Irrationality Measures of log 2 and 7/+/3

Nicolas Brisebarre

CONTENTS

1. Introduction

2. Technical Lemmas

3. Computation of Irrationality Measures of log 2
4. Computation of Irrationality Measures of 7/y/3
5. An Attempt at Analytic Improvement
Acknowledgement

References

Using a class of polynomials that generalizes Legendre polyno-
mials, we unify previous works of E. A. Rukhadze, A. K. Du-
bitskas, M. Hata, D. V. and G. V. Chudnovsky about irrationality
measures of log 2 and 7/+/3.

1. INTRODUCTION

A usual way to estimate the quality of approxima-
tion of a real number z by a rational number p/q is
to compare the quantity |z—p/q| to negative powers
of the denominator q. More precisely:

Definition 1.1. Let x and p be real numbers. We say
that p is an irrationality measure of x if for alle > 0
there exists C(¢) € R such that

‘ p| - C)

.’L'—a = qu_E.

for any integer p and any positive integer q. If the
constant C(g) can be computed effectively, we say
that u is an effective irrationality measure of x.

This article deals with irrationality measures of the
transcendental numbers 7/+/3 and log(1—7/s), with
reN,seZ\ {0} and r/s € [-1,1].

Rukhadze [1987], considering the class of polyno-
mials

1 n+m—m' n (n—m')
Ry mm (2) = m(z (1= 2)")
=S () (T e
= j n—m

where n,m,m’ € N and n > m/, obtained an irra-
tionality measure of log 2:

p(log2) = 3.893.

(If po is an irrationality measure of z we loosely
write p(z) = po, though any real number exceeding
(© A K Peters, Ltd.
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lo is also an irrationality measure of z.) In fact,
Rukhadze’s result gives the better value

11(log 2) = 3.8913997 . ..,

but the numerical computations in her paper lacked
sufficient accuracy. Dubitskas [1987] used the same
polynomials to compute an irrationality measure of
m/ V/3 equal to 5.52. With another class of approxi-
mants, M. Hata [1990] obtained

u(log2) = 3.8913997.. .,
u(m/V/'3) = 5.0874626 ... .
He used the polynomials H,, ,, /() defined by

1

rrmomi

n

= > (

Jj=0

Z)n+m)(n+mfm )

n—i—m) (n—i-m—m’—l-j) ;
z
m+j n+m—m/ ’

with n,m,m' € N and n > m/'.

A. Heimonen, T. Matala-Aho and Keijo Vaana-
nen [Heimonen et al. 1993; 1994] considered irra-
tionality measures of values of Gauss hypergeomet-
ric functions

2F1<1;b §Z> = S (b)nzny

where b,c # 0,—1,-2,...
and
(b)O =1,
(b)n, = b(b+1)(b+2)--- (b+n—1) for n € N\ {0}.
The first of these papers used the polynomials
R, . m to compute irrationality measures of the
numbers log(1 — r/s) with r € N and s € Z \ {0}
such that r/s € [—1,1[—thus generalizing part of
[Rukhadze 1987] —while the second paper consid-
ered Jacobi type polynomials to obtain irrationality
measures of w/v/3. In the last situation, the Jacobi
type polynomials used were linked to the polynomi-
als H,, 1 m-
Finally, D. V. and G. V. Chudnovsky announced
without proof [Chudnovsky and Chudnovsky 1993]
that

p(log2) = 3.87 and pu(m/V3) = 4.96,

these values being computed using the class of poly-
nomials

are rational parameters

where
L (z) _ i(zn(l_z)n)(n)
" n!

denotes the n-th Legendre type polynomial, used
by F. Beukers [1979] to give another proof of the
irrationality of ((3), and by K. Alladi and M. L.
Robinson [1980] to compute irrationality measures
of log2 and 7/+/3.

The polynomials R, m/, Hpmm, and C, ,, are
subfamilies of a more general class of polynomials
P, ym, defined for n € N, mym’ € Z and n >
—min(m, m',m+m') by setting P, ,,,.m/(2) equal to

1 n+m’ ntm) (ntm+m’)
(n+m+m/)|( * (1_2) * )
n ’o.
LS () (s
gt m+J n+m-+m’

We will call this family of approximants generalized
Legendre polynomials, the substitution m = m’ =0
giving the Legendre type polynomials L,.

If we suppose m, m’ € N, we see that

Hn,m,m’ = Pn,m,—m’v

) Pnfm,m,m-

The interest of these polynomials is that their con-
tent (that is, the greatest common divisor of their
coefficients) is large. The authors quoted earlier
studied their classes of polynomials only in the case
(n,m,m’) = (an’,bn',£bn') with a and n’ € N
and b € Z. We generalize their works to the case
(n,m,m’) = (an’,bn/,cn’) with a and n’ € N and
b,c € Z. Then we completely study the irrational-
ity measures of log 2 and 7/+/3 computable with the
polynomials Py, pn,cn, and we show the links between
the results of [Rukhadze 1987; Dubitskas 1987; Hata
1990; Dubitskas 1993; Chudnovsky and Chudnovsky
1993; Heimonen et al. 1993; 1994]. In particular, we
will examine the announcement made by the Chud-
novskys.

Section 2 contains technical results needed to es-
tablish irrationality measures, and some properties
of the polynomials P, yn cn- In Sections 3 and 4, we

Rn,m,m’ = Pn-i—m,—m,—m’v

Cn,m _ <n+m
m

compute irrationality measures of log?2 and 7/v/3
respectively. In section 5, we modify slightly the
polynomials P, yn..., and look at the consequences
of this perturbation on the resulting values of irra-
tionality measures of log 2.



2. TECHNICAL LEMMAS

2A. Classical Results

To compute irrationality measures of a real number
x we need good approximations of z. More precisely,
consider a complex number z, a real number p, and
two sequences (P, )nen and (¢, )nen in Z + ipZ. For
n € N, set &, = ¢,© — p,. Also set

Kk, =min{|z|;z € Z +ipZ,z # 0}

[

The study of the asymptotic behaviour of g, and
e, allows us to obtain an irrationality measure of
x, thanks to the following two lemmas. The first
lemma is used to compute an irrationality measure
of the numbers log(1 — r/s) with /s € Q N [—1,1].

if 0<|pl <1,
if p=0 or |p|>1.

Lemma 2.1. Suppose that

1 1
limsup —log|g,| <o, lim —logle,|= —,
n——+oo N,

n—-+oo n

where o and T are positive real numbers. Then 1 +
o/T is an effective irrationality measure of the real
number x.

Proof. See [Chudnovsky 1982]. O

The following lemma will help us establish an irra-
tionality measure of 7/+/3.

