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(CO)HOMOLOGY OF CROSSED MODULES
WITH COEFFICIENTS IN A m-MODULE
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Abstract

We define a cotriple (co)homology of crossed modules with
coefficients in a m;-module. We prove its general properties,
including the connection with the existing cotriple theories
on crossed modules. We establish the relationship with the
(co)homology of the classifying space of a crossed module and
with the cohomology of groups with operators. An example
and an application are given.

Introduction

In this paper we present some developments in the (co)homology of crossed mod-
ules. In the work of Carrasco, Cegarra and Grandjean [4] the authors proved that
the category of crossed modules is tripleable over the category of sets, hence it is an
algebraic category; then they used the resulting cotriple to construct a (co)homology
theory of crossed modules in the spirit of the Barr and Beck theory [3].

Later Grandjean, Ladra and Pirashvili [13] have proved that there is an exact
homology sequence

T n+lB(T7G7M) - CHSCG(T’Gvﬂ) — H,G — HnB(Tvalf“) — (1)

which relates the integral homology of the classifying space of a crossed module and
the cotriple homology of [4].

The (co)homology theory of [4] has trivial coefficients. In any algebraic category
the passage from trivial coefficients for the (co)homology theory to global or local
ones is achieved by a well known procedure which consists of taking abelian group
objects in the slice category; the cohomology of a crossed module ® with a system
of global or local coefficients is equivalent to the cohomology in the slice category
of idg with trivial coefficients. Although there is no theoretic difficulty in realizing
this passage, to achieve it in practice in a concrete algebraic context like the one of
crossed modules is not entirely trivial.

One of the first questions to consider is whether it is possible identify a man-
ageable class of coeflicients giving rise to a (co)homology theory of crossed modules
which has interesting properties and leads to applications. This was one of our mo-
tivating questions which we have tried to answer in this paper by concentrating
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our attention on two special cases of a system of local coefficients associated to a
m1-module, where 7y is the first homotopy group of the crossed module.

Our motivation for considering m-module coefficients for the cotriple (co)homology
comes from the long exact sequence (1). Since the (co)homology of the classifying
space of a crossed module is defined in general with 71-module coefficients (see [11])
it is natural to expect that an appropriate cotriple (co)homology of crossed modules
with 71-module coefficients would lead to long exact (co)homology sequences gen-
eralizing (1) in the homology case. One of our main results, Theorem 13, establishes
precisely this.

Given a crossed module ® with first homotopy group 71, the canonical projection
® — (1,71,4) = m1(P) induces a functor

(CM/m1(®))ap — (CM/®)qp- (2)

A system of local coefficients for the cohomology of a crossed module ® could be
defined as an object of (CM/m1(®))qp. The functor (2) takes this system of local
coefficients into a system of global coefficients used to compute the (co)homology.

In this paper we work with two special cases of the above system of local coeffi-
cients; these correspond to the split extensions of crossed modules

(Aa 130) — (A77T17O) - (177r13i) (3)
and
(1,A,7) — (1, A xmy,i) — (1,71,1). (4)

In Sections 2 to 6 we consider the coefficients corresponding to the split extension
(3), and study the corresponding (co)homology theory. After recalling some back-
ground in Section 1, in Section 2 we introduce the (co)homology. For this purpose,
the notions of module and derivation in the sense of categories of interest [17] are
used to define a derivation functor, and a dual Diff functor, from crossed modules to
abelian groups. We point out that the notions of action, extensions and semidirect
product of crossed modules were also worked out by Norrie [16], internally in the
category of crossed modules. This has been used by Vieites and Casas [22] to give
a different approach to derivations of crossed modules.

In Section 3 we study the case of aspherical crossed modules; these form a sub-
category isomorphic to the category of surjective group homomorphisms. We prove
that our (co)homology for the aspherical crossed module corresponding to the sur-
jective group homomorphism f : G — G’ is isomorphic, up to a dimension shift, to
the relative group (co)homology of the pair (G', G) defined by Loday [14]. Other
general properties of the (co)homology are proved in Section 4. In Section 5 we
establish the relationship between our theory and the (co)homology of the clas-
sifying space, recovering the result of [13] in the case of homology with integral
coefficients. This result is illustrated with an example in Section 6 where we obtain
some information about the (co)homology of the crossed module corresponding to
a ZG-module M.

The coefficients corresponding to the split extension (4) are treated in Sec-
tion 7. We prove that the corresponding cotriple (co)homology coincides with the
(co)homology of the classifying space of the crossed module, up to a dimension shift
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of 1, and in dimensions n > 0. An application to the cohomology of the classifying
space follows.

In the last section we elucidate the relationship between the cohomology of
crossed modules with 71-module coefficients introduced in Section 2 and the co-
homology of groups with operators studied in [6]. In order to study the relation-
ship between the two theories we establish the preliminary result, which may be
of independent interest, that when (T, G, u) is a precrossed module the cohomol-
ogy H(T, A) of [6] can be described as cohomology of precrossed modules with a
system of local coefficients.
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1. Preliminaries

1.1. Crossed modules.

Recall that a crossed module ® = (T, G, ) consists of a group homomorphism
u:T — G and of an action of G on T such that

p(9t) =gu(t)yg™",  FOY =t't™!

foreach t,t' € T, g € G. A homomorphism of crossed modules (fr, fc) : (T,G,u) —
(T',G', 1) is a pair of group homomorphisms fr: T — T, fg: G — G’ such that
W fr = fau and fr(9t) = 799 fr(t) for all g € G, t € T. We denote by CM the
category of crossed modules. This category has several equivalent descriptions.

Recall that a cat!'-group consists of a group G with two endomorphisms dg, d; :
G — G such that

d1d0 = Clo7 dodl = d1, [ker do,ker dl] =1. (5)

A morphism of cat*-groups (G,do,d1) — (G’',dj,d}) is a group homomorphism
f:G— G such that d/f = fd; i =0,1.

The category of crossed modules is equivalent to the category of cat!-groups [15].
Given a crossed module (T, G, i), the corresponding cat!-group is (T x G, do,dy),
do(t,Q) = (179)7 dl(tag) = (lnu‘(t)g) for all (t7g) eETxG.

Another description of the category of crossed modules is given by its equivalence
with the category SG¢; of simplicial groups whose Moore complex has length 1 [15].
An object of SG¢; is a simplicial group G such that N;(G,) = 0 for ¢ > 1 while
Ni(G,) # 0 where N, : SG¢; — CM is the Moore normalization functor. This is
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defined by
N,G. = N ker(o}') n >0
i>0

with boundary map d : N,G, — N,_1G,, d = 80|Nnc*. There is a functor N ! :

CM — SGg; with N7 1(N,.G) = G, which is given by
N, YT, Gp) =T" x G n
0i(try . stn,g) = (t1, .. by tn, 9) 1
o1y ytn,g) = (taty .ottt ptrg)
Si(t1y .o ytn,g) = (L1, .1, 0,00 tn, g).

Crossed modules are algebraic models for connected spaces which have trivial
homotopy groups in dimension n > 2, called 2-types (see for instance [15]). To any
crossed module (T', G, 1) one can associate a connected CW-space B(T, G, u) called
its classifying space with

mB(T,G, pn) =2 G/i(T), mB(T,G,u) =kerpy, m,B(T,G,u)=0 for n>2.

2 0,
<i<n

)

B(T,G, ) is defined as the classifying space of the simplicial group N, (T, G, ).
The homotopy groups of a crossed module (T, G, ) are defined as 71 = G/u(T),
my = kerp, m, = 0 for n # 1,2. A morphism of crossed modules is called a weak
equivalence if it induces isomorphisms of homotopy groups.
It can be proved (see for instance [15]) that the functor B(-) induces an equiva-
lence between the homotopy category of connected 2-types and the localization of
the category of crossed modules with respect to weak equivalences.

1.2. CCG (co)homology.

In [4] it is proved that the category of crossed modules is tripleable over Set,
hence it is an algebraic category. It is shown there that the functor ¢/ : CM — Set,
U(T,G, 1) =T x G has a left adjoint F : Set — CM. This is given by

F(X) = (F(X), F(X) * F(X), 1)

where F(X) is the free group on X, « is the free product, 4 is the inclusion, F(X)
is the kernel of the map ps : F(X) * F(X) — F(X) determined by psu; = 0,
poug = id, uq, us being the coproduct injections.

It is proved in [4] that U is tripleable. This identifies the regular epimorphisms in
CM as those homomorphisms (fr, fa) : (T, G, u) — (T", G, ') such that fr and fg
are surjective. Hence for each set X the crossed module F(X) is a projective object
in CM; this category has enough projectives since any crossed module (T, G, y)
admits the projective presentation FU(T, G, p) — (T, G, p).

Let G = FU be the cotriple arising from the pair of adjoint functors (F,U).
This cotriple is used in [4] to define a (co)homology theory of crossed modules as
follows. Recall that given a crossed module (T, G, u) its abelianisation is the abelian
crossed module (T, G, p)ay = (T/|G, T),G/|G,G], i). For each n > 1 the n'" CCG
homology of (T, G, 1) is the crossed module

HECC(T, G, p) = Hu1(Go(T, G, ) ap)-
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If (A, B,§) is an abelian crossed module (that is A and B are abelian groups and
B acts trivially on A), for each n > 1 the n'* CCG cohomology of (T, G, i) with
coefficients in (A4, B, ¢) is the abelian group

Hg‘CG((Tv G, :u)7 (A7 B, 5)) = H"_lHOInCM(G'(T7 G, M)7 (A, B, 5)) =
= HnilHomAb CM(GO(Ta Ga ,u‘)aba (Aa Ba 5))

1.3. Crossed modules as category of interest.

It is a known fact that the category of cat'-groups is a category of groups with
operations in the sense of [19]. Recall that this consists of the following data: a
category of groups with a set of operations Q = Q¢ U Q; U Qs where Q; is the
set of i-ary operations in {2 such that the group operations of identity, inverse and
multiplication (denoted 0,—,+) are elements of Qg, Qy, Qs respectively; one has
0 = {0} and certain compatibility conditions hold (see [19]); finally there is a set
of identities £ which includes the group laws.

In the case of cat'-groups, Qo = {0}, Q1 = {-}U{do,d1}, Q2 = {+} and E
consists of the group laws and of the identities (5). The compatibility conditions in
this case are that dy, d; commute with +, hence they are group homomorphisms.

In the category of cat'-groups we therefore have the notions of singular object,
module, semidirect product, derivation. For a discussion of these notions in any
category of groups with operations see for instance [7] and [19].

