous problems� and their long occurrence in the history of algebraic
topology� is one of the fascinations of higher dimensional algebra	
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��� General statement and proof of the �	dimensional Van Kampen

theorem

In this section we write X� for the triple �X�X�� X�� of spaces	 All double groupoids will be double
groupoids with thin structure	

We say that X� is connected if the following conditions hold�

�z�� the maps ���X�� � ���X�� and ���X�� � ���X� are surjective 

�z�� the morphism of groupoids ���X�� X�� � ���X�X�� is piecewise surjective	

It may be shown that given �z��� the condition �z�� may be replaced by

�z��� For each x � X�� the homotopy �bre over x of the inclusion X� � X is path connected	

This explains the origin of the term �connected� �see 
����	

Now suppose we are given a cover U � fU�g��	 of X such that the interiors of the sets of U
cover X	 For each � � .n we write

U� � U�� � � � � � U�n �

U�
i � U��Xi� and U�

� � �U� � U�
� � U

�
� �	 So the homotopy double groupoids in the following ��sequence

of the cover are well�de�ned�

F
��	� ��U�

� � ��a
��

b

F
��	 ��U�

� � ��c
��X�� � ��
�

Here
F

denotes disjoint union� which is the coproduct in the category of double groupoids	 It is an
advantage of the approach using a set of base points that the coproduct in this category is so simple
to describe	 The morphisms a� b are determined by the inclusions

a� � U� � U� � U�� b� � U� � U� � U�

for each � � ��� �� � .�� and c is determined by the inclusion c� � U� � X for each � � .�

Theorem ��� 
��� Theorem B� Assume that for every �nite intersection U� of elements of U the
triple U�

� is connected� Then

�C� the triple X� is connected� and

�I� in the above ��sequence of the cover� c is the coequaliser of a� b in the category of double
groupoids�

The proof will take several stages	 The �rst step is the following one	
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Lemma ��	 Let � � R��X�� and let � � 
�ij� be a subdivision of � such that each �ij lies in some
U ij� a �nite intersection of elements of U � Then there is an f�homotopy h � � � �� with � � R��X���
such that� in the subdivision h � 
hij� determined by that of �� each homotopy hij � �ij � �ij satis�es�

�i� hij lies in U ij 

�ii� �ij belongs to R��X��	

�iii� if a vertex v of the domain of �ij is mapped into X�� then h is constant on v	

�iv� if for r � 
� � a cell e of the domain of �ij is mapped by � into Xr� then e
 I is mapped by h
into Xr� and hence ��e� is contained in Xr�

Proof Let K be the cell�structure on I� determined by the subdivision � � 
�ij�� Let Lm �
Km 
 I �K 
 f
g and X� � X� We construct maps hm � Lm � X�� for m � 
� �� �� such that hm
extends hm��� where h�� � �� Further we construct hm to satisfy the following conditions� for each
m�cell � of K�

�am�� hm j � 
 f�g is an element of Rm�X�� 

�bm�� if � maps � into Xr� then hm�� 
 I� � Xr 

�cm�� if � is contained in the domain of �ij� then hm�� 
 I� � U ij�

The construction of hm from hm�� is as follows	 We consider an m�cell � of K� and let r be
the smallest integer such that � maps � into Xr� If r � m� then hm�� can be extended to hm on
� 
 I by means of a retraction � 
 I � � 
 f
g � ,� 
 I� If r � m let U� be the intersection of
all the sets U ij such that � is contained in the domain of �ij� The restriction of hm�� to the pair
�� 
 f
g � ,� 
 I� ,� 
 I� determines an element of �m�U�

r � U
�
m���� �Here m � � and U�

�� is taken to
be ��� By �z�m� hm�� extends to hm on � 
 I mapping into U�

r and such that � 
 f�g is mapped
into U�

m� �

The connectivity result �C� is immediate from this lemma� particularly �iv�� applied to doubly
degenerate or to degenerate squares representing elements of an appropriate �� or ��	

We next prove the coequaliser result	

Suppose we are given a morphism

f � �
a
��	

��U�
� � � G

of double groupoids such that f � � a � f � � b� We have to show that there is a unique morphism
f � ��X�� � G of double groupoids such that f � c � f ��

Let p� � R�U�
� � � ��U�

� � be the projection and let F� � f � � p� � R�U�
� � � G� We �rst de�ne f

on ���X�� and to this end �rst construct F � R��X�� � G�
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Suppose that � in R��X�� is such that � in R��X�� is such that � lies in some set U� of U 	 Then
� determines uniquely an element �� of R��U

�
� � and the rule f � � a � f � � b implies that

F ��� � F�����

is determined by �	

Suppose we are given a subdivision � � 
�ij� of an element � in R��X�� such that each �ij is in
R��X�� and also lies in some U� � for � � .n� Then �ij also lies in some U�� with � � .� and since
the composite 
�ij� is de�ned it is easy to check� again using f � � a � f � � b� that the elements F ��ij�
compose in G to give an element g � 
F ��ij��� which we write as F ��� although a priori it depends
on the subdivision chosen	

We next wish to construct F ��� for an arbitrary element � of F��X��� This construction is based
on Lemma �	�	

Corollary ��� Let � � R��X��� Then there is an f�homotopy h � � � � such that F ��� is de�ned
in G��

Proof Choose a subdivision � � 
�ij� such that each �ij lies in some set U ij of U	 Then apply
Lemma �	�	 �

This element F ��� of the corollary we write F ��� �hij�� and prove �rst that it depends only on
�	 Accordingly� let h� � � � �� be an alternative f�homotopy satisfying the conditions of Lemma �	�
with respect to a subdivision � � 
��kl� in which each ��kl lies in some set V kl of U	 Since any two
subdivisions have a common re�nement we may assume� without loss of generality� that 
��kl� is a
re�nement of 
�ij��

For each �kl�� let W kl � V kl � U ij where U ij is such that ��kl is a part of �ij� By Lemma �

there is an f�homotopy hy � 
hykl� from � to �y such that each hykl lies in W kl	 The f�homotopy
H � (h�hy � �� � �y �where (h� is the reverse of h�� has the subdivision H � 
Hkl� where Hkl � �� � �ykl
and Hkl lies in V kl	

Let ��ij be the composite of those �ykl such that ��kl is a part of �ij	 Then we also have a subdivision
hy � 
h�ij�� where h�ij � �ij � ��ij lies in Uij	 So H� � (hyh � �y � � is an f�homotopy with subdivision
H� � 
H�

ij�� where H�
ij � ��ij � �ij is a homotopy lying in U ij 	

It will follow from Lemma �	�
 below that 
F ���kl� � 
F ��ykl�� and 
F ���ij�� � 
F ��ij��� However


F ���ij� � 
F ��ykl��� since the latter is a re�nement of the former	 Hence 
F ���kl� � 
F ��ij�� and so
F ��� �hij�� depends only on �	

Lemma ��
 Let �� �� � R� and suppose we are given an f�homotopy H � � � ��� Let H � 
Hij� be
a subdivision such that each Hij lies in some set U ij of U� Let � � 
�ij�� �

� � 
��ij � be the subdivisions
of �� �� induced by that of H� and suppose that �ij� �

