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Abstract

This paper is an attempt to study extensions of symmetric
categorical groups from a structural point of view. Using in a
systematic way bilimits in the 2-category of symmetric cate-
gorical groups, we develop a theory which closely follows the
classical theory of abelian group extensions. The basic results
are established for any proper class of extensions, and a coho-
mological classification is obtained for those extensions whose
epi part has a categorical section.

Introduction

Extensions of categorical groups have been extensively studied in [2, 3, 4, 5,
6, 7, 8 9, 10, 14, 20, 25], and remarkable applications to the classification of
homotopy types and to equivariant group cohomology have been found. In most of
the works on this subject, the chosen class of “epimorphisms” between categorical
groups is that of Grothendieck dense fibrations. This class does not have good 2-
categorical properties, basically because it is not stable under natural isomorphisms.
We have therefore tried to replace the class of Grothendieck dense fibrations with
a class having a better 2-categorical behaviour.

Since an epimorphism of abelian groups is a morphism with a set-theoretical sec-
tion, our first idea was been to consider, as epimorphisms between symmetric cate-
gorical groups, those symmetric monoidal functors having a categorical section. This
class is stable not only under natural isomorphisms, but also under bi-pullbacks.
These facts allowed us to use in a systematic way bi-limits and bi-colimits, so that to
develop the basic algebra for extensions in a way which closely follows the classical
theory of abelian group extensions.

While doing this, we realized soon that, at least as far as the basic algebra is
concerned, only few stability properties are needed. We decided then to rewrite the
theory in terms of “proper classes” of extensions, having as examples extensions
with a categorical section, extensions with a graph-theoretical section, and also the
more general class of extensions in which the epi part is simply a functor essentially
surjective on objects. This last class seems to be the most general one which sup-
ports the constructions of basic algebra. It has been independently considered by A.
Rousseau in his Ph. D. Thesis [20], where extensions of (not necessarily symmetric)
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categorical groups are classified following Breen-Grothendieck approach in terms of
monoidal fibrations of bitorsors.

The present paper is organized as follows:

After recalling basic facts on categorical groups (Section 1), in Section 2 we give
the definition of extension of symmetric categorical groups and we show that the 2-
category EXT(C, A) of extensions of A by C is a 2-groupoid. In Section 3 we compare
extensions of symmetric categorical groups with extensions of abelian groups. Sec-
tion 4 is devoted to trivial and split extensions. In Section 5 we discuss bi-pullbacks
and bi-pushouts of symmetric categorical groups. They are used in Sections 6 and
7 to compare EXT and Hom and to show that EXT measures whether a morphism
can be extended or lifted. Sections 8 and 9 contain definition, basic facts and some
examples of proper classes of extensions. In Section 10, we establish the fundamen-
tal 2-exact Hom-Ext sequences obtained by an extension. Section 11 is devoted to
projective (and injective) objects. In Section 12 we show that EXT measures the
non-exactness of Hom. In Section 13 we define the 2-dimensional analogue of Baer
sum, making Ext(C, A) into a symmetric categorical group. The last two sections
are devoted to a cohomological classifications of F-extensions (i.e. those extensions
of symmetric categorical groups whose epi part has a categorical section). We define
a convenient notion of cobord and symmetric cocycle and we obtain a categorical
equivalence between the symmetric categorical group of F-extensions and the sym-
metric categorical group of cocycles modulo cobords.

All along the paper, we restrict our attention to symmetric categorical groups
and monoidal functors compatible with the symmetry. Several results contain a
part stated in terms of bi-limits only (or proved using only bi-limits) and a dual
part involving bi-colimits. It is a general fact that the part involving only bi-limits
holds also for not necessarily symmetric categorical groups and arbitrary monoidal
functors.

To end this introduction, let us point out two major open problems.

Clearly, working with symmetric categorical groups instead of braided categorical
groups, we loss some relevant examples. The reason why we restrict our attention to
the symmetric case is that the cokernel of a morphism (as well as basic properties on
2-exact sequences based on the duality kernel-cokernel, see [16]) is a main ingredient
in our analysis, and its description is known, up to now, only for morphisms between
symmetric categorical groups. Moreover, several definitions and constructions we use
seem much more delicate if we have only a braiding instead of a symmetry (they
are so delicate that we suspect that the right context to study the non-symmetric
theory could be that of bigroupoids, instead of categorical groups).

Another problem concerns projective objects (in the sense of Definition 11.1) in
the 2-category of symmetric categorical groups. The notion of projectivity is crucial
in the classical theory, but, unfortunately, we do not know if the 2-category of
symmetric categorical groups has enough projective objects. (It would be interesting
to solve this problem in order to appreciate the strong specialization done in Sections
14 and 15, where we consider only F-extensions.)

Finally, we would like to thank the members of the Granada school in category
theory for several stimulating and useful discussions the second author had with
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them when he was visiting Granada in summer 2001. We also thank the referee for
his help in comparing F-extensions with the classification of extensions established
in [20].

1. The 2-category SCG

Let us fix some notations. In any category, the composition is written dia-

grammatically, that is X *f>Y*g> Z is written f - g. The identity arrow
is 1 =1x:X — X (but the identity natural transformation on a functor F' is
called F). If C is a monoidal category, we write I = I¢ for the unit object, ® for
the tensor product, a = axyz: (X QY)® Z — X ® (Y ® Z) for the associa-
tivity isomorphism, | = Ilx: I ® X — X and r = ry: Y ® I — Y for the unit
isomorphisms. (Ab)using the coherence theorem for monoidal categories, we often
assume the associativity isomorphism to be the identity. If C is symmetric, we write
Y=79xy: X®Y — Y ® X for the symmetry. If F: C — D is a monoidal func-
tor, we denote its monoidal structure by Fxy: F(X)® F(Y) — F(X ®Y) and
Fr: I — F(I). For any category C, we write moC for the (possibly large) set of
isomorphism classes of objects. If C is monoidal, 7, C is the commutative (see [18])
monoid C(I,I). A categorical group (cat-group, for short) is a monoidal groupoid
in which each object is regular, i.e. it is invertible, up to isomorphism, with respect
to the tensor product. If G is a cat-group, we fix, for each object X, a dual object
X*, with unit and counit nx: I - X @ X", ex: X* X - I.If f: X - Y isin C,
f*:Y* — X* is given by

1(f®1)

Y ovVie I —Zys @(Xe X¥) v* @ (Y ®X*) ~

~Y*"®Y)® x5 I®X* X*.

Basic facts on monoidal categories and cat-groups can be found in [11, 12, 13, 15,
16, 19, 21, 23, 24, 26].

The 2-category SCG has symmetric cat-groups as objects, monoidal functors com-
patible with the symmetry as 1-cells, and monoidal natural transformations as 2-
cells (observe that they are natural isomorphisms, because cat-groups are groupoids).
Note that w9 and m; extend to two 2-functors from SCG to the discrete 2-category
Ab of abelian groups. Moreover, a 1-cell F': A — B in SCG is an equivalence if and
only if mo(F) and 71 (F) are isomorphisms in Ab (see [16]).

Let us recall now, from [16], the universal property and a construction for kernels
and cokernels in SCG. (As a matter of convention, each time that we consider some
kind of limit or colimit in SCG, it is to be understood in the sense of bi-limit
or bi-colimit, see [22].) Given a 1-cell ¥: B — C, its kernel is given by a triple
(KerE, €y, 62)

KerX 4>

A
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(where 0: KerY — C is defined by 0(f) = 1; for each arrow f in KerX) such that,
for any other triple (D, F, ¢)

D—O>(C
T
B

there are F': D — KerX and ¢': F’ - ex = F such that the following diagram
commutes

e 'E%F’
) -0

mﬂ ﬂ

F-¥ Z 0

Moreover, if F”': D — KerX and ¢”: F’-es, = F make commutative the analogous
diagram, then there is a unique ¥: F' = F” making commutative the following
diagram

-ex : F”

\/

As any bilimit, the kernel is determined, up to equivalence, by its universal property.
It can be described as the comma category having as objects pairs of the form
(X €B,ex: X(X) — I). The functor ey, forgets ex and ex (X, ex) is ex. In fact, this
description could be called the standard kernel, because it satisfies another universal
property: if F' and ¢ are as before, there is a unique F’ such that F'-ex = F and
F' - es = . We always use the first universal property, but the second one is
sometimes useful to avoid ¢’ and then to simplify notations.

The cokernel is defined by the dual universal property. In the following diagram, we
fix the notations for the cokernel of a 1-cell T': A — B

CokerI’

\/

Objects of CokerI" are those of B. An arrow X — Y in Cokerl' is an equivalence
class of pairs of the form (f, A), with A an object of A and f: X — Y ® I'(4) an
arrow in B. Two pairs (f, A) and (f’, A") are equivalent if there is g: A — A’ in A
such that f - (1y ® I'g) = f’. Once again, we get in this way a standard cokernel.
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2. The 2-category of extensions

We want now to define extensions of symmetric cat-groups. For this, consider
the following diagram in SCG :

0
T
B

and the corresponding factorizations through the kernel of ¥ and the cokernel of '

A

C

CokerI’

KerY
Recall, from [16], that the triple (T, ¢, ¥) is 2-exact when T’y is full and essentially
surjective on objects or, equivalently, when ¥ is full and faithful.
Proposition 2.1. The following conditions are equivalent :
1) The triple (T, ¢, %) is 2-exact, T is faithful and X is essentially surjective;
2) T is an equivalence and ¥ is essentially surjective;

3) T is faithful and o is an equivalence.

Proof. Obvious, because Pr is essentially surjective and ey is faithful. O

We are ready to give the definition of extension (compare with Definition 3.2.1
in [20]).

Definition 2.2. Let A, C be in SCG ;
1) An eatension of A by C is a diagram (T, ¢, %) in SCG

A—2—>cC
©
i
B
which satisfies the equivalent conditions of Proposition 2.1. We write also
(T,9,%): A— B — C for such an extension;

2) If (T, ¢, %) and (I, ¢',%X) are two extensions of A by C, a 1-cell

(o, 8,7): (T,0,5) = (I, ¢/, %)
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is given by a 1-cell B and two 2-cells a,y in SCG as in the following diagram
B
N
A 6 4 C
r >
B/

such that the following diagram commutes

p.g.g/%r.g

F’~Z’:>O§
]

3) If (o, B,7), (e, 8",7"): (T, 0, %) — (I, ¢/, 2) are 1-cells, a 2-cell
b: (o, B,7) = (o, 5',7)
is a 2-cellb: B = B in SCG such that the following diagrams commute

I g—= 1.4 JC > L 2SN T 3/

Proposition 2.3. With the obvious compositions and identities, the data of Defi-
nition 2.2 define a 2-category EXT(C, A).

We write Ext(C, A) for the classifying category of EXT(C, A), i.e. Ext(C, A) has
the same objects as EXT(C, A) and, as arrows, 2-isomorphism classes of 1-cells in
EXT(C,A).

Example 2.4. Let F': A — B be a morphism in SCG. The following diagrams are
extensions

KerF ——> > Coker(er) Ker(Pr) — > CokerF

N NG

Our first result on extensions will be the 2-dimensional analogue of the Short
Five Lemma, that is the fact that EXT(C, A) is a 2-groupoid. This has been in-
dependently proved also in [20]. We sketch the proof for the reader’s convenience
and because we deduce this fact from a slightly more general argument. We need a
notation: if A is an abelian group, we write A[1] for the symmetric cat-group with



Homology, Homotopy and Applications, vol. 4(1), 2002 109

only one object and such that 71 (A[1]) = A; we write A[0] for the discrete symmet-
ric cat-group such that mo(A[0]) = A. Both (—)[0] and (—)[1] extend to morphisms.
(Of course, A[0] and A[1] are strict cat-groups. Compare with [1], where classical
homological algebra is developed in terms of higher strict n-cat-groups.)

Lemma 2.5. Let (f,g9): A — B — C be an exact sequence of abelian groups.
1) If f is a monomorphism, then (f[0],=, g[0]): A[0] — B[0] — C[0] is a 2-exact
sequences of symmetric cat-groups;
2) If g is an epimorphism, than (f[1],=,g[1]): A[l] — B[1] — C[1] is a 2-exact
sequences of symmetric cat-groups.
Proposition 2.6. Consider a morphism in SCG together with its kernel and its
cokernel,

e P
KerF —= G a H —— CokerF .