Lemma 2.2 [Hata 1990].
every n > 0 and that

Suppose that q, # 0 for

. 1
lim sup — log |g.| < o
n

n—-+o0o

. 1
limsup —log |e,| < —7
n—+4oco N

for some positive real numbers o and 7. For a fized
positive integer M, for n > 0, let V,, C C be the set
of the M complex numbers
& pn+1
dn ’ dn+1 ’

pn+M71

’ dn+M—1 '
Suppose that, for each n > 0, either

(i) V,, contains at least two distinct points, or
(ii) V,, consists of a single point zy € C \ Q.

f

Then 140 /T is an effective irrationality measure
the real number x.

)
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We now recall briefly two results necessary for the
computation of the constants o and 7 of the two
previous lemmas.

First, let d,, denote the least common multiple of
{1,2,...,n} for n € N\ {0} and O(z) the sum

Z log p.

p prime
p<z

The prime number theorem gives

lim log dn =1 (2-1)
n—-+oo n
and
fim &) _ (2-2)

r—+00 €T
Finally, we recall a basic result of analysis. For
every complex function integrable on a measurable
set X, relative to a positive measure p, we have

1 .
lim —log/ (@)™ dp(z) = log || flloc,x, (2-3)
X

n—+oo N,

where || f]|c,x denotes the essential supremum of f
over X.

2B. An Arithmetical Lemma

We will now study the content of the polynomials
P, n.m, by generalizing of [Hata 1990, Lemma 2.5].
For z a real number, [z] will denote the integer part
of x and {z} its fractional part, that is, the real
number z — [z]|. The following result can be seen as
a corollary of [Heimonen et al. 1993, Lemma 10].

Lemma 2.3. Let A\, \' be two real numbers such that
min(A\, N, \+X') > —1, and let M and M’ be two
sequences of integers such that

n > —min(M(n), M'(n))
and

max {|An — M (n)|, |]\'n — M'(n)|} < Cyx,

where Cy 1 a nonnegative constant independent
of n. Then there exists a common divisor dy x(n)
of the coefficients of Py, y(n),m(n) Such that

e\ ) ::/E dr_

1
lim —logdy \(n),
) T

n—+oo N
where E(\, X') is the open set
{z>0:0<{z}+{Nz} -1<1-{rz} <{z}}.
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Proof. Let §,, = CL,\//\/(Q—i—)\—i—)\’)n + 1. For n large
enough, we have d,, < %. Define

E,(\,XN) ={z>0:1-min({Nz}, {\z})+6, < {z}
< 2-26,—max({Nz}+{\z},1)},

and consider the three sequences (k/\), oy, ([/N)ens
and (g)4en. Sort the elements of these sequences in
a nondecreasing order, obtaining an increasing se-
quence (@, )men of real numbers. It is clear that the
sequence (E, (A, \)),en is nondecreasing and that
Unen En(A, X)) = E(AX).

Define H,, as the set of primes p such that p >
V@+A+XN)n+ 1 and n/p € E, (N, X). Let

d)\7)\/(n) = H p.

pEH,

We next show that every element p of H, divides
the coefficients of the polynomial P, rr(n) a7 (n), that
is, for every integer j in the interval [0, n], the prime
p divides

<n+M(n) ) <n+M(n)+M'(n)+j>

Qn,j) = M (n)+j n+M(n)+M'(n)

Let j be such an integer. The p-adic valuation of
Q(n,j) is equal to
vp(0) = [a+f] — [B+6] — [a—0]

+ [a+B+7+6] — [a+pB+], 24

where

= 2= (M2 - (202} 0 ()

Since n/p belongs to E,, (A, ), the numbers {An/p}
and {\'n/p} are in the interval ]36,,, 1—34,[. More-
over

max( A M‘ ‘A_” B M’(N)D . O

p p p p p
Chx

< =
T VAN + 1

ne

Hence, we deduce the inequalities

‘{)\n}_ﬂ‘ <5, and ‘{)\’n}_w

il <4
p p

— n-

It follows that

a+ﬁ2{g}+{>\n}—5n>1,

P
a+B+y< {g}+{A—"}+{Apn

}+2<5n<2,
;
oty > {g}+{Apn}5n>1.

Therefore the right-hand side of (2—4) equals
—[a—=0] + [a+B4+y+0] — [B4+6] > 1,

since [@ — 0] <0 and a+v > 1.

We now study the asymptotic behaviour of d /.
Let [ be a fixed integer, arbitrarily large, and let
I =]a,b] be any connected component of E;(\, \').
The interval I will be a subset of E,, (A, \') for every
integer n > 1. If n > (3+ A+ \)b?, every prime p in
the interval J, = |n/b,n/a[ belongs to H,: indeed,

n2
p> > 72 24+A+XN)n+1

and n/p € |a,b]. Hence we obtain the lower bound

> e (0(2) ~o(2) (1))

p prime
pEJIn

Thus we have, thanks to (2-2),

> ez (i-p)= [

p prime
pEJn

... 1
lim inf —
n—+oo N

which gives

I ,
lim inf 28D () / dz
Ei (A7)

n—o00 n 332

When [ tends to infinity, we get

log dy d
lim inf 28D () [ =
n E(\\) X

n—oo

The upper bound

Jim sup 282X (7) / da
n - E(\N) .T2

n—0o0

is obtained in a similar way, considering the set H),
of primes p such that p > /(2+A+X)n+ 1 and
n/p € E(\N). O

Remark 2.4. The arithmetical gain provided by this
lemma is easily seen to be optimal. Indeed, if v, is



given by (2—4), the condition v,(f) > 1, checked for
# = 0 and for # = 1 — 3, induces the inequalities
defining the set E(A, \).

2C. An Algorithm for Computing the Integral e(\, \')

This section describes an algorithm that allows one
to compute fE(A,/\,) dz/z? when A and )\’ are rational
numbers satisfying the assumptions of Lemma 2.3.
Let A = b/a and X = ¢/a, with a a positive integer
and b, ¢ two integers such that a > — min(b, ¢, b+c)
and abc # 0. We have

o(t.)-
a’ a
c b
{m >0:0< {a:}-l—{ax}—l < 1—{530} < {x}}
Consider the three finite sequences

(%)jEN n 0,1, (|_]Z|>keN n {01, <%)ZEN n 10,1

By sorting the elements of these sequences in in-
creasing order we get a finite increasing sequence
() meN,0<m< M(a,b,c) Of real numbers such that ag =
0 and aps(a,p,c) = 1. From it, we build a covering of
R.o by a sequence of pairwise disjoint open inter-
vals. The interest of this construction lies in that the
intersection of E (b/a, ¢/a) with every interval of the
covering is an interval, on which the integration of
the function x — 1/z? will be very easy. Write

e(g,g) :/E( a)%
-1

dx

g€EN m=0 /E(b/a7c/a)ﬂ]a(q+0‘m)va(11+04m+1)[ z?

