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We develop a semistability algorithm for vector bundles that are
given as a kernel of a surjective morphism between splitting bun-
dles on the projective space PN over an algebraically closed field
K . This class of bundles is a generalization of syzygy bundles.
We show how to implement this algorithm in a computer alge-
bra system. Further, we give applications, mainly concerning the
computation of Tannaka dual groups of stable vector bundles of
degree 0 on PN and on certain smooth complete intersection
curves. We also use our algorithm to close a case left open in
a recent work of L. Costa, P. Macias Marques, and R. M. Miró-
Roig regarding the stability of the syzygy bundle of general forms.
Finally, we apply our algorithm to provide a computational ap-
proach to tight closure. All algorithms are implemented in the
computer algebra system CoCoA.

1. INTRODUCTION

The notion of slope (semi)stability for vector bundles
on a smooth projective variety over an algebraically
closed field K, as introduced by D. Mumford in the case
of curves and generalized by F. Takemoto to higher-
dimensional varieties, is a very important tool in alge-
braic geometry. Unfortunately, for a concretely given vec-
tor bundle it is often very difficult to decide whether it
is semistable or even stable. In this paper we develop an
algorithm to determine computationally the semistabil-
ity of certain vector bundles on the projective space PN .
Throughout this paper we assume that N ≥ 2, since for
N = 1, by a theorem of A. Grothendieck, every vector
bundle splits as a direct sum of line bundles. We restrict
ourselves to vector bundles that are given as a kernel
of a surjective morphism between splitting bundles, i.e.,
vector bundles E that sit in a short exact sequence

0 −→ E −→
n⊕

i=1

OPN (ai)
ϕ−→

m⊕
j=1

OPN (bj ) −→ 0.

We call such bundles kernel bundles. For instance, by
Horrocks’s theorem , every nonsplit vector bundle on P2

admits such a presentation. The morphism ϕ that de-
fines E is given by an m × n matrix M = (aji), where the
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entries aji ∈ R := K[X0 , . . . , XN ] are homogeneous poly-
nomials of degree bj − aj . Special instances (m = 1 and
b1 = 0) of kernel bundles are the so-called syzygy bundles
Syz(f1 , . . . , fn ) for R+-primary homogeneous polynomi-
als f1 , . . . , fn (i.e.,

√
(f1 , . . . , fn ) = R+), that is, a syzygy

bundle has a presenting sequence

0 −→ Syz(f1 , . . . , fn ) −→
n⊕

i=1

OPN (−di)
f1 ,...,fn−→ OPN

−→ 0,

where di = deg(fi). Due to their explicit nature, ker-
nel bundles and syzygy bundles are suitable for direct
computations, in particular using Gröbner-basis methods
and combinatorics. But in general, not much is known
about (semi)stability of kernel bundles or even syzygy
bundles. One of the most important results in this di-
rection, due to H. Brenner, is a combinatorial criterion
for (semi)stability of syzygy bundles given by monomial
families:

Theorem 1.1. (Brenner.) Let K be a field, R :=
K[X0 , . . . , XN ], and let fi = Xσi denote R+ -primary
monomials of degree di = |σi | in K[X0 , . . . , XN ], i =
1, . . . , n. Suppose that for every subset J ⊆ I :=
{1, . . . , n}, |J | ≥ 2, the inequality

dJ − ∑
i∈J di

|J | − 1
≤ −∑

i∈I di

n − 1

holds, where dJ is the degree of the greatest common fac-
tor of fi, i ∈ J . Then the syzygy bundle Syz(f1 , . . . , fn )
is semistable (and stable if < holds).

Proof. See [Brenner 08a, Corollary 6.4].

Another important theorem, due to G. Bohnhorst and
H. Spindler, is a numerical (semi)stability criterion for
kernel bundles of rank N on PN in characteristic 0:

Theorem 1.2. (Bohnhorst–Spindler.) Let E be a vector
bundle of rank N ≥ 2 on the projective space PN over an
algebraically closed field K of characteristic 0. Suppose
there is a short exact sequence

0 −→ E −→
N +k⊕
i=1

OPN (ai) −→
k⊕

j=1

OPN (bj ) −→ 0

such that a1 ≥ · · · ≥ aN +k , b1 ≥ · · · ≥ bk , and bj > aj for
j = 1, . . . , k. Then E is semistable (respectively stable) if
and only if

aN +k ≥ (respectively >) µ(E) =
1
N

(N +k∑
i=1

ai −
k∑

j=1

bj

)
.

Proof. This is [Bohnhorst and Spindler 92, Theorem 2.7]
applied to the dual bundle E∗.

A general algorithm using Gröbner-basis methods
(computation of syzygy modules) that detects semista-
bility of syzygy bundles and its implementation by the
first author was announced in [Brenner 08a, Remark 5.3].
In this article, we describe this algorithm more generally
for kernel bundles and describe in detail how to imple-
ment it in a computer algebra system (this has been done
concretely by the first author in CoCoA).1 This semista-
bility algorithm can be used as a tool to examine further
problems regarding semi(stability) of vector bundles by
providing interesting examples. We explain these applica-
tions in more detail in the sequel. The paper is organized
as follows.

In Section 2, we recall a criterion due to H. J. Hoppe
(see Proposition 2.1) that relates (semi)stability to global
sections of exterior powers of a given vector bundle. In
particular, we show that this result, originally formulated
only in characteristic 0, holds in arbitrary characteristic.
Hoppe’s criterion is the key result for our algorithm.

In Section 3, we discuss some properties of kernel bun-
dles and syzygy bundles on projective spaces. In par-
ticular, for these vector bundles we discuss necessary
Bohnhorst/Spindler-like numerical conditions (compare
Theorem 1.2 above) for semistability.

The actual semistability algorithm for kernel bundles
and its implementation is explained in Section 4. Besides
exterior powers, we also describe explicitly how to com-
pute global sections of tensor products and symmetric
powers of kernel bundles. These algorithms play an im-
portant role in our first application: the computation of
Tannaka dual groups of polystable vector bundles E of
degree 0 and rank r on PN in characteristic 0.

Section 5 starts with a brief introduction to Tannaka
duality. Roughly speaking, for a polystable vector bundle
E of degree 0, one can find a semisimple algebraic group
GE and an equivalence of categories between the abelian
tensor category generated by E and the category of finite-
dimensional representations of GE . The algebraic group
GE is called the Tannaka dual group of E . It was shown in
[Kasprowitz 10, Lemma 4.4 and Proposition 5.3] that for
stable vector bundles of degree 0 and rank r, as in The-
orem 1.2, the almost simple components of the Tannaka
dual group are of type A. Using a result in [Anisimov 11,
Theorem 1], one can even show that it is always the group
SLr if it is almost simple. We explain how to compute the

1 CoCoA is available at http://cocoa.dima.unige.it.
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Tannaka dual group for an arbitrary stable kernel bundle
of degree 0 on PN and construct examples for low-rank
syzygy bundles on P2 having the symplectic group Spr

as Tannaka dual group.
Furthermore, we are interested in the behavior of

the Tannaka dual group after restricting the bundles to
smooth curves. In Section 6, we describe a method to
construct for certain kernel bundles E on PN a finite mor-
phism f : PN → PN such that the restriction of the pull-
back f ∗(E) to certain complete intersection curves of suf-
ficiently large degree has the same Tannaka dual group as
the vector bundle f ∗(E) on PN . We show that this works,
for example, for the syzygy bundles constructed in Sec-
tion 5. We would like to draw the reader’s attention to
the paper [Balaji 07], in which the author shows the ex-
istence of a rank-2 bundle E with c2(E) � 0 on a smooth
surface X such that the restriction to a curve of genus > 1
has Tannaka dual group SL2; see also [Balaji 09, Proposi-
tion 3]. Balaji’s method is completely different from ours.
He uses this result to show that the moduli space of sta-
ble principal H-bundles on X with large characteristic
classes is nonempty, where H is any semisimple algebraic
group ([Balaji 07, Chapter 7]).

In Section 7 we close a case left open in the paper
[Costa et al. 10], where the authors show the stability of
the generic syzygy bundle on P2 except for the bundle
generated by five generic quadrics. We use the results
obtained in Section 5 and construct an example for a
stable syzygy bundle in this case, which gives the generic
result via the openness of stability.

In the final section we provide another application of
the semistability algorithm concerning the computation
of tight/solid closure of homogeneous ideals in the coor-
dinate ring of a smooth projective curve. This is possible
due to the geometric approach to this topic developed by
H. Brenner.

2. THEORETICAL BACKGROUND: HOPPE’S
SEMISTABILITY CRITERION

We recall that a torsion-free sheaf E on a smooth pro-
jective variety X over an algebraically closed field K is
semistable if for every coherent subsheaf 0 	= F ⊂ E , the
inequality

µ(F) := deg(F)/ rk(F) ≤ deg(E)/ rk(E) = µ(E)

holds. The sheaf E is stable if the inequality is always
strict. The degree of a sheaf F is defined using inter-
section theory and a fixed very ample invertible sheaf

OX (1) (which is also called a polarization of X) as
deg(F ) = deg(c1(F).OX (1)dim(X )−1). For every coherent
torsion-free sheaf E there exists a unique filtration E1 ⊂
E2 ⊂ · · · ⊂ Et = E , called the Harder–Narasimhan filtra-
tion, such that Ei/Ei−1 is semistable and

µ(E1) > µ(E2/E1) > · · · > µ(E/Et−1).