A cat!-group (A4, dy,d;) is a singular object if A is an abelian group. The cor-
responding crossed module is then an abelian crossed module. Given a cat!-group
(G, s0,81), (A,do,dq) is a (G, sg, s1)-module if (A, dy, d;) is singular and there is a
split extension of cat!'-groups

(Adeadl) — (Q78/O7S€l_) : (G,SO,Sl).

This split singular extension induces an action of (G, sg, s1) on (A, dy,d); a deriva-
tion D from (G, sg, s1) into (4, dp,d;) is a group derivation from G into A which
commutes with the l-ary operations w € Q;\{—}, that is such that Ds;, = d;D for
1=0,1.

Since CM is equivalent to the category of cat!-groups, it can be considered itself
as a category of groups with operations. Moreover, since CM is tripleable over Set
and the set Q5 of 2-ary operations just consists of group multiplication, it is in fact a
category of interest in the sense of [17]. In this paper we shall use the interpretation
in terms of extensions of the first and second cotriple cohomology in a category of
interest given in [21].

1.4. Crossed modules in the category of cat!-groups.

Let C'G denote the category of cat!-groups and C2G the category of cat?-groups;
we refer to [15] for the definition of cat?-group. Since C'G is a category of groups
with operators, from [19] the category CM(C!G) of crossed modules in C'G is
equivalent to the category Cat(C'G) of internal categories in C'G. On the other
hand there is an equivalence of categories between Cat(C'G) and C2G, as explained
for instance in the proof of [10, I-6, Proposition 1.2.3]. It follows that CM(C'G)
is equivalent to C2G. The correspondences giving this equivalence of categories can
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be easily made explicit from [19] and [10]. The category C2G of cat?-groups is
also equivalent to the category Crs? of crossed squares, [15]. Hence there is an
equivalence of categories between CM(C'G) and Crs?. The correspondences giving
this equivalence can be described explicitly as follows:

Lemma 1.

a) Let ((H,do,dy),(H',dj,d}),a) be an object of CM(C'G). Let (T,G,u) and
(T",G', 1) be the crossed modules corresponding to (H,doy,dy) and (H',dj,d}) re-
spectively. Then the following is a crossed square

7

T G h:GxT —T
%Xll lalxc h(g,t') = (1,9) “V (1,971
T G
w

where 1 (1,971 is the crossed module action of H' =T’ x G' on H =T x G.
b) Conversely, if

T—T h:T'xG—T

is a crossed square, the corresponding object of CM(C'G) is

(T X G>d0ad1) M
where do(t,g9) = (1,9), di(t,g) = (1, u(t)g), do(t'.g) = (1,9), di(t',g") =
(1, u(t)g") for all (t,9) € T x G, (t',g") € T x G" and the action of T' x G' on
T x G is given by

(T"x G, dj,, dy)

’

9t g) = ("(TH) R, 7 g), T g)
forall(t',g)eT' xG, (t,g) €T xG.

Proof. It follows from the correspondences giving the equivalence of categories
between CM(C1G) and C2G (see [19] and [10]) and between C2G and Crs? (see
[15]). 0

2. Definition of the (co)homology and elementary properties

In order to define our (co)homology theory, we first introduce Der and Diff
functors on the category of crossed modules. We can do so in two equivalent ways,
working directly in the category CM or working in the equivalent category of cat'-
groups. We shall illustrate both ways in some detail. While the first one may be
slightly more transparent, the reason we write explicitly the derivation functor in
cat!-groups is that viewing our (co)homology theory as (co)homology of cat!-groups
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will allow us to apply in the next sections the interpretation in terms of extensions
of the first and second cotriple cohomology in a category of interest [21].

Let ® = (T, G, i) be a crossed module, A an abelian group. The abelian crossed
module (4,1,0) is a ®-module if and only if there is a split extension of crossed
modules

(4,1,0) = (T",G", 1) S (T, G, ) (6)

Since the base group of the crossed module on the left is 1 the morphism (7", G/, i) —
(T, G, ) is an isomorphism at the level of base groups and so we can assume G’ = G.
Also observe that the section in (6) gives, by conjugation on 7", an action of T on
A, hence T 2 A x T. So we can assume that the sequence (6) has the form

(4,1,0) = (AxT,G,p') S (T, G, p)

where the morphisms on the left and on the right are the canonical inclusion and
projection respectively. The action of G on AxT induces an action of G on A; in fact,
since (pry,idg) is a map of crossed modules, pr(9(a,1)) =1forall g € G, a € A.
Also, since the splitting (ir,idg) is a map of crossed modules, (0, 9t) = 9(0,¢)
for all g € G, t € T. It follows that, for all ¢ € G, t € T, p(a,t) = u(t),
9(a,t) = 9(a,1)9(0,t) = (9a,1)(0, 9¢) and ji(a,t) = p(t). Requiring that the Peiffer
identity holds for the crossed module (A x T, G, 1) an easy calculation shows that
for each a,a’ € A, t,t' €T

O = g+ te — tt’t’la.
It follows that a = ‘a = Mg for each a € A, t € T. Hence A is a m-module,
where m; = G/u(T). We denote A x & = (A x T,G,1). From a general fact in
algebraic categories,
Der(®, (A,1,0)) = Homem /o (P, A 3 ®).

Since A x & = (A x T,G,p) it is straightforward that Homcn e (®, A x @) =
Homg (T, A), where Homg (T, A) is the group of G-equivariant homomorphisms
from T to A. In conclusion we obtain

Der((T, G, 1), (A,1,0)) =2 Homg (T, A). (7)

The same procedure can be repeated in the equivalent category of cat!-groups; let
(T x G,d,s), (A,0,0) be the cat'-groups corresponding to the crossed modules
(T,G, ) and (A,1,0) respectively. It is easy to see that (4,0,0) is a (T x G, d, s)-
module if and only if there is a split extension of cat!-groups

(4,0,0) = (Ax(T'x G),d,s") S (T'xG,d,s)

where d'(a, (t,9)) = (0,d(t,g)), s'(a,(t,9)) = (0,s(t,g)), a € A, (t,g) €T xG.
Requiring that the identity [ker d’, ker s'] = 1 holds, an easy calculation shows that,
for each a,a’ € A, t,t' € T

a+ WDg — u) g o .

It follows that a = (#Daq = (Le()g for each a € A, t € T. Thus T x G acts on A,
T x 1and 1 x pu(T) act trivially on A, so A is a m-module, 7 = G/u(T).
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From [17] a derivation from (T x G,d, s) into (4,0,0) isamap D: T xG — A
which is a group derivation and such that it commutes with the 1-ary operations
w € U\{—}. Hence D(d(t,g)) = D(s(t,g)) =0 for (t,g) € T x G, so that D(1,g) =
0 for every g € G.

In conclusion

Der((T x G,d, s),(A,0,0)) 2 {D € Der(T x G,A) | D(1,G) = 0}. (8)
The two approaches are clearly equivalent. In fact there is an isomorphism
a: {D €Der(T xG,A)| D(1,G) =0} — Homg(T, A)
given by «(D)(t) = D(t, 1), as easily checked. This motivates the following defini-

tion.

Definition 2. Let ® = (T,G, pu) be a crossed module, A an abelian group, m =
G/u(T). We say that ® acts on A if A is a wi-module. In this case we define

Der(®, A) = {D € Der(T x G,A) | D(1,G) = 0} 2 Homg (T, A).

where Der(T x G, A) denotes group derivations from T x G into A and the action
of T x G on A is given by (t,g)a = 9(Tq.

Similarly if ® acts on A we have a contravariant functor Der(-, A) : CM/® — Ab
on the slice category; in fact, given an object ® — ® of CM/®, the action of ® on
A induces an action of &’ on A. When the context is clear, given an action of ® on
A we will write Der(®’ — @, A) as Der(9’, A).

Given a crossed module ® = (7', G, u) let Jr ¢ be the ideal of Z(T x G) generated
by {(1,9) — (1,1) | 1 # g € G}. Then

J J
Der(CI), A) = HomZ(Tva) (%7 A) = Homg,, <Z7T1®Z(T>4g) %, A) .

This motivates our next definition.
Definition 3. Let ® = (T, G, i) be a crossed module. Define

J
Diff & = 71 @70 ) i
Jr.a
For a crossed module ® acting on the abelian group A, we denote Diff (®, A) =
ARy, Diff ®. Similarly we have a covariant functor Diff (-, A) : CM/® — Ab.

The slice category CM/® is tripleable over Set/U(®) and we shall denote by G
the corresponding cotriple. We now consider the cotriple (co)homology of ® with
coefficients in the ®-module (A4, 1,0). This is the left (resp. right) derived functor
of the functor Diff (-, A) (resp. Der(-, A)) on the slice category CM/® with respect
to the cotriple G.

Definition 4. Let ® = (T,G, 1) be a crossed module, A a 71-module. Define for
each n > 0

D" (®,A) = H"Der(G4®, A)

D, (®,A) = H,Diff (G,2, A).
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The following are elementary properties of the (co)homology which can be de-
duced from well known general facts about cotriple (co)homology in an algebraic
category [3]. In what follows a projective crossed module means a projective object
in the category of crossed modules.

Proposition 5. Let ® = (T, G, ) be a crossed module acting on the abelian group
A. Then

a) D°(®, A) = Der(®, A), Dy(®, A) = Diff (D, A).
b) If ® is a projective crossed module,
D"(®,A) =0, D,(®,A) =0 for each n > 0.
c) Any short exact sequence of m1-modules 0 — A — A" — A” — 0 induces long
exact (co)homology sequences
.= D"(®,A) — D"(®,A) - D"(®,A") - D" (D, A) — ---
o= Dp(®,A) = Dyp(®,A") = Dp(®,A") = D1 (P, A) — - -

3. (Co)homology of aspherical crossed modules

A crossed module ® = (T, G, i) is called aspherical when the map p is injective.
The category of aspherical crossed modules is isomorphic to the category of surjec-
tive group homomorphisms. Given a surjective group homomorphism f : G — G’
the corresponding aspherical crossed module is (ker f,G,i) and will be denoted
by ®;. If ®; acts on the abelian group A, then A is a ZG'-module as well as
a ZG-module via f. We say in this case that A is an f-module and we denote
Der(®s, A) = Der(f, A), Diff &; = Diff f.

Lemma 6. Let f : G — G’ be a surjective group homomorphism, N =ker f, A an
f-module. Then

a) Der(f, A) = Homzg (Ngp, A), Diff f 2 Ng,.
b)  Suppose that there is a group homomorphism f': G' — G with ff' =id. Then
there are short exact sequences
0 — Der(G’, A) — Der(G, A) — Der(f, A) — 0
0 — ARQzaDiff f — A®RzcTa — A®zaJgr — 0.