�
ij are in R� for all �i� j�� Then H is homotopic

rel end maps to an f�homotopy %H � � � �� such that for all i� j�
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�i� %Hij has its edges in X��

�ii� %Hij lies in U ij�

Proof The proof is similar to that of Lemma �	�	 The subdivision � � 
�ij� induces a cell�structure

K on I�� and the homotopy H � %H is constructed on Km 
 I 
 I �K 
 ,I 
 I �K 
 I 
 f
g by
induction on m	 �

NOTE	 We do not claim that %Hij is an f�homotopy �ij � ��ij�

Lemma ���
 Let �� ��� H� �Hij� be as in Lemma 
��� Then in G��


F ��ij�� � 
F ���ij��

�

Proof We replace H by the %H � � � �� given by Lemma �	�	 Let F ��ij� � cij� F ���ij� � c�ij	 Since
%Hij has its edges in X� and vertices in X�� the homotopy addition lemma �Proposition �	�� gives�
on applying F � a relation in G� of the form

c�ij �


�� a��i���j
	bi�j�� cij bij

aij


�� �y�

where the a�s and b�a are images in G� of certain faces of the %Hij�

The interchange law for G allows us to re�ne the subdivision c� � 
c�ij� by the substitution �y�

and to compose the parts in any convenient fashion	 By cancellation of pairs bij�	bij and aij� a
��
ij �

and by composing thin elements� including 
�s and ��s� we can obtain a new subdivision of c� of the
form

c� �


�� a���
	b� c b�

a�


�� ����

where c � 
cij� and the elements ai� bi are composites in G� of the images of squares lying on the

boundary of %H� Since %H is an f�homotopy� these squares are in X� and so the ai� bi are thin	 Since
the homotopies are rel vertices� the corner elements in ���� are �	 It now follows that the ai are ��s
and the bi are 
�s� and therefore c� � c	 �

With the proof of Lemma �	�
 we have completed the proof that F ��� �hij�� depends only on �	

Lemma ���� F ��� �hij�� depends only on the class of � in ���
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Proof Let K � � � �� be an f�homotopy	 Then there is an �m
n
 p��subdivision K � 
Kijk� such
that each Kijk lies in some set of U� say U ijk� Let � � 
�ij�� �

� � 
��ij� be the induced subdivisions
of �� ��	 A simple induction on p reduces us to the case where p � �� and so we may assume that
the subdivision of K has a single layer K � 
Kij�� each Kij being a homotopy �ij � ��ij lying in
U ij	 Then we choose h � � � �� h� � �� � �� as in Lemma �	�	 Let H be the composite homotopy
(hkh� � � � ��� Then by Lemma �	�
� 
F ��ij�� � 
F ���ij��� Hence F ��� �hij�� � F ���� �h�i�j���� �

We have now proved that there is a well�de�ned map f � ��X�� � G�� given by f�(�� �
F ��� �hij��� and which satis�es f � c � f � at least on ��dimensional elements of �	

The remainder of the proof of �I� is straightforward	 It is easy to check that f preserves addition
and composition of squares� and it follows from �iii� of Lemma �	� that f preserves thin elements	

It is now easy to extend f to a morphism f � ��X�� � G of double groupoids� since the �� and

�dimensional parts of a double groupoid determine degenerate ��dimensional parts	 Clearly this f
satis�es f � c � f � and is the only such morphism	

This completes the proof of Theorem �	�	 Of especial interest �but not essentially easier to
prove� is the case of Theorem �	� in which the cover U has only two elements in this case Theorem
�	� gives a push�out of double groupoids	 In the applications below we shall consider only path�
connected spaces and assume that Z � f�g is a singleton	 Taking � as base point� the double
groupoids can then be interpreted as crossed modules of groups to give the ��dimensional analogue
of the Seifert�van Kampen theorem given as Theorem �	� earlier	 We do not know how to prove
that theorem without using groupoids in some form	 A higher dimensional form of this proof and
theorem is given in 
��� and the theorem is stated later as Theorem �	�	

Proof of Theorem ��� In the case where �X�A� is a based pair with base point �� ��X�A� �� is
abbreviated to ��X�A�� That we obtain a pushout of crossed modules under Hypothesis A is simply
a special case of Theorem �	�� together with Proposition �	�� which gives the equivalence between
double groupoids and crossed modules	

The corresponding result under Hypothesis B follows from that under Hypothesis A by standard
techniques using mapping cylinders �see a similar proof in 
��� �	�	���	 �

Remark ���� An examination of the proof of Theorem �	� shows that condition �z�m is required
only for ��fold intersections of elements of U 	 However� it has been shown by Razak�Salleh 
�
�� that
in fact one need only assume �z�� for ��fold intersections and �z�� for ��fold intersections	 Further�
these conditions are best possible	

Remark ���� Theorem �	� contains ��dimensional information which includes most known results
expressing the fundamental group of a space in terms of an open cover� but it does not assume that
the spaces of the cover or their intersections are path�connected	

An alternative proof of Theorem �	� is given in 
��� using cat��groups� which are equivalent to
group objects in the category of groupoids� and to reduced crossed modules 
���	 This proof uses
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many more results from algebraic topology	 On the other hand� this proof extends to catn�groups

��� and has more powerful applications than Theorem �	�	 A survey of the results� and some new
ones� is given in 
���	 Some remarks on this are given in the �nal section �	
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� The category of crossed complexes

The de�nition of a crossed complex generalises to the case of a set of base points de�nitions given
by Blakers 
��� �under the term �group system�� and Whitehead 
����� under the term �homotopy
system� �except that he restricted also to the free case�	 We recall this general de�nition from 
���	
Of course the case for not restricting to the reduced case� i	e	 of a single base point� is analogous to
that for not restricting to reduced CW �complexes	

A crossed complex C �of groupoids� is a sequence of morphisms of groupoids over C�


 
 
 �� Cn

��



��
n Cn��
��

��




 
 
 �� C�
��
�

��



C�

��

�

��

�

C� C� C� C��

Here fCngn� � is a family of groups with base point map �� and ��� �� are the source and targets
for the groupoid C�	 We further require given an operation of the groupoid C� on each family of
groups Cn for n�� such that�

�i� each �n is a morphism over the identity on C� 

�ii� C� � C� is a crossed module over C� 

�iii� Cn is a C��module for n�� 

�iv� � � Cn � Cn�� is an operator morphism for n�� 

�v� �� � Cn � Cn�� is trivial for n�� 

�vi� �C� acts trivially on Cn for n��	

Because of axiom �iii� we shall write the composition in Cn additively for n��� but we will use
multiplicative notation in dimensions � and �	

Let C be a crossed complex	 Its fundamental groupoid ��C is the quotient of the groupoid C�

by the normal� totally disconnected subgroupoid �C�	 The rules for a crossed complex give Cn� for
n��� the induced structure of ��C�module	

The crossed complex C is reduced if C� is a singleton� so that all the groupoids Cn� n�� are
groups	 This was the case considered in 
��� ���� and many other sources	