The slopes µ(E1) and µ(E/Et−1) are also denoted by
µmax(E) and µmin(E), respectively. If K is not al-
gebraically closed, then we define the terms degree,
semistable, etc., via the algebraic closure of K.

If the characteristic of the base field K is 0, it is well
known that the tensor product E ⊗ F of two semistable
vector bundles E and F on a smooth projective po-
larized variety (X,OX (1)) is again semistable, and this
also holds for exterior powers and symmetric powers (cf.
[Huybrechts and Lehn 97, Theorem 3.1.4 and Corollary
3.2.10]). This no longer holds in characteristic p > 0. This
is due to the fact that the (absolute) Frobenius morphism
F : X → X may destroy semistability. That is, the Frobe-
nius pullback F ∗(E) of a semistable vector bundle E is in
general not semistable; see, for instance, the example of
Serre in [Hartshorne 71, Example 3.2].

In this paper, we are mainly interested in vector
bundles on projective spaces. The following result is well
known in characteristic 0 (see, for instance, [Brenner 08a,
Proposition 5.1] or [Bohnhorst and Spindler 92, Propo-
sition 1.1]). It gives an algorithmic criterion to check
semistability of a vector bundle on PN in terms of global
sections of its exterior powers. It uses the trivial but
useful fact (in particular for a computational approach
to semistability) that a semistable vector bundle of
negative degree (or slope) does not have any nontrivial
global sections. Since the key idea goes back to H.
J. Hoppe (see [Hoppe 84, Lemma 2.6]), this result is
attributed to him. Hoppe’s result is also true in positive
characteristic due to the fact that semistability for
vector bundles on a projective space behaves nicely with
respect to tensor operations.

Proposition 2.1. (Hoppe.) Let E be a vector bundle on PN

over an algebraically closed field K. Then the following
hold:

1. The bundle E is semistable if and only if for every q <
rk(E) and every k < −qµ(E), there exists no nontrivial
global section of (

∧q E)(k).

2. If Γ(PN , (
∧q E)(k)) = 0 for every q < rk(E) and every

k ≤ −qµ(E), then E is stable.
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Proof. Since µmax(ΩPN ) ≤ 0, a semistable vector bun-
dle E on PN is strongly semistable by [Mehta and
Ramanathan 82a, Theorem 2.1] (we recall that this
means that the Frobenius pullbacks Fe∗(E) are
semistable for all e ≥ 0). Hence it follows from [Ramanan
and Ramanathan 84, Theorem 3.23] that

∧q E is also
semistable for all q ≤ rk(E). The first statement can now
be proven as in [Brenner 08a, Proposition 5.1]. The sec-
ond statement follows in the same way if we replace <

by ≤ appropriately.

Remark 2.2. Let (X,OX (1)) be a polarized smooth pro-
jective variety of dimension d ≥ 1 defined over an alge-
braically closed field of characteristic 0. For a semistable
vector bundle E on X, the numerical condition on the ex-
terior powers

∧q E in Proposition 2.1 is still fulfilled if we
replace the degree bound for the global sections by k <
−qµ(E)/deg(OX (1)) for every 1 ≤ q < rk(E). Hence, the
numerical condition is, up to the factor 1/deg(OX (1)),
always necessary for semistability.

If additionally, Pic(X) = Z, then the numerical crite-
rion is again equivalent to the semistability of E . Impor-
tant examples of varieties with this property are general
surfaces of degree ≥ 4 in P3

C (Noether’s theorem) and (in
arbitrary characteristic) complete intersections of dimen-
sion ≥ 3 in PN (see [Hartshorne 70, Corollaries IV.3.2
and IV.4(i)]).

In positive characteristic (under the assumption
Pic(X) = Z), the numerical condition on the exterior
powers still implies semistability, but the equivalence in
Proposition 2.1 holds only if every semistable vector bun-
dle on X is strongly semistable (compare the proof of
Proposition 2.1). Thus it is clear that Proposition 2.1
does not provide an algorithmic tool to detect semista-
bility of vector bundles on curves. For algorithmic meth-
ods to determine semistability and strong semistability of
vector bundles over an algebraic curve in positive char-
acteristic; see [Kaid 09, Chapter 3].

Example 2.3. Let F ∈ Z[X0 , . . . , XN ], N ≥ 4, be a homo-
geneous polynomial of degree d such that the hypersur-
face X := Proj(Q[X0 , . . . , XN ]/(F )) is smooth. By Re-
mark 2.2, we have Pic(X) ∼= Z, and thus Hoppe’s crite-
rion, Proposition 2.1, is applicable to determine semista-
bility of vector bundles on X. Now we assume that
d = N + 1. Then the canonical bundle ωX

∼= OX is triv-
ial, which implies the semistability of the cotangent bun-
dle ΩX (see [Peternell 01, Theorem 3.1]). In particular,
X is a Calabi–Yau variety. We consider X as the generic
fiber X0 of the generically smooth projective morphism

X := Proj(Z[X0 , . . . , XN ]/(F )) −→ Spec Z

of relative dimension N − 2. Up to finitely many excep-
tions, the special fiber Xp over a prime number p is a
smooth projective variety over the finite field Fp with
Pic(Xp) = Z. By the openness of semistability, the cotan-
gent bundle ΩXp

of the special fiber Xp is semistable too
for almost all prime numbers p. Since deg(ΩXp

) = 0, ev-
ery semistable vector bundle is strongly semistable on Xp

by [Mehta and Ramanathan 82a, Theorem 2.1]. Thus for
p � 0, we can also use Proposition 2.1 to detect semista-
bility of vector bundles on Xp (in positive characteristic).

3. SYZYGY BUNDLES AND KERNEL BUNDLES

In the remainder of this article, we restrict ourselves to
vector bundles on PN , N ≥ 2, that are kernels of surjec-
tive morphisms between splitting bundles, i.e., bundles
sitting inside a short exact sequence of the form

0 −→ E −→
n⊕

i=1

OPN (ai)
ϕ−→

m⊕
j=1

OPN (bj ) −→ 0,

where n ≥ m. The morphism ϕ is given by an m ×
n matrix M = (aji), where the entries aji ∈ R :=
K[X0 , . . . , XN ] are homogeneous polynomials of degree
bj − ai . In this paper, we call such a vector bundle a ker-
nel bundle. Special instances of kernel bundles are syzygy
bundles that correspond to the case m = 1 and b1 = 0,
i.e., a syzygy bundle Syz(f1 , . . . , fn ) is given by a short
exact sequence

0 −→ Syz(f1 , . . . , fn ) −→
n⊕

i=1

OPN (−di)
f1 ,...,fn−→ OPN

−→ 0,

where f1 , . . . , fn ∈ R = K[X0 , . . . , XN ] are homogeneous
polynomials of degree di , i = 1, . . . , n. If one of the poly-
nomials is constant, the syzygy bundle Syz(f1 , . . . , fn )
is obviously split. To exclude this case, one often de-
mands that the ideal (f1 , . . . , fn ) be R+-primary, i.e.,√

(f1 , . . . , fn ) = R+ = (X0 , . . . , XN ). The most promi-
nent example of a syzygy bundle is the cotangent bundle
ΩPN

∼= Syz(X0 , . . . , XN ) of PN .
If E does not split as a direct sum of line bundles,

then the dual bundle E∗ of a kernel bundle has homolog-
ical dimension 1, and therefore we obtain the inequal-
ity rk(E) ≥ N (see [Bohnhorst and Spindler 92, Corol-
lary 1.7]). We can compute the topological invariants of a
kernel bundle E from the presenting short exact sequence
above. We have

µ(E) =
c1(E)
rk(E)

=
1

n − m

( n∑
i=1

ai −
m∑

j=1

bj

)
.
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Since the Chern polynomial is multiplicative on short
exact sequences, it is also easy to compute higher Chern
classes of kernel bundles.

In the sequel, we show that the twists a1 , . . . , an and
b1 , . . . , bm that occur in the presenting sequence of a ker-
nel bundle have to fulfill a certain numerical condition
that is necessary for semistability (stability). We remark
that this condition is also necessary for the semistability
(stability) of kernel bundles (and in particular of syzygy
bundles) on arbitrary smooth projective varieties.

If E is a vector bundle on PN of rank r, and F ⊂ E
a subsheaf of rank r − 1, then the quotient E/F is iso-
morphic outside codimension 2 to OPN (�) for some � ∈ Z.
This is equivalent to a section OPN → E∗(−�). For kernel
bundles we are able to control such sections by an easy
numerical condition. In particular, we can replace the
condition on the global sections of the (r − 1)th exterior
power in Hoppe’s criterion, Proposition 2.1, by this con-
dition if the resolution of E∗ is minimal. For the notion
of minimality, see, for instance, [Ottaviani and Valles 06,
Section 7.2].