From the form of the sequence (0t )men,0<m<n(a,b.e)
we know that there exist integers j, k and [ such that

]aam7 a’aerl[
=g, J+1[N

ak a(k+1) al a(l+1)
ok o)l oo |
b]" [b] lel” ]

If we consider a real number = € |aa,,, ac,, 1], we
know that = € |j, j+1],

b
B et ket and e e s
a

a
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We deduce that

{z} = z —[2] = 2z — [aan)],

{Sx} _ Sx _ [Sx] _ Sx — inf ([baun], [bam1]),
{gm} = sx — [21;] = gac — inf([cam], [cam+1]).

Because = € E (b/a,c/a), we have, by definition,
c b
0<{x}+{ax}—1< 1—{Em} < A{x}.
Then the following equivalent inequalities hold:
0< (1 + 2)3: — ([acum] + inf([cam), [cami1])) — 1
b
<z — [aqy,).

Thus we have x > z1(m), z < z3(m), and z >
x3(m), where

1+ inf ([baun], [botms1]) + [acun)]

Ty (m) : T b/a ,
2 + [aoy,] + inf ([bay,), [baui1])
a(m) = + inf([cozm], [COém+1])
2 = 1+ b/a T c/a )
2y(m) = 1+ [aam] + inf([cam], [Cam+1:|)
R 1+ c/a :
Now put

z1(m) x3(m) ’ am>’

Y2(m) = min (am+1, e Ezm) )

From the foregoing discussion and the a-periodicity
of the functions considered in the set E (b/a,c/a),
it is obvious that

B(2,%) Nlalgtan), ala+an.)]
= la(g+yi(m)), a(g-+yz(m))]

for every m and ¢ in N, with 0 < m < M(a,b,c)—1.
We now compute

dzr
CR
qen J B(b/a.c/a)nlalg+am),a(a+ami)] L
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obtaining

Z/a(qﬂﬂ(m)) dx
algtyr(m)) T

qeN

(a(q - ::llh(m)) alg+ ;on)))

:2(1 (q+y11(m) N q+ylz(m))'

Let 1) denote the digamma function I /I". Then,
for any real numbers o, 8 with 0 < a < 8 < 1, we
have

S (- ) = 4(8) — wl):

(2-5)
oNata gt

see [Bateman 1953, p. 15], for example. Hence we
obtained the explicit formula

b e 1 M(a,b,c)—1
“(3a)=a X @l vmm).
In the case |b|] = |¢| = 1, we can obtain a more

practical formula, as in [Hata 1990]. In particular,

a+1
(a+2)(@+2)/(2a+2) ga/(2a+2)
T
+ ——(X(a+2) — X(a))

2a-+2
and
1 1 1)(e+1)/(2a) (q__1)(a=1)/(2a)
e(—,——) :log((a+ ) (a—1) >
a’  a a
+ 5 (X(a+1) = X(a=1)),
with
[a/2] -
X =3 ot (7).
(a) ;co r-

As explained in [Hata 1990], we can compute X(a)
for some small values of a (Table 1).

2D. Links Between the Contents of the Polynomials Used
by Dubitskas, Hata, Rukhadze and Chudnovsky

We define two transformations w; and w, of Z* by

wi(a, b, c) = (a+b,—b,c),

(2-6)
wa(a,b,c) = (ate, b, —c),

for every (a,b,c) € Z*. These transformations gen-
erate a group isomorphic to the group D, = Z /27 x
7./27.. Now, we suppose that a € N\ {0} and
b,c € Z \ {0} are such that a > —min(b,c, b+c),

and we put
b c
I(a,b,c) = ——.
(a7 ’C) ae(a7a>

Then:

Lemma 2.5. Let a € N\ {0} and b,c € Z\ {0} be such
that a > — min(b, ¢,b+c). Then

(a+b)**t(a+c)ate
a® (a+b+c) a+b+c

Hm&@—ﬂwmﬁmﬁzbg<
fori=1,2.
In particular, if we compose w; and w,, we get

ae(%, 2) = (a+b+c)e(—

This last relation means that the arithmetical gain
obtained from the polynomials proposed by D. V.
and G. V. Chudnovsky can be obtained from those
considered by Rukhadze and Dubitskas.

b _ c )
a+b+c’ a+b+ce/’

Proof. By definition,

We make the change of variable z = ay. The last
relation becomes

d
I(a,b,c) :/ —Z
F(a,b,c) Y

with F'(a,b,c) given by

{y>0:0<{ay}+{cy} —1<1—{by} < {ay}}.

a 12 3 4 5 6 8 10 12
X(a) 0 0 1/4/3 1 V2+2/V/5  4/V3  14+2v2 41425 54+4//3

TABLE 1. First values of X.



First, we study the quantity

d d
I(a,b,c)—[(wl(a,b,c)) :/ _?;’_/ _:g
F(ab,e) Y F(wi(a,b,c)) Y

The conditions for y > 0 to belong to F'(a,b,c) can
be rewritten as

1 <{ay} + {by},
1 <{ay} + {cy},
1 < {ay} + {by} + {cy} < 2.

Therefore the conditions for y to be in F(w;(a, b, ¢))
are

(2-8)

1 <{(a+b)y}+{-by},
1 <{(a+b)y}+{cy},
1 <{(a+b)y}+{-by}+{cy} <2.

The first of these inequalities implies {—by} # 0,

and so {—by} = 1 — {by}. The first and third in-
equalities then become respectively

{by} < {(a +b)y}

(2-9)
and
{(a+b)y} — {by} + {cy} < L.

We have {(a+b)y} = {ay}+{by} —1or {(a+b)y} =
{ay} + {by}; the first case is excluded because of
(2-9). Thus the conditions for y > 0 to belong to
F(wy(a,b,c)) reduce to

{ay} + {by} <1,
{ay} + {ey} <1,
1 <A{ay} + {by} + {cy} < 2.
Introduce the notation
91(y) = {ay} + {by},
92(y) = {ay} + {ey},
93(y) = {ay} + {by} + {cy},

noting that the sets {g;, = j} for i = 1,2,3 and
j = 0,1,2 are of measure zero. For F a set, let
Xg denote the characteristic function of F, and for
notational simplicity write X;py if E is defined by
condition P (that is, E = {P}). Then

dy oo dy
/ — :/ (X1<gs X1<gs X1<gs<2) (y)_z
F(abe) Y 0 y

+oo dy
= / (X1<g, X1<gsca = Xi<g Xgp<1X1<g5<2) (y)?
0
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and

5 —
I (w1(a,b,c)) @
dy

4+ oo
= / (Xgo<1Xi1<gs<2 — X1<gi Xgo<1X1<gs<2) (?J)?
0

+oo
dy
/ (Xgl<1Xg2<1X1<93<2) (y)?
0

It follows that

I(a,b,c) — I(wi(a,b,c))
+oo dy
= /0 (X1<gi X1<gs<a — Xgo<1X1<g5<2) (?J)?
But
Xi<gi X1<gs<2 = X1<g, — Xa<gs,
and also
Xgo<1Xi<gs<2 = Xi<gs<z — X1<go X1<gs<2