Proof.
a) Let a : Der(f, A) — Homgg: (Ngp, A) be defined by

a(D)(n[N,N]) = D(n,1), n € N.

It is straightforward that «(D) is well defined; it is also a ZG’-homomorphism since,
for each ¢' = f(g) e G', ne N

a(D)(g"-n[N,N]) = a(D)(gng '[N, N]) = D((1,9)(n,1)(1,97")) =
= (1,9)D(n,1) = g'a(D)(n[N, N]).
Let 3 : Homgg/ (Ngp, A) — Der(f, A) be defined by
ﬂ(gp)(n,g):go(n[N,N]), (nag) ENXxG.
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Then ((p) is a derivation and (G(p) (1,G) = 0. We have af(y) (n[N,N]) =
B(p)(n,1) = o(n[N, N]) for each n € N; for each D € Der(f, A), (n,g) € N xG
it is fa(D)(n,qg) = a(D)(n[N,N]) = D(n,1) = D(n,g). Thus « and ( are inverse
bijections and Der(f, A) = Homgzg (Ngp, A). Since this isomorphism holds for each
Z.G'-module A, Yoneda Lemma implies Diff f = N,,.
b) Let a : Der(G, A) — Der(f, A) be defined by a(D)(n, g) = D(n), D € Der(G, A),
(n,g) € N xG.If € € Der(f,A),let D(g) = &(gf'f(g71),1), g € G. For each
91,92 € G
oo f flgx ") £ Flor ) 1) = &((1g0) (92f F(92 ), 1) (Logy Mo f' g ):1) =
=&/ f(9r"),1) + (Lgr) €92 f(92 ), 1).
This shows that D is a derivation. Also, (aD)(n,g) = D(n) =£&(n,1) = £(n,g) so
« is surjective. Exactness at the other terms is straightforward and b) follows for
the cohomology case.

From the well known exact sequence Ny, — ZG' ®zcTq — Jo and from part a)
we obtain the exact sequence

A@Zngiﬁf i ARzc3a N ARz Iar — 0

where ('(a®@n[N,N]) =a®(n—-1), a€ A, ne€ N, d(a®>,bi(g; — 1)) =
a® Zz bz(f(gz) - 1), ac€ A beZ, 1 75 g; € G. Let v : ARzqTIa — A®Zngiﬁf
be defined by

ya® Y wilsi 1) =) a®zi(f g ")g)N, N]
fora€ A, x; €Z, 1# g; € G. Then y5'(a®@n[N, N]) = y(a®(n—1)) = a®n|[N, N]|
for each a € A, n € N, so v3' = id. It follows that ker 5’ = 0 and b) is proved. O

We recall the notion of relative group (co)homology in the sense of [14]. Let f :
G — G’ be a surjective group homomorphism and A an f-module. Let C*(G, A) and
C.(G, A) be the standard (co)chain complexes for computing group (co)homology.
For each n > 0 define

H™(G',G; A) = H"coker (C*(G', A) — C*(G, A))

H,(G',G; A) = Hyker(Cy (G, A) - Ci(G', A)).
Notice that this definition differs from the one in [14] by a dimension shift of 1.
Theorem 7. Let f : G — G’ be a surjective group homomorphism, A an f-module.
Then

Der(f, A) n=>0
H" Y G, G;A) n>0

Diff (£, A) n=0

D™(®;, A) =
(@5, 4) { Hn1 (GG A) n>0.

Dn(q)fﬂA) = {

Proof. Let Go®f = (Ty, G, ), Se = Ge/ie(Te) and e : G4 — Se be the quotient
maps. Since ®; is aspherical, from [4] T, — ker f, Go — G, Se — G’ are free
simplicial resolutions and there is a short exact sequence of free simplicial groups
Ty — G¢ — Se. Let L be the free cotriple on Groups and Lof : LeG — LG’
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the induced homomorphisms. Since, for each n, 1, and 1, f have a section, from
Lemma 6 there is a commutative diagram of cochain complexes

0 — Der(Se, A) — Der(Go, A) — Der(pe, A) —> 0

h ! !

0 — Der(LeG’, A) — Der( LG, A) — Der(Lsf, A) — 0,

where ~ are cochain homotopy equivalences. Taking the corresponding long exact
cohomology sequences in each row and applying the five Lemma we deduce that

H"Der(1e, A) =2 H"Der( Lo f, A)

for each n > 0. On the other hand there is a commutative diagram of cochain
complexes

0 — Der(LeG’, A) — Der(L,G,A) — Der(Lsf, A) — 0

| : !

(e

0 — C*"(G',A) —— C*(G,A) —— cokera, — 0,

where Der(L,G,A) — C*(G, A) and Der(L,G’, A) — C*(G’, A) are the natural
cochain maps of the Barr-Beck theory which induce isomorphisms in cohomology
(see [2]). Taking the long exact cohomology sequence in each row of the above
diagram and applying the five Lemma we deduce that for each n > 0

H"Der(l,f, A) = H" 'coker oy = H" (G, G'; A).

The argument for homology is similar. O

4. Further properties of the (co)homology

4.1. The relationship with CCG (co)homology.

In the next proposition we establish the relationship between the (co)homology
theory defined in Section 3 and the one in [4]. For a crossed module (T, G, p1) let
(T.Gop) =T.

Proposition 8. Let ® = (T, G, 1) be a crossed module, A a trivial my-module. Then
for each n >0

D"(®, A) = Hibg (T, G, ), (4,1,0)).
Suppose further that A = 7. Then for eachn >0
Dy (@, Z) = CHIE (T, G, ).

Proof. Let Go(T,G, 1) = (Te,Ge i), Se = Geo/ie(Ts). Since the action of m
on A is trivial, using Lemma 6 and the well known isomorphism T, /[G,,T,] =
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Z®zs, (Th)ab, We obtain for each n > 0

HEGe (T, G, ), (A,1,0)) = H'Homapem <([G:[.T.]’ [G.G.G.]’i')’ (A, 1,0)) =

T,
= H"Homyg, ([GT,]a A) = H"Homgz(Z&zx, Zm1®275,(Te)ab, A) =
~ ["Homy,, (Diff G4®, A) = D™(®, A).

T,
Dy(®, Z) = Hy (L&, Diff Ga®) = Hy, (282, Zm1 @zs, (Te)ab) = Hy ( G, T, ])

~ T, Ge . ~ . -
= H, (C([GMTO]’ [Gn G.} >Zo)> = CHn(Tu Gnlo)ab = CHS'ElG(T> Gvﬂ)-

4.2. Interpretation of the first and second cohomology group.
Let ® = (T, G, ) be a crossed module acting on the abelian group A. We shall
need a notion of singular and two-fold special extensions of (T, G, ) by (4,1,0).

Definition 9. Let ® = (T, G, u) be a crossed module acting on an abelian group A.

i) A singular extension of (T,G,u) by (A,1,0) is a short exact sequence of
crossed modules
(fide)
(A,1,0) = (T',G,p) =" (T, G, p) (9)
such that the corresponding short exact sequence of cat'-groups

£iid
(Ax1,0,0)— (T' x G, d,s') "5 (T % G d, s) (10)
is a singular extension of (T x G,d,s) by the (T x G, d, s)-module (A x 1,0,0)
in the sense of categories of interest [21].
i) A 2-fold special extension of (T,G,u) by (A,1,0) is an exact sequence of
crossed modules

(A, 1’0) 2 (T”,GH,,LLH) (04_-,)/3) (T',G’,,u’) (Ji:) (T,G,,u) (11)

such that the corresponding exact sequence of cat!-groups

(Ax1,0,0) 5 (" &, d", ") D (1w d, ) ' (T xad,s) (12)

is a 2-fold special extension of (T x G,d, s) by the (T x G,d, s)-module (A x
1,0,0) in the sense of categories of interest [21].

We now give a more explicit characterization of singular and 2-fold special ex-
tensions of (T, G, i) by (4,1,0).

Lemma 10. Let ® = (T, G, u) be a crossed module acting on the abelian group A.
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i) A singular extension of (T, G, u) by (A, 1,0) consists of a short exact sequence
of crossed modules (9) such that if f': T — T’ is a set map with ff' = idr,
1t 18
faf't) =a,  fa="a (13)
for all g € G, a € A, where [g] = gu(T) € w1, Wa is the given 71 -module
action on A and 9a is given by the crossed module action of G on T".

i) A 2-fold special extension of (T,G,u) by (A,1,0) consists of an exact sequence
of crossed modules (11) where

T//LT/ h:T/XG//*)TH

u”l lu (14)

GI/ ﬂ G/

is a crossed square and if f' : T — T', v : G — G’ are set maps with
ff=idr, v’ =idg, then forallge G, t€T,a € A

(9 g = ps T Op— (15)

Here [g] = gu(T) € w1, Wa is the given m-module action on A while ™ 9a
(resp. ' (Da) is the action of G' (resp. T') on T" in the crossed square (14).

Proof.

(i) By definition (9) is a singular extension of crossed modules if and only if the
corresponding extension of cat!-groups (10) is a singular extension in the sense of
categories of interest. By definition this means that the induced action of (T'xG, d, s)
on (A x 1,0,0) coincides with the given action, that is

(f'(1),9)(a, D)(f'(1),9) " = 9 (a,1).
An easy calculation shows this is equivalent to
(F(t) 2af'(t™1).1) = (Wa,1).
Hence for allt € T, g € G, A € A,
F1(#)%af' (") = Va. (16)
It is immediate to check that (16) is equivalent to (13).

(ii) By definition (11) is a 2-fold special extension of crossed modules if and only
if the corresponding extension of cat!-groups (12) is a 2-fold special extension in
the sense of categories of interest. By definition (see [21]) this means that
a) (Ax1,0,0)isa (T xG,d,s)-module,

b) ((T"xG",d",s),(T"x G, d,s),(«0)) is a crossed module in the category
of cat!-groups,

c) (Ax1,0,0) 4 (T" x G",d",s") is a morphism of (T" x G',d’, s')-structures,
where (T" x G’,d',s") acts on (A x 1,0,0) via (f,r).
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Condition b) and Lemma 1 imply that (14) is a crossed square, and the crossed
module action of 77 x G’ on T” x G" is given by

(t’,g’)(t//7g//) _ (t’(g’t//)h(t/7 g’g//)7 g,gl/). (17)
It easily checked that condition c) is equivalent to requiring that the induced action
of (T x G,d,s) on (A x 1,0,0) given by (F'():7(9) (g, 1) coincides with the given
action which is (19a,1). Hence by (17) we obtain
(O Dayh(f'(1),1),1) = (“a, 1)
forallt € T, g € G, a € A. From the axioms of crossed squares [15] h(f'(¢),1) = 1,
hence the above is equivalent to
f’(t)(r’(g)a) — ldg (18)
forallt e T, g€ G, ac€ A It is straightforward that (18) is equivalent to (15). O
Two singular extensions of (T, G, u) by (A4, 1,0),
(A,1,0) — (T}, G, ;) - (T, G, )

i = 1,2 are congruent if there is a morphism of crossed modules ¢ : (17, G, u}) —
(T%, G, pb) such that the following diagram commutes

(A,1,0) = (T1,G, p1y) — (T, G, 1)

| b

(A,1,0) == (T3,G, p5) - (T, G, ).