A morphism f � C � D of crossed complexes is a family of groupoid morphisms fn � Cn �
Dn �n�
� which preserves all the structure	 This de�nes the category Crs of crossed complexes	
The fundamental groupoid now gives a functor �� � Crs � Gpd	 This functor is left adjoint to the
functor i � Gpd � Crs where for a groupoid G the crossed complex iG agrees with G in dimensions

 and �� and is otherwise trivial	
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An m�truncated crossed complex C consists of all the structure de�ned above but only for n�m	
In particular� an m�truncated crossed complex is for m � 
� �� � simply a set� a groupoid� and a
crossed module respectively	

In order to give the basic geometric example of a crossed complex we �rst de�ne a �ltered space
X�	 By this we mean a topological space X� and an increasing sequence of subspaces

X� � X� � X� � 
 
 
 � Xn � 
 
 
 � X��

A map f � X� � Y� of �ltered spaces consists of a map f � X� � Y� of spaces such that for all
i�
� f�Xi� � Yi� This de�nes the category FTop of �ltered spaces and their maps	

We now de�ne the fundamental� or homotopy� crossed complex functor

� � FTop � Crs�

If C � ��X��� then C� � X�� and C� is the fundamental groupoid ���X�� X��	 For n��� Cn � �nX�

is the family of relative homotopy groups �n�Xn� Xn��� p� for all p � X�	 These come equipped
with the standard operations of ��X� on �nX� and boundary maps � � �nX� � �n��X�� namely the
boundary of the homotopy exact sequence of the triple �Xn� Xn��� Xn���� The axioms for crossed
complexes are in fact those universally satis�ed for this example� but this cannot be proved at this
stage	

We can now develop the following situation� discussed in more detail in later sections�

FTop

��U GG
GG

GG
GG

���
Crsoo

B

		 Bzz
zz
zz
zz

Top

����

Here the functor � has already been de�ned	 The functor U is the forgetful functor X� �� X�	 The
functor B is the full classifying space functor and the functor B � U � B is the classifying space
functor	

These functors have the following properties�

	�� The functor � satis�es a Generalised Van Kampen Theorem�

	�� The composite functor � � B is naturally equivalent to the identity functor�

	�� There is a natural transformation � � B � � in the weak homotopy category of FTop� with
convenient properties�
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The �rst and third of these statements are vague	 All three statements relate topology and algebra	
The functor � goes from topology to algebra and the classifying space functors go in the reverse
direction	 It is important that the functor � is from structured spaces to algebra	 This was not the
original expectation of this theory� but this is how it has conveniently worked out	

The �rst statement allows for the computation of � to some extent	 The amount of this extent
can only be judged when the proper statement is given� but here we can say that the resulting
computations allow one to get started	

The second statement relates closely the structure on the spaces and the algebra under consid�
eration	

The �nal statement is more subtle� but it states essentially that the algebra captures a slice of
the homotopy structure of the original �ltered space	

These properties are a kind of paradigm for relating topology and algebra	 When these properties
hold� we have a tool which can directly relate topology and algebra	 If some of these properties are
dropped� then we have more trouble in developing results	

For example� simplicial groups form an algebraic category strongly used in algebraic topology	
They could be considered as a kind of �higher dimensional group�	 However� we do not at present
have a functor �topological data� � �simplicial groups� satisfying a Van Kampen Theorem� and so
simplicial groups cannot be used in the kind of way described here for these other algebraic models	
Some suggestions for developments on these lines are given in 
���	

In particular� the concept of induced crossed module and its application to speci�c calculation of
homotopy ��types has not so far been directly linked with work on simplicial groups	 On the other
hand� simplicial groups are used crucially in the proof of the Generalised Van Kampen Theorem for
catn�groups by Brown and Loday in 
���	 This suggests that there is much more work to be done on
developing these links� and exploiting the two areas together	 This is the subject of current work�
for example 
��� �
�� ����	

��� The Generalised Van Kampen Theorem for Crossed Complexes

De�nition 	�� A �ltered space X� is called connected if the following conditions ��X�m� hold for
each m�
 �

��X� 
�� If j � 
� the map ��X� � ��Xj� induced by inclusion� is surjective

��X�m�� �m��� � If j � m and � � X�� then the map

�m�Xm� Xm��� �� � �m�Xj� Xm��� ��

induced by inclusion� is surjective	

The following result gives another useful formulation of this condition	 We omit the proof	
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Proposition 	�� A �ltered space X is connected if and only if for all n � 
 the induced map
��X� � ��Xn is surjective and for all r � n � 
 and � � X�� �n�Xr� Xn� �� � 
�

Suppose for the rest of this section that X� is a �ltered space	 Let X � X�	

We suppose given a cover U � fU�g��	 of X such that the interiors of the sets of U cover X�
For each � � .n we set

U � � U �� � 
 
 
 � U �n � U �
i � U � �Xi�

Then U �
� � U �

� � 
 
 
 is called the induced �ltration U �
� of U � 	 Consider the following ��diagram of

the cover�

F
��	� �U �

�
��a
��

b

F
��	 �U

�
�

��c
�X� ����

Here
F

denotes disjoint union �which is the same as coproduct in the category of crossed complexes� 
a� b are determined by the inclusions a� � U��U� � U�� b� � U��U� � U� for each � � ��� �� � .� 
and c is determined by the inclusions c� � U� � X�

Theorem 	�� �The coequaliser theorem for crossed complexes� Brown and Higgins 
���� Suppose
that for every �nite intersection U � of elements of U the induced �ltration U �

� is connected� Then

�C� X� is connected� and

�I� in the above ��diagram of the cover� c is the coequaliser of a� b in the category of crossed
complexes�

A version of the Van Kampen Theorem tied to dimension n can now be formulated as follows	
First� we say the pair �X�A� is �n	���connected if A and X are path connected� and the induced map
of homotopy groups �i�A� x� � �i�X� x� is bijective for �� i � n	� and surjective for i � n	�	 This
is equivalent to saying that the homotopy �bre over x of the inclusion A� X is �n	 ���connected�
or that the relative homotopy group �or set for i � �� �i�X�A� � 
 for �� i�n	 �	

If G is a group and M is a G�module� then we call the pair �M�G� simply a module	 These
modules form the objects of a category Mod� whose morphisms ��� �� � �M�G� � �N�H� are pairs
of morphisms of groups � � M � N�� � G� H which preserve the action� i	e	 ��mg� � ��m��g for
all m �M� g � G	 This category is complete and cocomplete	

If �X�A� is a pointed pair of spaces� we write 'n�X�A� for the module ��n�X�A�� ���A�� con�
sisting of the group ���A� and the ���A��module �n�X�A�	 This gives a functor from the category
of pairs of pointed spaces to Mod	

The following two results now follow by specialisation	
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Theorem 	�	 �Brown and Higgins 
���� Suppose that the commutative diagram of based pairs of
spaces

�W�WA� ��f

��
i

�U� UA�

��
��

�V� VA� ��
�f

�X�A�

satis�es one of the two following hypotheses�

HYPOTHESIS A� the maps i� f�(�� (f are inclusions of subspaces� X is the union of the interiors of
the sets U and V � W � U � V � and VA � A � V� UA � A � U�WA � A �W 	

HYPOTHESIS B� the maps i � W � V� iA � WA � VA are closed co�brations� WA � W � VA� and
X�A are the adjunction spaces U �f V� UA �fA VA�

Let n��� Suppose further that all the pairs �U� UA�� �V� VA�� �W�WA� are �n	 ���connected� Then�

�C� The pair �X�A� is �n	 ���connected�

�I� The following diagram induced by inclusions

'n�W�WA� ��

��

'n�U� UA�

��
'n�V� VA� �� 'n�X�A�

����

is a pushout of modules�

In a similar manner to the crossed module case n � � we obtain�

Theorem 	�� �Brown and Higgins 
���� Suppose that the commutative square

W ��f

��
i

A

��
(�

V ��
(f

X

of based spaces satis�es one of the two following hypotheses�

HYPOTHESIS A� the maps i� f�(�� (f are inclusions of subspaces� W � V � A� and X is the union
of the interiors of V and A	
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HYPOTHESIS B� the map i is a closed co�bration and X is the adjunction space A �f V�

Let n��� Suppose further that �V�W � is �n	 ���connected and A is path connected� Then�

�C� �X�A� is �n	 ���connected	

�I� �n�X�A� is the ���A��module induced from �n�V�W � by the morphism f� � ���W � � ���A��

It is not clear that this theorem is essentially any easier to prove than Theorem �	�	

The notion of induced module is much more standard than that of induced crossed module and
may be found for example in books on representation theory although usually only for the case
of inducing from a module over a subgroup of a group	 It is a key part of the general subject of
Mackey functors	 One standard description for the Q�module 	�M induced from a P �module M
by a morphism 	 � P � Q of groups is 	�M �� M �ZP ZQ where P acts on Q on the left via 		
This suggest a possible notation of M �P Q for the crossed module induced from a crossed module
M � P by a subgroup inclusion P � Q	

We now obtain as a Corollary one of the basic theorems of homotopy theory	

Corollary 	�
 �Relative Hurewicz Theorem� Let n��� Let �V�W � be an �n	 ���connected pair of
connected spaces� and let X � V � CW � Then X is �n	 ���connected and �n�X� is isomorphic to
the group �n�V�W � factored by the action of ���W ��

Notice that again we have a Relative Hurewicz Theorem without any mention of homology	
The usual version follows from this result and the absolute Hurewicz Theorem� since X is �n	 ���
connected implies that �n�X� is isomorphic to Hn�X�� which itself is simply Hn�V�W �	

This deduction of the Relative Hurewicz Theorem from a Generalised Van Kampen Theorem
was later modelled in the formulation and proof of an n�cubical Hurewicz Theorem 
��� �
�� giving
it as a form of abelianisation� and interpreting this for triad groups	 The interpretation in terms of
the passage from n�adic homotopy to n�adic homology requires the de�nition of crossed n�cube of
groups 
���� since this tells you precisely what structure has to be factored in this passage	 Another
feature of the proof of the n�adic Hurewicz Theorem is that it requires the notion of n�pushout� i	e	
an n�cubical version of a pushout square� and that it follows from an n�cubical version of excision	

Another useful result is the following higher dimensional version of Whitehead�s Theorem	

Theorem 	��
 Let n��� Let X � A�fen�g��	 be obtained from the connected space A by attaching
n�cells� Then the n
th relative homotopy group �n�X�A� may be described as the free ���A��module
on the n�cells�

However this result is not as impressive as the ��dimensional version� since it may be and usually
is deduced from the Relative Hurewicz Theorem� which can be proved separately	 On the other
hand� this mode of deduction is used in 
��� ��� to obtain free crossed squares arising in topological
situations	
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Corollary 	��� If X� is the �ltered space of the skeletons of a CW�complex� then the crossed
complex �X� is a free crossed complex�

Remark 	��� The proof of Theorem �	� follows a line analogous to the proof of Theorem �	�	
However� it is much harder work establishing the necessary algebra and de�ning the necessary
higher homotopy groupoids	 The proof itself needs some new ideas to make the intuition work	 For
these reasons� we omit further exposition	

An account of covering morphisms of crossed complexes is given in 
���	 This enables one to give
an n�dimensional version of the Cayley graph for a presentation of a group� and this leads to a kind
of algorithm for calculating identities among relations	

��� The nerve and classifying space of a crossed complex

We let "n be the cell complex of the standard n�simplex� with its skeletal �ltration	 The crossed
complex �"n is then written �
n�	 The nerve NC of a crossed complex C is de�ned to be the
simplicial set given in dimension n by

�NC�n � Crs��
n�� C�� ����

The simplicial operators �NC�m � �NC�n are induced by the standard maps "n � "m	 So N is
a functor Crs � SimpSet	 It should be noted that this de�nition is analogous to that of the well
known Dold�Kan functor from chain complexes to simplicial abelian groups	

The crossed complex �
n� is a free crossed complex on the cells of "n� and the boundaries are
determined by the universal example� namely � � �
r� � �
r 	 ��� which is itself given by the
homotopy addition lemma 
���� p	����	

For n�� the crossed complex �
n� involves non�Abelian groups in dimension � and a groupoid
in dimension � which acts on the groups of the crossed complex	 The homotopy addition lemma�
which says� intuitively� that the boundary of a simplex is the sum of its faces� therefore needs to be
stated with care	

If � is an r�simplex with r��� then� analogously to the purely additive theory of homology� we
have the formula

�� � �
����a �
rX

i
�

�	�i
i��

where a � 
�
� � � � 
r�	 Here the action of 	a transports the base point of 
�� to the common
basepoint 
 of the other faces so as to make addition possible	 For a ��simplex �� we have the
non�Abelian formula

�� � �
����a � 
�� 	 
�� 	 
��
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�compare with equation ����� and for a ��simplex �� we have the groupoid formula

�� � �
����
����
������

One easily veri�es that
��� � 


for an r�simplex � with r�� and that
���� � ����

for a ��simplex �	 A direct proof that ��� � 
 when � is a ��simplex is not so easy� because one
has to apply the crossed module rules carefully 
���� p	����	 The easiest proof of which I know uses
the primary identity property and its characterisation in 
��� Prop	 ��� p	����	 Cubical versions of
the homotopy addition lemma are also well known �see� for example� 
����	 It is interesting that
a proof of the homotopy addition lemma came quite late in the development of the subject 
���	
The proof in 
���� assumes all the main results of singular homology together with basic material
on relative homotopy groups� and is an inductive proof combined with a proof of the Relative and
Absolute Hurewicz Theorems	 By contrast� the proof of the cubical homotopy addition lemma and
Relative Hurewicz Theorem in 
��� ��� takes about �
 pages� starting from very little� and is but
one application of the Generalised Van Kampen Theorem which yields many more results on the
way� including of course results on crossed modules unobtainable from theories dealing only with
abelian objects	

The simplicial set NC has an additional structure of thin elements� de�ned as follows	 Let
f � �
n� � C be an element of �NC�n� Let cn � �
n�n represent the top dimensional free generator
of �
n�	 We say f is thin if fcn � 
	

Theorem 	��� The thin elements of NC satisfy the following axioms of K� Dakin 
����

T�� Any degenerate element of NC is thin�

T�� Any horn in NC has a unique thin �ller�

T�� If all faces except possibly one of a thin element are thin� then so also is the remaining face�

The proof of T�� is easy	 A proof of T�� can be given using the GVKT �Theorem �	�� for the
homotopy crossed complexes of the skeleta of a CW �complex� while a proof of T�� is easy from the
homotopy addition lemma	