= Xicga<z — Xi<go + Xo<gs-

Now, for almost all y € R,

Xi<g, (y) = {ay} + {by} — {(a+b)y},
}

Xi<g, (y) = {ay} + {cy} — {(a+c)y
Xicgo<2(y) + 2Xa<g, (y) = {ay} + {by} + {cy}
—{(a+b+c)y}.
This gives
I(a,b,c) — I(wi(a,b,c))

= /°° (X1<gy + Xi<g, = Xa<gyez — 2X2§93)(y)%
_ /°° {(a+b)y}+{(a+c)y}—{ay}—{(a+btc)y} dy
y2

[ ) i)
y2

n /°° {(atc)y} — (ato)ly}
0 y?
B /°° {ay} — a{y} dy

Y2
B /°° {(a+b+c)y} —
0 y?
Take k € N\ {0}. We will compute the integral
7. — /°° {ky} —Zk{y} dy.
0 )

(a+b+e){y} i 2-10)

by considering the decomposition

/ O {ky} — Ry}

2
quJ oY atilk
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With the change of variable y = q + (5 + 0)/k, we
obtain

B k—1 1 _] d_9
J_ZZ/ (a+ GHo)/R) F

_ J

_q%;;(w (7+1)/ q+j/k)

(o) - w(%))’

the last equality coming from (2-5). Thus, for every
ke N\ {0},

=3 ()

Now we recall a consequence of the Gauss and Leg-
endre multiplication formula [Bateman 1953, p. 16].
For z € C with Rez > 0 and for k£ € N\ {0}, we
have

= Dy(1).

k—

b(kz) = %Z¢(z+ %) +logk.
7=0

If we give z the value 1/k, we obtain J, = klogk.
Returning to the relation (2-10), it now becomes

I(a,b,c) — I(wi(a,b,c))
= (a+b) log(a+b) + (a+c) log(a+-c)

—aloga — (a+b+c)log(a+b+c), (2-11)

which was the expected result.

It remains to prove that this relation is also sat-
isfied if we replace w; by w,. If a1, by, ¢; are ele-
ments of Z satisfying the hypotheses of the lemma,
we have F'(ay,by,c;) = F(ay,c1,by) (see the condi-
tions (2-8)), so I(ay,by,c1) = I(ay,c1,by) and

I(a,b,c) — I(wa(a,b,c)) = I(a,c,b) — I(wy(a,c,b)).

We finish the proof by noticing that the relation
(2-11) is symmetric in b and ec. O

3. COMPUTATION OF IRRATIONALITY MEASURES OF
log 2

We now give the formulas necessary to compute an
irrationality measure of log 2. Let us recall that, for
n € N, the notation Z,[X] refers to the set of the

polynomials with coefficients in Z and degree < n.
We consider, for n € N, the polynomial

1

Fopen(X) = 37—
a,bycv"( ) db/a,c/a(an)

Pan,bn,cn(X) S Zan[X]a

where a is a positive integer and b, c are integers
such that a > —min(b, ¢, b+c) and abc # 0. In the
following, we shall write it F,(X). Morevover, we
introduce the integers

B = max(0,b), ~ = max(0,c), aon)
A = (2b+c)* +8a(a+b+c). -
Recall that d,, denotes the l.c.m. of {1,...,an}. We
have
'F, F,(-1
In = / n(2) n(=1) dr €
0 1+x dan
and
Jp + F,(—1)log2
1
F,
:/ n(z) dz
o 14+
- [(a
—1)#" (! 2P (1—g)""F,
LD /x (-0 Fule)
2y 1+z
where

12 m(—X)P(1-X)™

Qn(X) =

1+ X
€ Q%Z(ﬁw)nfl[*x]-
We put, for n € N,
= 2""d (a4 pryn Fn(=1),
=2""d @t piy)n / Qu(z)Fy(z) dx
— 2""d (a1 p4ry)ndns
Lgbn(1 — )" F,(z
En = (—1)’6nd(a+ﬁ+w)n/0 ( 1+)x ( )dx,

so that ¢, = g, log2 — p,, with p,,q, € Z.



We study the asymptotic behaviour of the se-
quence (g,). Let C; be the circle of radius ¢ centered
at —1. The Cauchy formula gives

d(“"'f@"'v)ﬂzvnf Z(”‘J"C)"(l—z)(a""b)" dz
dyjacralan) Jo, (z+ 1)letbrantt g

an =

db/a,c/a an)

_ 2imwé (”‘+C)n _ 4.2iml (a+b)n
y / (—1+te?m?) (2—te2im?)
0 (tezme)(a+b+0)n

_ datpryn2"”
1

de,

for every ¢ > 0. Hence
da n2’Yn —(a c)n a+c)n a n
Ig,| < %t (atbre)n (] 4 g)(aten (g4 )(atd)

for every ¢t > 0. Then, thanks to the equality (2-1)
and to Lemma 2.3, it follows that

i log |gn|
msup ——
n—-+oo n

b
<a+B+7(1+1log2) —ae(a,g)

+ I%’ll(I]l log(tf(a+b+c)(1 + t)a+c(2 + t)a+b)
>
= 0upc(log2).
The function defined over R \ {0, —1, -2} by

14-t|ote|24-¢[atb
ua’byc(t)zlog(l +t|*7¢| 2+ >

|t|a+b+c
reaches its minimum at to(a, b, ¢) = (2b+c+\/Z)/2a,
with A given by (3-1). We have
ua,b,c(tO(av b7 C))
= —alog(2a) + (a+c)log(2(a+b) + c+ \/Z)
+ (a+b)log(2(2a+b) + c+ \/K)
— (a+b+c)log(2b + ¢ + VA).

We call uyp..(to(a,b,c)) the analytic component of
Ua,b,c(log 2)

It remains to study the behaviour of the sequence
(€n)nen. If we make (a+b+c)n-fold partial integra-
tions, we find

()
" dpjaesa(an)((a+b+c)n)!

1 Bn 1—g)m (a+b+c)n
/ platn(1_g)(@th)n <M) Iz
0

(3-2)

1+
2" datpim)n / Lleon(1—g)ehn
- x
db/a,c/a(an) 0 (1—|—J;)(a+b+c)n+1 ’
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since
hn (—1)#n2m
1— vnzi__lﬁnzyn n .
(- = S - ()" 2"Qu()

Equalities (2-1) and (2-3) and Lemma 2.3 yield

1 b
lim > logle,| = a+ @ +7(1+log2) — ae(~, )

n—+oo N, a a
1 xa-kc(l o :L,)a-&-b
+ 01;13%(1 0g (1 + x)a+b+c
= —Tapc(log2).