It follows that ¢ is an isomorphism. Hence congruence defines an equivalence rela-
tion on the set of singular extensions of ® by (A,1,0) and we can consider the set
of equivalence classes £1(®, A). This is an abelian group with Baer sum, the zero
element being the class [(4,1,0) — A x & — @].

Two 2-fold special extensions of ® = (T, G, ) by (4, 1,0) are related if there is
a morphism

A,I,O (Tllla lllmul) (Tla 17.“’1) - T G :u‘

| -l o
(4,1,0) = (T3, G5, p3) — (T3,G5, p3) - (T, G, )
such that («, ) is a morphism of crossed squares. This relation generates an equiv-
alence relation and we denote by £2(®, A) the set of equivalence classes of 2-fold

special extensions of ® by (A, 1,0). This is in fact an abelian group with Baer sum
[21].

Proposition 11. Let ® be a crossed module acting on the abelian group A. There
are isomorphisms of abelian groups

DY (D, A) = YD, A)

D?(®, A) = £2(D, A).
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Proof. From Section 2, the cohomology D*(®, A) is cotriple cohomology in the cat-
egory of interest CM with coefficients in the ®-module (A, 1,0). The interpretation
in terms of extensions of the first and second cotriple cohomology in any category of
interest can be found for example in [21]. The result is thus a direct specialization
of [21, Theorem 2.1.3, Proposition 2.1.5, Theorem 2.2.3, Proposition 2.2.4 ]. O

If f:G — G’ is a surjective group homomorphism and A is an f-module, from
Theorem 7 and Proposition 11 we deduce that

H*(G',G; A) = &1 (Ps, A), H*(G',G;A) =Py, A).

We observe that the first of these isomorphisms recovers a result of [14]. We notice
in fact that the group £'(®y, A) is isomorphic to the group of relative extensions
of (G',G) by A; these consist of exact sequences of groups

0-A-M“ata -1

such that p is a crossed module and the induced action of G’ on A coincides with
the given one. A congruence of relative extensions is a commutative diagram

0 A -MYL2aGg -6 -1

(2 S

0 -4 -Q5%¢—-6-1

such that (¢,idg) is a morphism of crossed modules. Let Ext(G’, G; A) be the set
of equivalence classes, made into an abelian group as in [14]. There is a map of
abelian groups a : Ext(G',G; A) — EX(P, A)

af0—A—M5GL G —1]=[(41,00— (M,G,u) - (ker f,G,i)].

It is immediate to check that a is well defined and that it is a bijection.

The interpretation of H3(G’,G; A) in terms of equivalence classes of 2-fold spe-
cial extensions of (ker f,G,7) by (A,1,0) does not seem to have been given in the
literature as far as the author knows. Notice that the identification of relative group
cohomology with cotriple cohomology of a crossed module also allows to give a sim-
plicial interpretation of H™(G, G’; A) for any n by direct application of the results
of [9].

4.3. Universal coefficient formulae.
We shall establish universal coefficient formulae for the (co)homology of a crossed
module ® acting trivially on an abelian group A.

Theorem 12. Let & = (T, G, u) be a crossed module acting trivially on an abelian
group A. Then there are short exact sequences

0 — BExty(Dy,_1(®,Z), A) — D" (®, A) — Homy(D,,(®,Z), A) — 0
0 — D, (®,2)@2A — D,(®,A) — Tor¥(D,,_1(®,7Z), A) — 0.

Proof. Since the action of ® on A is trivial, from Proposition 8 we know that
D" (®,A) = H"(®,(A,1,0)) and D, (®,Z) = CHS_&G(Q).
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Since Z has global dimension 1, there exists a resolution A — I* of A by injec-
tive Z-modules with I"™ = 0 for m > 2; then (4,1,0) — (I°,1,0) is an injective
resolution of (A,1,0) which satisfies the hypotheses of [4, Theorem 18 (iv) ]. The
cohomology universal coefficient sequence then follows from [4, Theorem 18 (iv)].

For the homology case, denote ®, = G,P and let @4 be the double complex of
abelian groups

Pee = P.®Z7T1 Diff (I)o

where P, — A is a projective Z-resolution of A with P, = 0 for n > 1 (such
resolution exists since Z has global dimension 1). For any crossed module ® acting
trivially on A, since Z®z, Diff ® 2 Do(®,7Z) = (HECC® = (P, we have

A®zx, Diff © =2 ARz(Pqp.
In particular
Po®Z7r1 Dift (Po = Q®ZC((I)0)ab~

Since D*(®,, A) = 0 for each g, from the cohomology universal coefficient sequence
and from Proposition 8 we obtain Ext}(¢(®,)ap, A) = 0 for every abelian group A.
It follows that ((®4)as is a projective Z-module. Therefore
H;;)(Po@Zm Diff ‘I)q) = H;(PO(X)ZC((I)q)ab) =
ARz Dif &, p=0
=~ TorZ(((®g)ab, A) = i 4 ’
p((( q)db ) {0 p > 0.

Taking homology again we obtain

D, (P, A =
H" HY (Pun, Diff 8,) = { Pa(B:A) =0,

0 p>0.
Therefore the spectral sequence

Hé‘ H;’(go..) = Hptq Tot pee

collapses, giving H,, Tot pee = D,(®,A) n > 0. Consider the second spectral
sequence

HY H)(9ae) = HpiqTot Qaa.
Fixing p and taking homology we have:
Hy (Py®z, Diff ®4) = Hy (Py®2¢(Pe)ab) = Pp@zHy (Do )ab =

P,@zD,(®,Z) p=0,1
~ ® HCCG d) = p q ’ s Ly
P ZC q+1 ( ) 0 D> 1.

Taking homology again:
Tor2(D,(®,72),A) p=0,1
v h . _ q ’ ’ s Ly
Hy Hj(Pe®zx,Diff &) = {0 P b1

So we obtain a universal coefficient spectral sequence

El, = Dpig(®,A)
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which has qu =0 for p#£0,1.
Therefore there are short exact sequences 0 — Ef, — H,Tot pee — E7,, ;| — 0,
ie.

0 — Dp(®,Z)2zA — D, (P, A) — Tor(D,,_(®,Z),A) — 0.

5. The relationship with the (co)homology of the classifying
space.

In [11] the (co)homology of a crossed module ® with coefficients in a m;-module
A is defined as the (co)homology of the classifying space B(®) of the crossed module
with coefficients in the local system corresponding to A. We recall the algebraic de-
scription of this (co)homology. This is a special case of a more general construction,
which is well known.

If G. is a simplicial group and A is a mo(G.)-module, since 71 BG, = moG., Ais
a local system on the classifying space BG.. of G.. There is an algebraic description
of the (co)homology H.(BG., A) and H*(BG,, A). If C.(G, A) (resp. C*(G, A)) is
the standard chain (resp. cochain) complex for computing group homology (resp.
cohomology) then there are isomorphisms (see for instance [8, Lemma 5.1]):

H.(Tot(C, (G, A)) = H,(BG,, A),  H*(Tot(C*(G., A)) = H*(BG., A). (19)

If G, — H, is a map of simplicial groups which is a weak equivalence, that is such
that it induces isomorphisms of homotopy groups, and A a m(G,)-module, then
the induced maps H.(BG.,A) — H.(BH.,A) and H*(BG,,A) — H*(BH,,A)
are isomorphisms.

Let N7 Y(T,G,p) be the simplicial group whose Moore complex has length 1
corresponding to the crossed module ® = (T, G, u) as in Section 1. Taking G, =
NYT,G, i) in (19) we obtain the algebraic description of the (co)homology of the
classifying space of the crossed module. If a morphism of crossed modules v : ® — &’
is a weak equivalence then the (co)homology groups of the classifying spaces of ®
and ®’ with coefficients in a m;-module A are isomorphic.

Our main result in this section is that the (co)homology of crossed modules
defined in Section 2 is related by a long exact sequence to the (co)homology of
the classifying space of the crossed module. In proving this result, we also give a
simplicial description of the (co)homology of the classifying space. An application
of this will be given in Section 7.

In the second part of this section we give an alternative description of the
(co)homology D, (®, A) and D*(P, A) without using cotriples.

Theorem 13. Let ® = (T, G, 1) be a crossed module, A a m1-module. Let Go® =
(Te, Ge, tte) and Se = Go/pie(Te). Then

i) BS, and B® are weakly homotopy equivalent.
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ii)
H,Diff (5., A) H,1(B®,A)  n>0,
" v ARz, I, n=0.
H" Y B®,A)  n>0,

H"Der(S,, A) =
er( ) {Der(m,A) n =0,

iii)  There are long exact (co)homology sequences

+— Dp(®,A) = Hy1 (G, A) = Hp 1 (B(T, G ), A) —
— Dy 1(®,A) —» -+ — ARy, Diff ® — A®y,, DIff G —
— A®gz,, Diff 11 — 0

0 — Der(71, A) — Der(G, A) — Der(®, A) — H*(B(T, G, 1), A) —
— H*(G,A) — D' (®,A) — ---

Proof.

(i) Let sCM be the category of simplicial crossed modules, SimplSet (resp.
Simpl®Set) the category of simplicial (resp. bisimplicial) sets. Let N.' : CM —
SGg be as in §1.1 and let N : SG — SimplSet be the functor associating to a
simplicial group the diagonal of the bisimplicial set obtained by forming the nerve
of the group in each dimension of the simplicial group. The composite N o N ! is
a functor CM — SimplSet. By definition, the classifying space of a crossed module
® is the geometric realization of the simplicial set N'N_1(®). Given a simplicial
crossed module, we can apply N o N ! in each dimension to obtain a bisimplicial
set. Hence we have a functor F : sCM — Simpl®Set.

Consider in particular the simplicial crossed modules G¢® = (T, G, tte) and
® = (T, G, ) (the second is a constant simplicial crossed module).

We claim that F(G4®) — F(®) is a pointwise weak equivalence of bisimplicial
sets in the sense that all the maps F(Ge®).p, — F(P).m are weak equivalences of
simplicial sets. In fact, denoting by {-} the one point set

{} m =0,
T x G™  m > 0.