We say that NC is a simplicial T �complex	 There is a category SimpT of simplicial T �complexes
in which the morphisms are simplicial maps which map thin elements to thin elements	

Theorem 	��� 
�� The nerve functor gives an equivalence between the category of crossed complexes
and the category of simplicial T �complexes�
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This theorem is quite hard to prove	 A version in a general category is given in 
���	 The theorem is
of course a non abelian analogue of the Dold�Kan theorem which gives an equivalence between chain
complexes and simplicial abelian groups	 There is a related result giving an equivalence between a
category of so�called ���categories� �these are the same as the ��categories of 
���� and simplicial
sets with thin elements satisfying weaker conditions than those given earlier 
�
�� ��
�	 Details are
not yet available	

Actually there are now a number of categories equivalent to crossed complexes� as shown in the
following diagram

polyhedral
T�complexes

��oo

�
� cubical

T�complexes
��groupoids

��


���

oo

���





AA


���

��
��
��
��
��
��
��
��
��
��
��
�

simplicial
J�groupoids

��

ff 
���

MM
MM

MM
MM

MM

simplicial
T�complexes

��oo

��

crossed
complexes

��oo

���

��groupoids

in which each arrow denotes an explicit functor which is an equivalence of categories	 The symbols
in square brackets give references for the proofs	 This splitting of the notion of higher dimensional
groups into many equivalent formulations was one of the surprises of the theory and also one of
its very useful characteristics	 You can carry out a piece of theory or computation in whichever
category is convenient for the purposes at hand	 The fact that the equivalences are non trivial means
that if a result requires a number of these di�erent settings for its proof then you are inputting
signi�cant information �namely� the proofs of the equivalences� and the theorem itself is more likely
to be signi�cant	 From a geometric viewpoint the splitting of higher dimensional group theory into
di�erent formulations is not so surprising� it re�ects the variety of families of convex polyhedra in
dimensions greater than �	

The comparative value of crossed complexes is�

i� the free crossed complexes are closely related to� though simpler than� CW �complexes in their
de�nition and construction�

ii� they require a smaller amount of data than ��groupoids� or the other categories� and so are a
suitable context for calculations�

iii� there is an explicit description of a useful monoidal closed structure 
�
�� which allows explicit
equivalences of the Eilenberg�Zilber type 
�����

iv� it is easier to describe the relation with simplicial sets 
�� ���� and so the classifying space and
homotopy coherence properties 
���� ��� �
�� than in the other cases�
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v� relations with the classical homological algebra of chain complexes with operators have been
formulated 
���	

The comparative value of ��groupoids is�

i� the cubical structure allows easy formulations of multiple compositions� and so an �algebraic in�
verse to subdivision� which is essential for the proofs of the Generalised Van Kampen Theorems

����

ii� it is easy to formulate the monoidal closed structure in this context�

iii� there is a well worked out relation with cubical sets 
����

iv� there is a renewed interest in cubical methods in areas such as concurrency� and so the intro�
duction of the connections has proved intriguing	

The comparative value of ��groupoids is as follows�

i� they are a specialisation of the ��categories 
���� which are becoming increasingly used �though
often under the name ��categories� and so it is best to call these globular�� or ��categories to
make the meaning clear��

ii� they require a smaller amount of data than the �cubical� ��categories

iii� they are appropriate for relating with certain weaker structures� the bi� and tri�categor�ies� and
various forms of weak ��categories and groupoids	

Using ��groupoids in preference to crossed complexes has in some cases disadvantages analogous to
those of using equivalence relations� more precisely� congruences� rather than normal subgroups in
order to describe quotients of groups	 Another di�culty in that there is currently no theory of free
��groupoids� and the description of tensor products is the so�called Gray tensor product� which
does not have convenient formulae	 On the other hand� the description of quotients of monoids or
categories requires congruences� and relations with weaker structures such as bi�categories seem not
possible with crossed complexes	 Thus continued experiment is needed	

The relation with simplicial sets and simplicial groupoids is important because of the wide use
of simplicial methods in mathematics	

The relation of the �polyhedral multiple groupoids� of 
�
� with the �polyhedral multiple categor�
ies� of 
�
�� has not yet been determined	

The geometric realisation of the nerve NC of a crossed complex C gives the classifying space
BC of the crossed complex C	

If C is a crossed complex� then C�n� denotes the subcrossed complex which coincides with C in
dimensions �n and in higher dimensions is trivial	 So we obtain a �ltered crossed complex and a
corresponding �ltered space BC � �BC���
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Theorem 	��� There is natural equivalence of functors � � B � ��

The proof goes as follows	 The nerve NC of a crossed complex C is a Kan complex� and so the
crossed complex � � BC may be directly calculated from the corresponding �ltration of NC	 It is
then easy to identify the elements of the appropriate relative homotopy groups as represented by
morphisms �
n� � C which give rise to elements of C by evaluation on the top dimensional cell of
"n	

Let X� be a �ltered space� then we may de�ne R��X�� to be the simplicial set of �ltered maps
"n
� � X�� n�
� where "n

� denotes the standard n�simplex with its skeletal �ltration	 The quotient
of R��X�� by the relation of �lter homotopy rel vertices is written ���X��	 A basic fact with a
tricky proof is that the quotient map R��X�� � ���X�� is a Kan �bration �this is proved in 
��
modelling the proof in the cubical case given in 
����	 This result is used in 
�� to prove that ���X��
has the structure of simplicial T �complex whose associated crossed complex is exactly ��X��� so
that the underlying simplicial set of ���X�� is just N��X��	 If X � X�� then there is an inclusion
i � R��X�� � S�X� where S�X� is the usual singular complex of X	 There are useful conditions
for i to be a homotopy equivalence for example this is true if X� is the skeletal �ltration of a
CW �complex	

The exact sequence �at some base point� of the �bration R��X�� � ���X�� is of interest	 In
the case X� is the skeletal �ltration of a CW �complex� it coincides with Whitehead�s famous exact
sequence 
����� as is proved in the cubical case in 
���	

��� Homotopies of morphisms of crossed complexes

This is one of the points where the theory of crossed complexes gets technical� namely in dealing
with homotopies	 The reason for this is that the natural geometric model for a crossed complex is
the n�cell En with the cell structure given by�

En �

�������
e� if n � 
�

e�� � e�� � e� if n � ��

e� � en�� � en otherwise�

����

However� the cell structure on a product En 
 Em� and in particular on En 
 E� which is the
relevant case for homotopies� is more complicated� since En 
 Em has � cells for m�n��	 It is this
cell structure on En
Em which determines in essence a tensor product C�D of crossed complexes

�
�� such that

��En 
 Em� �� ��En�� ��Em�

but we have no time to deal with that here	

We follow the conventions for homotopies in 
�
�	 Thus a homotopy f � � f of morphisms
f �� f � C � D of crossed complexes is a pair �h� f� where h is a family of functions hn � Cn � Dn��



Homology� Homotopy and Applications� vol��� No��� ���� ��

with the following properties� in which �c for c � C is c� if c � C�� is ��c� if c � C�� and is x if
c � Cn�x�� n��� So we require 
�
� ��	����

�hn�c� � �f�c� for all c � C ����

h��cc
�� � h��c�

fc�h��c
�� if c� c� � C� and cc� is de�ned ����

h��cc
�� � h��c� � h��c

�� if c� c� � C� and cc� is de�ned ����

hn�c � c�� � hn�c� � hn�c�� if c� c� � Cn� n�� and c � c� is de�ned ��
�

hn�cc�� � �hnc�
fc� if c � Cn� n��� c� � C�� and cc� is de�ned	 ����

Then f �� f are related by 
�
� ��	����

f ��c� �

�����������
��h�c if c � C��
�h��

�c��fc����h�c��h��
�c��� if c � C��

f�fc��h���c����h�c�g
�h�
c���

if c � C��

ffc � hn���nc � �n��hncg�h�
c�
��

if c � Cn� n���

����

The set of homotopy classes of crossed complex morphisms C � D is written 
C�D�	 If X� Y are
spaces� then the set of homotopy classes of maps X � Y is also written 
X� Y �	 The main homotopy
classi�cation theorem for crossed complexes is�

Theorem 	��� �Brown and Higgins 
���� If X� is the skeletal �ltration of a CW �complex� and C
is a crossed complex� then there is a natural bijection of sets

� � 
X�BC� �� 
�X�� C�� ����

Note that this bijection gives a translation from topology on the left to algebra on the right� since
the crossed complex �X� has a purely algebraic description which makes it analogous to the chain
complex of cellular chains of the CW�complex X	 The theorem gives a kind of �homotopy adjointness�
of � and B	 It includes many classical classi�cation theorems� including the case of maps into an
Eilenberg�Mac Lane space K�G� n�� n�� and also the case of local coe�cients� by taking suitable
choice of C	 For more details� see 
���	

The proof of the theorem involves setting up a monoidal closed structure on the category Crs�
with an internal hom CRS�	�	� and tensor product 	�	 and natural equivalence

Crs�A�B�C� �� Crs�A�CRS�B�C��

for any crossed complexes A�B�C� There is in this category a model I of the unit interval� and this
allows us to realise homotopies as morphisms B�I � C	 In this way we can establish much of the
basic machinery of homotopy theory �cylinder objects� path objects� �brations� co�brations� and so
on� in the category of crossed complexes	 This extra structure is exploited in 
��� ��� ��� ���	 The
last paper deals explicitly with notions of homotopy coherence for crossed complexes	
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Also necessary is the Eilenberg�Zilber theorem for crossed complexes� describing the crossed
complex ��jK
Lj� of the geometric realisation of a product of simplicial sets as homotopy equivalent
to ��jKj����jLj�	 This result is proved in detail in 
���� and given applications in 
��� ���� ��� �
�	
Many speci�c properties of the Eilenberg�Zilber equivalence are used in the last paper to describe and
prove the homotopy coherence properties of the adjoint functors N � Crs � Simp� � � Simp � Crs	
Such results would seem to be more di�cult to establish and apply for �globular� ��groupoids than
for crossed complexes	

Methods of contracting homotopies on universal covers of free crossed complexes are used in 
���
to construct inductively free crossed resolutions of groups from a partial free crossed resolution� and
in particular from a presentation of a group	 This gives a geometric formula for a presentation of
the module of identities among relations for a group presentation	

��� Relation with chain complexes with operators

There is a functor D from crossed complexes to chain complexes of modules� described for free
reduced crossed complexes by Whitehead in 
����� and for general crossed complexes in 
���	 For
simplicity we �rst describe this in the reduced case	

Given a reduced crossed complex as in the top line of the following diagram� we will obtain the
chain complex of modules in the bottom line and the diagram of functions between them�


 
 
 �� C�

��
h�

��
�
C�

��
�

��
h�

C�
��
�

��
h�

C�

��
h�

���
G

��
h�


 
 
 �� C�
��


�
C�

��
d�

Cab
�

��
d�

D�
��

d�
ZG

����

Here G � ��C � Coker �� and � � C� � G is the quotient map	 For i��� hi is the identity
morphism� h� is abelianisation� and d� � h���	 The function h� is given by g �� g	 �	 Then h� is a
derivation� h��xy� � �h�x�y � h�y� for all x� y � G	 That leaves the de�nition of D�� h�� d�� d�	

The function h� � C� � D� is de�ned to be the universal ��derivation� by which is meant

�i� D� is a G�module and h��ab� � �h�a��b � h��b�� for all a� b � C�� and

�ii� h� is universal for property �i�� so that if k � C� � M is a ��derivation to a G�module M �
then there is a unique G�module morphism k� � D� �M such that k�h� � k	

This de�nition is due to Crowell 
���	 He calls M� the derived module of the morphism �� and
constructs it as the quotient of the free G�module on elements 
a�� a � C�� by the relations 
ab� 	

a��b 	 
b� for all a� b � C�	
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If C� is a free group on a set X� then a ��derivation k � C� � M is entirely determined by its
values on the basis X� the easiest way to see this is to regard a ��derivation as a section of the
projection p� � C�nM � C� where C� acts on M via �	

It is easily veri�ed that h� � G� IG� g �� g 	 �� is the universal �G�derivation	 In fact we may
also construct the derived module as IC� �C�

ZG� a �� �a	 �C�
�� �G	

It is useful that if we regard D as a functor Groups� � Mod from the category of morphisms of
groups to the category of modules� then D has a right adjoint

�H�M� �� �H nM
p�	� H�

where p� is the �rst projection of the semidirect product	 It follows that D preserves colimits	 It is
an easy deduction from this that if C� is a free group on a set X� then D� is isomorphic to the free
G�module on the set X� with h� given by x �� x� x � X	

The following result is useful	

Proposition 	��	 
���The morphisms of G�modules d�� d� in diagram ���� may be de�ned to give
a commutative diagram� Further� if the sequence of groups

C�

�	� C�


�	� C�
�
	� G� � ����

is exact� so also is the sequence

C�
d�	� Cab

�
d�	� D�

d�	� IG� 
� ����

and Im d� �� �ker ��ab�

The proof is given in the more general non reduced case in 
���	

Parts of the exact sequence ���� occurs in many instances in the homological algebra of groups	
In the case that C� � C� is the free crossed module over a free group derived from a presentation
�X R� of the group G� then the morphism of G�modules d� agrees with the Fox derivative in the
free di�erential calculus

�
r�
x� � �ZG�R � �ZG�X �

The construction of this derivative from the free crossed module over a free group in the above way
occurs in Whitehead�s paper 
���� Lemma �� which in fact antedates Fox�s paper on this subject

���	 See also 
��� for an exposition	

It is important that Whitehead�s work in 
���� also dealt with the relations between homotopies
in the categories of crossed complexes and of chain complexes with operators� and this aspect is
studied also in 
���	 In particular� Whitehead obtains a homotopy classi�cation


X� Y � �� 
C�fX�� C� eY �� ����
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for reduced CW �complexes X� Y such that X is n�dimensional and �i�Y � � 
� �� i � n� and where
C�fX� denotes the chain complex of cellular chains of the universal cover of X� with its operation of
the fundamental group of X	 However the result ���� is not stated explicitly in 
����	 It is interesting
that this result includes homotopy classi�cation results of Olum and others which were published
later and were formulated simplicially rather than cellularly	 An exposition of this method with
applications is given in 
���	