Then the following diagram (where 1 is the symmetric cat-group with only one
arrow, and X and p are defined in the proof) is a 2-exact sequence of symmetric
cat-groups

1 (er)[0] 1 (F)[0]

1 — m(KerF)[0]

m1(G)[0]

71 (H)[0] KerF G H & CokerF’

o (F)[1]

]

mo(H) [l]ﬂﬂlﬂ'o(CokerF) [1]

1

mo(G)[1]

Proof. Since m preserves kernels, my preserves cokernels and both send 2-exact
sequences into exact sequences [27], 2-exactness in 71 (KerF)[0], 71 (G)[0], mo(H)[1]
and 7o (CokerF')[1] follows from the previous lemma. 2-exactness in G and H is
obvious. It remains to check 2-exactness in m (H)[0], KerF, CokerF and mo(G)[1].
This is straightforward, once A and p defined. From [16], recall that m(Ker) and
m1(CokerF') are isomorphic (in fact, they are equal if we use the description of Ker
and Coker given in Section 1).

The functor A corresponds to w1 (Pr): m (H) — 71 (CokerF') = mq(KerF'); explicitly,
A: 7w (H)[0] — KerF sends h: I — I to (I, F;'-h: F(I) — I).

The functor p corresponds to my(ep): m1(CokerF') = mo(KerF') — mo(G); explicitly,
w: CokerF' — mo(G)[1] sends [f, G]: Hy — Ha to [G]: * — *. O

Corollary 2.7. Let F: G — H be a morphism in SCG. The following is an exact
sequence of abelian groups

O @) 22 1 (Coker F)

ﬂ‘l(eF)

0 —— m (KerF)

7T1(G)

mo(Pr)

o (F) mo(er)
7T0(

0 <—— mo(CokerF) m0(G) =<—— mo(KerF)




Homology, Homotopy and Applications, vol. 4(1), 2002 110

Proposition 2.8. Let A and C be in SCG.

1) The 2-category EXT(C, A) is a 2-groupoid, i.e. each 2-cell is an isomorphism
and each 1-cell is an equivalence;

2) The category Ext(C, A) is a groupoid.

Proof. 1) We use the notations of Definition 2.2. To prove that 2-cells are isomor-
phisms, one simply checks that, if b: (a, 8,7) = (¢, 8',7') is a 2-cell in EXT(C, A),
then b=1: ' = Bis a 2-cell (/,3,7') = (a, 3,7) in EXT(C, A). Consider now a 1-
cell (a, B,7): (T, 0, %) — (I, ¢, ¥') in EXT(C, A). Consider also the factorizations
B: KerY — KerY and 3: Cokerl' — CokerI" induced, respectively, by (3,7) and
(o, B). A straightforward direct computation shows that the following four squares
commute

mo(Kers) <L (a) <20 (CokerT) 2L 1y (©) s 1 (Kery)

Wo(ﬁ)l 1\L Wl(ﬁ)l il lﬂ'o(ﬁ)

mo(Ker¥') <—— mo(A) <—— 71 (Cokerl") — 71 (C) ——= mo(KerX’)
mo(Tg) w1 (p') m1(20) mo(N")

The commutativity of the first and the third square means that 7o (5) and 71 (3)

are isomorphisms. Now we can particularize Corollary 2.7 taking, as F, the functors
Y and ¥’. We obtain the following commutative diagram with exact rows

mo(A) mo(ex) mo(%)

71 (C) —= mo(KerX) 7o (B) 70 (C) mo(CokerY) = 0

el e

/ / n—
Wl(C)W mo(KerX )m 7o (B’) o mo(C) mo(Coker¥’) =0

(the zeros are due to the fact that ¥ and X’ are essentially surjective). By the
Five Lemma, 7y(8) is an isomorphism. In an analogous way, we can particularize
Corollary 2.7 taking, as F, the functors I" and I'V. We have the following commutative
diagram with exact rows

0 = m (KerT) m(A) 2O 1 () L 1 (CokerT) X% o (A)

|l e

0 = m (KerI”) m1(A) 71 (B") —— 71 (Cokerl") ——= mo(A)
w1 () m1(Prv) w1 (p')

(where the zeros are due to the fact that ' and T are faithful). The Five Lemma
implies now that 7;(83) is an isomorphism. This implies that 3: B — B’ is an
equivalence in SCG. Consider the adjoint equivalence in SCG

LB =B lg=08-8""; e 0 B=1p
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and put

I a-p~!
71:F:">p.5.571B:>1“/.5—1

—1 v -1,
71: 2/6:.2>ﬂ71./8.2/5ﬁ’}/671.2
It is now straightforward, using triangular identities for (7€), to check that
(2,871 y): (T, ¢",X) — (T, ¢,%) is a 1-cell and 7, € are 2-cells in EXT(C, A).
2) Obvious from 1). O

3. Abelian group extensions

The comparison between abelian group extensions and extensions of symmetric
cat-groups is the object of this short section. First, observe that we can complete
Lemma 2.5 in the following way.

Lemma 3.1. Let (f,9): A — B — C be an extension of abelian groups. Then
(f[0],=,g[0]): A[0] — B[0] — C[0] and (f[1],=,9[1]): A[1]] — B[1] — C[1] are

extensions of symmetric cat-groups.

Proof. If 0 - A — B — C' — 0 is exact, then 1 — A[0] — B[0] — C[0] — 1 is
2-exact. In particular, the 2-exactness in A[0] means that f[0] is full and faithful,
and the 2-exactness in C[0] means that ¢[0] is full and essentially surjective. The
same argument works for A[1] — B[1] — C[1] . O

The converse is not true, in the sense that if (I', o, ¥): A — B — C is an extension
of symmetric cat-groups, then in general neither (7 (T"), mo(2)): mo(A) — mo(B) —
mo(C) nor (m1(T), 71(X%)): m1(A) — 71 (B) — 71 (C) are extensions of abelian groups
(respectively because m(T") in general is not injective and (%) in general is not
surjective.

Lemma 3.2. Let (T',p,%): A — B — C be an extension of symmetric cat-groups.

1) If m(A) = 0 = 7 (C) then 7 (B) = 0 and (mo(T), m0(X)): mo(A) — mo(B) —
m0(C) is an extension of abelian groups;
2) If mo(A) = 0 = mo(C) then mo(B) = 0 and (m1(T),m1(2)): m(A) — m(B) —

m1(C) is an e:z:tenszon of abelian groups.

Proof. 1) If we apply 71, we get an exact sequence 0 — 71 (B) — 0, so that m (B) =
0. Moreover, since 71 (C) = 0, then ey is full (see [16]). But then also T is full, so
that mo(T") is injective.

2) If we apply 7o, we get an exact sequence 0 — mo(B) — 0, so that mo(B) = 0.
Moreover, since m(A) = 0, then Pr is full (see [16]). But then also X is full, so that
m1(X) is surjective. O

Note that, in the situation of Lemma 3.2, if 71 (B) = 0, then 71 (A) = 0 (because
71 preserves kernels), but in general 71 (C) # 0 (because the cokernel of a morphism
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between discrete cat-groups in general is not dicrete). Dually, if mo(B) = 0, then
mo(C) = 0 (because mp preserves cokernels), but in general mo(A) # 0.
We can summarize the previous discussion in the following proposition.

Proposition 3.3. Let A and C be two abelian groups. The (discrete) 2-groupoids
EXT(CI0], A[0]), EXT(CI1], A[1]) and EXT(C,A) (the classical groupoid of exten-
sions of A by C) are equivalent.

4. Trivial extensions

Consider two symmetric cat-groups A and C; the product category A x C with
the obvious projections and injections

A< Axc s At AxC<S ¢

satisfies the universal properties of the product and of the coproduct in SCG.
Example 4.1. If A,C are in SCG, then

T(A,C): A—2>AxCZ>C

(with the identity 2-cell ip - pc = 0) is an extension of A by C. We call it the trivial
extension of A by C.

Definition 4.2. An extension (', o, X): A — B — C is a split extension of A by
C (or, in short, splits) if it is equivalent, in EXT(C,A), to the trivial extension
T(A,C).

Lemma 4.3.

1) Let
1c
C—C
t
s by
B
be in SCG; then (ex,exn,X): KerY — B — C is a split extension of KerX by
C;

2) Let
1

= A
5
B

be in SCG; then (T,nr,Pr): A — B — CokerDl is a split extension of A by
CokerT".

A
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Proof. We give a detailed proof of part 1) (part 2) is similar) because it is our first
example of proof using the universal property of a (bi)limit. We need a 1-cell in
EXT(C, KerX)

KerYX x C

Kery  § JER C

S P%

B

By the universal property of the coproduct KerY x C, we get a 1-cell § and two
2-cells o, § in SCG

KerX x C
Kery s C
R /
B
Now we have two 2-cells in SCG
1 iKers 'ﬂ‘E%@Z'E%OﬁiKQrZ - pe
RCEE I RNCEDY e S.x===1c ic - pc

By the universal property of the coproduct KerX x C, there exists a unique 2-cell
v: B+ % = pc in SCG such that ikes -7 =1 and ic - 7 = ¥2. It remains to check
that (o, 8,7): T(KerX,C) — (ex,€x,X) is a 1-cell in EXT(C, KerY). This means
to check the commutativity of

. iKers Y .
1KerY * ﬁ - Y =—=> IKerx bc

a.zﬂ ﬂ

es -2 = 0
which, by definition of 77, amounts to ixers - ¥ = 7. O
Corollary 4.4. Let
A 2 C
©
i
A
B

be in EXT(C,A). The following conditions are equivalent :
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1) The extension (T, @, %) splits ;
2) There exist S: C— B ando: S-X = 1¢ in SCG ;
3) There exist R: B — A and p: T - R = 1, in SCG.

Proof. 1) = 2) : Given («a, 8,7): T(A,C) — (T, ¢, X) in EXT(C, A), put S =ic- S

e

ando: S-X=ic-[4- X% <] ic - pc 1c.

2) = 1) : By Lemma 4.3, using that the equivalence I'p: A — KerX induces
a biequivalence EXT(C,A) ~ EXT(C,KerY) in which (T',¢,¥) corresponds to
(6276272).

1) = 3) = 1) : Similar. O

In view of some applications to 2-exact sequences, we need a more precise for-
mulation of Corollary 4.4. For this, fix an extension (I, ¢, 3): A — B — C of A by
C and consider the category Split(X) :

- objects are pairs (S: C — B, 0: S-X = 1¢) in SCG ;

- an arrow X: (S,0) = (57,0') is a 2-cell A\: S = S’ in SCG such that the
following diagram commutes

Consider also the trivial extension T'(A, C).

Lemma 4.5. Composition with ic: C — A x C induces an equivalence

ic - —: EXT(C, A)(T(A,C), (I, ¢, %)) — Split(S)

Proof. Let us describe explicitly the functor ic - —:
- Given a 1-cell (o, 3,7): T(A,C) — (I', ¢, %) in EXT(C, A), we obtain an ob-
ject (€ —S> A xC—>B ic-y:ic- 8- = ic-pe = lc) in Split(S) ;
- Given a 2-cell b: (o, 8,7) = (/,3,7): T(A,C) — (T, ¢, %) in EXT(C, A),

then the second condition on b in Definition 2.2 means that ic-b: (ic-f3,icy) =
(ic - #,ic -v') is an arrow in Split(X).

Now we check that ic - — is an equivalence :

Faithfulness : let b: (o, 8,7) = (o/, 3',7') be another 2-cell in EXT(C, A). Since o
is a natural isomorphism, by the first condition on b and b in Definition 2.2 we have
that is - b = i - b. If, moreover, we assume that ic - b = ic -5, then b = b.