Lemma 3.1. Let E be a vector bundle on PN , N ≥ 2, sit-
ting in a short exact sequence

0 −→ E −→
n⊕

i=1

OPN (ai) −→
m⊕

j=1

OPN (bj ) −→ 0,

where a1 ≥ a2 ≥ · · · ≥ an . If

an ≥ (respectively >) µ(E) =
1

n − m

⎛⎝ n∑
i=1

ai −
m∑

j=1

bj

⎞⎠ ,

then there are no mappings from E to line bundles that
contradict the semistability (respectively stability) of E.
Moreover, if the dualized sequence is a minimal resolu-
tion for E∗, then this numerical condition is necessary for
semistability (stability).

Proof. We twist the short exact sequence presenting E
with OPN (�) and look at the dual sequence

0 −→
m⊕

j=1

OPN (−� − bj ) −→
n⊕

i=1

OPN (−� − ai)

−→ (E(�))∗ ∼= E∗(−�) −→ 0.

Since

H1

⎛⎝PN ,

m⊕
j=1

OPN (−� − bj )

⎞⎠ = 0

for all � ∈ Z, every global section of (E(�))∗ comes
from Γ(PN ,

⊕n
i=1 OPN (−� − ai)). Consequently, for � >

−an there exists no nontrivial morphism E(�) → OPN .
By assumption, we have −an ≤ µ(E∗). So we have
Γ(PN , E∗(−�)) = 0 for � > µ(E∗). Hence there are no
mappings to line bundles that contradict the semista-
bility. Analogously, one obtains the corresponding state-
ment for stability.

Next, we prove the remaining statement. Assume that

an < (respectively ≤) µ(E).

It follows from the assumption on the resolution of E∗

that the mapping E → OPN (an ) is nonzero. But such a
morphism does not exist for E semistable or stable.

It is easy to check that the subsheaf

ker

⎛⎝⊕
i 	=n

OPN (ai) →
m⊕

j=1

OPN (bi)

⎞⎠
destabilizes the kernel bundle E if an < µ(E) and the res-
olution of E∗ is minimal.

In [Bohnhorst and Spindler 92, Proposition 2.3], the
authors show that for a kernel bundle E of rank N on
PN , the corresponding resolution of E∗ is minimal if
and only if a1 ≥ · · · ≥ aN +k , b1 ≥ · · · ≥ bk , and bj > aj

for j = 1, . . . , k. Hence, in characteristic 0, Theorem 1.2
shows that for kernel bundles of this type, the numerical
condition of Lemma 3.1 is even sufficient for semista-
bility (stability). For syzygy bundles, we give an easy
characteristic-free proof of Theorem 1.2.

Proposition 3.2. Let K be a field and let f1 , . . . , fN +1 ∈
R = K[X0 , . . . , XN ] be homogeneous parameters of
degree 1 ≤ d1 ≤ · · · ≤ dN +1 . If d1 + · · · + dN ≥ (N −
1)dN +1 , then the syzygy bundle Syz(f1 , . . . , fN +1) is
semistable on PN . If the inequality is strict, then
Syz(f1 , . . . , fN +1) is a stable bundle.

Proof. We use Proposition 2.1 to check the semistabil-
ity of Syz(f1 , . . . , fN +1). For a subset I = {i1 , . . . , ik} ⊆
{1, . . . , N + 1} we use the notation dI =

∑k
j=1 dij

. We
consider the Koszul complex

0 −→ FN +1 −→ FN −→ · · · −→ F2 −→ F1 −→ OPN

−→ 0

on PN associated with the parameters f1 , . . . , fN +1,
where

Fk :=
⊕
|I |=k

OPN (−dI )
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for k = 1, . . . , N + 1. We have to show for every i < N

and every

m < −iµ(Syz(f1 , . . . , fN +1)) =
i
∑N +1

j=1 dj

N

that

Γ(PN ,
( i∧

Syz (f1 , . . . , fN +1)
)
(m)) = 0.

For every 1 ≤ i < N we have a surjection

Fi+1 −→
i∧

Syz(f1 , . . . , fn ) −→ 0.

Since the Koszul complex of a regular sequence
is also globally exact, every global section of
(
∧i Syz(f1 , . . . , fn ))(m) comes from the bundle Fi+1(m).

We have

Γ(PN ,Fi+1(m)) = 0

for m < d1 + d2 + · · · + di+1. The assumption
N∑

i=1

di ≥ (N − 1)dN +1

implies

(N − i)(d1 + · · · + di+1) ≥ i(di+2 + · · · + dN +1),

for 1 ≤ i ≤ N − 1 (for this easy computation, see
[Brenner 08a, Corollary 2.4]). But this is equivalent to

N(d1 + · · · + di+1) ≥ i(d1 + · · · + dN +1),

1 ≤ i ≤ N − 1, and we obtain the assertion. The remain-
ing statement follows analogously.

4. THE SEMISTABILITY ALGORITHM AND ITS
IMPLEMENTATION

The aim of this section is to use Hoppe’s semistability
criterion, Proposition 2.1, to obtain a semistability algo-
rithm for kernel bundles that can be implemented in a
computer algebra system.2

The major advantage of kernel bundles compared to
arbitrary vector bundles is that we can compute the
global sections Γ(PN ,

∧q E) of their exterior powers in a
way that is suitable for a computer algebra system. We do
not claim that such a computational approach is impossi-
ble for other vector bundles, but at least it requires more

2 All implementations described in this section can be found
at http://www2.math.uni-paderborn.de/people/ralf-kasprowitz/
cocoa.html.

technical effort. For a kernel bundle E , we give (probably
well-known) presentations of the tensor operations (ten-
sor powers, exterior powers, and symmetric powers) as
kernels of mappings between splitting bundles (but these
mappings are in general not surjective). This enables us
to compute the global sections of these vector bundles
described by applying the left exact functor Γ(PN ,−).
For our semistability algorithm, we require such a pre-
sentation only for the exterior powers, but we will need
the other tensor operations in Section 5.

Proposition 4.1. Let E be a vector bundle on PN that sits
in a short exact sequence

0 −→ E −→
n⊕

i=1

OPN (ai)
M=(aj i )−→

m⊕
j=1

OPN (bj ) −→ 0.

Set I := {1, . . . , n}, J := {1, . . . , m}, and Q := {1, . . . , q}
for a fixed q ∈ N.

The qth tensor product of E sits in the exact sequence

0 −→ E⊗q →
⊕
α∈I q

OPN

(∑
p∈Q

aαp

)
ϕq−→

⊕
(β , j , p )

β ∈I q −1 , j ∈J , p ∈Q

OPN

( ∑
p∈Q−{q}

aβp
+ bj

)
,

where the map ϕq is given by

eα 
−→
∑
( j , p )

j ∈J , p ∈Q

aj,αp
e(α ( p ) ,j,p) .

Here α(p) means the (q − 1)-tuple α without the pth ele-
ment.

The qth exterior power of E, 1 ≤ q < n − m, sits in
the exact sequence

0 −→
q∧
E −→

⊕
A⊆I ,|A |=q

OPN

(∑
i∈A

ai

)
ϕq−→

⊕
(B , j )

B ⊆I , |B |= q −1 , j ∈J

OPN

((∑
i∈B

ai

)
+ bj

)
,

where the map ϕq is given by

eA 
−→
∑
( i , j )

i∈A , j ∈J

sign(i, A) aji e(A−{i},j ) .

We remark that the subset A ⊂ I is supposed to have the
induced order and

sign(i, A) =

{
−1, if i is an even element in A,
1, if i is an odd element in A.
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Let char(K) � q. The qth symmetric power of E sits in
the exact sequence

0 −→ Sq (E) −→
⊕

i 1 ≤···≤i q
i k ∈I

OPN

(∑
k∈Q

aik

)
ϕq−→

⊕
i ′
1
≤···≤i ′

q −1
, j

i ′
k
∈I , j ∈J

OPN

( ∑
k∈Q−{q}

ai ′k + bj

)
,

where the map ϕq is given by

ei1 ≤···≤iq

−→

∑
i∈{i 1 , . . . , i q }

j ∈J

ajiei1 ≤···≤ı̂≤···≤iq ,j .

Here ı̂ means that this element is omitted.

Proof. This follows from standard results in multilinear
algebra.

Remark 4.2. The following presentation of exterior pow-
ers is not suitable for semistability algorithms. Let
M =

⊕
d∈Z Md be a finitely generated graded R-module

(R = K[X0 , . . . , XN ]). If we fix homogeneous generators
g1 , . . . , gn , we obtain a surjection

Rn f−→ M, ej 
−→ gj , j = 1, . . . , n.

From this map we can derive, for every positive integer
q ≥ 1, the well-known exact sequence

(ker f) ⊗R

q−1∧
Rn α−→

q∧
Rn −→

q∧
M −→ 0,

where the map α is given by

x ⊗ (y1 ∧ · · · ∧ yq−1) 
−→ x ∧ y1 ∧ · · · ∧ yq−1

(see [Scheja and Storch 88, §83, Aufgabe 26]). Fixing ho-
mogeneous generators of ker f gives a diagram

0

(ker f) ⊗R

∧q−1 Rn α ��

��

∧q Rn �� ∧q M �� 0

Rm ⊗R

∧q−1 Rn

��
ᾱ

��������������

In this way, we obtain a presentation of
∧q M as a coker-

nel of a map between free modules. Since all these map-
pings are graded, we have a corresponding sequence

ñ⊕
i=1

OPN (ai)
ᾱ−→

m̃⊕
j=1

OPN (bj ) −→
q∧

M̃ −→ 0

of the associated coherent sheaves on PN (with suitable
twists). But the map

⊕m̃
j=1 Rbj

→ Γ(PN ,
∧q M̃) is in gen-

eral not surjective. Hence this sequence cannot be the
basis of an algorithmic approach. If the depth of M is at
least 2, then this map is surjective if and only if

q∧(
Γ

(
PN , M̃

))
→ Γ

(
PN ,

q∧
M̃

)
is surjective (see [Eisenbud 95, Theorems A4.1
and A4.3]). An illustrative example is the following.