The function defined over R \ {0,1,—1} by

a+c 1— a+b
Vape(z) = log <M) = Ugpe(—1—2)

|1+x|a+b+c
reaches its maximum at

V/(2a+2b+c)? + 4a(a+c) — 2(a+b) — ¢
2a ’

To (a7 ba C) =

and its value at this point is
v(zo(a,b,c))
= —alog(2a) + (a+c)log(—c — 2(a+b) + \/K)
+ (a+b) log(2(2a+b) + ¢ — VA)
— (a+b+c)log(—c —2b + \/K)
We know, from Lemma 2.1, that

1 + Ua,b,c(log 2)
Tab.c(log2)

is an irrationality measure of log 2.

Remark 3.1. The saddle method (see [Dieudonné 1968]
for instance) allows us to prove that the analytic
component in o, .(log 2) is the best possible.

Remark 3.2. The computations that we have just
done can be adapted very easily to the numbers
log(l1 —r/s) with € N and s € Z \ {0} such that
r/s € [—1,1]. In particular, it allows one to recover
Theorem 2 of [Heimonen et al. 1993]. Actually, we
obtain

Tapc(log(l —1/s))
= a(1 +log|r|) + B(1 + log |s]|)

b ¢
+ (1 +logr—s|) —ae(2, %)

((t +s/r)™ (¢ 11— S/TI)““’)

ta+b+c

+ min log

t>0
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and

Tap,c(log(l —r/s))
=a(1 +log|r|) + B(1 + log|s|) + v(1 + log |r — s|)

b c anrc(l _ x)a+b
— a€<—, —) + max log —a-‘rb-‘rc .
a a 0<z<1 (q; — s/r)

3A. Links Between the Irrationality Measures of log 2
Given by the Polynomials of Rukhadze, Dubitskas,
Hata and Chudnovsky

Let w; and wy be as in formulas (2-6). We now show
that every irrationality measure of log2 obtained
from the polynomials of D. V. and G. V. Chud-
novsky can also be found using those of Rukhadze
and those of Hata.

Lemma 3.3. Let a € N\ {0} and b,c € Z\ {0} be such
that a > — min(b, ¢, b+c). Then

Mwi(a,b7c) (log 2) = 1u’(a7b,c) (log 2)
fori=1,2.

Proof. We first show that

le(a,b,c) (log 2) = o-ayb;C(]'Og 2)

Recall that A denotes (c+2b)? + 8a(a+b+c), which
is invariant under the action of w;. We use (3-2) to
compute min, g Uq p,c(r) — Mil, 5 Uy, (a,b,¢) (T):

ua,b,c(ro(aa ba C))
= —alog(2a)

— Uy (ab,e) (To(wi(a, b, €)))
+ (a+b) log(2(a+b))
+ (a+b)lo ( (2a+b)+c + \/_)
— alog(2(2a+b —f—c—}—\/_)
+ (atc) log(2(a+b)+c+VA)
+ (a+c)log(—2b+c+VA)
— (a+b+c) log (2b+c+\/Z)
— (a+b+c) log(2a + c+\/K)
=blog2 —aloga + (a+b) log(a+b)
+blog(2(2a+b)+c+VA)
— (atb+c) log(2(atbtc) (2(2a+b)+c+VA))
+ (a+c)log(2(a+c) (2(2a+b)+c + VA))
= —aloga + (a+b) log(a+b)

— (a+b+c) log(a+b+c) + (a+c) log(a+-c).

Hence, using Lemma 2.5, we deduce

/U/a,b,c(r() (a/, b, C)) — I(a, b’ c)

= Uw; (a,b,c) (TO (wl(av ba C))) - I(wl (a’v ba C))v

where I(a, b, c) is given by (2-7). Recall that, for any

triple (a, b, ¢) of integers satisfying the conditions of
the lemma, we have

Oapc(l0g2) = a + max(0,b) + max(0, ¢)(1+log 2)
—I(a,b,c) + ugp.c(ro(a,b, c)).

It easily follows that

Tab,(1082) = 04, (ap,c) (l0g 2).
We can similarly show that

Tab,c(1082) = Ty, (a.0,c) (log 2).

In the same way, we prove

a,b,c) (log 2) 0

Remark 3.4. Here again, the computations are the
same for the numbers log(1 — r/s) with r € N and
s € Z\ {0} such that r/s € [—1,1[. Thus, we obtain

,uwQ(a,b,c) (log 2) = )u’(

;uwi(a,b,c) (log(l - T/S))

for i = 1,2, with a € N\ {0} and b,c € Z \ {0}
such that ¢ > —min(b,¢,b + ¢). Such a result is
mentioned in the final remark of [Viola 1997], where
one can find a simpler approach for getting irra-
tionality measures of log(1 — r/s) using the Euler—
Pochhammer integral representation of the hyperge-
ometric function ,F;, a method inspired by the one
developed in [Rhin and Viola 1996].

= L(ap,e)(log(l —7/s))

3B. Figures and Results

In the preceding section, we established the formulas

Oapc(log2)

b
=a+ 3+ v(1+log2) — ae(a, g) — alog(2a)

+ (atc) log(2(a+b)+c+VA)
+ (a+b) log(2(2a+b)+c+VA)

— (a+b+c) log(2b+e+VA) (3-3)



and
Tabc(log2)
b c
= ae(;, E) —a— (3 —7v(1+log2) + alog(2a)
— (a+c) log(—c—2(a+b)+x/§)
— (a+b) log(2(2a+b)+c—VA)
+ (a+btc) log(—c—2b+VA)
with a € N\ {0} and b, ¢ € Z such that

(3-4)

a > —min(b, ¢, b+c)

and with 3, v and A as in (3-1).

Using the integration algorithm described in Sec-
tion 2C, we can compute explicitly the irrationality
measure of log2 associated to the choice of param-
eters (a,b,c) (which choice determines the class of
approximants of the kind P, ,, - that is going to be
used). So, we wrote a program which works under
GP, the calculator of the PARI system [Batut et al.
1999]. Tt associates to every suitable triple (a,b,c)
an irrationality measure of log2 computed numer-
ically to the desired accuracy. On the other hand,
looking at formulas (3-3) and (3-4), it is easy to
notice that

H(ka,kbyke) (108 2) = Li(a,b,c)(10g2)
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for all a,k € N and b, ¢ € Z such that
a > —min(b, ¢, b+c).

This allows us to restrict our parametrization to
pairs of rational numbers of the form (a/b, a/c), with
a, b, c relatively prime integers. From now on, we
write fi(ap,c)(1082) O fiq/p,q/c(log 2) interchangeably
to denote the irrationality measure of log2 associ-
ated to the triple (a, b, c).