Fullness : let A: (ic-B,ic-v) = (ic- 3 ic-7') be an arrow in Split(X) and consider

n\—1
in-f==T % ia - 8" . By the universal property of the coproduct A x C, we
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get a unique 2-cell b: 8 = (' in SCG such that

ZA 6:>/LA /6,

N\ A

commutes and ic - b = A. It remains to check the commutativity of

/8 E/ > /8/ E/

One can do this precomposing with i, and ic and using, respectively, that («, 3, 7)
and (o/, 3',v") are 1-cells in EXT(C, A) and the condition on A to be an arrow in
Split(%).

Essential surjectivity : this is the part already proved in Lemma 4.3 (write ev-
erywhere A, ¢ and T insted of KerX, ex; and eyx). It remains only to check that
d: (ic - Byic - v) = (S,0) is an arrow in Split(X), but this is exactly the second
condition on v in the proof of Lemma 4.3. O

For later use, let us write explicitly a consequence of Lemma 4.5. Let
(x,L,y): (T1,01,%1) — (T2, @2, X2) be a 1-cell in EXT(C, A)

B,

For each pair of 1-cells

(a1,B1,7): T(A,C) — (T'1,01,%1) (a2, f2,72): T(A,C) — (T2, p2, X2)

in EXT(C,A), there is a bijection between 2-cells b: (a1,051,7m1) - (z,L,y) =
(a2, B2,72) in EXT(C, A) and arrows

Sy- o
)‘:((Ci>BI*L>B2aSl'L' 221:y>51'21£>1¢j) =

((C LBQ, SQ DI U:2> 1((;),

in Split(X2), where (S1,01) and (S2,02) correspond to the extensions (I'y, 1, 1)
and (T'a, p2, Xo) via the equivalences

¢ —: EXT(C,A)(T(A,C), (L1, 1, %1)) — Split(S)
¢ —: EXT(C,A)(T(A, C), (Ta, 02, £2)) — Split(Zs) .
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This bijection sends b: 8 - L = By into A: §1 - L = i¢ - By - [ =i - By = Sy
Clearly, given an extension (T, ¢, 3J), instead of ¥ one could consider I' and obtain
a dual lemma perfectly analogous to Lemma 4.5. We leave this to the reader.

5. Pullbacks and pushouts in SCG

To compare EXT and Hom, as well as to define the 2-dimensional analogue of
Baer sum, we need pullbacks and pushouts in SCG (in the sense of bilimits, of
course).

Let us start with pushouts. First, we recall the universal property: given two
1-cells F': A — B and G: A — C in SCG, their pushout is a diagram in SCG of the
form

A

B——FUG

1F

such that, for any other diagram in SCG

A—S>C

| s |

]BT)D7

there exist a 1-cell "5 FUG — D and two 2-cells ¢ : ip - K = H = oK
K = K in SCG such that the following diagram commutes

F-of
Feip- K —=———=F.H

iF,G*PH’KH/ »pr

s . HvK G N K,
G ig-o :WK
moreover, if pE: FUG - D, g ip - oK = H | pX:ig oMK = K satisfy
the same condition, then there is a unique 2-cell 1: % = 7K in SCG such
that the following diagrams commute

A iry . )
ZF‘SDH’K:>ZF‘SDH7K Yel HK:>ZG w
R % \ /
H

Passing through the description of cokernels in SCG given in [16] and the obvious
description of coproducts in SCG, we get an explicit description for pushouts :
- Objects of F'U G are those of B x C ;
- A pre-morphism is a triple (f, A,¢): (B1,C1) — (Bs,C3), with A an object of A,
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fiBi - FA®BysinBand g: Cy ® GA — Cy in C

- A morphism is an equivalence class of pre-morphisms :

(f,A,9),(f,A,9): (B1,C1) — (Bay,Cs) are equivalent if there exists a: A — A in A
such that f-(Fa®1) = f and (1®Ga)-g = g ; we write [f, 4, g] for the equivalence
class of a pre-morphism (f, 4, g) ;

- The composition of

[f,A,9] [f,A"9]

(B1,Ch) (Ba,Cs) (B3, C3)
is, up to associativity, [f - (1 ® f') - (Fa,a ®1),A® A, (1® G;‘}A,) (g®1)-4];

- The tensor product of

[f,4,9] [f",A"9']
_—

(B1.C) (Bs,C2) with (B},CY) (B}, C3)
is[(fef) (10ye1) - 1019 Fia),A0A, (101G, Y) 1ey®1)-(g®
9] (B1® By, C1 ®C1) — (B2 ® By, Ca ® ()

-ip: B — FUG sends f: By — Bs into

[f 1, - (Fr®1), 1, (1@ GTY) - U]: (B, ) — (B2, 1)

-ig: C— FUG sends g: C; — (s into

r7t (1@ Fr), L1 G Y -rey gl (I,01) — (I,0%) ;

-ipg: F-ip = G -ig is defined, for each A in A, by

iF,G(A) = [’/‘;i,A,ZGA]: ZF(FA) = (FA,I) — (I, GA) = Zg(GA) N

- K FUG — D sends [f,A,g]: (By,Cy) — (Bg,Cy) into

H(B1) ® K(C1) ~ K(C1) ® H(B1)

1QHf

K(C1) ® H(F(A) ® By) ~ K(C1) @ H(F(A)) ® H(Bs)
10pa®1

K(C)® K(G(A)) ® H(Bs) ~ K(C, ® G(A)) ® H(Bs)

Kg®1

K(Cs) ® H(B3) ~ H(B2) ® K(C2)

- ip - oK = H is defined, for each B in B, by

o (B): oMK (ip(B)) = H(B) & K(I) — 2" H(B)&T ~H(B):

-8 ig - oK = K is defined, for each C in C, by
H;'®1

" (C): M (ic(C) = H(I) @ K(C) ————=1® K(C) ~ K(C);
- P B = pHE s defined, for (B,C) in F UG, by ¥(B,C): "5 (B,C) ~
PG (B)) @ 3 ig(0) — D H(B) 8 K(C) = ™K (B,C).

All what we need about pushouts is the next proposition.
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Proposition 5.1. Consider the following pushout diagram in SCG

A—S ¢

Fl "gc \Lic

B——=FUG
ir

1) If G is faithful, then ip is faithful;
2) If G is full, then ir is full;

3) If G is essentially surjective, then i is essentially surjective.

Proof. Everything can be checked directly using the previous explicit description.
For example, let us prove point 1. Consider two arrows f,h: By — Bs in B and
assume that ip(f) = ip(h) in F U G. This means that there exists a: I — I in A
making commutative the following diagrams

G71
[©GI~GI — T B LB, ~19B," "% FI 9B,
1®G((x)l \Ll 1l J/F(a)@
I@GI&GI?I By ——B2>~1® By —— FI® By
GI h Fr®l

(From the first equation, we have G(a) = 1g;. If G is faithful, this implies that
a = 17. But then, from the second equation, we get f = h. O

Pullbacks in SCG are easy, in fact they are computed as in the 2-category of
groupoids. We fix the notations for future references and we leave to the reader to
write the universal property and the explicit description.

FnGgX—sc

pFi PEG iG

B—%

For pullbacks, the dual of Proposition 5.1 holds.

Proposition 5.2. With the previous notations.
1) If G is essentially surjective, then pr is essentially surjective;
2) If G is full, then pp is full;
3) If G is faithful, then pp is faithful.

6. EXT and Hom

This section is devoted to the construction of new extensions from a given one,
using pullbacks and pushouts.
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Let C,D be two symmetric cat-groups; the hom-category Hom(ID, C) has an ob-
vious structure of symmetric cat-group. This plainly extends to a 2-functor

Hom: SCG x SCG — SCG

which reverses the direction of 1-cells in the first variable. Fix now a third symmetric
cat-group A and an extension F = (', p,3): A - B — C of A by C.

We need a 2-functor
— - FE: Hom(D,C) — EXT(D, A),

where we consider Hom(ID, C) as a 2-category with no non-trivial 2-cells.
For this, consider a 1-cell G: D — C in SCG and the pullback of ¥ and G,
together with the comparison, as in the following diagram

A 0
\ ®r,o
29
T 2neE-D
r pzl Pz:gc iG
B—s—C

where ¢r o, or and ¢ make commutative the following diagram

pro-py L —2 s or g - G
GOF'E\H/ \HWO'G
Y= 0 0-G.
Lemma 6.1. The diagram in SCG
A 0 D
»0
T /
$r,o pG
YNNG

is an extension of A by D ; we denote it by G - E.

Proof. From Proposition 5.2, we know that pg is essentially surjective. The fact
that

A 0 D

%0
T
¥r,0 pGc

NG

is a kernel of pg can be checked using the universal property of the pullback X NG
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and the universal property of

A

0 C
2
B

as kernel of . The detailed proof is long but essentially straightforward, and we
omit it. O

Consider now another 1-cell G': D — C in SCG and the extension G’ - E obtained
by the pullback

Let u: G = G’ be a 2-cell in SCG ; by the universal property of ¥ N G’, we obtain
al-cell 3: XNG — XNG and two 2-cells s: 3 ps = px,v: 8- per = pe in SCG
such that the following diagram commutes

ﬁ'l)z,G/

8-pk-¥ B pgr G’

. . . !
Py Y=o e G = pa- G .

We are looking for a 1-cell in EXT(D, A) induced by p :

NG

®r,o Y\

§ s 4 _D

‘Pf‘,o Per

NG .
As far as « is concerned, we have
@r,0y ©o (eo) "
ap: SOF,O -6~pG/ :>SDF’O pG ﬁo:}@r,o 'pG/
(er) "

©r,0-s Pr
ap: pro- B ph === P10 Px == 0 == ¢} - P-
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Since

er,0BPs,cr
90F70.ﬁ.p/z;.2 @F,O'ﬂ'pG/'G/

quE\H/ H/(XD.GI

90%70 ~p/E ) :>gpiﬂ70 cpar - G

APi“,o'Pz,G/
commutes, there is a unique 2-cell a: ¢ro -3 = ¢ such that a - pg = ap and
a-ps = agp.
Lemma 6.2. With the previous notations,

(O{, ﬁ) 7) : (@F,Oa @prG) - (¢%707 @(MplG)
is a 1-cell in EXT(D, A); we denote it by - E.

Proof. The condition to be a 1-cell in EXT(ID, A) is precisely the equation «-pgr =
ap. O

We pass now to the dual construction, involving pushouts. For this, consider an
extension F = (I', ¢, ¥): A — B — C in SCG and fix a 1-cell F: A — D in SCG.
Consider also the pushout of F' and I" and the factorization as in the following
diagram

with %> % and ¢* making commutative the diagram

0,2

. (228 1% .
F'ZF'QDO’E:>F'Z["()DO’E

F.LPO‘HJ H/F'LPE

F-0 0 r-x.

Lemma 6.3. The diagram in SCG

D C

0
i
iF o0

FUX

is an extension of D by C ; we denote it by F - F.
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Proof. From Proposition 5.1, we know that i is faithful. Moreover, one can check
directly the universal property of the cokernel

D 0 C
o0
\ A
ir Q0%
FUY

using the universal property of the pushout F'UT and that of the cokernel

NIA

B

The construction of the extension E - F' of Lemma 6.3 fits into a 2-functor
— - F: EXT(C,A) — EXT(C,D)

Let us describe it in detail.

Consider another extension E' = (I, ¢’,¥'): A — B’ — C with the corresponding
factorization

A—2 oy

FJ/ ig/ llr,\ o

D —> FUl’

/0 ‘PO’E/
i
v v
0 C

and let (o, 8,7): (T, ,2) — (I, ¢',X') be a 1-cell in EXT(C, A). By the universal
property of the pushout F UT, we get Bp: FUT — FUT', ap:ip-fBr =
i'm, O0p:ir - Br = [ -ipr- making commutative the following diagram

T-ip-Br Lo T8 ip

iF,F'BF,H ﬂa'ir/

F'iF'ﬁF:>F’iI}7',:>F/'iF’ .
F-ap i !
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Consider now the 2-cells

. ’ 6F'4PO'EI . ;B 89
V]E:ZF'ﬁF'QDO’E :\/ﬂ'lpl-(po’z :>6 Z/:E
H(«/DZ)1
il" . (,00’2
0,2/ /0 0y—1
; QaF-@’ . ;P (¢”) .
’Y]DZiF'ﬁF'@O’E F:>Z%.(p0,2 0 ZF-QOO’E

Since they are compatible with ¢p, there exists a unique vr: GF - on,z/ = 0=
such that ip - vy = 4p and ir - yp = . In particular,

’

(OéF7BF7’7F): (iFuQOOaSDO’E) - (ilff"?(p/ov(po’z )

is a 1-cell in EXT(C, D).