Example 4.3. We consider the syzygy bundle S :=
Syz(X3 , Y 3 , Z3 ,XY 2Z2) on P2 = Proj K[X,Y,Z] (see
also [Brenner 08a, Example 7.4]) and use Brenner’s cri-
terion, Theorem 1.1. The slope of this bundle equals
−14/3 ≈ −4.667. For the subsheaves of rank 1 coming
from two monomials, we have (we list only the combina-
tions having a common factor)

µ(Syz(X3 ,XY 2Z2)) = 1 − 8 = −7,

µ(Syz(Y 3 ,XY 2Z2)) = 2 − 8 = −6,

µ(Syz(Z3 ,XY 2Z2)) = 2 − 8 = −6.

Hence we see that the global sections of S do
not contradict the semistability. But the monomial
subfamily X3 , Y 3 , Z3 yields the rank-2 subbundle
Syz(X3 , Y 3 , Z3) ⊂ S of slope −9/2 = −4.5. Thus, S is
not semistable with Harder–Narasimhan filtration

0 −→ Syz(X3 , Y 3 , Z3) −→ S −→ OP2 (−5) −→ 0.

Moreover, the mapping
∧2(Γ(P2 ,S)) → Γ(P2 ,

∧2 S) is
not surjective.

Since we assume that a vector bundle and its exterior
powers are given as kernels of morphisms between split-
ting bundles, we have to know how to compute the kernel
of an R-linear map Rn → Rm between finitely generated
free modules over the polynomial ring R. The answer is
given by the following well-known lemma, which shows
that we can compute a minimal nontrivial global section
with Gröbner bases.

Lemma 4.4. Let R = K[X0 , . . . , XN ] be the polynomial
ring over a field K and let ϕ : Rm → Rn be an R-linear
map. Denote by e1 , . . . , em the standard basis vectors of
Rm . With the notation wj = ϕ(ej ), j = 1, . . . ,m, we have

ker ϕ = SyzR (w1 , . . . , wm ).

In other words, the kernel of ϕ is the (R-)syzygy module
of the columns of the matrix that describes ϕ.

Proof. See [Kreuzer and Robbiano 00, Proposition
3.3.1(a)].
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So we have accumulated the necessary technical tools
to formulate an algorithm, based on Hoppe’s criterion,
Proposition 2.1, to determine semistability of a given
kernel bundle on PN . Note that every instruction can
be performed with any computer algebra system that is
able to handle Gröbner-basis calculations. In our case,
we implemented it in CoCoA.

Algorithm 4.5. Semistability of kernel bundles

Input: Two lists [a1 , . . . , an ], [b1 , . . . , bm ] and a homo-
geneous m × n matrix M = (aji) with no constant poly-
nomial entries aji 	= 0 of degree bj − ai defining a kernel
bundle

0 −→ E = k̃erM −→
n⊕

i=1

OPN (ai)
M−→

m⊕
j=1

OPN (bj )

−→ 0

with a1 ≥ a2 ≥ · · · ≥ an (as usual, k̃erM denotes the
sheaf associated with the graded R-module kerM).
Output: The decision whether E is semistable in terms
of a Boolean value TRUE or FALSE respectively.

1. Compute the invariants rk(E) = n − m,
deg(E) =

∑n
i=1 ai −

∑m
j=1 bj , and µ(E) =

1
n−m

(∑n
i=1 ai −

∑m
j=1 bj

)
.

2. If the slope condition an ≥ µ(E) of Proposition
3.1 is fulfilled, then continue. Else return FALSE
and terminate.

3. Set q := 1.

4. Construct the matrix Mq that describes the map
ϕq in Proposition 4.1.

5. Compute the syzygy module Sq of the columns
of Mq .

6. Compute the initial degree αq := min{t :
(Sq )t 	= 0} of the graded R-module Sq

(i.e., αq is the minimal twist � such that
Γ(PN , (

∧q E)(�)) 	= 0).

7. If αq < −qµ(E), then return FALSE and termi-
nate. Else set q := q + 1 and continue.

8. If q < rk(E) − 1, then go back to step (4). Else
return TRUE and terminate.

By Horrocks’s theorem (see [Okonek et al. 80, Theo-
rem I.2.3.1]), every vector bundle E on the projective
plane P2 that does not split as a direct sum of line bun-
dles has homological dimension 1, that is, there exists a
resolution

0 −→ K −→ F −→ E −→ 0

with splitting bundles K and F . Since E is semistable
if and only if E∗ is semistable, we can dualize the short
exact sequence and apply Algorithm 4.5 to the kernel
bundle E∗. Hence, our semistability algorithm is applica-
ble to every (nonsplit) vector bundle on P2 and to vector
bundles of homological dimension 1 on PN in general.

Example 4.6. Let K be an arbitrary field. We consider
the monomials

X2 , Y 2 , XY, XZ, Y Z ∈ R = K[X,Y,Z]

and the corresponding sheaf of syzygies

S := Syz(X2 , Y 2 ,XY,XZ, Y Z).

Is S a semistable sheaf? Since the ideal generated by
these monomials is not R+-primary, we can apply nei-
ther Theorem 1.1 nor (at first sight) Algorithm 4.5. We
compute a resolution of S (for instance with CoCoA),
namely,

0 −→ OP2 (−4)2 A−→ OP2 (−3)6 −→ S −→ 0,

where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x 0
−y 0
−y x

0 −y

−z 0
0 z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since S is a reflexive sheaf, it is locally free on P2 (cf.
[Okonek et al. 80, Lemma 1.1.10]). So if we dualize the
resolution, we obtain a short exact sequence

0 −→ S∗ −→ OP2 (3)6 At−→ OP2 (4)2 −→ 0,

i.e., S∗ is a kernel bundle. Hence, we apply Algorithm 4.5
to S∗ in order to obtain the answer to our question (we
recall that S is semistable if and only if S∗ is semistable).
A CoCoA computation gives the following:

1. H0(P2 ,S∗(m)) = 0 for m < −2 and −2 ≥
−µ(S∗) = − 5

2 .

2. H0(P2 , (
∧2(S∗))(m)) = 0 for m < −5 and −5 =

−2µ(S∗). In particular, we obtain no information
about stability.

3. The numerical condition of Proposition 3.1 is
fulfilled. So there are no mappings S∗ → OP2 (k)
into line bundles that contradict the semistabil-
ity.

Finally, we conclude via Proposition 2.1 that S∗ is
semistable and so is S.
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By applying restriction theorems, we can use Algo-
rithm 4.5 to produce examples of semistable vector bun-
dles on more complicated projective varieties.

There are famous restriction theorems by V. B. Mehta
and A. Ramanathan (see [Mehta and Ramanathan 82b,
Theorem 6.1]) and by H. Flenner (see [Flenner 84, The-
orem 1.2]). The strongest restriction theorem is due to
A. Langer. It holds in more general situations, but we
give a formulation only for vector bundles on projec-
tive spaces. The theorem works in arbitrary characteristic
and gives a degree bound for arbitrary smooth hypersur-
faces in a projective space. It involves the discriminant
∆(E) := 2rc2(E) − (r − 1)c1(E)2 of a locally free sheaf E
of rank r, where c1(E) and c2(E) denote the first and
second Chern classes respectively.

Theorem 4.7. (Langer.) Let K be an algebraically closed
field and let E be a stable coherent torsion-free sheaf of
rank r ≥ 2 on PN and let D ∈ |OPN (k)| be a smooth di-
visor such that E|D is torsion-free. If

k >
r − 1

r
∆(E) +

1
r(r − 1)

,

then the restriction E|D is stable.

Proof. See [Langer 09, Theorem 2.19].

For a kernel bundle E , it is easy to see that we have

c2(E) =
1
2

(( n∑
i=1

ai

)2
−

n∑
i=1

a2
i +

( m∑
j=1

bj

)2
+

m∑
j=1

b2
j

)
−

∑
i,j

aibj

and hence

∆(E) =
( n∑

i=1

ai

)2
+

( m∑
j=1

bj

)2
−(n − m)

( m∑
j=1

b2
j −

n∑
i=1

a2
i

)
− 2

∑
i,j

aibj .