{} m =0,
™ x G™ m > 0.

(F®)pm = NN, G, 1)) = {

By the properties of the cotriple resolution G¢® [4], G¢ — G and T, — T are
free simplicial resolutions of groups, therefore T.m2 x Gl — T™ x G™ is a weak
equivalence in SimplSet, hence for each m, F(Ge®).m — F(P).p, is a weak equiv-
alence of simplicial sets, that is F(G.®) — F(®) is a pointwise weak equivalence
in Simpl®Set. It is proved in [12, Ch. IV, Proposition 1.7] that if f : X — Y is
a pointwise weak equivalence of bisimplicial sets, in the sense that all the maps
f : X, — Y., are weak equivalences of simplicial sets, then the induced map
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fx : diag (X) — diag(Y) of associated diagonal simplicial sets is a weak equiva-
lence. It follows that diag F'(G4®) — diag F(®) is a weak equivalence in SimplSet, so
that the respective geometric realizations |diag F/(G.®)| and |diag F'(®)| are weakly
homotopy equivalent.

Recall (see for instance [20, p. 94]) that the geometric realization |diag X | of the
diagonal of a bisimplicial set X is homeomorphic to the geometric realization of
the simplicial space obtained by taking the geometric realization in vertical direc-
tions and is also homeomorphic to the geometric realization of the simplicial space
obtained by taking the geometric realization in the horizontal directions. Hence
|diag F'(G4®)| is homeomorphic to the geometric realization of the simplicial space
{INNYT,,Gropin) [} = {B(T0,Grspin )}; but since each crossed module (T;,,Gp,ptn)
is aspherical, B(T,,, Gy, ) = B(1, Sy,1) = BS,,. The geometric realization of the
simplicial space {BS,,} is homeomorphic to the geometric realization of the simpli-
cial group S,, BS,. So in conclusion |diag F'(G¢®)| = BS,.

On the other hand clearly |diag F'(®)| = B®, so that B® and BS, are weakly
homotopy equivalent, proving (i).

(ii) It follows from (i) that for each n > 0, H,(B®, A) & H,(BS., A). On the
other hand we observe that for each n > 1

H,(BS., A) = H,_Diff (S, A) (20)

In fact, we can compute H,(BS,., A) as indicated in (19). Since S, is free, 0 —
Js,, — ZSp, — 7Z — 0 is a free resolution of the trivial S,,-module Z, hence
Co(Sm, A) is the complex 0 — A®zg, Js,, — A — 0. It follows that H,(BS,, A) is

the total homology of the bicomplex ,,
0 0 0 0

| l | |

- — A®75,J5, — A®z5,J5, — A®zs,Ts, — A®zs5,Ts, — 0

| l l |

A AT T 4 -0
| | | |
0 0 0 0

The spectral sequence of this double complex is

0 p=0,¢g>00rp>1,
Epy = Hy () = { A p=0,¢=0,
H(](A®ZS.35.) p= 1a Q>0

Therefore

52 0 forp#0,1lorp=0,¢>0
P | Hy(A®2s8,95,) p=1,4>0.

So there are short exact sequences 0 — E32, — H, Tot1)ee — E12,n—1 — 0 and since
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E§, =0forn>0and Ef, | = H,_1(A®zs,7s,) for n > 1 we deduce
Hn(BS.,A) = H,Totthee = E} ,, | = Hy_1(A®zs,7s,)

for n > 1, which is (20). It follows that H,Diff (S,, A) = H,1(B®, A) for n > 1.
It remains to prove that HoDiff (Se, A) & A®zx,Ix,. Consider the following
diagram:

0 — A®z,, Diff G;® — A®gz., Diff G; — A®z., Diff S; — 0

! ' '

0— A@Zﬂ-lDiH GoP — A®Zﬂ-1 Diff Gy — A®ZW1Diﬁ' So — 0

! . .

A®ZW1Diﬁ‘(I) —_— A®ZW1Diﬁ‘G — A®ZﬁlDiﬁ m — 0

J ! !

0 0 0

The first two rows from the top are exact by Lemma 6. We claim that the bottom
row is also exact. In fact, it is straightforward to check that there is an exact
sequence

0 — Der(m1, A) % Der(G, A) 2 Der(®, A) (21)
where a(D)(g) = D(gu(T)), g € G, D € Der(m,A) and (D) = Ddy — Ddy,

di(t,g) = u(t)g, do(t,g) = g, (t,g) € T x G. Consider the map v : Diff ® —
7 Rzc3 ¢ defined by

’Y($® [Zl a;i(yi — B)D =rQ® (Zl a;(di(y;) — 1) — Zl ai(do(yi) — 1))

x €Zm, e#y, €T xG, a; €Z. By left exactness of Homy,, (-, A) we obtain an
exact sequence

0 — Homg,, (cokery, A) — Der(G, A) — Der(®, A).

Since Homyz, (v, A) = 3, (21) implies that Homg, (cokervy, A) = Homg, (Jr,, A)
for every Zmi-module A; hence cokery = J, and we have the exact sequence

Diff ® — Zm®zcIq — T, — 0.

From right exactness of A®z.,- the claim follows. Since the first two columns
from the left of the diagram are also exact, it follows from an easy diagram chas-
ing argument that the third column is also exact. Therefore Hy(A®z,, Diff So) &
A®z, Diff 1. The argument for cohomology is similar.

(iii) From [4] To — T and G, — G are free simplicial resolutions and there is

a short sequence of free simplicial groups Ty — Go — Se. From Lemma 6 we have
short exact sequences of (co)chain complexes

0 — ARz, Diff e — A®z., Diff Go¢ — ARz, Diff S¢ — 0
0 — Der(S,, A) — Der(G,., A) — Der (1, A) — 0.
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Taking the corresponding long exact (co)homology sequences and using (ii) we ob-
tain

«+—= Dp(®,A) = Hyy1(G,A) — H,Dift (Se, A) — Dp_1(®,A) — - --

22
— A®zq, Diff & — ARy, Diff G — HyDiff (Se, A) — 0 (22)
0 — H°Der(S,, A) — Der(G, A) — Der(®, A) — H'Der(S,, A) — (23)
— H*(G, A) — D' (D, A) — --- .
O

Since, from Proposition 8, D,,(®,Z) = (HSYC (T, G, 1), the long exact homology
sequences of Theorem 13 for the case A = Z recovers the result of [13, Corollary 4]
which is established there via a different method . The following are consequences
of the theorem above.

Corollary 14. Let & = (T,G,u) and ® = (T',G', 1) be two crossed modules
acting on the abelian group A. Suppose that there is a weak equivalence ® — &'
inducing isomorphisms H.(G,A) = H.(G', A), H*(G,A) =2 H*(G', A). Then for
eachn >0

Dp(®,A) = D, (@', 4),  D™(®,A) = DM@, A).

Proof. By hypothesis there exists a crossed module homomorphism (f, g) : ® — &’
inducing isomorphisms of homotopy groups. Let Ge® = (T,,Ge, te), GoP' =
(T), G pl)y Se = Gof/pre(Te), S, = GL/us(Th). The homomorphisms Ge(f,g) :
Ge® — G49’ induce homomorphisms S, — S,. By Lemma 6 we have a commuta-
tive diagram of chain complexes

0 — ARz, Dif Go® — ARz, Diff G4 — ARz, Diff S — 0

| | l

0 — AQzn Diff Go®" — A®zn Diff G, — A®gz Diff S, — 0,

where w1 and 7] are the first homotopy groups of ® and &’ respectively. Since ® and
@' are weakly equivalent, by Theorem 13 H.(A®zx, Diff So) = H.(A®z. Diff Sy).
Taking the corresponding long exact homology sequence in each row of the above
diagram and using the hypothesis that H,(G,A) = H.(G’, A) we deduce by the
Five Lemma that D,(®, A) = D,(®’, A). The case of cohomology is similar. O

Corollary 15. Let ® = (T, G, u) be a crossed module acting on the abelian group
A, and ® = (R, F, ) a crossed module weakly equivalent to ® with F a free group.
Let my =2 G/u(T) 2 F/§(R). Then

H, i 2(B(®),A) = D, (9, A), H"2(B(®),A) = D™(d', A)
for eachn > 1 and
Hy(B(®), A) 2 ker(A®zx, Diff ®' — A®z,, Diff F)
H?(B(®), A) =coker (Der(F, A) — Der(®’, A)).
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Proof. Apply Theorem 13 using the fact that H,.(B(®),A) = H.(B(%'),A4),
H*(B(®), A) = H*(B(®'), A) and H,(F, A) = H*(F, A) = 0 for n > 2. O

Notice that, since Der(®, A) = {D € Homg, (T, A) | 9D(t) = D(9t)} from Corol-
lary 15 we recover the result of [11, Theorem 6], which is established there by dif-
ferent method. Moreover, taking A = Z and using the fact that Z®z,, Diff &’ =
R/[R,F] and ZQz., Dif F = F/[F,F], we recover the Hopf-type formula for
Hy(B(®),Z) first proved in [11, Theorem 6].

Our aim in the remaining part of this section is to give a description of the
(co)homology D, (®, A) and D*(P, A) without using cotriples.

Let ® = (T, G, p) be a crossed module. The inclusion (1,G,i) — (T, G, ) in-
duces an inclusion of simplicial groups N_*(1,G,i) — N, Y(T,G, ). In turn this
determines for each m, n an injection C,, (N, *(1,G,i), A) — Cp(N,; YT, G, ), A)
and a surjection C™ (N, *(T,G,pn),A) - C™(N, 1(1,G,i), A). We therefore have
an injective map of chain complexes of abelian groups

Tot C. (N, (1,G, i), A) — Tot C.(N; (T, G, ), A) (24)
and a surjective map of cochain complexes of abelian groups

Tot C* (N7 (T, G, 1), A) — Tot C*(N1(1,G, i), A). (25)
Denote by (Be(®, A) the cokernel in (24) and by 3°(®, A) the kernel in (25).

Lemma 16. Let ® = (T,G, n) be an aspherical crossed module with T, G, 7 free
groups, and let A be a wy-module. Then

H,Be(®,A)=H"3*(®,A) =0 for each n+#2,
HaBu(®, A) = Diff (3, A),
H?3%(®, A) = Der(®, A).

Proof. Consider the long exact homology sequence associated to the short exact
sequence of chain complexes

Tot C.(N; (1, G, i), A) — Tot C.(N; (T, G, ), A) — Be(®, A).