Starting from another 1-cell (¢, 3',7"): (T, ¢, ) — (I, ¢, ¥’) in EXT(C, A), re-
peat the previous argument. Consider also a 2-cell b: («, 3,7) = (¢/, 3',7’). Because
of the first condition in the definition of 2-cell, the universal property of the pushout
FUT gives a unique 2-cell bp: Bp = (% making commutative the following diagram

iFp-bp ir-br

ZF ﬁF:>7fF BF iF'ﬂF ZFﬁ}T‘
!
N % ‘SFﬂ ﬂ‘s’”
7’/F ﬁ'il“’ :>b' ﬁl”t'[‘/ .
“ips

To have a 2-cell br: (o, Br,vr) = (&/r, B, vr) in EXT(C,D), it remains to check
the commutativity of

02’

\/

this can be done, via the definition of vg, using the second condition on the 2-cell
b and the two equations satisfied by bp.

To end this section, let us summarize the situation just discussed, as well as the
dual situation.

Proposition 6.4. Consider two 1-cells F: A — D,G: D — C in SCG and an
extension E = (I, ¢, X): A — B — C. The pullback construction gives two 2-



Homology, Homotopy and Applications, vol. 4(1), 2002 124

functors

— . E: Hom(D, C) EXT(D, A)

G- —:EXT(C,A) — > EXT(D, A) .

The pushout construction gives two 2-functors

E - —: Hom(A, D) EXT(C, D)

— . F: EXT(C, A)

EXT(C,D) .

7. First application

As a first, simple application, let us show that EXT measures if a 1-cell can be
lifted (or extended).

Proposition 7.1. Consider a 1-cell G: D — C in SCG and an extension £ =
T,0,%): A—B— C of A by C. There exist G: D — B and ¢: G-X = G in SCG
if and only if the extension G - E in EXT(D, A) splits.

Proof. 1f G- E splits, there is a section S: D — XNG,0: S-pe = 1p of pi in SCG.
Then one can put G = S - py, and
S'ps.¢ c-G
P: 8 py  Y=——7——9pg  G=———=1p - G=G.
Conversely, consider
1p
D——=D
o] s |
B = C

By the universal property of the pullback ¥ N G, we get

D b D
\ z /
S pG
NG
in SCG O

We state the dual proposition, whose proof is left to the reader.

Proposition 7.2. Consider a 1-cell F: A — D in SCG and an extension £ =
T,¢,5): A—B—C of A by C. There exist F: B—D and¢: T'- F = F in SCG
if and only if the extension E - F in EXT(C,D) splits.
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8. Proper classes of extensions

As explained in the Introduction, we define now the notion of proper class of
extensions, in order to make results of Sections 10, 11 and 13 available for some
special classes of extensions.

The next definition extends Definition 2.2. It is useful to define proper classes,
and also to define Baer sum (see Section 13).

Definition 8.1. Consider two extensions E = (I, %) and E' = (I',¢',¥) in

SCG
A/ >
1) A 1-cell (F,a,B,7v,G): E — E' is pictured in the following diagram
A—Lsp—2-C
F\L bl Bl 1 lc
AN ——B —~ (o4
with F,a, B,v,G in SCG and such that the following diagram commutes

r.2.G=5T.5.%=2 p.pv. 5
w-Gﬂ ﬂF‘@,
0-G 0 G-0
2) If (F,o, 8,7,G), (F', o, 8,7,G"): E— E' are two 1-cells, a 2-cell
(@,y,2): (F,a,8,7,G) = (F,d/, §',7, &)

isatriplex: F = F | y:8=0, 2: G= G of 2-cells in SCG making
commutative the following diagrams

I g==rpr.1 Y.G=—=3Y

l"~y\H] \H]ayf" Z-zﬂ/ ﬂy-xl

I =—FpF.1 ».-G =0 3.
o Y

Observe that 2-cells are invertible, and that a 1-cell (F, «, 3,~, G) is invertible as
soon as F and G are equivalences. The proof is similar to that of Proposition 2.8.

Definition 8.2. A proper class P of extensions is the assignement, for every pair
of symmetric cat-groups A and C, of a full (at the level of 1-cells and 2-cells) sub-
2-category P(C,A) of EXT(C, A) in such a way that:

1) The trivial extension T(A,C) is in P(C, A);



Homology, Homotopy and Applications, vol. 4(1), 2002 126

2) If E € P(C,A), E' € EXT(C',A") and (F,a,8,7,G): E — E' is an equiva-
lence (in the sense of Definition 8.1), then E' € P(C',A’);
3) The 2-functors of Proposition 6.4 restrict to P

Hom(D, C) x EXT(C, A) — EXT(D, A)
T (pullback) T
Hom (D, C) X P(C,A) e P(D, A)
EXT(C,A) x Hom(A, D) — EXT(C,D)
T (pushout) T
P(C,A) x Hom(A,D) v P(C, D)

To prepare the study of injective and projective symmetric cat-groups, let us
observe that a proper class P of extensions gives rise to two classes of morphisms

in SCG.

Definition 8.3. Let P be a proper class of extensions.

1) A morphism T': A — B in SCG is a P-mono if there exist ¥: B — C and
p: T -% = 0 in SCG such that (T',p, %) € P(C,A). Equivalently, T is a
P-mono if (I',7r, Pr) € P(CokerI', A).

2) A morphism ¥: B — C in SCG is a P-epi if there exist I': A — B and
p: T-X =0 in SCG such that (T, ¢, %) € P(C,A). Equivalently, ¥ is a P-epi
if (62, €s, Z) S P(C,KGTZ).

The classes P-mono and P-epi inherit some good 2-categorical property from

those of the proper class P.

Proposition 8.4. Let P be a proper class of extensions.

0) For any A € SCG, the canonic morphism 1 — A is a P-mono;

0’) For any A € SCG, the canonic morphism A — 1 is a P-epi;

1) Equivalences C P-mono C faithful functors;

1’) Equivalences C P-epi C essentially surjective functors;

2) P-monos are stable under composition with equivalences and under natural
isomorphisms;

2’) P-epis are stable under composition with equivalences and under natural iso-
morphisms;

3) P-monos are stable under pushouts;

3’) P-epis are stable under pullbacks;

4) Given F: A — E, H: E — B in SCG, if F - H is a P-mono then F is a
P-mono;
4’) Given L: B —E, G: E— C in SCG, if L- G is a P-epi then G is a P-epi.
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The non trivial points are 4 and 4’. Their proof is based on the next lemma

Lemma 8.5.
1) Consider the following diagram in SCG, where H and h are induced by the

universal property of CokerF,

Pr

E Coker "
S
ﬁ 4
A G B o CokerG

If G is faithful, then the square is a pullback.
2) Consider the following diagram in SCG, where L and | are induced by the
universal property of KerG,

KerF °r B C

1
- 7 4
L\L 1 Ll -

KerG ———>E

If F is essentially surjective, then the square is a pushout.

Proof. Let us prove part 2, the proof of part 1 is dual. Observe that, since F is
essentially surjective, (ep,ep, F'): KerFF — B — C and (eg, g, G): KerG — E — C
are extensions. Consider now the factorization through the pushout (Section 5) and
the pushout extension (Section 6) as in the following diagrams

KerF ——> T KerF ——> T
Li & lzx ) Li 4 iig B
KerGTerF Y KerGTerF 4
a X\ ¢ X\
i i l
5 . ; .

Using the universal property of the pushout L U e, one can complete the following
diagram with a 2-cell e: K -G = T and check that it is a 1-cell between extensions

LU er
KerG | K 4 C

NP1

By Proposition 2.8, the proof is complete.
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The proof of 8.4.4 and 8.4.4’ is now obvious. Consider the diagram of 8.5.2
with F = L-G and | = L - G. Since F is a P-epi, the extension (ep,ep, F) is in
P(C,KerF). But (eg, €g, G) is the pushout extension of (eg, ex, F) along L, so that
it is in P(C, KerG), that is G is a P-epi. The proof of 8.4.4 is similar.

We have constructed the classes P-mono and P-epi starting from a proper class
of extensions. It is possible to work in the opposite direction.

Proposition 8.6. Let M and £ be two classes of morphisms in SCG. Assume
that M satisfies conditions 0, 1, 2, 8 and 4 of Proposition 8.4 and that £ satisfies
conditions 0°, 1°, 2°, 8’ and 4’ of Proposition 8.4. Define P(C,A) as the full sub-2-
category of EXT(C, A) of those extensions (I',¢,%): A — B — C such that T € M
and X € €. Then P is a proper class of extensions.

Proof. Let us check, for example, that if £ = (I',¢,X): A - B — C is in P(C,A),
then for any G: D — C the pullback extension G - E is in P(D, A). Consider the
diagram defining G - E (Section 6)

T

G4>

XN D
o |
B C

_—
P

By condition 3’, pg is in &; by condition 4 and the fact that M is closed under
natural isomorphisms, we have that or o is in £. O

Finally, let us observe that the class £ alone suffices to construct a proper class
of extensions.

Proposition 8.7. Let £ be a class of morphisms in SCG satisfying conditions 0’,
1°, 2, 8 and 4’ of Proposition 8.4. Define the class M as the class of those faithful
morphisms I': A — B in SCG whose cokernel is in € (equivalently, which are the
kernel of some morphism ¥: B — C in ). Then M satisfies conditions 0, 1, 2, 3
and 4 of Proposition 8.4.

Proof. Let us check condition 3. Consider an extension (I', p,¥): A — B — C with
T in £. Consider also the pushout extension along any F': A — D in SCG (Section

0
A%
= « O\,
DHF T

7 (|

- %@
Uﬁm

c:

ﬁ<—-
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Since I' € M, then ¥ € £. By condition 4’, > € £ and then its kernel iy, is in M.
As far as condition 4 is concerned, it follows from part 1 of Lemma 8.5 and the
assumption that & is stable under pullbacks. O

Dually, the class £ can be constructed by the class M, so that the class M alone
suffices to get a proper class of extensions.

9. Examples of proper classes

Example 9.1. Clearly, EXT is a proper class of extensions. In this case, P-epis
are the essentially surjective functors and P-monos are the faithful functors.

Example 9.2. Define an extension (I', ¢, ¥): A — B — C to be a G-extension if
3: B — Cis a Grothendieck fibration. This class is not proper (for example because
Grothendieck fibrations are not stable under natural isomorphisms). Moreover, the
smallest proper class containing G is EXT. Indeed, if X: B — C is any functor
between groupoids, the standard (bi)pullback of ¥ along the identity on C is a
Grothendieck fibration equivalent to X.

Example 9.3. We arrive now to the example which motivates the abstract ap-
proach of Section 8.

Definition 9.4. An extension (I',p,X): A — B — C is an F-extension if there
exist a functor S: C — B and a natural transformation o: S - X = 1¢.

Let us insist on the fact F-extensions are not trivial, because we do not require
S and o to be monoidal. The fact that F is a proper class is quite obvious. We only
point out that the stability under pullbacks is due to the fact (already observed)
that pullbacks in SCG are computed as in the 2-category of groupoids, so that a
functorial section for X: B — C gives rise to a functorial section for any pullback
of . The last section of this paper is devoted to a cohomological classification of
F-extensions.

We have defined the class F using F-epis. We want now to characterize F-monos.

Proposition 9.5. Let (T',¢,X): A — B — C be an extension. The following con-
ditions are equivalent:

1) (T, ¢,%) is an F-extension;

2) There exists a functor R: B — A and a coherent (w.r.t. the monoidal structure
of T') natural transformation

V= (VB,A: R(B X F(A)) — R(B) &® A)(B,A)GBXA
To prove Proposition 9.5, we need the following lemma, which says that the sec-

tion (S, o) can be normalized, and that the pair R, v induces a normalized retraction
for T'.
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Lemma 9.6.