5. TANNAKA DUALITY OF STABLE SYZYGY
BUNDLES

As a first application of the algorithms described in
the previous sections we will compute the Tannaka dual
groups of certain stable syzygy bundles of degree 0 on
the projective plane. We start with describing the set-
ting. From now on, K denotes an algebraically closed
field of characteristic 0, and X a smooth, irreducible,
and projective variety over K. Furthermore, denote by
BX the category of polystable vector bundles of degree

0 on X. We recall that a vector bundle is polystable if it
is a direct sum of stable bundles of the same slope. It is
well known that BX is an abelian tensor category that
possesses the faithful fiber functor ωx : BX → Vect(K),
where Vect(K) is the category of finite-dimensional K-
vector spaces and ωx maps a bundle E to its fiber Ex for a
point x ∈ X(K). In other words, it is a neutral Tannaka
category, and hence there exist an affine group scheme
GX over K and an equivalence of categories

BX
∼−→ RepGX

(K).

For the theory of Tannaka categories, see, for example,
[Deligne et al. 82]. We denote by BE the Tannaka sub-
category of BX generated by the vector bundle E , and
by GE , its Tannaka dual group. The group scheme GX is
proreductive and GE is a reductive linear algebraic group
(not necessarily connected). It is in a natural way an alge-
braic subgroup of GLEx

. Furthermore, there is a faithfully
flat morphism GX → GE . Since global sections of vec-
tor bundles in BX correspond to GE -invariant elements
of the fiber, it follows from [Deligne et al. 82, Proposi-
tion 3.1] that the algebraic group GE is uniquely deter-
mined by the global sections of T r,s(E) := E⊗r ⊗ (E∗)⊗s

for r, s ∈ N. It even suffices to know the global sections of
E⊗r for r ∈ N, since the dual of a stable bundle E occurs
as a direct summand in some tensor power of E .

Remark 5.1. The restriction to fields of characteristic 0 is
essential, as the following example shows. It was commu-
nicated to us by H. Brenner. Let K be a field of positive
characteristic p, p ≥ 3. Consider the plane curve

C = V+
(
X3p−1 + Y 3p−1 + Z3p−1 + XpZ2p−1) .

This curve is smooth by the Jacobian criterion. Now we
look at the syzygy bundle E := Syz(X2 , Y 2 , Z2)(3) on
C of degree 0. Since E is stable on P2 by Proposition
3.2 and p ≥ 3, it remains stable on C by Langer’s re-
striction theorem, Theorem 4.7. The Frobenius pullback
F ∗(E) ∼= Syz(X2p , Y 2p , Z2p)(3p) has the nontrivial sec-
tion s := (ZXp−1 , ZY p−1 , Zp + Xp) because we have the
equation

X2p · ZXp−1 + Y 2p · ZY p−1 + Z2p · (Zp + Xp)

= Z(X3p−1 + Y 3p−1 + Z3p−1 + XpZ2p−1) = 0

on the curve. It is easy to see that s has no zeros on C and
that there is no further nontrivial section of F ∗(E). Hence
F ∗(E) is a nontrivial extension of the structure sheaf by
itself and therefore not polystable. Since F ∗(S) ⊂ Sp(E),
it follows that SpE is not polystable either. The same
holds for E⊗p , since SpE is a quotient of the p-fold tensor
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product. So we see that Bs
C is not a tensor category and

in particular is not Tannakian.

Let us now consider stable bundles E of degree 0 on
the projective space PN .

Lemma 5.2. The Tannaka dual group GE of a stable vector
bundle E of degree 0 on PN is a connected semisimple
group.

Proof. Suppose that the algebraic group GE were not
connected. Then the representations of the finite quotient
GE/G0

E would correspond to a subcategory of BE contain-
ing nontrivial finite vector bundles; see [Nori 76, Lemma
3.1]. But the latter form, together with the obvious fiber
functor, a neutral Tannaka category (see [Nori 76, Propo-
sition 3.7]), and the K-valued points of the Tannaka dual
group are well known to coincide with the étale funda-
mental group if the characteristic of the ground field is 0.
Hence there are no nontrivial finite vector bundles on the
projective space. Furthermore, the reductive group GE
does not have any nontrivial characters due to the fact
that Pic(PN ) = Z; hence it has to be semisimple.

It can be shown that for stable vector bundles of
degree 0 and rank r as in Theorem 1.2, the Tannaka
dual group is the group SLr if it is almost simple; see
[Kasprowitz 10, Lemma 4.4 and Proposition 5.3] together
with [Anisimov 11, Theorem 1]. One motivation for this
paper was to construct examples of syzygy bundles on the
projective space having a Tannaka dual group of type
different from A. Note that one cannot simply try to
guess an example for a syzygy bundle with group dif-
ferent from SLr ⊂ GLr ; see Remark 5.8 below. Our idea
is to exclude this case by constructing self-dual bundles.
With the algorithmic methods described in Algorithm 4.5
and Proposition 4.1, it is in principle possible to compute
the Tannaka dual group and its representation for an ar-
bitrary stable kernel bundle of degree 0. However, the
necessary computations grow very fast with the rank of
the bundle, so we were able to handle syzygy bundles
only up to rank 6 on P2 . Furthermore, we found only
syzygy bundles having the almost simple Tannaka dual
group Spr ⊂ GLr , where r ∈ {4, 6}. There are no stable
self-dual syzygy bundles of odd rank on P2 ; see Corol-
lary 5.4.

For stable rank-2 bundles of degree 0 on P2 , there
is only one possible Tannaka dual group, namely the 2-
dimensional irreducible representation of SL2. An exam-
ple for this is the syzygy bundle Syz(X2 , Y 2 , Z2)(3). It

is stable due to Theorem 1.2. To find higher-rank syzygy
bundles whose Tannaka dual group is not the group SLr

with an r-dimensional representation, we will use the fol-
lowing simple lemma.

Lemma 5.3. Let f1 , . . . , fn ∈ R := K[X,Y,Z] be homoge-
neous polynomials such that the ideal I := (f1 , . . . , fn ) is
R+ -primary and minimally generated by f1 , . . . , fn . Then
E := Syz(f1 , . . . , fn ) is self-dual (up to a twist with a line
bundle) if and only if R/I is Gorenstein.

Proof. The minimal free resolution of R/I has length 3
and is self-dual up to twist since R/I is Gorenstein:

0 −→ R(−d)
ϕ−→

n⊕
i=1

R(−ei) −→
n⊕

i=1

R(−di)
f1 ,...,fn−→ R

−→ R/I −→ 0,

and with E := ker(f1 , . . . , fn ), we have coker(ϕ) =
E(−d)∗. In particular, there is an isomorphism E ∼=
E(−d)∗ with E = Ẽ. Conversely, one easily sees that if
E is self-dual up to twist, then the minimal free resolu-
tion of R/I ends with a free module of rank 1; that is,
R/I is Gorenstein.

Corollary 5.4. There are no self-dual (up to a twist with
a line bundle) nonsplit syzygy bundles of odd rank on P2 .

Proof. This is [Buchsbaum and Eisenbud 77, Corollary
2.2], which says that the minimal number of generators
of a Gorenstein ideal of grade 3 is odd.

Corollary 5.5. All stable syzygy bundles of degree 0 and
odd rank less than or equal to 11 on the projective plane
have a semisimple Tannaka dual group whose simple
components are of type A.

Proof. A table of representations of Lie algebras (see,
for example, [McKay et al. 90]) shows that the smallest
non-self-dual irreducible representation of a semisimple
algebraic group with some simple component not of type
A is the (up to duality) 12-dimensional representation
of the semisimple group SL3 ⊕ Sp4, which is the tensor
product of the 3-dimensional irreducible representation
of SL3 with the 4-dimensional irreducible representation
of Sp4.

Now looking at rank 4, what possibilities are there for
the Lie algebra of the Tannaka dual group? There are
three different self-dual and irreducible representations,
where we use the notation of the tables of simple Lie
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algebras and their representations in [McKay et al. 90]:
A1 with highest weight 3, C2 with highest weight (1, 0),
and A1 ⊕ A1 with highest weight (1, 1). Using the com-
puter algebra package for Lie group computations LiE,3

one finds that dim(Γ(P2 , E⊗4)) = dim((E⊗4
x )GE ) = 4 in

the cases of type A and dim(Γ(P2 , E⊗4)) = 3 in the case
of C2 . To find a bundle with Tannaka dual group of type
C2 , we have to construct a Gorenstein ideal I with five
minimal generators such that the associated syzygy bun-
dle E has degree 0. Then we have to check its stability
and the global sections of E⊗4 .

To find a suitable Gorenstein ideal I, we consider the
polynomial ring R := K[X,Y,Z] as a module over it-
self by interpreting a polynomial in R as a differential
operator acting on itself, e.g., X · f = ∂f/∂X. Choose
a homogeneous polynomial f of degree r and define
I := AnnR (f) ⊆ R. This ideal is Artinian and Goren-
stein; see, for example, [Iarrobino and Kanev 99, Lemma
2.12].

Example 5.6. The Gorenstein ideal of the homogeneous
form

f := X2 + Y 2 + Z2

is the ideal I = (X2 − Y 2 ,X2 − Z2 ,XY,XZ, Y Z). If we
pull back the associated syzygy bundle on P2 via the
finite morphism X 
→ X2 , Y 
→ Y 2 , Z 
→ Z2 , we obtain
the twisted syzygy bundle

E(5) := Syz
(
X4 − Y 4 ,X4 − Z4 ,X2Y 2 ,X2Z2 , Y 2Z2) (5).