We have H,, (G, A) =0 for n > 2 as G is free; since (T, G, ) is weakly equivalent to
(1,m1,7) and my is free, H,(B(®), A) & H,(m,A) =0 for n > 2 and H,(B(®), A) =
H; (71, A). Thus this long exact homology sequence gives H,, B (@,A)=H"(*(@,A) =
0 for n > 2 and the exact sequence

0 — HaBe(®,A) — Hi(G, A) — Hi(m1, A) — Hi1Pe(P, A) —

— Ho(G,A) — Hy(m1, A) — HoBe (P, A) — 0.
Since Hy(G, A) = Ag = A, = Hy(m1, A) it follows that H;Be (P, A) =0 fori = 0,1
and

Hgﬁ.(q), A) = ker(Hl(G, A) — Hl(ﬂ'l,A)).

On the other hand, since m is free, the five-term homology sequence associated to
the extension T — G — 71 reduces to

0— A®ZﬂlTab — Hl(G7A) — Hl(ﬂ'l,A) — 0.
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Thus by Lemma 6, HyB,(®, A) = Diff (¥, A). The argument for cohomology is
similar. O

Proposition 17. Let ® be a crossed module acting on the abelian group A. Then
for each n > 2

Hn(ﬂ'((paA)) = Dn—Z(q)vA)v Hn(ﬁ.(CI),A)) = Dniz(q)aA)'

Proof. Let Go® = (T,,G.,%.) and consider the bicomplexes {¥pq}, {Xpq}t {Lpq};
Vpq = ﬂq((Tpv Gpaip)a A),
Xpq = (Tot C*(N*_l(Tvapaip)aA»qa
Lpq = (Tot Co(N; (1, Gyp, 1), A))q.
We aim to show that for each n > 2
H, Tot Vee = H,[,(P, A). (26)

The morphism of simplicial crossed modules (T, G, te) — (T, G, ) and (1, Ge,7) —
(1,G, i) (here (T,G,p) and (1,G,4) are thought of as constant simplicial crossed
modules) induce morphisms of double complexes Yoo — Tot C(N71(T, G, 1), A)
and Lo — Tot C.(N71(1,G, i), A). We claim that these morphisms induce isomor-
phisms in the total homologies in dimensions n > 2. In fact if S¢ = G4/ie(Ts) , the
double complex y,4e gives rise to a spectral sequence

E}, = HyTot Co(N; (T, Gp,ip), A) = Hy(B(Tp, Gp,ip), A) =

= Hy(B(1,5p,1), A) = Hy(Sp, A),

2 1

B2, = H,E.,.

On the other hand since each S, is a free group, the double complex tqe

0 0 0 0

| l l |

- — A®zs,35, — A®z8,T5, — A®z5,Ts, — AQ®z5,Tg, — 0

| i i |

T g R R S E R -0
l | | l
0 0 0 0

gives rise to a spectral sequence with the same E' and E? terms, hence H,, Tot cvee =2
H,, Tot xee. As shown in the proof of theorem 13, for each n > 2 H,Tot aeqe =
H,_1(A®zs,Js,) and by Theorem 13 ii) H,_1(A®zs,Js,) = H,(B®, A); hence
H, Tot Xee = H,(B®, A) = H, Tot C.(N7 YT, G, 1), A) for each n > 2.

Similarly, since each Gy, is free,

A q=0,

Tot C.(N; 1 (1, G, i), A) = {A@ (A®z6,96,) ¢>0
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Therefore Lq4 gives rise to a spectral sequence

_ . 0 q=0
El = H,(Tot C.(N; (1, G4,i), A)), = ’
pa P ? H,(A®z¢,3¢,) q> 0.
1
B2 =g, =" s
H,(A®z¢,J¢,) q=1.
It follows that, for each n > 2, H,TotLee = E; |, = Hy,_1(A®zc,7a,) =
H,(G,A) >~ H,Tot C.(N;1(1,G,i), A). This proves the claim.
Consider the commutative diagram of short exact sequences of double complexes
of abelian groups

Acoo s > Xeoo .g 1/)"
Tot C, (N, (1, G, i), A) == Tot Cu(N; (T, G, p), A) = Bo((T. G, ), A).

Taking the induced long exact sequences in total homologies in each row of the
diagram, from the claim and the Five lemma it follows that, for each n > 2

H, Tot tee = H, 36 ((Ta G, :u)a A)

which is (26).
On the other hand, by Lemma 16 the double complex 1,4 gives rise to a spectral
sequence

0 q# 2,

Ele.T,G7.7A:
Pq aBe (T, Gp,ip), A) {Diff((Tp»Gpvip)7A) q=2

so that
Bpy = HpFiy = {2{ Diff (Ta, G, is), A) = D, (®, A) qi;
P o, Ue,le), p\ P, q .
Hence E2, = Hp i Totthes = HpyBe((T, G, 1), A) collapses, giving
HpBe(®,A) = E> 55 =Dp_s(®,A)
for n > 2. The argument for cohomology is similar. O

We notice that the description of the (co)homology D*(®, A) and D, (P, A) given
in the above proposition gives rise to a version of Theorem 13 (ii), which differs from
the previous one in low dimensions.

Corollary 18. Let ® = (T, G, 1) be a crossed module, A a w1-module. There exist
long exact (co)homology sequences

- DTL((I)vA) - 7l+1(Gv A) - TL+1(B(Ta Ga ,u)7A) —>Dn—1((1)7A) -

-+ — Hy(G,A) — Hy(B(T,G, ), A) — AQyz,, Diff & —

— H1(G,A) - Hi(m1,A4) — 0
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0 — H'(my, A) — H'(G, A) = Dex(®, A) — H*(B(T, G, 1), A) —
- HQ(GaA) - Dl((I):A) e

Proof. Take the long exact (co)homology sequences associated to the short exact
sequences of (co)chain complexes

Tot C.(N;1(1,G, i), A) = Tot C.(N7HT, G, ), A) — Be(®, A)
3*(®, A) — Tot C* (N, (T, G, ), A) — Tot C*(N (1, G, i), A).

Apply Proposition 17 and the fact (see [11]) that Hy(B(®),A) = Hy(m,A) and
HY(B(®),A) = H'(m, A). O

We finally notice that a more topological approach than the one given in this pa-
per should allow to obtain a topological interpretation of the (co)homology D*(®, A)
and D, (®, A) as relative (co)homology of the pair of spaces (B®, BG) with local
coefficients. In fact, it is reasonable to conjecture that, for each n > 0, H"3*(®, A)
(resp. HpBe(®,A)) is isomorphic to H"(B®, BG; A) (resp. H,(B®, BG;A)) , so
that by Proposition 17, for each n > 2 D""%(®, A) (resp. D,_2(®, A)) would be
isomorphic to H"(B®, BG; A) (resp. H,(B®, BG; A)).

6. An example

Let M be a G-module and consider the crossed module ® = (M, G, 0). The map of
crossed modules (7,idg): (1,G,i) — (M,G,0) has a section (0,idg) : (M,G,0) —
(1,G,i). Therefore the corresponding map B(G) — B(M,G,0) has a section
B(M,G,0) — B(G). Hence the long exact sequences of Theorem 13 give split short
exact sequences for each n > 2

0— H,(G,A) S H,(B(M,G,0),A) — D,,_»((M,G,0),4) =0

27
0 — D"2((M,G,0),A) — H"(B(M,G,0),A) = H"(G,A) — 0. 27)

It follows that for each n > 2
H,(B(M,G,0),A) =2 H,(G,A)® D,,_2((M,G,0),A) (28)

H™(B(M,G,0),A) = H"(G,A) ® D" %((M,G,0), A).
Recall that for every crossed module (7, G, ) with homotopy groups m; and o
there is a fibration sequence

K(m2,2) — |B(T,G, p)| — K(m1,1)

where K (ms,2) and K(m,1) are Eilenberg-MacLane spaces. Hence we have corre-
sponding Serre spectral sequences:

E2, = Hpy(m1, Hy(K(72,2), A)) = Hpyo(B(T,G, p), A)

qu = Hp(ﬂ-la Hq(K(ﬂ27 2)v A)) = Hp+q(B(T7 Gv /L)z A)
In the following proposition we shall use the well known fact that, for every abelian
group A

HK(A,2)=0= H3K(A,?2), HyK(A,2) = A, HiK(A,2) =T%A (29)
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where I'? denotes Whitehead’s universal quadratic functor.

Proposition 19. Let M be a ZG-module and let & = (M, G,0) act on the abelian
group A.
a) There are ezact sequences

Dy(®, A) — Hy(G, M@zA) — Ho(G, Tor{(M, A)) —
— Dl(‘P,A) — Hl(G,M(X)ZA) —0
0 — H'(G,Homyz(M, A)) — D' (®, A) — H°(G,Exty (M, A)) —
— H?*(G,Homyz(M, A)) — D*(®, A).
b) If Tor? (M, A) = 0 then there is an ezact sequence
D3(®, A) — H3(G,M®zA) — Ho(G,T?M®zA) —
— DQ(@, A) — HQ(G, M®ZA) — 0.
If Exty, (M, A) = 0 then there is an ezact sequence
0 — H*(G,Homgy(M, A)) — D*(®, A) — H°(G,Homy (T2 M, A)) —
— H3(G,Homgz (M, A)) — D3(®, A).
Proof. The Serre spectral sequences for the crossed module (M, G,0) are
E2, = Hy(G, Hy(K(M,2), A)) = Hpq(B(M,G,0), A)
B} = H(G, H(K(M,2), A)) = H"(B(M,G,0), A)
while the same spectral sequence for the crossed module (1, G, ¢) has qu =E¥M=0
for g # 0; also H,(B(1,G,1),A) = H,(G,A) and H"(B(1,G,17),A) = H"(G, A).
Hence from (27) we deduce that there are spectral sequences
Ef)q = HP(Gﬂ Hq+2(K(M7 2)7 A)) = Dp+q((M7 G, 0)7 A)
EY = HP(G, HT(K(M,2),A)) = D" ((M,G,0), A).
The corresponding exact sequences of low degree terms are
Dy(®,A) — Hy(G, Hy(K(M,2),A)) — Hyo(G,H3(K(M,2),A)) —
- Dl((I)a A) - Hl(G7H2(K(Ma 2)7A)) — 0.

0 — HY(G,H*(K(M,2),A)) — D'(®,A) — H°(G, H3(K(M,?2),A)) —
— H*(G,H*(K(M,2),A)) — D*(®, A).
By (29) and the universal coefficient theorem,

Hy(K(M,2), A) = M@zA, H3(K(M,?2), A) = Tor’ (M, A)
H?(K(M,2), A) = Homg(M, A),  H3(K o~

so that part a) follows.
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If Tor? (M, A) = 0 then Ezl = H,(G, Tory(M, A)) = 0. Hence (sce [5]) there is

an exact sequence D3 — B3 — EZ, — Dy — E3 ) — 0, ie.