1) Let ¥: B — C,S:C — B, 0: S-X = I¢ be as in Definition 9.4; there is a
functor S: C — B, a natural transformation o: S - ¥ = 1c and a morphism
Sp: I — S(I) such that the following diagram commutes

I — 2 5(1)

1l lz(sl)

[ <— 2(S(I))

g1

2) LetI': A — B, R: B — A and v be as in Proposition 9.5; there is a_functor
E: B — A, a natural transformation p: I' - R = 14 and a morphism Ry: I —
R(I) such that the following diagram commutes

Proof. 1) Define
S: 1 X—=Y = S(Hiel: S(X)eS(I)* — SY) S(I)*
g[:nS(I)II—>S(I)®S(I)*:§(I)

_ ax®(0;1)*

Fx: S(S(X) ~(S(X)® B(ST) — > X" ~X®@[~X

2) Define R(X) = R(X) ® R(I)* and R; = ng(y: I — R(I) ® R(I)* = R(I). We

get a natural transformation g 4 =vpa-(1®7): R(BoI'(A)) = R(BeT'(A)®
R(I)* - R(B)® A® R(I)* — R(B)® R(I)* ® A = R(B) ® A. Finally, we have
pa=Tra Ry RI(A) ~RI®T(A) - RI)@A— T A~ A O

Now we can come back to the proof of Proposition 9.5.

Proof. 1) = 2) : Since I'y: A — KerX is an equivalence, to prove condition 2) we
look for a functor R: B — Ker3. Let B be an object of B, we define

R(B) = (B® S(X(B))", Rp),
where Rp is

1®(U£(1B))* 775(13)
L(B®S(X(B))") = X(B)® L(S(X(B))) ——— = X(B) @ X(B)" ——=I;

if f: B — C is an arrow in B, we define R(f) = f ® S(X(f~!))*. Now, to obtain
a natural transformation v, let us consider an object (N,n: ¥(N) — I) in KerX.
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Up to the monoidal structure of X, the component of v at the point (B, (N,n)) is
given by the following composition

B® N ® S(3(B) ® S(N))*
191®S(1en~1)*

B®N®S(S(B)®I)*

B® N ® S(X(B))*

1®y

B®S(S(B))* @ N

2) = 1) : Now we look for a functor S: CokerI' — B (the natural transformation
0: S+ Ps = lookerr Will be the obvious one). Let X be an object in CokerI', we put
S(X) =X ®T'(R(X))*. Consider now an arrow [f, A]: X — Y in Cokerl', with A
inAand f: X - Y ®I'(A4) in B. We define S[f, A] by

X @T(R(X))*
J{f@F(R(fl))*
YRT(A)@T(R(YY @T'(A)))*
ll@l@F(uY}A)*
YT(A)@T(RY)® A)* Y @ T'(R(Y))*
It is easy to check that S is well defined; its functoriality follows from the coherence
of v. O

The lack of symmetry in Proposition 9.5 can be corrected. Indeed, since ¥ is
monoidal, the natural transformation ¢ can be equivalently replaced by a natural
transformation X(B ® S(C)) — X(B) ® C.

The difference between extensions and F-extensions is stressed by the following
fact.

Proposition 9.7. Let (T',,%): A — B — C be an F-extension in SCG.

ol oS i . .
1) moA —— 7B —— 7oC is an extension of abelian groups ;

r b
2) mA BULLN m B LN mC s a split extension of abelian groups.

Proof. Since (I', ¢, Y) is an extension, in particular it is 2-exact. This implies the
exactness of the two sequences of abelian groups (see Proposition 3.1 in [27]). More-
over, m1 [ is injective, because I is faithful, and myX is surjective, because ¥ is essen-
tially surjective. By part 2 in Lemma 9.6, mol' - 1o R = 1,4, so that mo[ is injective
and the mp-sequence is an extension of abelian groups. As far as the mi-sequence
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is concerned, we assume that the section (S, ) is normalized (Lemma 9.6). In this
way, we can still define m.5: m1C — m B by

I—2-1 = 1—55()

and it is a morphism of groups because S is a functor. Finally, using once again the
condition of Lemma 9.6, one checks that 7.5 - 7% = 1,,c, so that the 7;- sequence
is a split extension of abelian groups. O

Example 9.8. If, in Definition 9.4, we ask that the section (S,c) is only at a
graph-theoretical level, we get another proper class strictly contained between F
and EXT.

Example 9.9. An extension (I', o, ¥): A — B — C of symmetric cat-groups is a
m-extension if (m,mY): mA — mB — mC is an extension of abelian groups.
Equivalently, (T, ¢, ) is a mj-extension when 7Y is surjective. Since m preserves
pullbacks, 71-extensions are a proper class.

Example 9.10. An extension (I, p,3): A — B — C of symmetric cat-groups is a
mo-extension if (mol', moX): mpA — mB — meC is an extension of abelian groups.
Equivalently, (T', ¢, X)) is a mp-extension when 7ol is injective. Since my preserves
pushouts, mp-extensions are a proper class.

Example 9.11. From Propositions 5.1 and 5.2, we know that morphisms in SCG
which are full functors are stable under pullbacks and pushouts. Therefore, one can
wonder if, adding the conditions that I" and X are full, one gets a proper class of
extensions. This is not the case, because the trivial extension A — A x C — C
is not of this kind, apart when A is equivalent to a one-object cat-group and C is
equivalent to a discrete cat-group. There are no other possibilities. In fact, we have
the following lemma.

Lemma 9.12. Let (I',p,3): A — B — C be an extension.
1) T is full if and only if 71 (C) = 0;
2) X s full if and only mo(A) = 0.

Proof. We prove part 1, part 2 is dual.
If: Tt follows from 1.3.8 in [16], because C is equivalent to CokerT".
Only if: Tt follows from 1.3.2 in [16], because I is equivalent to es. O

Full extensions, that is extensions with I" and ¥ full, provide a quick classification
of symmetric cat-groups in the following way. Let A and B be two abelian groups
and call Ep(A, B) (Ep stays for “Epinglage”, see [21]) the following 2-category:

- an object is a triple (B, a,c¢) with B in SCG and a: 71 (B) — A, ¢: mo(B) — C two
isomorphisms of groups;
- al-cell F: (B,a,c) — (B,a,¢) is a morphism F: B — B’ in SCG such that the
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following diagrams commute

w1 (F) o (F')

m1(B) ™1 (B') 7o(B) o (B’)
NG NG

-a 2-cell \: F = F’ is simply a 2-cell in SCG.

Proposition 9.13. Let A and C be two abelian groups. The 2-categories Ep(A4, C)
and EXT(C[0], A[1]) are biequivalent.

Proof. Given a symmetric cat-group B, there is a canonical extension 71 (B)[1] —
B — m(B)[0]. Conversely, if (T, ¢, X): A[1] — B — C]0] is an extension, by Corol-
lary 2.7 we have an exact sequence

1 (T o (2
0 A2 B 0 0 mo(®) “Zs ¢ 0

so that 7 (T') and mo(X) are isomorphisms. Finally, to check that these two con-
structions give a biequivalence, observe that in a 1-cell

« is reduced to oy which, by monoidality, is determined by I', 8 and I"/; moreover,
since C[0] is discrete, v simply amount to say that mo(3) - mo(X') = mo(X). O

This classification does not seem very deep. Nevertheless, observe that a full
extension (I',p,%): A[l] — B — (0] always has a functorial section for ¥, so
that full extensions are a special case of F-extensions. Therefore, we can apply to
full extensions the cohomological classification of Section 15. Since the choice of a
functorial section of 3 amount to the choice of a set-theoretical section of my(X)
together with a clivage of B, Theorem 15.2 and the previous proposition give the
classification of symmetric cat-groups obtained by Sinh in [21].
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10. The fundamental 2-exact sequences

In this section we use the functors induced by the 2-functors of Proposition 6.4
on the classifying groupoids. We use the same notations :

— - E: Hom(D,C) ——— = Ext(D, A)
G- —: Ext(C,A) ———— = Ext(D, A)
E-—: Hom(A,D) —— Ext(C,D)

— - F: Ext(C,A) ———— = Ext(C,D) .

All these groupoids are pointed groupoids, and the various functors are functors
of pointed groupoids (in fact, they are all in SCG, but the structure of symmetric
cat-group of Ext(C, A) will be discussed later) : the point in Hom(ID, C) is the zero
functor 0: D — C, the point in Ext(C, A) is the trivial extension T'(A,C). We say
that a diagram in the 2-category Grpd* of pointed groupoids

is a 2-exact sequence if the comparison functor I'g: A — KerY is full and essentially
surjective.

The next lemma is a step towards Proposition 10.2. It is an obvious exercise on
the left exactness of representable 2-functors.

Lemma 10.1. Consider a symmetric cat-group D, a 1-cell ¥: B — C in SCG and
its kernel
KerY, ———>C
\ EE /
In the next diagram, the comparison functor K is an equivalence

e

Hom(D, KerY) — = Hom(D, B) ——— > Hom(D, C)

[

Ker(—-X).
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Proposition 10.2. Let E = (T',p, %)

be an extension in SCG and fix a symmetric cat-group D. The sequence in Grpd*

Hom(D, A) ——— > Hom(D, B) — > Hom(D, C)
_.E

Ext(D, A) == Ext(D, B) ———= Ext(D, C)

(equipped with the pointed natural transformations specified in the proof) is 2-exact
at each point.

If P is a proper class of extensions and if E € P(C,A), the same result holds
replacing EXT by P.

Proof. The 2-exactness of

Hom(D, A) 0 Hom(D, C)
\ ! /
Hom(D, B)

is attested by Lemma 10.1. We give now a detailed proof of the 2-exactness in
Ext(D, A). The argument for the 2-exactness in Hom(D, C) and Ext(ID, B) is similar
and we give only the description of the pointed natural transformations involved.
We use Lemma 4.5 and its consequence discussed at the end of Section 4, as wall
as the dual argument.

2-exactness in Ext(D,A) : let G: D — C be in Hom(D,C) and consider the
pullback along ¥ and the pushout along T, i.e. the extension (G - E) - T, as in the
following diagrams

oro FP—L =D A—20 sp-hp
8 P P N
A B C B Q— "

with ¢g: ¢ro-pg = 0and 9g: ir -1 = 0. Using ¢r, we get a retraction in SCG in
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the following way

!
4
1p B

This gives the component at G of a pointed natural transformation £: (—- E) - (— -
I')=0.

Consider now the factorization through the kernel of (—-T") induced by the previous
natural transformation

Hom(D,C) ——— = Ext(D, A)

|

Ker(—-T)

Ext(DD, B)

1) A is essentially surjective on objects : consider an extension (L, u, M): A - E —
D, its pushout along I'

and the factorization

making commutative the following diagram

T,

| AR TR p e R L S—
iF,L‘EL\H ﬂ#
L-ip -3 L-M.

L,



Homology, Homotopy and Applications, vol. 4(1), 2002 187

Assume that there is a retraction in SCG

Using this retraction, we can construct a 2-cell in SCG

zFLT

T7:L-ip T - Y ——7==1T" jLTE:>F N ==0.

Since (M, ) is a cokernel of L, we get G: D — C in Hom(D,C) and a 2-cell
7 M-G=ip-T- % in SCG such that the following diagram commutes

n-G
L-M-G————>0-G
L~H\H/ \H]

Lip T X =———=0.

Consider now the extension G - E as at the beginning of the proof. We look for
a l-cell (o, 3,7): (Lypp, M) — G - E in EXT(ID, A). The universal property of the
pullback P gives a factorization

E

i T ﬁ M
Ly 2

B=<ps P D

such that
ﬁ~p22$>ZL.T.E

ﬁ'pz,cﬂ/ WT,

B-pa-G e M-G

commutes. We can construct two 2-cells in SCG

I -1
ag: L-fB-pa Lo L. M —= 0 =—2 ©r,o - pa

LS . ir T . It ort
azLﬁpzﬁLzLTﬁerT T QOF,O'pZ.