Thanks to Lemma 3.3, we can restrict our study
to the rational points (z,y) = (a/b,a/c) with a,b,c €
N\{0}. Inspecting this quadrant of the plane, we no-
ticed that the most interesting area was around the
point (6,6). Hence we made a more precise study of
the irrationality measures obtained near this point,
sampling on the grid Mg ¢ consisting of points of the
form

j k
64+ L — —) .
25 50/ jkez,—25<j<25,—50<k<50

j k
25 + 50’
This gave Figure 1 (left), which represents the sur-

face interpolating the points

(6+

(.’L‘, Y, Uw,y(log 2))(z,y)€Ms,e'

We can clearly see on this surface a crease, cor-
responding to values obtained along the half-line
{y = =, © > 0}. Restricting our attention to this

p(log2) p(log2)
Annnnm
nnng
Ntmann 4.1 1
T =N :
TR
I TTHHRHNE
s H HH S
s n aa
T L T LR
T R R
T T TR
I T T T
LR T
LI R
L
IR es e R 1
T R 4.0
T T Y
AT
Y
\Y
a/b 3.9 1 a/b
4 5 6 7 8 2 4 6 8 10 12 14 16

FIGURE 1. Irrationality measures of log 2 around the triple (a,b,¢) = (6,1,1). In the three-dimensional plot on
the left, the horizontal coordinates are a/b and (coming out of the plane of the paper) a/c; the height gives
the associated irrationality measure. On the right we restrict attention to the line a/b = a/c =: x, plotting x
horizontally and the associated irrationality measure vertically.
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crease, we obtain Figure 1 (right), a two-dimensional
plot of p, »(log2) vs. x sampled at the points

;= 2+ j/14000,

for 0 < j < 14000. The apparent minimum on this
curve is reached at a/b = 6.

Finally, the best irrationality measures found cor-
respond to the choices of parameters (8,—1,—1),
(7,1,-1), (6,1,1) and (7,—1,1). The first of these
triples corresponds to the choice of parameters made
by E. A. Rukhadze [1987]. Hence

log(2a) +

1-1(log2) =1
Us,—1, 1(log 2) + loga — 3

with
a = 27"1(153333125 + 7734633v/393),

BzS—W(%—f—%).

Numerically,
ps,—1,-1(log2) = 3,8913997 .. ..

The triple (7,1, —1) considered by Hata [1990] gives
the same irrationality measure, and we also find this
value if we choose (6,1,1) and (7,—1, 1) (which may
be predicted from Lemma 3.3). The choice (6,1,1)
correspond to the polynomials used by the Chud-
novskys, namely

1 d» <7n

CGn,n(z) - EELGH(Z) = )Pﬁn,n,n(z)a

n
where as before L,, is the n-th Legendre type poly-
nomial. (In [Chudnovsky and Chudnovsky 1993]
it is said that the use of a simple one-dimensional
parametrization and the computation of the con-
tent of these polynomials yield an irrationality mea-
sure of 3.87..., but we were unable to duplicate
this value using the same methods, which simply
yield the result of Rukhadze and Hata. In fact, Re-
marks 2.4 and 3.1 tell us that the arithmetic com-
ponent e (b/a,c/a) and the analytic component in
Oapc(log2) are optimal. An improvement might
conceivably arise from replacing the l.c.m. d(a1g4+)n,
introduced to ensure that p,,q, € Z, with some-
thing smaller; but this is not done in the Chud-
novskys’ paper in question.)

4. COMPUTATION OF IRRATIONALITY MEASURES OF

/3
We use again the class of polynomials
1
B db/a,c/a((m)
with @ € N\ {0} and b,c € Z \ {0} such that a >

— min(b, ¢, b+c).
Then

%:Awwm—ﬂwm)

xr — eiTr/3

Fn(X) Pan,bn,cn(X) € Za’n [X]

L@ +iz)

an

dr €

where j = e2™/3; also

. 1
T m
%+E@/W§:A5f§%“

where we’ve put

—im/3\0Bn 1 _Bn 1—2)""F
_(e) /17 (1—a)"Fy(x) dr,
0

Un (1 _ eiw/S)'yn T — eiﬂ'/3

1 (,j)(ﬁ—v)nXﬁn(le)vn
Qn(X) = X — ein/3

€ (Z + JZ) (p1ym-1[X],

with § = max(0,b) and v = max(0, ¢). Setting

dn = 7 \/gd(a-‘rﬁ—}—'y)nFn (6”/3),

1
Pn = 3 d(atpim)n (/ Qn(z)F,(z)dx — Jn> ,
0

En = 3 d(a+ﬁ+'y)nvn7

for n € N, we obtain ,, = ¢,7/v3—p,, withp,., ¢, €
Z+ j7.

We now check the asymptotic behaviour of the
sequence (¢, )nen- The Cauchy formula gives us

f Z(a+c)n(1_z)(a+b)n dz
C

. d(a+p+y)n
= V3 (z — ein/3)(a+btont1 Qi

db/a,c/a (an)

an

where C is the unit circle centered at e™/3. Putting
z = e/3(1 — e*9), we have

2(2a+b+c)n

d(atBy)n
g < V3
| | db/a,c/a (an)

X max | sin@@ton
0<0<n

sin (9 — %)

(a+b)n)



Hence we deduce

log |q»|

lim sup <a+pf+7+ (2a+b+c)log?2

n—-+4oo

b ¢
- ae<a a) + J0aX ga.o(6)
= Oa,b,c (77-/\/_)7
the function g, ;. being defined by
) T
Jape(0) = sin (976> ‘ .

On the interval [0, 7], the derivative of this function
is cancelled at the points

(a+c)log |sin O] + (a+b) log

0o(a,b,c) = 1—i—lrlnc;b (4-1)
A5 =10 T 2 M 2201 b1 c) B
and
1 —b
01(a,b,c) = m_1 arcsin | ———— ).
12 2 2(2a-+b+c)

Indeed, since a > — min(b, ¢, b+c), we easily see that
(¢ — b)/2(2a+b+c) belongs to |—1/2,1/2[. There-
fore, the real number arcsin((c — b)/(2a+b+c)) lies
n |—m/6,7/6[. From this, we deduce that 6y(a, b, c)
lies in |0, 7/6] and 6,(a,b, c) in |7 /2,27/3].