Further applications of the relations between crossed complexes and chain complexes with oper�
ators established in 
��� are given in 
�� �
�	

��� Some computations of Postnikov invariants of crossed modules

The exposition here is taken from 
���	

Recall 
��� ��� that if G is a group and A is a G�module� then elements of H��G�A� may be
represented by equivalence classes of crossed sequences


 � A�M
�
	� P � G� �� ����

namely exact sequences as above such that �� � M � P � is a crossed module	 The equivalence
relation between such crossed sequences is generated by the basic equivalences� namely the existence
of a commutative diagram of morphisms of groups as follows


 �� A

��
�

�� M ���

��
f

P

��
g

�� G

��
�

�� �


 �� A �� M � ��
��

P � �� G �� �

such that �f� g� is a morphism of crossed modules	 Such a diagram is called a morphism of crossed
sequences	

The zero cohomology class is represented by the crossed sequence


 � A
�
	� A

�
	� G

�
	� G� ��

which we sometimes abbreviate to
A

�
	� G�

In a similar spirit� we say that a crossed module �� � M � P � represents a cohomology class� namely
an element of H��Coker ��Ker ��� Although this equivalence between classes of crossed sequences
and ��dimensional cohomology classes has been known for a long time� it is not so easy to �nd
calculations of examples� and so we give some in this section	



Homology� Homotopy and Applications� vol��� No��� ���� ��

Example 	��� Let Cn� denote the cyclic group of order n�� written multiplicatively� with generator
u� Let 
n � Cn� � Cn� be given by u �� un	 This de�nes a crossed module� with trivial operations	
This crossed module represents the trivial cohomology class in H��Cn� Cn�� in view of the morphisms
of crossed sequences


 �� Cn
���
Cn

���
Cn

���
Cn

�� 



 �� Cn

OO

�

�������

��
�

Cn 
 C�

OO
p�

��
g

��h
C� ���

OO

�

��
�

Cn
��

��
�

OO

�





 �� Cn
�� Cn�

��
�n

Cn�
�� Cn

�� 


where� if t denotes a generator of any cyclic group� then g�t� �� � tn� g��� t� � t� h�t� �� � �� h��� t� �
tn and �� � are surjections	

Example 	��
 We show that the dihedral crossed module Dn of Example �	� represents the trivial
cohomology class	 This is clear for n odd� since then � is an isomorphism	 For n even� we simply
construct a morphism of crossed sequences as in the following diagram
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where if t denotes the non trivial element of C� then f��t� � x� f��t� � un��� Just for interest� we
leave it to the reader to prove that there is no morphism in the other direction between these crossed
sequences	

A crossed module M � �� � M � P � determines a cohomology class

kM � H��Coker ��Ker ���

The addition of such cohomology classes is determined by a sum of crossed sequences� of the Baer
type	 An exposition of this is given� for example� by Danas in 
���	

If X is a connected� pointed CW �complex with ��skeleton X�� then the class

k�X � H����X� ��X�

of the crossed module '��X�X
�� is called the �rst Postnikov invariant of X� This class is also

represented by '��X�A� for any connected subcomplex A of X such that �X�A� is ��connected and
���A� � 
� It may be quite di�cult to determine this Postnikov invariant from a presentation of
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this last crossed module� and even the meaning of the word �determine� in this case is not so clear	
There are practical advantages in working directly with the crossed module� since it is an algebraic
object� and so it� or families of such objects� may be manipulated in many convenient and useful
ways	 Thus the advantages of crossed modules over the corresponding ��cocycles are analogous to
some of the advantages of homology groups over Betti numbers and torsion coe�cients	

However� in work with crossed modules� and in applications to homotopy theory� information on
the corresponding cohomology classes� such as their non�triviality� or their order� is also of interest	
The aim of this section is to give background to such a determination� and to give two example of
�nite crossed modules representing non�trivial elements of the corresponding cohomology groups	

It has been proved by Ellis 
�
� that if G�A are �nite� where A is a G�module� then every element
of H��G�A� can be represented by a �nite crossed module	

The natural context in which to show how a crossed sequence gives rise to a ��cocycle is not
the traditional chain complexes with operators but that of crossed complexes� as shown in 
���	 We
explain how this works here	 For more information on the relations between crossed complexes and
the traditional chain complexes with operators than given here� see again 
���� and for the relation
with local cohomology� see 
���	

A free crossed resolution of the group G is a free aspherical crossed complex F� together with an
epimorphism � � F� � G with kernel ���F��� Here aspherical means that Im �n�� � ker �n for n��	

Example 	��
 The cyclic group Cn of order n is written multiplicatively� with generator t� We
give for it a free crossed resolution F� as follows	 Set F� � C�� with generator w� and for r��� set
Fr � �C��n� Here for r��� Fr is regarded as the free Cn�module on one generator w�� and we set
wi � �w��

ti 	 The morphism � � C� � Cn sends w to t� and the operation of F� on Fr for r�� is
via �� The boundaries are given by

�i� ���wi� � wn�

�ii� for r odd� �r�wi� � wiw
��
i���

�iii� for r even and greater than �� �r�wi� � w�w� � � � wn���

Previous calculations show that �� is the free crossed C��module on the element wn � C�	
Thus F� is a free crossed complex	 It is easily checked to be aspherical� and so is� with �� a crossed
resolution of Cn�

Let A be a G�module	 Let C�G�A� �� denote the crossed complex C which is G in dimension ��
A in dimension �� with the given action of G on A� and which is 
 elsewhere� as in the following
diagram


 
 
 �� 
 �� A �� 
 �� G�
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Let �F�� �� be a free crossed resolution of G� It follows from the discussions in 
��� ��� that a ��
cocycle of G with coe�cients in A can be represented as a morphism of crossed complexes f � F� �
C�G�A� �� over �� This cocycle is a coboundary if there is an operator morphism l � F� � A over
� � F� � G such that l�� � f��

F�

��

��
�
F�

��
f�

��
�
F�

��

l

��
��
��
��

��

��
�
F�

��
�


 �� A �� 
 �� G

To construct a ��cocycle on F� from the crossed sequence ����� �rst construct a morphism of
crossed complexes as in the diagram

F�
��

��

F�
��

��
f�

F�
��

��
f�

F�
���

��
f�

G

��
�


 �� A �� M ��
� P ��

�
G

����

using the freeness of F� and the exactness of the bottom row	 Then compose this with the morphism
of crossed sequences


 ��

��

A

��
�

�� M ���

��

P ���

��
�

G

��
�


 �� A �� 
 �� G ��
�

G

Hence it is reasonable to say that the morphism f� of diagram ���� is a ��cocycle corresponding to
the crossed sequence	

We now use these methods in an example	

Theorem 	��� Let n��� and let 	 � Cn � Cn� denote the injection sending a generator t of Cn

to un� where u denotes a generator of Cn�� Let An denote the Cn�module which is the kernel of the
induced crossed module N � �
 � 	�Cn � Cn��� Then H��Cn� An� is cyclic of order n and has as
generator the class of this induced crossed module�

Proof By Corollary �	� the abelian group 	�Cn is the product V � �Cn�n	 As a Cn�module it
is cyclic� with generator v� say	 Write vi � vt

i

� i � 
� �� � � � � n 	 �	 Then each vi is a generator
of a Cn factor of V 	 The kernel An of 
 is a cyclic Cn�module on the generator a � v�v