Since a¢ and o are compatible with py, ¢, the universal property of the pullback P
gives a unique 2-cell a: L- 8 = ¢r o in SCG such that a-pg = ag and a-py = ax.
In particular, the equation « - p¢ = a¢ express the condition on («, 3,7) to be
a l-cell (L,u, M) — G- E in EXT(D,A). It remains to prove that («,3,7) is a
morphism in the kernel of (— - T'). For this, observe that the universal property of
the pushout L gives a factorization ¢: L — Q, m: i -q = B-i,, n: jL-q = ir
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such that

ir,L-q

I'jr-q L-ip-q

F'ZF:>S0F,OZ<,D<:L§.@LP
ir,e oty

commutes. Now we have two retractions of jr, : (T,t) and the one given by

B —— e

B - B
L

Q.

1
n

q

We have also a 2-cell in SCG

and, since the following diagram commutes

ir.L-q¢-R - )
F'jL'q'R%L'Z‘L'R%L'ﬁ.ZW.R

F-n»R\H H/Lﬂ'ﬂ

I'ir-R L3 ps
r'pﬂ \H/L'(S
T e g T p— L-ip-T,

the universal property of the pushout LL gives a unique 2-cell in SCG, A\: T = ¢- R,
such that

LA i
gL T=—=5—j. - q-R iL-T:LA>iL-q~R
tﬂ ﬂn-R ({H\ H/m-R
lp ———ir R ﬂ.pzﬁg.%.}g

commute. In particular, the first equation exactly means that A commutes with the

retraction. - -
2) A is full : consider G, G in Hom(ID, C), the extensions G- F and G- F and a 1-cell

(0,3,7): G- E — G- E in EXT(D, A). Consider also the retractions in SCG

B*E B*E

vd
(CHEES
N
ol
=l
N
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The universal property of the pushout Q gives a factorization ¢, a,b as in the fol-
lowing diagram

2

7:1" (@ I[D
ik s )
BE@ i P.

In this way we have a second retraction for ip :

1p

B B
0 _

— Q.

x|

Assume that there is a 2-cell \: R = ¢-R in SCG making commutative the following
diagram

i
ir~3$>ip~q

‘R
aR

We can build up the following 2-cell

. . o A2 —
T:pG'E:E>Z¢'R'E%:>i¢~q'R-E:>

- = B2 _ Brs @ — -G _

Since the diagram

¥Yr,0°T —

$ro-ps N =———=>0pro pc-G

er 'Z\H \H/Lpo G

I Y= 0 0-G

commutes, the universal property of (pa, wo) (it is the cokernel of ¢r ) gives a
unique 2-cell u: G = G in SCG making commutative the following diagram

P p —
pa -G < pa -G

py.G /

py - X
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It remains to prove that (a,3,7) and - E coincide as arrows in Ext(ID, A). The
functor part of y - E is given by the following factorization through the pullback P

B%@?D.

We need a 2-cell z: M = ¢ in EXT(D, A) and, for this, we can consider

P
s \Lﬁ PG
£ =
B?P?D

where y is given by the following composition

— g - —=_ b 'R . = e ATt .
ﬁ~p2:7r>ﬁ-z¥,-R:R>Z¥,-q-R@:>Z¢'Rﬂ:>pE

Since the following diagram commutes

B‘pz rel

[CRNZSEpY : B-pg-G
] I

PZ'E:MG PG'G:M pa -G,

the universal property of the pullback P gives a unique 2-cell z: M = 3 in SCG
such that

Mpz:>5p2 M'%:>

commute. The verification that x satisfies also the first condition of 2-cell in EXT(D, A)
needs a full description of y - E (see Lemma 6.2) and we omit it.

2-exactness in Hom(ID,C) : let F: D — B be in Hom(D,B) and consider the
following pullback
P D
l lp .
B C.

*>

H
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We get a section of py in SCG in the following way
\ =
Flf‘ ]P)
o)
B
Via Lemma 4.5, the section (Sg,op) gives the component at F of a pointed natural
transformation ¢: (— - %) - (—- E) = 0.
(

2-exactness in Ext(D,B) : let L = (F,¢,G): A — E — D be an extension of A
by D. Consider the following pushouts and factorizations

HD

\LFZ
C.

H

—>E BLQ\
l irF l\\a zl 20 iZQ \%
BHQ ik; \ C?R £ \
vo i ‘:I Elf Jy ,I
y y
D 0 D

which gives (L -T') - 3. We get a factorization
Q

i J/ ir
o
. §
4 ()

and, finally, a factorization

i l/ iQ
o |Br
4 4
C—>C~—0Q

1c

making commutative the following diagram

. Xp
iryQ-R‘H/ /H\S

In particular, via the dual of Lemma 4.5, the retraction (R, p) of ix; gives the compo-
nent at the point L of a pointed natural transformation x: (—-T')-(—-X) = 0. O

Let us write explicitly the duals of Lemma 10.1 and Proposition 10.2.
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Lemma 10.3. Consider a symmetric cat-group D, a 1-cellT: A — B in SCG and
its cokernel

P

In the next diagram, the comparison functor K is an equivalence

A -0 . CokerI’
T
r
B.

Hom(CokerI', D) S Hom(B, D) — Hom(A, D)
x TP(F)

Ker(I'- —) .

Proposition 10.4. Let E = (I', ¢, ¥)

be an extension in SCG and fix a symmetric cat-group D. The sequence in Grpd*

Hom(C, D) —— > Hom(B, D) — > Hom(A, D)

E—

Ext(C,D) ——— Ext(B, D) —— Ext(A, D)
(equipped with four specific pointed natural transformations) is 2-exact at each point.
If P is a proper class of extensions and if E € P(C,A), the same result holds
replacing EXT by P.

11. Projective objects

In this section we consider projective objects in SCG. Definitions and properties
for injective objects are dual and are left to the reader. We fix a proper class P
of extensions. The notion of P-projective object corresponding to our definition of
extension is the following one.

Definition 11.1. Let A be a symmetric cat-group ; A is P-projective if, for any
P-epi F: B — A, there exists a section in SCG (i.e. a 1-cell S: A — B and a 2-cell
0: 5 -F =1, in SCG).

Using pullbacks in SCG (see Section 5), the previous definition can be restated
in the following way : a symmetric cat-group A is P-projective if, for each 1-cell
G: A — C in SCG and for each P-epi F: B — C, there exist G': A — B and
g: G'-F = G in SCG.
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Corollary 11.2. Let A be in SCG ; the following conditions are equivalent :
1) A is P-projective ;
2) For each B in SCG, any P-extension of B by A splits ;
3) For each B in SCG, the classifying groupoid cIP(A,B) of P(A,B) is connected.

In the next corollary we use that the sequence of Proposition 10.4 (as well as
that of Proposition 10.2) is a 2-exact sequence of symmetric cat-groups, and not
only of pointed groupoids (the cat-group structure of ¢lP is discussed in Section
13). By Proposition 6.2 in [16], we can then translate its 2-exactness saying that
the factorizations through the appropriate cokernels are full and faithful functors.

Corollary 11.3. Consider an extension E = (I',p,X): A — B — C of A by C.
Assume that B is a P-projective object in SCG and that E € P(C,A). Then, for
any symmetric cat-group D, clP(C,D) is equivalent in SCG to the cokernel of

' —: Hom(B,D) — Hom(A, D).

Proof. By Proposition 10.4, we have a 2-exact sequence

cP(C,D)

Hom(A, D) clP(B,D)

and then its image by my: SCG — Ab is an exact sequence of abelian groups.
Moreover, by Corollary 11.2, mo(cIP(B,D)) = 0, so that mo(E - —) is surjective.
Equivalently, F-— is essentially surjective on objects. Consider now the factorization
€ of E - — through the cokernel of I' - —

Hom(B,D) — > Hom(A,D) — 2~ ¢IP(C, D)

|
Coker(T' - —)

By 2-exactness in Hom(A,D) of the sequence in Proposition 10.4, € is full and
faithful. It is also essentially surjective, because E - — is essentially surjective. [

12. Exactness of Hom

In this section we show that EXT measures the non exactness of representable
2-functors. We consider the case of covariant representable 2-functors and we leave
to the reader the controvariant case.

G———K
A
T
H
be a 2-exact sequence in SCG. The functor F is essentially surjective if and only if
7T0(G) =0.

Lemma 12.1. Let
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Proof. Only if : Since mo(F) is surjective, Cokermo(F) = 0. But Cokermg(F) ~
mo(CokerF'), and 7y(G) factors through mo(CokerF).

If : Since (mo(F), m0(Q)): mo(G) — mo(H) — m(K) is exact and mo(G) = 0, then
mo(F) is surjective, that is F is essentially surjective. O

Proposition 12.2. Let E = (T, ¢, X): A — B — C be an extension. Consider
a symmetric cat-group D and the morphism — - E: Hom(D,C) — Ext(D, A). The
sequence (—-I', —- ¢, —-X): Hom(D, A) — Hom(D,B) — Hom(D, C) is an extension
if and only if mo(— - E) = 0.

Proof. By Lemma 10.1, we know that — - I" is equivalent to the kernel of — - X.
Hence, the result follows applying the previous lemma to the sequence

Hom(D,B) — > > Hom(D,C) — =~ Ext(D, A)

which is 2-exact by Proposition 10.2. O

Corollary 12.3. Let D be a symmetric cat-group. The following conditions are
equivalent :

1) D is projective (i.e. P-projective for P=EXT) ;
2) For any essentially surjective morphism ¥: B — C, the functor
—-¥: Hom(D,B) — Hom(D, C)
is essentially surjective ;
3) For any extension (I',p,X): A — B — C, the sequence
(= I'—p,—-%¥): Hom(D, A) — Hom(D,B) — Hom(D, C)
18 an extension.

Proof. The non-trivial implication is 1) = 2), which follows from Proposition 12.2
and Corollary 11.2. O

We consider now F-extensions (Example 9.3). In this case, Proposition 12.2 has
a slightly different (and a little bit more difficult to prove) formulation.

Proposition 12.4. Consider an F-extension E = (I',¢,3): A - B — C in SCG
and a symmetric cat-group D. The diagram (D, E):

Hom(D, A) 0 Hom(D, C)

Hom(D, B)

is an F-extension if and only if the 2-functor
— - E: Hom(D,C) — F(D,A)

is isomorphic to the 2-functor which sends each 1-cell G: D — C into the trivial
extension T(A,D) and each 2-cell u: G = G’ into the identity of T(A, D).
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Proof. By Lemma 10.1, we have to deal only with a functorial section for —- 3. We
use the notations of Lemma 6.1 and Lemma 6.2.
(<) Assume that we have a 2-natural transformation

P
Hom(D, C) i F(D,A) .
~— 7
_.E

This means that, for each G: D — C in Hom(D, C), we have a 1-cell
(ag, 9(;,’7@) : T(A, ]D)) — G- Fin f(D,A)

AxD

7 K
D

XNG

and, for each p: G = G’ in Hom(ID, C), we have a 2-cell 0,,: (ag,0q,7¢) - (- E) =
(agr,0c/, 76 ). Now we can define T: Hom(DD, C) — Hom(D, B) by

NG
fc 25
G
T A i . |
Tb_ § cl=p—=AxD % |5 4 B
W
G/
GG/ P
NG
and it is functorial by 2-naturality of 6.
We need a natural transformation
Hom(D,C) Hom(D, C)
Hom(D, B)

For each G € Hom(ID, C), we define 7(G): T(G) - ¥ = G by the following diagram

D—2>AxD-2>yng g -2sC

G PY.G

- 4 lpc U
Pp

G

1p D

The naturality of 7 comes from the compatibility of 3 with px ¢ and px ¢’ and from
the fact that 6, is a 2-cell in F(DD, A).
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(=) Assume that we have a functorial section

Hom(D, C)

I A=

Hom(D,B) .

and consider, for G in Hom(D,C), the 2-cell 7(G): T(G) - £ = G in SCG. By
the universal property of the pullback ¥ N G, we obtain g, g1, g2 in SCG as in the
following diagram

making commutative the following diagram

N Nel
g py X ———r—m>g-pa- G

gz'Eﬂ \Hgl*G

(@) ¥ ——@.
@ (G) ¢

In particular, (g,¢1) is an object of Split(pg). By Lemma 4.5, (g, g1) corresponds
to a 1-cell (ag,0G,7q): T(A,D) - G- E in F(D, A).