DS((I)a A) - HS(G7 HZ(K(M7 2)7 A) - HO(G7 H4(K(Mu 2)7 A)) -
— Dy(®, A) — Ho(G, H2(K(M,2),A)) — 0.
From (29) and the universal coefficient theorem, we have Hy(K(M, 2),4) = I?M®zA
so that part b) follows for the homology case.
If Ext}(M,A) = 0 then EP* = HP(G,Ext}(M,A)) = 0 so there is an exact
sequence 0 — ES’O — D? — Eg,z — ES’O — D3 ie.
0 — H*(G, H*(K(M,2),A)) — D*(®,A) — H°(G,H*(K(M,?2),A)) —
— H*(G,H*(K(M,2), A)) — D*(®, A).
From the universal coefficient theorem H*(K(M,2), A)) = Homz(I'>M, A) so that
part b) follows. O

We point out that for the case of homology with Z-coefficients, (28) and the
homology exact sequences of Proposition 19 were also given in [13].

7. An application to the cohomology of the classifying space

In this section we apply the simplicial description of the cohomology of the clas-
sifying space of a crossed module proved in Theorem 13 ii) to give an interpretation
of these cohomology groups in dimensions n = 2, 3.

Lemma 20. Let ® = (T,G, ) be a crossed module, A an abelian group. Then
(1, A,1) is a ®-module if and only if A is a mi-module. In this case there is an
isomorphism

Der(®, (1, A,4)) = Der(my, A).

Proof. From Section 1, the singular object (1, A4,4) is a ®-module if and only if
there is a split extension of crossed modules

(1,A,d) — (T",G", i) 2 (T, G, ). (30)

In particular we have split short exact sequences of groups 1 — T’ — T and
A — G 2 G; thus we can assume that T/ = T, G’ = A x G, that the map
pre : AXG — Gis prg(a, g) = g and that the map i : G — AxG isig(g) = (0,9).
Hence we have the split short exact sequence

(idr.ic)

(1, A,4) —— (T, A% G, 1) (T, G, p). (31)

(idr,prg)
Since (idr,ig) is a crossed module map, p'idy = igp, hence p/(t) = (0, u(t)) for all
t € T, that is ¢/ = (0, ). Since (idr,prg) is a crossed module map, (»9¢ = 9¢ for
all (a,g9) € Ax G, t €T. The axioms of crossed module for (T, A x G, (0, 1)) give,
for all (a,g) € AxG, teT

(0, )(“9t) = (a,9)(0, u(t))(a, 9) "
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An easy calculation shows that this is equivalent to

(0, u(71) = (a— ""Va, (1))

forallt € T, g € G, a € A. It follows that a = *(“Dq. In particular, taking ¢ = 1
we obtain a = #Wq for all t € T, a € A, so that A is a m-module.

Conversely, if A is a m1-module, then (31) is a split singular extension of crossed
modules, hence (1, A,1%) is a ®-module. We have

Der(®, (1, A,i)) = Homemy/a (P, (T, A x G, (0, ).
We now show that there is an isomorphism
o : Homewn /e (P, (T, A x G, (0, 1)) — Der(my, A).

Let a(idy, (D,idg)) = D. Then D € Der(G, A) and since (D,idg)p = (0, pu) we
have Dy = 0 so that D € Der(m, A). Clearly « is injective. Given D € Der(my, A)
let D(g) = D(gu(T)), g € G. Then D € Der(G, A) and a(idr, (D,idg)) = D, so
that « is also surjective. O

We can similarly define a functor Der(-, (1, A4,4)) : CM/® — Ab on the slice
category.

In the next proposition we show that the cohomology of the classifying space of
a crossed module can be described as cotriple cohomology.

Proposition 21. Let ® = (T, G, ) be a crossed module, A a 71-module. Then for
each n >0

H"(B(®),A) = H" 'Der(G,®, (1, A,14)).
Proof. Let G¢® = (T, Ge,is), Se = Go/ie(Ts). From Lemma 20
H"Der(Ga®, (1, A,4)) = H"Der(S,, A).
The result follows from Theorem 13 ii). O

The following corollary generalizes a result of [4, Theorem 10 (iv)] which is
established there in the case of aspherical crossed modules.

Corollary 22. Let ® = (T, G, ) be a crossed module, A a trivial w1-module. Then
for each n >0

Hg’CG'((Tv G7 /’6)7 (17 Aa Z)) = Hn(B((I))’ A)
Proof. Let Go® = (To, Ge,le), Se = Go/ie(Ts). Since actions are trivial
Der(S,, A) = Homg,,(Se, A) = Homcm ((Te, Go, te), (1, A, 1)).

By definition HZ oo (T, G,pn), (1, 4,4)) = H" *Homcm ((Te, Ge,ds), (1, A,7)) and
the result follows from Theorem 13 ii). O

We finally obtain the interpretation for the second and third cohomology group
of the classifying space. We need the notion of singular and 2-fold special extensions
of (T, G, ) by (1, A,1).

Definition 23. Let &= (T, G, u) be a crossed module acting on an abelian group A.
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i) A singular extension of (T,G,u) by (1,A,7) is a short exact sequence of
crossed modules

idr,
(1A i) o (1,6 ) "5 (1,6 ) (32)

such that the corresponding short exact sequence of cat'-groups
(1% A,id,id) — (T % G',d',s') — (T x G, d, ) (33)
is a singular extension of (T x G,d, s) by the (T x G, d, s)-module (1 x A,id,id)
in the sense of categories of interest [21].
if) A 2-fold special extension of (T,G,p) by (1,A,i) is an exact sequence of
crossed modules

(1L, A,0) 5 (@6 1y O o ey T (6 (34)

such that the corresponding exact sequence of cat'-groups

(e fir
(Ix A,id, id) — (T x G, d", ") L2 (7w d, o) B (7w, d,s) (35)

is a 2-fold special extension of (T x G,d,s) by the (T x G,d,s)-module (1 x
A,id,id) in the sense of categories of interest [21].
A more explicit characterization of singular and 2-fold special extensions of
(T, G, ) by (1, A,i) can be given as follows.
Lemma 24. Let ® = (T,G, ) be a crossed module acting on the abelian group A.

i) A singular extension of (T, G, ) by (1, A, i) consists of a short exact sequence
of crossed modules (32) such that if f': G — G’ is a set map with ff =idg,
it is f'(g)af'(g~") = Vla for all g € G, a € A where [g] = gu(T) € 71 and
9a is the given m1-module action on A.

i) A 2-fold special extension of (T, G, u) by (1, A, 1) consists of an exact sequence
of crossed modules (34) where

T// o T/ h . T/ X G// s T//
ul lu’ (36)
G// . G/
B
s a crossed square and if v’ : G — G’ is a set map with rr’ = idg, then for

allge G ,a € A,
(@) g = ldlg.

Here [g] = gu(T) € w1, Wa is the given mi-module action on A and ™ 9a is
the action of G' on G" in the crossed square (56).

Proof.
i) By definition, (33) is a singular extension of cat!-groups. Hence for all t € T,
geG,ac A

t, f(9)1,a)t, f'(g") = (1, ¥a),
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that is
(1O P g)af(97h) = (1, ¥a).

Since (1, 4, 4) is a normal subcrossed module of (T, G, i), tf'@af (971 =1

forallt € T, g € G, a € A; hence we only require that f'(g)af’ (g~') = Wa.
ii) By definition, (34) is a 2-fold extension in cat!-groups. Let f’ : T'— T" be a

set map with ff’ =idyp. Since (T" x G”,d",s"),(T' x G',d',s"),(a, B)) is a

crossed module in the category of cat!-groups, by Lemma 1 (36) is a crossed

square and the crossed module action of 77 x G’ on T x G is given by

(t/7g/)(t/1,g/1) _ (t’(g’t//)h(t/7 g/gll)’ g/gll). (37)
Further, arguing as in the proof of Lemma 10 ii), the induced action of (T x
G,d,s)on (1xA,id, id) given by (/"(1)-7"(9))(1,a) has to coincide with the given
action, which is (1, [9/a). Hence by (37) we obtain

’

(h(f'(t), "@a), "@a) = (1, ¥a)
forallt € T, g € G, a € A. By the axioms of crossed squares [15]

ah(f/(t), " @a) = £(t) PO ) = 0 f () =1
Hence, since « is injective, h(f’(t), T/(g)a) = 1. Therefore we only require

(@) g = ldlg

forall g € G, a € A. O

It is possible to introduce an equivalence relation on the set of singular and 2-fold
special extensions of (T, G, ) by (1, A, ) in a way similar to what explained in §4.2.
The sets of equivalence classes of singular and 2-fold special extensions of (T, G, y)
by (1, A, i) become abelian groups under Baer sum.

Theorem 25. Let ® = (T,G,u) be a crossed module, A a m-module. Then
H?%(B(®), A) is isomorphic to the group of equivalence classes of singular extensions
of (T,G,p) by (1,A,4) and H3(B(®), A) is isomorphic to the group of equivalence
classes of 2-fold special extensions of (T, G, u) by (1, A,7).

Proof. From Proposition 21, H?(B(®), A) = H'Der(G.®, (1,4,i)) and
H3(B(®),A) = H?Der(G,®, (1, A,i)). By the interpretation in terms of extensions
of the first and second cotriple cohomology groups in categories of interest given in
[21, Theorems 2.1.3 and 2.2.3] the result follows. O

8. The relationship with cohomology of groups with opera-
tors

Our purpose in this section is to elucidate the relationship between the coho-
mology theory D*((T, G, 1), A) of a crossed module (T, G, u) with coeflicients in a
mi-module A and the cohomology Hf (T, A) studied in [6]. The latter is the coho-
mology of a group T endowed with a G-action by automorphisms with coefficients
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in a G-equivariant T-module A; this consists of an abelian group A with actions of
T and G such that

I(ta) = "*(%a), geG, teT ac A

The possibility that a relationship between the two theories may exist is suggested
by the fact that, by [6, p. 11]

DO((Ta G7 :u)a A) = Der((T, G7 M)a A) = HOmg(T, A) = Der(;(T, A) = HCl}'(Ta A)

We shall also exhibit a counterexample showing that in general D"((T, G, ), A)
and HX (T, A) are not isomorphic for n > 0.

In order to establish the relationship with H (T, A) we first prove that if (T, G, p)
is a precrossed module, HZ(T, A) can be recovered as cohomology of a precrossed
module for n > 0.