��
� �

Write ai � at
i

� viv
��
i��� As an abelian group� An has generators a�� a�� � � � � an�� with relations

ani � �� a�a� � � � an�� � ��

We de�ne a morphism f� from F� to the crossed sequence containing N as in diagram ��
��
where
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�i� f� maps w to u�

�ii� f� maps the module generator w� of F� to v � v��

�iii� f� maps the module generator w� of F� to a��

�C��n

��
�

��
� �C��n

��
f�

��
� �C��n

zz

l

uu
uu
uu
uu
uu

��
f�

��
�
C�

��
f�

�� Cn

��
�


 �� An
�� �Cn�n ��

�
Cn�

�� Cn

��
�

The operator morphisms fr over f� are de�ned completely by these conditions	

The group of operator morphisms g � �C��n � An over f� may be identi�ed with An under
g �� g�w��� Under this identi�cation� the boundaries ��� �� are transformed respectively to 
 and
to ai �� ai�a

t
i�
��� So the ��dimensional cohomology group is the group An with ai identi�ed with

ai��� i � 
� � � � � n	 �� This cohomology group is therefore isomorphic to Cn� and a generator is the
class of the above cocycle f�� �

We now use ! to denote the topological cone functor	

Corollary 	��� The mapping cone X � BCn� �B	 !BCn satis�es ��X � Cn� and ��X is the Cn�
module An of Theorem ����� The �rst Postnikov invariant of X is a generator of the cohomology
group H����X� ��X�� which is a cyclic group of order n�

This computation of a cohomology class is generalised in 
��� to the case of BQ�!BP where P
is a normal subgroup of Q such that Q�P is cyclic of order n	 We emphasise again that this shows
that the ��dimensional Van Kampen theorem can lead to a complete determination of a non trivial
integral homotopy ��type� and this suggests that the theory has some of the characteristics of a
���dimensional group theory� sought by the workers in topology near the beginning of this century	

The following is another example of a determination of a non�trivial cohomology class by a
crossed module	 The method of proof is similar to that of Theorem �	��� and is left to the reader	

Example 	��� Let n be even	 Let C �
n denote the Cn�module which is Cn as an abelian group

but in which the generator t of the group Cn acts on the generator t� of C �
n by sending it to its

inverse	 Then H��Cn� C
�
n� �� C� and a generator of this group is represented by the crossed module

��n � Cn 
 Cn � Cn��� with generators t�� t�� u say� and where �nt� � �nt� � un� Here u � Cn�

operates by switching t�� t�� It is not clear if this crossed module can be an induced crossed module
for n � �	 However� n � � gives the case n � � of Theorem �	��	
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Remark 	��� The crossed module ��� � C�
C� � C�� also appears as an example in 
��� pp	����
����	 The proof given there that its corresponding cohomology class is non�trivial is obtained by
relating this class to the obstruction to a certain kind of extension	

From the above we see an advantage in having a small free crossed resolution of a group	 This
method is used to give computations in non abelian extension theory in 
���	 However the methods
of constructing such resolutions are at present rather limited� and are the subject of current research

��� ���	 The problem seems more di�cult than the widely researched subject of the computation
of resolutions in the usual sense of the cohomology of groups	
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	 Further work

The paper 
��� lists some �� problems or problem areas in non Abelian homological and homotopical
algebra related to the work described here	

A general problem seems to be that of linking these methods with other techniques and problems
in algebraic topology	 There is a considerable body of work by Graham Ellis and his collaborators
on applying in group theory techniques related to the non abelian tensor product	 This gives a lot
of new results on p�groups and their homology� and on combinatorial homotopy	 This is related to
the long term programme by Baues on the classi�cation problem in topology	

The category of crossed complexes has many satisfactory properties	 Its monoidal closed struc�
ture 
��� has been exploited in for example 
��� ��� �� �� ��� �
�	 This work is probably the beginning
of work on crossed di�erential algebras to be exploited in the homotopy theory of non simply con�
nected spaces	 That is� there seems a lot more to be done and to be achievable in moving to the
quadratic homotopical information	 At a low dimensional level this has been done in 
�� using
quadratic complexes� and from the viewpoint of crossed squares in 
���	 Are crossed di�erential
algebras the �right� quadratic model for all dimensions#

The paper 
��� gives a general overview of the methods of crossed squares and crossed n�cubes of
groups	 A striking application of the Van Kampen Theorem for crossed squares and which cannot
be obtained from using crossed complexes is the determination of ��SK�G� ��� where S denotes
suspension� as the kernel of a morphism determined by the commutator map G
G� G 
���	 Here
the non abelian tensor square is universal for �biderivations� on G
G	 This has led to a lot of work
on non abelian tensor squares and tensor products� and so to a number of explicit calculations of
G�G and so of the kernel of the commutator map � � G�G� G	

Note that� analogously to the case of induced crossed modules� a standard group theory con�
struction� in this case the commutator subgroup� is replaced by an in general bigger group� the
tensor square� with a universal property� and that the kernel of the morphism from the universal
construction to the standard construction contains information on absolute homotopy groups	 Fur�
ther� the route to these applications is through Generalised Van Kampen Theorems� whose methods
of proof require higher order groupoids	

It is a consequence of work of Loday 
��� that homotopy n�types are modelled by n�fold groupoids	
Grothendieck described this result to me as �Absolutely beautiful��	 There is a lot more work to be
done to develop the consequences	 For example� this result is so far of little use in describing the
�n � ���type of Sn	

There is also the problem of exploiting these methods in other areas of algebraic and di�erential
topology� granted the importance of the general notions of deformation and homotopies	 The work
of Baues in setting up homotopy theory in a co�bration category is important here	

We return to the idea that structures which can be the target of a functor satisfying a Van
Kampen type theorem have some special properties which make them suitable for a non abelian
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local�to�global theorem	 It would be good if these properties could be exploited in other situations
than has been done so far	

Some wider general issues are also given in 
��� and in the less technical web page article 
���	

Finally I must acknowledge with pleasure the very enjoyable collaborations which will be evident
from the publication list and the work of research students at Bangor who have made key contribu�
tions to the subject of groupoids� multiple groupoids and related areas� under the supervision and
of and through discussion with Tim Porter� Chris Wensley and the writer	 Here are their names
with dates of completion� Lew Hardy ������� Tony Seda ������� A	 Razak Salleh ������� Keith
Dakin ������� Nick Ashley ������� David Jones ������� Graham Ellis ������� Fahmi Korkes �������
Mohammed Aof ������� Fahd Al�Agl ����
�� John Shrimpton ����
�� Osman Mucuk ������� Andy
Tonks ������� Phil Ehlers ������� Zaki Arvasi ������� Ilhan ,I/cen ������� Murat Alp ������� Ali
Mutlu ������� Anne Heyworth ������	

This article is a slightly revised version of about nine hours of lectures given at the Summer
School on the Foundations of Algebraic Topology� Grenoble� June �� � July �� ����	 I would like
to thank Francis Sergeraert for the organisation of this School� and the Universit$e Joseph Fourier�
Grenoble� for support	
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