Now, let 1: G = G’ be in Hom(D, C). We need a 2-cell in (D, A) as in the following
diagram

T(A, D)
1,0ar Yar
(acﬁcﬁ/a)l 9N)
EN
G-E G'-FE.

w-E
By Lemma 4.5, we can equivalently look for an arrow

g g g,
Aui (g8, 98 per 9-pc L=1p) = (¢, ¢ pe == 1p)
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in Split(pg ), where ¢, g7 and ¢} are as in the following diagram

Consider the 2-cells

g1 (g5) "

Ao g B-par === 9P Ip g - par
-8 T Hy—t
Xg: g 0Py ——> g Pz === T(QG) v T(G") (92) g -5 .

Using the three equations satisfied by 3,7, s, g, 91,92, 9', ¢}, g5 and the naturality of
T, one can check that the following diagram commutes

9-8'ps,cr

AB* Eﬂ/ \H/)\D.Gl

gl-plz~2:g/.pc/.G,.

g’ Ps,q’

The universal property of the pullback ¥NG’ gives then a unique 2-cell A\,: g-5 = ¢’
such that A, - per = Ap and A, - p5; = Ag. The first of these equations precisely
means that A, is an arrow in Split(pg-). O

13. Baer sum

In this section, we introduce Baer sum for extensions of symmetric cat-groups.
The construction closely follows the 1-dimensional analogue and we don’t give the
proof. If A, C' are two abelian groups, the group of extensions of A by C' is in fact
the group of connected components of the category of extensions of A by C, which
is a symmetric cat-group. In the same way, the structure of symmetric cat-group on
Ext(C, A), for A and C two symmetric cat-groups, could be extended to a monoidal
structure on the 2-groupoid EXT(C,A). We limit our attention to the groupoid
Ext(C, A) only for sake of simplicity.

Lemma 13.1. With the notations of Definition 8.1.

1) Consider an extension E = (I, ¢, X)), a 1-cell G: D — C in SCG and the
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following 1-cell G - E — E (see Lemma 6.1)
ATy 06D
1Ai T p:l qu,lc lG
A—F—B s~ C.

For any 1-cell (F,a,3,v,G): E' - E

A —Lsm-Zsp

Fl ﬁﬁl 1 lc
A—prB—5~C
there is a 1-cell (F',o/,0',7',G"): E' — G- E and a 2-cell

(z,y,2): (F',a', 8,7, G") - (1a, 01,05, 05 G) = (F,a, 8,7, G).
Moreover, for any other 1-cell (F",a”,3",4",G"): E' — G - E with a 2-cell
(U,’U,’U})Z (F//7a”7ﬁ”,’y//aGH) . (lAa(pF7pZ7p£)1G7G> = (F7aaﬁ7’y7G)a
there is a unique 2-cell (a,b,c): (F', o/, 0',~',G") = (F", ", 8",v",G") mak-

ing commutative the following diagram

(F', o, 8, ,G") - (1A,¢F,p2,P§}G,G)
K
(a.b,¢)-(14,px.G) (F,a, 8,7,G)
%

(F”, 0/17 ﬂ”, 7//7 G//) . (1A7 @vaEapilG’ G)

2) An analogue universal property holds if one considers an extension E = (T, p, 2)
a 1-cell F: A — I in SCG and the 1-cell E — E - F as in Lemma 6.3

A—>B—=>C

.—1 —
Fi it J{ w2y ilc

D——=FuUrl e C.
i Pl
Corollary 13.2. Consider an extension E = (I',p,2): A - B — C and four
1-cells in SCG

A—L>p-L>F G——>E—%cC.
The following pairs of functors are naturally isomorphic in a canonical way :
1) Ext(C,A) — T - BExt(C,D)

Ext(C,F)
and Ext(C, A) —

Ext(C,F) ;
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2) Ext(C,A) — =~ Ext(E,A) — "~ Ext(G, A)

(K-G)-—

and Ext(C,A) Ext(G,A);

3) Ext(C,A) Ext(C, D)

Ext(E, D)

and Ext(C,A) — =~ Bxt(E,A) — "~ Bxt(E,D) ;

4) Hom(A,D) — 2~ Ext(C,D) — <~ ~ Ext(E,D)

(G-B)—

and Hom(A,D) Ext(E,D) ;

5) Hom(E,C) —— =~ Ext(E,A) — > Ext(E, D)

—(E-F)

and Hom(E, C) Ext(E,D) .

We can now describe the monoidal structure of the groupoid Ext(C, A).
Given two extensions

A 0 C A—O>(C
P1 2
T
A NS A
By B, )

we get a new extension considering

AxA 0 CxC
P1XP2
i
F1><F2 z:1><E2
Bl X}BQ .

This construction extends to a 2-functor
@: EXT(C,A) x EXT(C,A) - EXT(C x C,A x A).
Consider now the diagonal and codiagonal 1-cells in SCG
A:C—-CxC V:CxC—C.
Using part 3 of Corollary 13.2, we can define the tensor product in Ext(C, A) in the
following way

®: Ext(C,A) x Ext(C, A) —2—> Ext(C x C,A x A) —~—" - Ext(C,A) .
The unit object is given by the trivial extension T'(A, C) and the inverse of an exten-
sion E is E - (1;), where 13: A — A is the l-cell in SCG defined by

—1y*
X N Y X* vy Y* . It is a (very) long but essentially straight-
forward work to complete this definition with associativity, commutativity and unit
isomorphisms, and to check the axioms for a symmetric cat-group. For example,
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the associativity isomorphism is given by the canonical natural isomorphisms in the
following diagram (where we write (C, A) instead of Ext(C, A)) :

o (C8) X (C8) X (C8)
<X/ \Xl
(C,A) x (CxC,AxA) o (CxC,AXxA)x(CA)
& —

1x(A-—V) (CxCxC/AXxAXA) (A—-V)x1

14

(CxC,AxA) (CxC,AxA)

(C,A)

Remark 13.3. Observe that the functors listed at the beginning of Section 10 are
now 1-cells in SCG. In particular, the sequences of Propositions 10.2 and 10.4 are
2-exact sequences in SCG.

Remark 13.4. The results of this section hold if we replace EXT by a proper
class P of extensions, provided that the 2-functor @: EXT(C, A) x EXT(C,A) —
EXT(C x C,A x A) restricts to P. This is the case for all the examples given in
Section 9.

14. Cobords and cocycles

In [20], extensions of (non necessarily symmetric) cat-groups are classified. A cat-
group A is a bicategory with only one object, and we can consider the bicategory
Bieq(A) of biequivalences from A to A. Clearly, Bieq(A) is a monoidal bicategory
under composition. Given another cat-group C, we can look at it as a monoidal
bicategory with only identity 2-arrows. The main result in [20] is a biequivalence
EXT(C,A) ~ Bimon(C, Bieq(A)), where an object in Bimon(C, Bieq(A)) is a mor-
phism of bicategories C — Bieq(A) which takes into account the monoidal structures
in a sense made precise in [20]. (The referee pointed out to us that F-extensions
(Definition 9.4) correspond to those objects of Bimon(C, Bieq(A)) such that the un-
derlying homomorphism of bicategories is equivalent to the null homomorphism.)

In this section and in the next one, we look for a cohomological classification of
extensions more on the line of Schreier theory. Having in mind factor sets, the class
of extensions which seems appropriate for such a theory is the class of F-extensions.
Once again, for the reasons explained in the introduction, we restrict our attention
to symmetric cat-groups.

The first step towards a cohomological classification of F-extensions is to find an
appropriate notion of cocycle. For this, consider A and C in SCG and let us look
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for a monoidal structure on A x C such that

A 0 C

N A

AxC

is an extension (necessarily, an F-extension).
Let us call for a moment *: A x C x A x C — A x C the new tensor product in
A x C. If we assume that

(4, X) % (B,Y) = (A, 1) * (B, 1)) @ (I, X) * (I,Y))

(where ® is the point-wise tensor product in A x C), we get that (A4, X)*(B,Y") must
be equal to (A® B® F(X,Y),X®Y), for F: C x C — A any functor. Moreover,
the associativity, unit and symmetry isomorphisms for (A x C, %) give rise to four
natural isomorphisms (compare with 5.2.1.11, 5.2.1.14 and 5.2.1.15 in [20])

- (XY, Z): FIX,Y)@F(X®Y,Z) - F(Y,Z)@ F(X,Y ® Z);
- rp(X): F(X,I)—1T;
-lp(Y): F(L,Y) - I;

- sp(X,Y): F(X,Y) = F(Y, X).

Finally, the four coherence axioms for the isomorphisms in (A x C, %) are equivalent
to the following four axioms on cp, g, lp and sp, expressed in terms of commuta-
tive diagrams (we omit the associativity isomorphism in A) :

(C1) The two following compositions coincide

FX,)QFXQY,Z)Q F(X®Y)® Z,W)
1Qcr(XQY,Z,W)
FX,Y)O F(ZW)QF(X®Y,ZeW)
T®1

FZW)o FX,)Y)QF(X®Y,ZeW)

1®cr (X,Y,ZQW)

FZW)RQFY,ZeW) F(X,)Y ® (ZeW))
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FX,Y)FXQY,Z)Q F(X®Y)® Z,W)

er(X,Y,2)®F(a,1)

FY,2)) F(X,2Y®Z) F(X® (Y ®Z),W)

1®cr (X, YQZ,W)

FY,Z) FY @ ZW)QF(X,Y ®Z)@W)

cr (Y, Z,W)QF(1,a)

FZW)QFY,ZW) F(X,Y® (Ze@W))

(C2)
FX,])® F(X®1,2) cr(X17) F(I,Z2) 0 F(X,]® 2)
rr(X)QF(rx,T F(Z)QF(1,lz)
IQF(X,Z);
(C3)
FX,Y)o F(X®Y,2) —"XYD _ by, 72)0 F(X,Y ® 2)
SF(XVY)®F(%1)i ll@sF(X,Y@)Z)
FY,X) F(Y ® X, Z) FY,Z) F(Y ® Z,X)
cF(Y,X,Z)\L lcF(Y,Z,X)
FX,Z)F(Y,X®Z F(Z,X)QF(Y,Z®X) ;
(’)®(’®)m)(’)®(’®)’
(C4)
F(X,Y) ! F(X,Y)
sr(X,Y) sp(Y,X)

F(Y,X) .

Definition 14.1. Let A, C be two symmetric cat-groups.

1) A symmetric 2-cocycle of C with coefficients in A (a cocycle, for short) is given
by F = (F,cp,rp,lp,sp) where F': C x C — A is a functor and
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- er(X,Y,2): F(X,Y) @ F(X ®Y,2) — F(Y,2) 9 F(X,Y © 7).
-rp(X): F(X,I)— 1,
-lp(Y): F(LLY) > I,
- sp(X)Y): F(X,)Y) - F(Y,X)
are natural isomorphisms satisfying the axioms (C1),(C2), (C3) and (C4).

2) Given two cocycles F and F', a morphism of cocycles is a natural transfor-
mation a: F' = F' making commutative the following diagrams

(MC1)

FX.Y)o F(X@Y,2) —"X"D _ py,z2)e F(X,Y ® 2)
M,y@&mmi lm@am@Z
F(X,2Y)F'(X®Y,Z) AT F' (Y, Z2)@ F'(X, Y ® Z) ;

(MC2)
F(X, 1) F(LY)—""  _ F'(L,Y)

LS FUX,T)
TFM AX) 1% AY)
I

(MC3)

FI(X,Y) ———= F'(Y, X)..
sE(X,Y)

3) A normalized 2-cobord of C with coefficients in A (a cobord, for short) is given
by G = (G,Gy), where G: C — A is a functor and Gr: I — GI is an arrow
n A.

4) Given two cobords G and G', a morphism of cobords is a natural transforma-
tion a: G = G' making commutative the following diagram

ag

z& G

I.