It remains to study the behaviour of the sequence
(en)nen. We make (a+b+c)n-fold partial integra-
tions. We find

3d(a+,8+7)n (

"dya, c/a()j:b) /

a+c n(l I)(a-&-b)

En = a
(A=em)? <<a+b+c> )
((a+b+c)n)
.’1,’
% T — ewr/3 ) dx
_ 3d@ipin / gloten(1—g)lattn
= db/a,c/a(an) 0 (;1; — elﬂ/3)(a+b+c)n+1

since @,,(x) has degree (8+7)n—1 and since S+ <
a+ b+ c (recall that @ > —min(b, ¢, b+c)).
From this we deduce, replacing the initial inte-
gration path by the smallest arc of circle centered in
eir/3 joining 0 and 1,

hIJP — log len] < a+ 06+ v+ (2a+b+c) log 2
o —ae(b C>+ max (9)
a’ a 0<6<7/6 Ga,bre
- _Ta,b,c (71_/\/7)

The maximum of g,,. on the interval [0,7/6] is
reached at 0y(a, b, c).

We prove, exactly in the same way as in the end
of the proof of [Hata 1990, Theorem 4.2], that we
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can apply Lemma 2.2. Then we know that 1 +
aavb,c(w/\/g)/ﬂz,bvc(ﬂ/\/g) is an irrationality mea-
sure of 7/+/3.

Remark 4.1. The saddle method [Dieudonné 1968]
ensures that the analytic components

max g,p.(0) and

0<6<m max ga,b.c(f)

0<8<m/6

in the upper bounds for limsup,,_, log|qg,|/n and
limsup,,_, . log |e,|/n, respectively, are best possi-
ble.

4A. Links Between the Irrationality Measures of 7/1/3
Given by the Polynomials of Rukhadze, Dubitskas,
Hata and Chudnovsky

We now prove a result that will allow us to restrict
the field of parameters (a, b, c) to study.

Lemma4.2. Let a € N\ {0} and b,c € Z\ {0} be such
that a > — min(b, ¢, b+c). Then
,u/(a,b,c) (7'['/\/5) = ,uwlwz(a,b,c) (ﬂ—/\/§)
= M(a+b+c,—b,—c) (71'/\/3) .

This means in particular that every measure of ir-
rationality of 7/1/3 obtained from the polynomials
of D. V. and G. V. Chudnovsky can also be found
with those used by Dubitskas.

Proof. We clearly have

Bo(a-+btc, —b, —c) = % — Bo(a, b, ¢),
01 (a+b+c,—b,—c) =+ % —61(a,b,c).

From this we deduce

Gatbie,—b—c(0i(a+btc, —b,—c)) = gap.(6i(a, b, c))
for ¢ = 0,1. Then the formulas

Tape(T/V3) = a+B+7+ (2a+btc)log?2

—ae(b c) + max gup..(0),

a a 0<0<
7_a,b,c(’/T/\/g) = —a— /6 -7 =

b ¢
L 9
tae(l. 7))~ max g.,.(0)

(2a+b+c)log 2

and Lemma 2.5 give us the equalities

Oa4b+c,—b,—c (W/\/g) = Oa,b,c (W/\/g),
Tatbtc,—b,—c (W/\/g) = Tab,e (W/\/g) (|
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4B. Figures and Results

We can explicitly compute the irrationality measure
of m/+/3 associated to a choice of parameters (a, b, ¢).
This involves a simple adaptation of the GP pro-
gram written for log2. The slight difficulty repre-
sented by the computation of the integral e(b/a, c/a)
has already been dealt with, so we only have to en-
ter the formulas giving the maxima of g, .(6) over
[0, 7] and over [0,7/6]. This program gives an irra-
tionality measure of 7/+/3 computed numerically to
the desired accuracy from the parameters (a, b, c).
If we look at the expressions of o, (7r/ \/§) and

Tab,c (W/\/g), we see that

H(ka,kb,ke) (71'/\/3) = H(a,b,c) (W/\/g)

for a,k € N and b,c € Z with a > — min(b, ¢, b+c).
Together with Lemma 4.2, this allows us to work
not with triples of integers (a,b,c) but with pairs
of rational numbers that can be written in the form
(a/b,a/c), with a,b € N\ {0} and ¢ € Z \ {0} such
that @ > —c and a, b, c relatively prime. Here again
we denote by fi(a,p,c) (w/\/g) or Ma/bV,l/c(ﬂ'/\/g) inter-
changeably the irrationality measure of 7//3 asso-
ciated to the triple (a,b,c).

An examination of these two quadrants of the
plane suggested that the most interesting areas are
around the points (4,4) and (5,—5). Thus, we sam-

u(m/v/3)

N
NN
THHHHhnmt
JEEIT TR
LTI IR
TR

pled the irrationality measure at the points of the
grid My 4 around (4,4) defined by

av L4 Eogp —) :
+ 25 50 + 25 50/ jkez,—25<5<25,—50<k<50

( ik j _k
and at points in the grid M; _5 around (5, —5) de-
fined by

Bt oy B —

(+55t 95 5% 35)
50 25’ 50 25/ jkez,—50<j<50,—25<k<25

This yields the left portions of Figures 2 and 3. Here
again, the best values seem to lie along the half-lines
of equations {y = z, z > 0} and {y = —=z, z > 0},
respectively.

Restricting our attention to these lines, we plot
in Figure 2 (right) the value of y, ,(7/+/3) versus =
sampled at the points

z; =2+ j/14000, for 0 < j < 14000,

and in Figure 3 (right) we plot p, _.(7/\/3) versus
x sampled at the points

x; =2+ 7/14000, for 1000 < j < 14000.

The minima on these curves appear to be at the
points £ = 4 and —5, respectively, corresponding to
(a/bya/c) = (4,4) and (5,—5).

The best irrationality measures that we can find
are associated to the choices of parameters (5,1, —1)

u(r/V/3)
5.8 1

5.7t

5.5 1
5.4 1

5.3 1

2 3 4 5 6

a,/b 5.2 1+ a/b

2 4 6 8 10 12 14 16

FIGURE 2. Irrationality measures of 7/v/3 around the triple (a,b,c) = (4,1,1). The plotting conventions are the

same as in Figure 1.
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5.0 =

and (5, —1,1). The first of these was used by Hata
[1990], who obtained the value

log ay + 54

s (V) = 1+ P

= 5.0874625.. . ,

where
ay = 1(1327 + 231V/33),
2v3 1
h=6-n(5"3)

Dubitskas [1987] obtained 5.516 and later [1993]
the better value 5.2, using the choice of parameters
(6,—1,—1). The best value we can obtain with this
triple is

log a; + 3>

= 5.18300789...,
log a; — 3,

Me,—1,—1 =1+

with
Qs = 362 + 209V/3,

—log(2°73775°).