Recall that a precrossed module (T,G,p) consists of a group homomorphism
p: T — G together with an action of G on T such that u(9t) = gu(t)g~*, g € G,
t € T. A morphism of precrossed modules (f,h) : (T,G,pn) — (T’,G’, ') consists
of group homomorphisms f : T — T, h: G — G’ with f(9t) = M9 f(t), t €T,
g € G. Denote by PCM the category of precrossed modules. PCM is equivalent
to the category of pre-cat!-groups. A pre-cat'-group is a group G together with two
endomorphisms dg,d; : G — G such that didy = dy, dodi = di. A morphism
f: G — G’ of pre-cat!-groups is a group homomorphism commuting with dy, d;.

In [1] is proved that the category of precrossed modules is tripleable over Set; the
corresponding cotriple is then used to define a cotriple (co)homology of precrossed
modules with trivial coefficients. Following the same method used for crossed mod-
ules, we introduce a cotriple cohomology of precrossed modules with a system of
local coefficients.

Notice that PCM is a category of interest in the sense of [17]; this follows from
the fact that PCM is equivalent to pre-cat!-groups and from the tripleability of
PCM over Set.

Lemma 26. Let (T, G, ) be a precrossed module, A an abelian group. Then (A, 1,0)
is a (T, G, p)-module (in the category of interest PCM) if and only if A is a G-
equivariant T-module in the sense of [6] and in this case

Der((T,G, 1), (A,1,0)) = Derg(T, A).

Proof. If (4,1,0) is a (T, G, u)-module, there is a split singular extension in PCM
(4,1,0) — (T', G ) = (T, G, ).

In particular there are split extensions of groups A »— T/ 2 T and 1 — G’ 2 G,
so that we can assume that G’ = G, and that 7" = A x T', where the action of T on
A is by conjugation via the splitting; we can also assume that the map A xT — T
is the projection and T'— A x T is the inclusion. So we have the split extension in
PCM

- (prT ’idG')
(A,1,0) =+ (A T.G.j0) === (T,G, ). (38)
i,ida
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The action of G on A x T induces an action of G on A; in fact, since (pry,idg)
is a map of precrossed modules, prp(9(a,1)) =1 for all g € G, a € A. Since the
maps in the split extension (38) are maps of precrossed modules, we have, for all
acA geG, teT, pla,t) = pt), 9a,t) = 9a,1)9(0,t) = (%a,1)(0, 9t) =
(9a, 9t). In particular we obtain, for all a € A, g € G, t € T, (9(ta), 9) =
9(ta,t) = 9((0,t)(a,1)) = (0, 9t)(9a,1) = ("*(%a), 9t). Hence 9(ta) = **(9%a) so
that, in the terminology of [6] A is a G-equivariant T-module. Conversely if A is a
G-equivariant T-module , (38) is a split singular extension in PCM., so (A4, 1,0) is
a (T, G, pn)-module. We have

Der((Tv Ga M>7 (Aa 1, 0)) = HomPCM/(T,G,,u) ((Ta Ga M)7 (A X T7 G7 /7))
We now show that there is an isomorphism
a:  Hompowmy(r,c,u (T, G, 1), (AxT,G, 1)) — Derg(T, A).

Let a((D,idr),idg) = D. Notice that D € Derg(T, A); in fact D € Der(T, A) and
since ((D,idr),id¢) is a morphism of precrossed modules, (D(9¢),9t) = 9(D(t),t) so
that D(9¢) = 9D(t). Clearly « is injective. Let D € Derg(T, A). Then ((D,idr),idg)
is a morphism of precrossed modules over (T, G, 1) and a((D,idr),idg) =D O

Notice that if (T, G, u) is a crossed module and A is a m-module, A is a G-
equivariant trivial T-module in the terminology of [6, p. 15]. If  : CM — PCM is
the inclusion, we have in this case

Der(I(T,G, u), (A4,1,0)) = Der((T, G, p), A).
Remark 27.

An equivalent version of Lemma 26 is obtained by working in pre-cat!-groups
rather than in PCM. Let (4,0,0) and (T x G, dg,d;) be the pre-cat!-groups corre-
sponding to the precrossed modules (4, 1,0) and (T, G, u) respectively. It is easily
checked that (A4,0,0) is a (T'x G, dy, d1)-module if and only if A is a (T'x G)-module
and

Der((T x G,dy,d1),(A,0,0)) 2 {D € Der(T x G, A) | D(1,G) = 0}.

The two versions of the lemma are clearly equivalent. Recall in fact [6, Theorem
2.2] that the categories of G-equivariant T-modules and that of (T" x G)-modules
are equivalent, with the action of T'x G on a G-equivariant T-module A given by
(t.9)q = t(9a); moreover it is straightforward to check that there is an isomorphism

a: Derg(T,A) — {D e Der(T xG,A)| D(1,G) = 0}
given by a(D)(t,g) = D(t), (t,9) € T x G.
Let G be the cotriple on PCM of [1].

Proposition 28. Let (T, G, 1) be a precrossed module, A a G-equivariant T-module.
Then for each n > 0

H"Der(Go(T, G, 1), (A,1,0)) = HETY(T, A).
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Proof. From [6, Theorem 2.6] for each n > 0
HZ(T,A) =2 H"(Brua, Bg, A) = H"(ker(C*(T x G, A) '3 C*(G, A)),

where C*(T'x G, A) and C*(G, A) are the ordinary cochain complexes for computing
group cohomology and r, are the restriction maps.

Denote Go(T, G, 1) = (Ts, G, jte). From Lemma 26 and Remark 27, there is a
short exact sequence for each n

0 — Der((Th, Gn, pin), (A, 1,0)) — Der (T}, x G, A) — Der(G,,A) — 0

where the map Der(7T,, ¥ G,,, A) — Der(Gy, A) is restriction. It is proved in [1, p.
12] that Ty x G¢ — T x G and G, — G are free simplicial resolutions. Hence, if L
is the ordinary free cotriple on Groups we obtain short exact sequences of cochain
complexes

0 — Der((Ts, G, tte), (A,1,0)) — Der(Te X G4, A) — Der(Go,,A) — 0

| bk

0 kerr, Der(Le(T x G), A) —> Der(L.G,A) — 0
l t t
0 ket 7 C*(T % G, A) — >+ C*(G, A) —— 0.

In the above diagram the maps Der(Ty X G, A) = Der(Le (T xG), A), Der(Go, A) =
Der(Lo.G, A) are homotopy equivalences, and Der(L(T x G), A) — C*(T x G, A),
Der(L.G,A) — C*(G, A) are the natural cochain maps of the Barr-Beck theory
which induce isomorphisms in cohomology (see [2]). Taking the long exact coho-
mology sequences in each row of the above diagram and applying the Five Lemma
we obtain for all n > 0

H"Der((T, Ge, pte), (4,1,0)) = H" kerr, = H" ! kerr, = HELTH(T, A).
Finally, by Lemma 26, by [6, p. 11] and by general properties of cotriple cohomology
H Der((Ty, G, f1e), (A, 1,0)) = Der((T, G, 1), (A, 1,0)) = Derg (T, A) = HL(T, A).

O

Theorem 29. Let (T, G, p) be a crossed module, A a w1 -module. Let s,, : G'I =
IG™, I:CM — PCM be as in [1] and 3, = Der(s,, A). There exists a long exact
cohomology sequence

0 — Hokers, — D'((T,G, ), A) — HZ(T, A) — H'cokers, —

Proof. It is proved in [1, p. 14] that there exists a surjective homomorphism of
resolutions

C'I(T,G,p0) - GI(T,G,u) = GI(T,G,p) — (T,G, p)
Jon Js: [ H (39)
IG™(T,G,p) --- IG*(T,G,pn) = IG(T,G,pu) — I(T,G,p) .
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The natural transformation s, : G I — IG" is defined inductively by s,41 =
$,Go @n51 for every n > 1, and s; is the natural transformation sending each
crossed module (T, G, 1) to the canonical projection G(T,G,u) — PG(T, G, n) =
G(T,G, ) where P : PCM — CM is Peiffer abelianization [1]. Hence (39) gives

rise to an injective morphism of cochain complexes
0 — Der(IG(T, G, i), (A,1,0)) — Der(IG*(T, G, i), (A,1,0)) — ---
Is 15
0 — Der(GI(T, G, p), (A,1,0)) — Der(G I(T, G, p), (A, 1,0)) — ---

Since Der(IG4(T, G, 1), (A,1,0)) = Der(Go(T, G, i), A) we therefore have a short
exact sequence of cochain complexes

Der(Ge (T, G, 1), A) ~= Der(GoI(T, G, 1), (A, 1,0)) —» coker 5.

Since HDer(G4(T,G,pn), A) = HDer(GoI(T,G, ), A) = Derg(T, A), taking the
corresponding long exact cohomology sequence and using Proposition 28 the result
follows. O

The following counterexample shows that in general D"((T,G,u),A) and
HgH(T7 A) are not isomorphic for n > 0. Let C, be the infinite cyclic group with
generator t, let H be the subgroup of Cy, generated by t? so that Coo /H =2 Oy, the
cyclic group of order 2. Consider the crossed module ® = (H, C, %) and let A be a
Cy-module. Let ¢ be the generator of Cy and N =1+ o3 since H"(C, A) = 0 for
n > 1 by Theorem 7

D (@, AV H ™ (Cy, Cons AV H™H2(Cy; A) 2 {aCGA:Na:O}/(Ufl)A n odd,
A2 /NA n even, n > 0.

On the other hand, since H acts trivially on A, in the terminology of [6] A is a
Cso-equivariant trivial H-module, so that by [6, Corollary 3.7] for all n > 1

H{TH(H, A) = H"™' (H x Cx, A).
Since the action of Cy on H is trivial, H X Coy & H X Co. From the Lyndon /
Hochschild — Serre spectral sequence
EY = HP(Coo, HI(H, A)) = HPTI(H x Cq, A),
since E? = 0 for p # 0, 1, there are exact sequences, for each n > 1
HY(Coo, H" 1 (H, A)) — H"(H x Cu, A) — H°(Coo, H"(H, A)).
Since H"(H,A) =0 for n > 2, H'(H,A) = A, we obtain
HY(Cw,A) 2 Ac, n=1,

HTY(H, A) =
Coe ( ) {0 n>1.

Hence in general D™ (P, A) # Hg::l(H, A) for n > 0.

We finally remark that, since H;(H) = 0 for all ¢ > 2, from [6, p. 19] there are
isomorphisms ngol (H,A) = Extg_(Hap, A) for all n > 0. Hence this counterex-
ample also shows that despite the isomorphism D°((T, G, i), A) = Homg(T, A) =
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Homg mod (Tup, A) for any crossed module (T,G, p), in general the cohomology
groups D" ((T, G, 1), A) and HJ yioq(Tan, A) are not isomorphic for n > 0.
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