Proposition 14.2. Let A, C be in SCG.

1) The data of the previous definition give a category Z%(C, A) of cocycles and a
category B%(C, A) of cobords ;

2) Z2(C,A) and B*(C,A) have a structure of symmetric cat-groups induced point-
wise by that of A.

GI

G'I
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If G € B2(C, A), we can construct a functor §G: C x C — A in the following way

- GXY)=GXRY)GY)* @ G(X)*
-iff: X — X'and g: Y — Y’ are in C, then (§G)(f,9) = G(f®g9)®G(g71)*®
G(f)*.
Moreover (using Gj, the symmetry of C and A and, for c¢sg, unit and counit of
GXY)4G(X®Y) and G(Y®Z) 4G(Y ®Z)*) one can construct four natural
isomorphisms ¢sa, rsa, lsa, Ssa so that 6G becomes a cocycle. More precisely, we
have the following lemmas.

Lemma 14.3. The previous construction gives rise to a 1-cell in SCG
§: B3(C,A) — Z%(C,A) .
Lemma 14.4. The kernel of § is equivalent, in SCG, to Hom(C, A).

Proof. We only explain the construction of the equivalence. First, observe that there
is a forgetful functor U: Hom(C,A) — B?(C,A) which sends G = (G,G1,Gxy)
into G = (G, Gy). Clearly, U is a 1-cell in SCG. Moreover, Gx y precisely gives a
2-cell in SCG

Hom(C, A) ! Z2(C, A)
i
x /
B2(C,A)

so that U factors through the kernel of 8. This factorization is in fact an equivalence.
O

To end this section, let us point out some formal consequences of the axioms
defining a cocycle. They are useful to complete some proof in the next section.

Lemma 14.5. Let F' = (F,cp,rp,lp,sr) be a cocycle. The following equations
hold:

(C6)
FLY)® FI®Y,Z2) w2 (Y, Z) e F(I,Y @ 2)
lp(Y)®F(ly,l)l ll@lp(Y@Z)
[9FY,Z)— > F(Y,Z) <~ F(Y,Z)®1 ;
lr(y,2) TF(Y,2)
(C7)
F(X,Y)® F(X®Y,I) er(4YD FY,]) @ F(X,Y ® )
1®TF(X®Y)\L lr;:(Y)@F(l,ry)

FX,)Y)®1T FX,)Y)~—— I®F(X,Y);

TF(X,Y) lF(X,Y)
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(C(g) SF(X,I)~ZF(X):’I“F(X) s SF(I,Y)-TF(Y):ZF(Y);
(C9) sp(I,1)=1pu1) -

Proof. Similar to that for monoidal categories (see [17] or [15]). O

15. Classification of F-extensions

(From the discussion at the beginning of Section 14, we know that each cocycle
F € Z2(C, A) induces a symmetric monoidal structure on the groupoid A x C, where
the tensor product

RF: (AxC)x (AxC)—AxC
is defined by
(A X)®r (B,Y)=(A®B®F(X,Y),X®Y),

the identity object is (I,I) and the structural isomorphisms are induced by the
natural isomorphisms cg, g, [ and sp. We denote by A X C the category A x C
equipped with this structure. It is in fact a symmetric cat-group, a dual being given
by (A, X)* = (A* ®@ F(X, X*)*, X").

Proposition 15.1. Let A and C be in SCG.

1) The previous construction extends to a functor

£: 2%(C,A) — F(C,A) ;
2) The functor £ is essentially surjective on objects ;
3) The functor & is a 1-cell in SCG.

Proof. 1) It is a routine verification. Let us only write explicitly the action of £. If

F € Z?(C,A), then E(F) is
A 0 C

AXF(C

If \: F = F’is a morphism in Z2(C, A), then £(}) is

A XF C
/ pc
A a@\ Ba Wﬂ* C
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where ) and <, are identity natural transformations and 3, is the identity as a
functor, but its monoidal structure is determined by A in the following way

(A4, X)®r (B,Y)=(A®B® F(X,Y),X®Y)
l(1®1®kxgm1®1)

(A, X)®p (B,Y)= (AR BR F'(X,Y),X®Y).

2)Let E=(I',p,X): A — B — C be an F-extension with a section

C————C
t
B

pointed by Sy: I — S(I). Since I'p: A — KerX is an equivalence, we look for a
cocycle Fp: Cx C — KerX. If X and Y are in C, we define Fg(X,Y) = (S(X) ®
SY)®S(X®Y)*, 0xy), where

oxy: B(S(X) @ S(Y) ® S(X ©Y)) = E(S(X)) ® B(S(Y)) © B(S(X @ Y))*
\LUX@)UY@ ox®y)
X®Y® (X ®Y

lnx®y
1

)

and Fg(f,9) = S(f)®@S(g) @ S(f~* ®g~1)* for f and g two arrows in C. Now we
describe the structure of cocycle of Fg:

- 1 (X): Fr(X,I) — (I,S;': 2(I) — I) is given by

1S '®S(rxt)”
S(X)® S(I)®S(X ®1I)* S(X)®I® S(X)*

- Ip, (Y) is similar ;

- s (X,Y): Fr(X,Y) — Fr(Y, X) is given by
vg(x),s(y)@@smg}y)*: S(X)RSY)RS(X®Y)* — S(Y)@S(X)oS(Y®X)*

- erp(X,Y,2): FE(X,)Y)QFp(XQY,Z) — Fp(Y,Z)® Fr(X,Y ® Z) is given
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by
SX)@SY)eS(XY) S XeY)®sS(Z)oS( XY ® Z)*
1®1®es(x@y)®1O1
SX)SY)eS(Z)eS(XaY ®Z)*
101®1@¢g(y g 7, ®1
SX)@SY)S(2)eS(Y®Z) aS(Y®Z) e S(XQY ® Z)*

YS(X),8(V)®S(2)®s(vz)*©181

SY)@S(Z)@eSY Z)S(X)aSYRZ)S(XQY ®Z)*.
It remains to find a 1-cell in F(C,KerY) as in the following diagram
B
/ \
Ker¥ i B 4 C

iKers pc

Ker¥ xp, C
As far as (3 is concerned, if B is in B, put
B(B) = (B ® S(S(B))", (Is(n) ® (0505)") - ks S(B))

and B(g) = (g ® S(X(g~1))*, %(g)) if g is an arrow in B. The monoidal structure
of 3 is given by that of ¥ on the second component, and, up to symmetry, by the
counits eg(x4)) and eg(s(py) on the first component (A, B being two objects in B).
Finally, the 2-cell v is the identity natural transformation, and the 2-cell « is given,
for an object (B,b: 3(B) — I) in KerX, by (1® S(2(b1))*,b).

3) Consider now F, F' € Z?(C, A), the direct sum £(F)@E(F’) and the F-extension
built up using the pullback along the diagonal A: C — C x C as in the following
diagram

pa

P C

/ l R lA

i AxpCxAxp C P CxC.

An object in P is given by (4, X, B,Y,C,z,y), with A,B in A, X,Y,C in C and
xz: X — C,y: Y — C; the arrows are the obvious ones. The functor i: A x A — P
sends (A, B) into (A,I,B,I,1,1,1). Consider also F ® F’ in Z2(C,A) and the F-
extension

E(F®F'): A & Axperm C—2 >,
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The monoidal structure of £ results from showing that the following diagram is a
pushout in SCG :

A x A P
vi : lA
A A xper C,

ip
where A sends (A, X, B,Y,C,z,y) into (A® B,C). If (A, X',B",Y',C",2',y') is a
second object in [P, the monoidal structure of A is given, on the second component,
by F(x,2") and F’(y,y’). To show that the previous diagram is a pushout in SCG,
consider any diagram of the form

A x A P
vl . lH
A——E.
We need a factorization in SCG
A xpgr C
(7 l A
k P h
U U
A < E I P

and, for that, we put
- (A X)=K(A)egH(I,X,I,X,X,1,1), with the monoidal structure induced
by 7;
- kis induced by Hy: I — H(I) :
- h is defined, using lg,lr and the monoidal structure of H, in the following
way :
O(A(A, X,B)Y,C,x,y)) =

TX}B®1

H(A,I,B,1,1,1,1)®g H(C) ~

~ H((A,I,B,1,1,1,1)®p (I,C,I,C,C,1,1)) ~
~ H(A® F(I,C),C,B® F'(I,C),C,C,1,1) ~

H(1,z7'1,y~"1)

~ H(A,C,B,C,C,1,1) H(A, X, B)Y,C z,y).
Finally, given another factorization in SCG
A xpgr C
1A A
m v !
4 *L \
A E P,
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since ip(A)Qper AI,C,I,C,C,1,1) = (AQIQF(I,C)QF'(I,C),I®C) ~ (A,C),

we have

J/mA®l(1,c,1,c,c,1,1)
B(A,C) = K(A) @x H(I,C,1,C,C,1,1) .
O

To get a cohomological classification of F-extensions, we need a 2-cell in SCG

B

2(C, A) 0 F(C,A)
Z2(C, A) :

For this, let us fix a cobord G € B?(C, A) and let us describe the following 1-cell in
F(C,A)

A XsG C
/ pc
A olf [de} WT?
k pc
AxC

We put ¢ (4, X) = (ARG(X)*, X) for (A, X) an object of Axs¢C, and ¢(f,g) =
(f®@G(g71)*, g) for (f,g) an arrow in A xs¢ C. Its monoidal structure is induced
by the unit ng(xgy). As far as the 2-cells are concerned, ¢ is the identity natural
transformation, and aq is induced by Gy: I — G(I). If A\: G = G’ is a morphism
in B2(C, A), the naturality of ¢ is attested by the following 2-cell in F(C, A) :

AX(;(;(C o AX(;G/(C

25N
4
[t} b

AxC

where, for (A, X) an object in A x5 C, we have :
M(AX)=(1@ X, 1) (ARG (X)), X) - (A®G(X)", X) .
Consider now the cokernel of § :
B2(C,A) —2> 22(C, A) —Z> Cokers .
Using its universal property and the 2-cell ¢: § - € = 0, we get a 1-cell
&'+ Cokerd — F(C,A)
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which extends £: Z2(C,A) — F(C, A).
Theorem 15.2. The I-cell in SCG
&' Cokers — F(C,A)
is an equivalence.

Proof. Because of point 2 of Proposition 15.1, it is enough to prove that £’ is full and
faithful. By Proposition 6.2 in [16], this is equivalent to prove that the factorization

8 B*(C,A) — Ker€

of § through the kernel of £ (factorization induced by the 2-cell ¢: 6 - £ = 0) is full
and essentially surjective on objects.

Essentially surjective : Consider an object in Ker&, that is F' € Z2(C, A) together
with a section in SCG

We get a pointed functor
G=Spy: C—=AxpC——=A

and we need an isomorphism F ~ §G. For this, observe that S(X) ~ (G(X), X)
(because of o), so that the monoidal structure of S gives the following chain of
natural isomorphisms : (G(X @ V), X ®Y) ~ S(X ®Y) ~ S(X) ®r S(Y) ~
(G(X),X)2r (GY),Y)=(GX)GY)® F(X,Y),X ®Y). Its first component
gives a natural isomorphism F(X,Y) ~ G(X®Y)®G(Y)*®G(X)*, as requested. It
remains to prove that this isomorphism is an arrow in Ker€. But this is attested by
the following chain of natural isomorphisms, where §: AxC — A x pC is induced by
ipa: A — AxpCand S:C— A xpC : ¢G(ﬁ(A,X)) ~ ¢G((A,I) QF (G(X),X)) =
ba(A® G(X) @ F(I,X),1@ X) = pa(A2 G(X), X) = (A G(X) & G(X)*, X) =
(A, X).

Full : Consider now G1,Gs € B*(C,A) and let \: 6G7 = G5 be in Z%(C,A).
Assume also that there is a 2-cell s: ¢g, = Ox-¢g, in EXT(C, A). In particular, for
each X in C, there is a natural isomorphism s(; x): (G1(X)*, X) — (G2(X)*, X).
Its first component induces a natural isomorphism sx : G1(X) — G2(X) and, using
that s is monoidal, one can check that 6(3) = A. O
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