It has degree 0, rank 4, and is self-dual by Lemma 5.3.
We apply Algorithm 4.5 to E and obtain with the help of
CoCoA:

1. H0(P2 , E(m)) = 0 for m ≤ 5 = −µ(E);

2. H0(P2 , (
∧2 E)(m)) = 0 for m < 10 = −2µ(E),

H0(P2 , (
∧2 E)(m)) 	= 0 for m = 10;

3. H0(P2 , (
∧3 E)(m)) = 0 for m ≤ 15 = −3µ(E)

(this computation is, by Proposition 3.1, actu-
ally not necessary, since the degrees of the poly-
nomials are constant).

Hence, we see that E (and all its twists) are semistable,
but we get no information about stability because of item
2. Observe that Hoppe’s criterion can never reveal sta-
bility of a self-dual bundle of rank 4, since in this case
there must be nontrivial global sections of Λ2(E(5)); see
again [McKay et al. 90].

Fortunately, the self-duality of the bundle allows us to
prove its stability. By the computation above, we have

3 Available at http://young.sp2mi.univ-poitiers.fr/∼marc/LiE/.

only to consider subsheaves of rank 2 that may destroy
the stability of E(5). Assume that F ⊂ E(5) is a stable
subsheaf of rank 2 and degree 0. Since we can pass over
to the reflexive hull, and since we are working on P2 , we
may assume that F is locally free (see [Okonek et al. 80,
Lemma 1.1.10]). In particular, we have

F ∼= F∗ ⊗ det(F) ∼= F∗ ⊗ OP2 ∼= F∗

by [Hartshorne 80, Proposition 1.10]. That is, the sub-
sheaf F is self-dual too. So the composition of the mor-
phisms

E(5) ∼= E(5)∗ −→ F∗ ∼= F ↪→ E(5)

yields an endomorphism of E(5) that is not a multiple of
the identity. But a computation of global sections using
the implementation of Proposition 4.1 yields that

h0 (
P2 ,End (E(5))

)
= h0 (

P2 , E(5) ⊗ E(5)
)

= 1,

that is, the bundle E(5) is simple, and a morphism
as above does not exist. Hence the bundle E(5)
is stable. Finally, another computation shows that
h0(P2 , (E(5)⊗4)) = 3; hence the Tannaka dual group is in
fact almost simple of type C2 , and the representation of
its Lie algebra has highest weight (1, 0). It is well known
that this corresponds to the irreducible and faithful rep-
resentation Sp4 ⊂ GL4.

Example 5.7. The Gorenstein ideal associated with the
homogeneous form X3Y + Y 3Z + Z3X via the corre-
spondence described above is the ideal

I :=
(
X3 − Y 2Z, Y 3 − XZ2 ,X2Y − Z3 ,XY 2 , Y Z2 ,

X2Z,XY Z
)
.

We consider the same pullback as in the previous exam-
ple to be able to twist the associated syzygy bundle to
degree 0. The same computations as above show that the
corresponding syzygy bundle E(7), defined as

Syz
(
X6 − Y 4Z2 , Y 6 − X2Z4 ,X4Y 2 − Z6 ,X2Y 4 , Y 2Z4 ,

X4Z2 ,X2Y 2Z2)(7)

is semistable of degree 0, where a subsheaf F that de-
stroys stability has to be of rank r = 2 or r = 4. But since
E(7) is self-dual, we can always assume F to be of rank 2
and obtain stability for the same reason as in the previous
example, since the bundle again turns out to be simple.
Again using LiE, we find that it is possible to determine
the Lie algebra of the Tannaka dual group by computing
dim(E⊗4) = 3, which shows that it has to be simple of
type C3 , with highest weight (1, 0, 0). This corresponds
to the faithful irreducible representation Sp6 ⊂ GL6.
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Remark 5.8. There is a good reason why one should
expect to find the group Spr in these cases. It is well
known that the moduli space of stable bundles of fixed
rank and Chern classes exists as a quasiprojective va-
riety; see, for example, [Huybrechts and Lehn 97, Theo-
rem 4.3.4]. Let us denote by M the moduli space con-
taining the syzygy bundle of Example 5.6 respectively
of Example 5.7. Let U be the quasiuniversal bundle
on P2 × M ; see [Huybrechts and Lehn 97, Chapter 4.6].
This means that the restriction of U to P2 × {p} is a fi-
nite product of copies of the stable bundle on P2 cor-
responding to the point p. Applying the semicontinu-
ity theorem (e.g., [Hartshorne 77, Theorem 12.8]) for
dim(H0(P2 × {p},U⊗r )), one finds that the locus of the
vector bundles having Tannaka dual group SLr is open
in M , since the dimension of Γ(P2 × {p},U⊗r ) is minimal
in this case and strictly greater in all other cases. Hence
for a generic choice of a stable syzygy bundle on P2 one
expects to find the group SLr as Tannaka dual group.
The locus of self-dual bundles is closed in M (apply the
semicontinuity theorem for U ⊗ U), containing the bun-
dles with Tannaka dual group Spr as an open locus (since
the dimension of Γ(P2 × {p},U⊗4) is minimal for a self-
dual stable bundle with this Tannaka dual group; see the
discussion of the examples above). It follows that for a
generic choice of a self-dual syzygy bundle one expects
the group Spr as Tannaka dual group. It would be in-
teresting to find a method for constructing stable syzygy
bundles having a Tannaka dual group different from SLr

or Spr . Furthermore, one could try to determine the ge-
ometry of the Tannaka strata of the moduli spaces dis-
cussed above.

6. TANNAKA DUALITY OF STABLE BUNDLES
RESTRICTED TO CURVES

We remain in the situation of Section 5. Recall that the
ground field K is algebraically closed and of characteristic
0. Here we investigate the problem of the behavior of
Tannaka dual groups after restricting a stable bundle of
degree 0 on PN to smooth connected curves X such that
the restricted bundle is still stable. The main problem is
that the connected Tannaka dual group of a stable vector
bundle on PN may become disconnected after restriction
to a curve:

Lemma 6.1. Let X ⊂ P2 be a connected smooth curve of
genus greater than 1. Then there exists a stable bundle
of degree 0 on P2 such that its restriction to X is again
stable with nonconnected Tannaka dual group.

Proof. Recall that a finite vector bundle is a vector bun-
dle that is trivialized by a finite étale morphism. There is
a one-to-one correspondence between finite vector bun-
dles on X and representations of the étale fundamental
group π1(X,x) having finite image. Now choose such an
irreducible representation of dimension r with trivial de-
terminant, which certainly exists if the genus of the curve
is greater than 1. It is well known that the associated vec-
tor bundle E is stable of degree 0 and rank r, with Tan-
naka dual group equal to the image of the representation.
Further, its determinant is the trivial bundle. The bundle
E∗(n) is generated by its global sections for n � 0. Fur-
thermore, we may assume by [Brenner 06, Lemma 2.3]
that already r + 1 global sections generate E∗(n). Hence
one obtains a short exact sequence

0 −→ OX (−rn)
ϕ−→ Or+1

X −→ E∗(n) −→ 0.

After twisting with OX (−n), the dual of the morphism
ϕ lifts to an exact sequence

0 −→ E −→ OP2 (n)r+1 ϕ∗
−→ OP2 ((r + 1)n)

on P2 , where E is a coherent sheaf with E|X ∼= E, and
the singularities of E are of codimension greater than 2
(see [Okonek et al. 80, Proposition II.1.1.6]); hence E is
locally free and of course stable of degree 0. The Tannaka
dual group of E is connected by Lemma 5.2, but the re-
striction of the bundle E to X has a finite Tannaka dual
group.

Hence we need a criterion for the Tannaka dual group
to be connected after restricting the bundle E to the
smooth and connected curve X. For the rest of this sec-
tion we denote by p a prime number and by Qp an alge-
braic closure of the p-adic numbers with ring of integers
o and residue field κ = Fp . We call a finitely presented
flat and proper scheme X over o together with an isomor-
phism X ∼= X ⊗o Qp a model of X. Note that any scheme
X over o is the disjoint union of the generic fiber X ⊗ Qp ,
which is open in X, and the special fiber X ⊗ Fp , which
is closed. For the rest of this section, we set K = Qp .

Theorem 6.2. Let E be a vector bundle on the smooth,
connected, and projective curve X over Qp . If there exists
a model X of X together with a vector bundle E on X such
that E ∼= E ⊗o Qp and E ⊗o o/p is a trivial bundle on the
scheme X ⊗o o/p, then E is semistable of degree 0 with
connected Tannaka dual group GE .

Proof. The proof uses results from nonabelian p-adic
Hodge theory. The semistability of the bundle is shown
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in [Deninger and Werner 05, Theorem 13]; the assertion
that GE is connected follows from [Kasprowitz 10, The-
orem 3.12].

Example 6.3. Let E be a vector bundle on PN sitting in
the short exact sequence

0 −→ E −→
N +1⊕
i=1

OPN (1)
ϕ−→ OPN (N + 1) −→ 0,

where the morphism ϕ is defined by homogeneous poly-
nomials

fi := Xi−1
0 XN −i+1

1 + pgi, i = 1, . . . , N + 1,

with gi ∈ o[X0 , . . . , XN ]. The vector bundle E is stable
of degree 0 due to Theorem 1.2. If we consider E as a
sheaf on PN

o , it is easy to see that it is a locally free sheaf
outside the closed subset

S = {[X0 ;X1 ; . . . ;XN ] : X0 = X1 = 0} ⊂ PN
κ ⊂ PN

o .