D. V. and G. V. Chudnovsky [1993] report obtaining
the value 4.96, still considering a simple one-dimen-
sional parametrization of the polynomials P, ,,, ., (m
positive) and computing the content of these poly-
nomials. The best value we were able to find with
these restrictions is the one associated to the triple
(4,1,1), which according to Lemma 4.2, gives the

p(m/v/3)

N
NN
i

RN
N
‘:‘:‘:\‘li:‘::‘ilt:i\ h.hn
NN\ S eie
W
\:-\\\;\\:‘,»'.' &

e
.n':'.','

5.8 1

5.7 1

5.6 1

5.5 1

5.4 1

5.3 T

5.2 1
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same value as the choice of parameters of Dubits-
kas. Here also, Remarks 2.4 and 4.1 tell us that
the arithmetic component e (b/a,c/a) and the ana-
lytic components in o, . (7r/\/§) and T, . (7r/\/§)
are optimal. The only room for improvement would
lie in replacing the l.c.m. d(44g44)n by something
smaller.

Since then, Hata [1993] has obtained by other
techniques the value 4.6016, which stands as the
lowest known irrationality measure of 7 /+/3.

5. AN ATTEMPT AT ANALYTIC IMPROVEMENT

One can try to get lower irrationality measures in
several ways. The first would be a sharpening of
Lemmas 2.1 and 2.2, whose proofs are very easy. A
second way would be to get directly the p-adic valu-
ation of the numbers p,, and ¢, involved in the good
approximations &, = ¢, — p,, instead of computing
only the p-adic valuation of the greatest common
divisor of the numbers

((a—i—b)n) ((a—i-b—i-c)n—i-j)
bn+j (a+b+c)n /'

for 0 < j < an. Another possibility would be, as
already said, to replace the lowest common multiple
d(a+B+~)n involved in the expression of p, and g,

by something smaller. A fourth way is to search
for new classes of approximants. We worked in this

u(m/V3)

a/b 5.1 1 a/b

3 4 5 6 7

4 6 8 10 12 14 16

FIGURE 3. Irrationality measures of log 2 around the triple (a,b,¢) = (5,1, —1). The conventions are the same as
in Figure 1, except that the plane plot is the restriction to the line a/b = —a/c =: z, rather than a/b = a/c.
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direction. In connection with log?2, we considered
the polynomials

1
Un,m,m’,s,t(z) = (

2n+2m+m/)!
X ((2(1 = 2))2m(s — gy ) GrtEmn),

with n,m’ € N and m,s,t € Z such that 2n >
— min(m, 2m + m'), which can be written

2n 0
Unmmna(2) = 3 )

k1:0 k2:7 min(kl,m’)

7
X tk2+m s kzcnvmam',klykzzkl—i_h)’

((_1)k1+kz+m+m'

where

Crmom ey ks
_ (2n+m m' 2n+2m~+m’+ki+ksy
a (kﬁ—m) <k2+m’> ( 2n+2m—+m/ )
Putting m’ = 0, we see that this class general-
izes the polynomials Py, m m. We used it in order to
improve the analytic behaviour of the polynomials
Py, mm,m, i.€., the analytic components which appear
in 04p..(log?2) and 7,5 .(log2) (see (3-3) and (3-4)).
The role of the factors (s — tz)™ is to decrease
the size of the minimum of the function involved in
Tab.c(log2) in order to increase it. As in Section 2,
we looked in particular at the asymptotic behaviour
of the content of the coefficients C,, yy m/ g, k.- We

put
dz

o) = [ iy
Fi(A\A)UFa(A\) &
where

F X)) ={z>0:{z} <1,

1+{\z} < 2{z}+2{\z} < 2—{N'z}}
and
F(A\XN) = {:C >0:

2+{A\z} < 2{z}+2{\z} < 3—{Nz}}.
We obtained
Tapre,s,t(1082) = 2a + (B+7)(2+log 2)

~ofo

where u,p 50 0 R\ {0, =1, =2, —|s+¢|/|t|} — R is
defined by

b ¢ .
2 a) TR een(r)

2a+b c
a4 )T (st + 1t )
ua,b,C,S,t(T) =10 |p[2at2bte ’

and

_Ta,b,c,s,t(log 2) = 2(1 + /B(2+log 2) + C(2+10g 2)
b ¢
- af(aa E) + 012132{1 Ua,b,c,s,t(m)a
where vgp0s0 : R\ {0, 1, =1, s/t} — R is defined by

‘x(l—x)‘zﬁb |s—tx|®

|1+x‘2(a+b)+c

Vasbe,s,(€) = l0g

Let x¢(a,b) denote the point in [0,1] where the
function involved in 7,,.(log2) reaches its maxi-
mum. The pairs of integers (s,t) that we use are
the numerator and the denominator of the conver-
gents of the real number z4(a,b). The improvement
of the analytic components are then clear for some
pairs (s,t) but the results we get are worse than
in the previous situation because of the very bad
asymptotic behaviour of the content of the num-
bers Cy m,m ki ,k,- 1o illustrate this, consider the
class Usan,an,cn,st(X) with a,¢,n € N and s,t € Z.
When ¢ = 0, we recover the polynomials Fg, pnn,
from which we could establish an irrationality mea-
sure numerically equal to 3.8913997.... The value
of z4(3,1) is

V393 — 15
12
The pairs (s,t) used are the numerator and the de-
nominator of the first convergents of z((3,1). Ta-
bles 2—4 list data about irrationality measures ob-
tained from the polynomials Usgn an,en,s,t(X) using
these pairs (s, ).

= 0.4020189....

; c/la=
S
10-' 1072 10°% 10~* 10-5
1 2 | 4.4945 3.9656 3.9008 3.8925 3.891536
2 5 | 4.5214 3.9556 3.8985 3.8922 3.891501
39 97 | 5.3634 4.0117 3.9037 3.8926 3.891534
80 199 | 5.6156 4.0258 3.9050 3.8928 3.891547
199 495 | 5.9720 4.0438 3.9067 3.8929 3.891563
478 1189 | 6.3601 4.0613 3.9083 3.8931 3.891756

TABLE 2. Values of p3q a,c,s,(10g2), obtained using

1635,

the polynomials Usan an,cn,s,t(X).
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; c/la=
s
10t 1072 107%® 107* 107°
1 2 4.4030 4.2465 4.2291 4.2273 4.2271
2 5 4.4152 4.2582 4.2316 4.2278 4.2272
39 97 4.1157 4.2276 4.2283 4.2273 4.2271
80 199 4.0439 4.2204 4.2276 4.2273 4.2271
199 495 3.9527 4.0158 4.2267 4.2272 4.2271
478 1189 3.8651 4.2025 4.2258 4.2271 4.2271

TABLE 3. Absolute values of the analytic component
0f T34,0,¢,5,£(l0g 2) (that is, maxo<z<1 V3a,a,¢,5,£(T)/a)-

The sign of this expression is negative in all cases and
has been omitted for brevity.

c/a=
10-2 100% 100* 10°°

0.3739 0.3839 0.3855 0.3857

1 10!
0.2043  0.3251

TABLE 4. Arithmetic component of 7344, s,¢(l0g 2)
(that is, f(3,c/a)/a).
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