Then for every smooth connected curve X ⊂ PN that has
a model X ⊂ PN

o such that the special fiber does not in-
tersect the subspace S, the vector bundle E|X has N lin-
early independent global sections modulo p and hence
is trivial. If the curve X is the intersection of N − 1
smooth divisors of degree � 0, the restriction theorem
[Langer 09, Theorem 2.7] yields that the restriction E of
E to X is a stable bundle, and it follows from Theorem
6.2 above that GE is connected. See also [Kasprowitz 10,
Example 4.6 and Remark 4.8]. A similar argument was
used by H. Brenner to provide examples for stable vector
bundles on p-adic curves with semistable reduction; see
[Deninger and Werner 05, Remark p. 571].

In general, we cannot apply Theorem 6.2 to an arbi-
trary kernel bundle E on PN , but in many cases one can
apply it to the pullback π∗(E) with respect to a suitable
chosen finite morphism π : PN → PN such that π∗(E) is
defined over o and such that it is trivial modulo p outside
a closed subset of codimension ≥ 2. Then for all curves X

that have a model X ⊂ PN
o whose special fiber does not

intersect this closed subset, we have Gπ ∗(E) = Gπ ∗(E)|X if
the curve X is a complete intersection of smooth divisors
of sufficiently high degree. We will illustrate this method
in the following examples.

Example 6.4. Consider the syzygy bundles

E1 = Syz(X4 − Y 4 ,X4 − Z4 ,X2Y 2 ,X2Z2 , Y 2Z2)(5)

and

E2 = Syz(X6− Y 4Z2 , Y 6− X2Z4 ,X4Y 2− Z6 ,X2Y 4 ,

Y 2Z4 ,X4Z2 ,X2Y 2Z2)(7)

on P2 from Examples 5.6 and 5.7. To find a suitable fi-
nite morphism π : P2 → P2 as explained above, we try to
construct a nontrivial morphism g : P1

Fp
→ P2

Fp
such that

the pullback g∗(Ei ⊗ Fp) is the trivial bundle. Then we
can choose a rational map π : P2

Zp
��� P2

Zp
that is defined

outside the point [0; 0; 1] ∈ P2
Fp

⊂ P2
Zp

such that modulo
p, there is the commutative diagram

P2
Fp

\ {[0; 0; 1]}

��

πFp �� P2
Fp

P1
Fp

g

��������������

where the vertical morphism is defined as [X;Y ;Z] 
→
[X;Y ]. It is then clear that π∗(Ei) is modulo p the triv-
ial bundle on the open subset P2

Fp
\ {[0; 0; 1]}. A com-

putation of global sections (over Q) with CoCoA shows
that the morphism g can, for example, be chosen as
[X;Y ] 
→ [X;Y ; 2X + Y ] if the prime p is odd. Then the
rational map π can be chosen as [X;Y ;Z] 
→ [X;Y ; 2X +
Y + pZ]. The restriction to the generic fiber gives the fi-
nite morphism π : P2 → P2 we were looking for.

On the generic fiber the vector bundles π∗(Ei) are
polystable, and one computes

dim(End(π∗(Ei))) = h0(P2 , π∗(Ei) ⊗ π∗(Ei)) = 1

using Proposition 4.1. It follows that they have to be sta-
ble. Let X ⊂ P2

o be a model of a smooth connected curve
X ⊂ P2

Qp
such that the special fiber XFp

does not con-

tain the point [0; 0; 1]. If the degree of the plane curve
X is large enough, we may again use Theorem 4.7 and
obtain that the restriction of the bundle π∗(Ei) is still a
stable bundle. It follows from Theorem 6.2 that its Tan-
naka dual group is a connected semisimple group. Fur-
thermore, we have Γ(X,π∗(Ei)⊗4 |X ) = Γ(P2

Qp
, f ∗(Ei)⊗4)

for curves of sufficiently large degree. Hence the Tan-
naka dual groups satisfy GE1 |X = Sp4 ⊂ GL4 and GE2 |X =
Sp6 ⊂ GL6.

We end this section with an example in which the
morphism π has to be of degree greater than 1.

Example 6.5. The syzygy bundle

E = Syz(X3 , Y 3 , Z3 ,XY Z)(4)

on P2 is stable of degree 0 due to Theorem 1.1,
with Tannaka dual group GE = SL3 ⊂ GL3 because of
dim(Γ(P2 , E⊗3)) = 1. The morphism g : P1

Fp
→ P2

Fp
can
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be chosen as [X;Y ] 
→ [X2 + Y 2 ;X2 ;X2 + XY ], and
hence π : P2

Zp
��� P2

Zp
, for example, as [X;Y ;Z] 
→ [X2 +

Y 2 ;X2 ;X2 + XY + pZ2 ]. The same computations and
arguments as in Example 6.4 then show that GE|X = SL3

for a plane curve X of sufficiently large degree.

It is natural to ask whether this method works for all
semistable vector bundles of degree 0 on PN :

Question 6.6. Let E be a semistable vector bundle of
degree 0 on PN . Are there always a finite morphism π :
PN → PN and a model P of PN such that π∗(E) lifts to a
sheaf on P that is modulo p a free sheaf outside a closed
subset of codimension greater than or equal to 2?

7. THE STABILITY OF THE SYZYGY BUNDLE OF FIVE
GENERIC QUADRICS

It is an open question whether for generic forms
f1 , . . . , fn of degree d1 , . . . , dn in the polynomial ring
R = K[X0 , . . . , XN ] over an algebraically closed field K,
the corresponding syzygy bundle is semistable or even
stable. There is no chance if the di ’s do not satisfy the
necessary degree condition of Proposition 3.1. Hence,
the question makes sense only if the necessary condi-
tion on the degrees is fulfilled, e.g., if we consider forms
of constant degree. Since semistability is an open prop-
erty, it is enough to find a single R+-primary family
g1 , . . . , gn having the same degree configuration such that
Syz(g1 , . . . , gn ) is semistable.

Via R+-primary monomial families fi = Xσi , di =
|σi |, one can use Brenner’s result, Theorem 1.1, to
establish generic semistability in a combinatorial way
by producing examples of monomial families with
semistable syzygy bundle. This has been done recently
in [Marques and Miró-Roig 11, Theorem 4.6], where the
authors have proved the stability of the syzygy bun-
dle Syz(f1 , . . . , fn ) on PN for generic forms of de-
gree d with N + 1 ≤ n ≤ (

d+N
N

)
, (N, d, n) 	= (2, 2, 5).

This extends [Costa et al. 10, Theorem 3.5], where only
the case N = 2 has been proven. The general result
of [Marques and Miró-Roig 11] was obtained simultane-
ously and independently in [Coandă 09]. For the case
N = 2, n = 5, and d = 2, for which only semistability has
been shown, Macias Marques asks the following question
(see [Marques 09, Problem 2.9]).

Problem 7.1. (Macias Marques.) Is there a family of five
quadratic homogeneous polynomials in K[X0 ,X1 ,X2 ]
such that their syzygy bundle is stable?

Note that one cannot establish generic semistability
via a monomial example, since for the only candidate we
have

µ(Syz(X2 , Y 2 , Z2 ,XY,XZ)) = −5
2

=
1 − 6

2
= µ(Syz(X2 ,XY,XZ)).

We answer Macias Marques’s question in the following
proposition.

Proposition 7.2. The syzygy bundle

Syz(X2 − Y 2 ,X2 − Z2 ,XY,XZ, Y Z)

is stable on P2 = Proj K[X,Y,Z]. Moreover, the syzygy
bundle for five generic quadrics in K[X,Y,Z] is stable
on the projective plane.

Proof. The syzygy bundle

S = Syz(X4 − Y 4 ,X4 − Z4 ,X2Y 2 ,X2Z2 , Y 2Z2),

which we have considered in Example 5.6, is the pullback
of

E := Syz(X2 − Y 2 ,X2 − Z2 ,XY,XZ, Y Z)

under the finite morphism

P2 −→ P2 , X 
−→ X2 , Y 
−→ Y 2 , Z 
−→ Z2 .

Since S is a stable bundle, so is E . The remaining state-
ment follows from the openness of stability.

Remark 7.3. In [Coandă 09, Example 1.3], the author has
independently proved the stability of the generic syzygy
bundle for (N, d, n) = (2, 2, 5). But his proof is more com-
plicated and does not provide an explicit example of a
family of five homogeneous quadrics in three variables.

Let MPN (n − 1, c1 , . . . , cN ) be the moduli space of
stable vector bundles of rank n − 1 and Chern classes
c1 , . . . , cN on the projective space PN . Denote by
S(N,n,d) ⊂ MPN (n − 1, c1 , . . . , cN ) the stratum of stable
syzygy bundles E defined by the short exact sequence

0 −→ E −→
n⊕

i=1

OPN (−d) −→ OPN −→ 0.

In his thesis [Marques 09], the author computes the di-
mension of the syzygy stratum and the codimension of
its closure in the irreducible component of the mod-
uli space. However, he could not give an answer for
the case N = 2, d = 2, n = 5 due to the lack of a stable
syzygy bundle of five homogeneous quadrics. Our exam-
ple also closes this gap. We recall that the moduli spaces
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of stable bundles on P2 with fixed invariants are irre-
ducible and their dimensions are known; see, for example,
[Ellingsrud 83].

Corollary 7.4. The syzygy stratum S(2,5,2) ⊂
MP2 (4,−10, 40) has dimension 5. In particular,
S(2,5,2) = MP2 (4,−10, 40).

Proof. See [Marques 09, Proposition 4.2 and Theorem
4.3], where the proof presented there works analogously
for the case N = 2, n = 5, d = 2 due to Proposition
7.2.

8. COMPUTING INCLUSION BOUNDS FOR TIGHT
CLOSURE AND SOLID CLOSURE

Our semistability algorithm also has impact on certain
ideal closure operations in commutative algebra due to a
geometric interpretation by H. Brenner. We recall briefly
the notions of tight closure and solid closure, where we
restrict ourselves to the case in which the ring R un-
der consideration is a Noetherian integral domain. For a
detailed exposition of these closure operations and their
background, see [Huneke 96].

Let

I = (f1 , . . . , fn ) ⊆ R

be an ideal and f ∈ R. The R-algebra

A = R[T1 , . . . , Tn ]/(f1T1 + · · · + fnTn + f)

is called the forcing algebra for the elements
f1 , . . . , fn , f ∈ R. The element f belongs to the
solid closure, which we denote by I� , if and only if
the following holds: For every maximal ideal m of R

the top-dimensional local cohomology module Hd
m′(A′)

does not vanish, where A′ is the forcing algebra for the
given data over the local complete domain R′ := R̂m and
d = dim(R′) = ht(m).

Now assume that R is of positive characteristic p (i.e.,
R contains a field of positive characteristic). Then the
tight closure of I is defined as the ideal

I∗ :={f ∈ R : there exists 0 	= t ∈ R such that

tfq ∈ I [q ] for all q = pe},
where I [q ] = (fq

1 , . . . , f q
n ) denotes the extended ideal un-

der the eth iteration of the Frobenius F : R → R, f 
→
fp .

An important fact due to M. Hochster is that I∗ = I�

holds in positive characteristic for a normal K-algebra R

of finite type (in fact, this is true under weaker assump-
tions); see [Hochster 94, Theorem 8.6].

It follows already from the definitions of these closure
operations that they are hard to compute. For a normal
standard graded integral 2-dimensional algebra R over
an algebraically closed field K, there is a well-developed
theory by H. Brenner for solid closure and tight closure
that connects these notions with (strong) semistability of
the corresponding syzygy bundle Syz(f1 , . . . , fn ) on the
smooth projective curve C = Proj R; see [Brenner 08b]
for an excellent survey. This geometric approach com-
bined with A. Langer’s restriction theorem, Theorem 4.7
(or its more general formulation [Langer 09, Theorem
2.7]), enables us to use our semistability algorithm, Al-
gorithm 4.5, to compute inclusion bounds for solid clo-
sure and tight closure in homogeneous coordinate rings
of smooth projective curves, particularly plane curves, of
sufficiently large degree. We recall that the syzygy bun-
dle has to be stable in order that the restriction theorem
be applicable. In characteristic 0, there is the following
result for solid closure.

Theorem 8.1. (Brenner.) Let K be an algebraically closed
field of characteristic zero and let R be a normal stan-
dard graded K-domain of dimension two. Further, let
I = (f1 , . . . , fn ) be an R+ -primary homogeneous ideal. If
Syz(f1 , . . . , fn ) is semistable on C = ProjR, then

I� = I + Rd 1 + ···+ d n
n −1

,

where di = deg(fi) for i = 1, . . . , n.

Proof. See the characteristic-zero version of
[Brenner 08b, Theorem 6.4].

So Theorem 8.1 gives, for an element f ∈ Rm ,
an inclusion f ∈ I� for m ≥ d1 + ···+dn

n−1 , and for m <
d1 + ···+dn

n−1 , the question whether f belongs to I� re-
duces to an ideal membership test that is a well-known
procedure in computational algebra (see, for instance,
[Kreuzer and Robbiano 00, Proposition 2.4.10]).

The following theorem works in positive character-
istic under the assumption that the syzygy bundle is
strongly semistable. We recall that a vector bundle E is
strongly semistable if for every e ≥ 0, the Frobenius pull-
backs Fe∗(E) are semistable. So our algorithmic methods
for tight closure can be applied to homogeneous coordi-
nate rings of the general plane curve of large degree via
A. Langer’s recent restriction theorem [Langer 10, The-
orem 3.1].
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Theorem 8.2. (Brenner.) Let K be an algebraically closed
field of characteristic p > 0 and let R be a normal stan-
dard graded K-domain of dimension two. Further, let
I = (f1 , . . . , fn ) be an R+ -primary homogeneous ideal
such that Syz(f1 , . . . , fn ) is strongly semistable on C =
Proj R. Denote the genus of C by g. Then the following
hold:

1. If m ≥ d1 + ···+dn

n−1 , then Rm ⊆ I∗.

2. If m < d1 + ···+dn

n−1 and f ∈ Rm , then f ∈ I∗ if and only
if
(a) fp ∈ I [p ] = (fp

1 , . . . , fp
n ) if p > 4(g − 1)(n − 1)3

or
(b) fq ∈ I [q ] = (fq

1 , . . . , f q
n ) for q = pe > 6g if p <

4(g − 1)(n − 1)3 .

Proof. See the positive-characteristic version of
[Brenner 08b, Theorem 6.4].

Remark 8.3. Let C = ProjR → Spec Z be a generically
smooth projective relative curve and I := (f1 , . . . , fn )
an R+-primary ideal. In this situation, one can deduce
tight-closure information of the reductions Ip in the fiber
rings Rp := R ⊗Z Fp from semistability in characteris-
tic 0. Let S := Syz(f1 , . . . , fn ) denote the syzygy bundle
on the total space C. If S0 := S|C0 is semistable on the
generic fiber C0 := C ×Spec Z Spec Q and m > d1 + ···+dn

n−1 ,
then S0(m) has positive degree and is therefore am-
ple (see [Hartshorne 71, Theorem 2.4]). Since ampleness
is an open property, the reductions to positive char-
acteristic Sp := S|Cp

and (Sp(m))∗ are also ample on
the special fibers Cp := C ×Spec Z Spec Fp for almost all
prime numbers p ∈ Z. In this situation, Brenner’s geo-
metric approach also yields results on the tight closure of
Ip ⊆ Rp for p � 0; see [Brenner 08b, Section 4] for a de-
tailed treatment of ampleness criteria for tight closure.
In particular, by [Brenner 08b, Proposition 4.17], we
have (Rp)m ⊆ I∗p (in fact, (Rp)m already belongs to the

Frobenius closure IF
p := {f ∈ Rp : fq ∈ I

[q ]
p for some q =

pe} ⊆ I∗p ).

Remark 8.4. What can be said in higher dimen-
sions? As usual, we consider R+-primary homogeneous
polynomials f1 , . . . , fn in P = K[X0 , . . . , XN ]. We can
compute a minimal graded free resolution F• of the
ideal (f1 , . . . , fn ); see [Kreuzer and Robbiano 05, Section
4.8.B] for the computational background. Since the quo-
tient R = P/I is Artinian, the length of F• equals N + 1
by the Auslander–Buchsbaum formula. Consequently,
the corresponding resolution of the associated sheaves on

PN gives a resolution

F• : 0 −→ FN +1 −→ FN −→ · · · −→ F1 −→ OPN −→ 0

of the structure sheaf with splitting bundles Fi , i =
1, . . . , N + 1. Instead of looking at Syz(f1 , . . . , fn ) =
ker(F1 → OPN ), we consider the bundle

SyzN −1 := SyzN −1(f1 , . . . , fn ) := im(FN +1 −→ FN ).

To check whether SyzN −1 is semistable, we can apply
Algorithm 4.5 to its dual (SyzN −1)∗, which is a kernel
bundle. If the answer is positive, then we obtain an in-
clusion bound for the tight closure (f1 , . . . , fn )∗ in the
homogeneous coordinate ring R of a generic hyperplane
X ⊂ PN of sufficiently large degree. This works as fol-
lows. If we restrict the resolution F• to X, we obtain an
exact complex of sheaves on X, and the sheaf SyzN −1 |X
is strongly semistable for k = deg(X) � 0 by the re-
striction theorem [Langer 10, Theorem 3.1]. Then Bren-
ner’s result [Brenner 05, Theorem 2.4] gives the inclusion
bound R≥ν ⊆ (f1 , . . . , fn )∗, where

ν := −µ(SyzN −1 |X )
deg(X)

.

Note that we can compute all necessary invariants (rank,
degree, discriminant) of SyzN −1 from the resolution F•.

We obtain the same inclusion bound if we restrict
SyzN −1 to smooth hypersurfaces X ⊂ PN for which ev-
ery semistable bundle on X is strongly semistable; com-
pare, for instance, Example 2.3. Here the degree bound
for deg(X), which ensures the semistability of SyzN −1 |X ,
is given by Theorem 4.7.
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