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We reduce the computation of Poisson traces on quotients of
symplectic vector spaces by finite subgroups of symplectic auto-
morphisms to a finite one by proving several results that bound
the degrees of such traces as well as the dimension in each
degree. This applies more generally to traces on all polynomial
functions that are invariant under invariant Hamiltonian flow. We
implement these approaches by computer together with direct
computation for infinite families of groups, focusing on complex
reflection and abelian subgroups of GL2(C) < Sp4(C), Coxeter
groups of rank ≤ 3 and types A4, B4 = C4, and D4, and sub-
groups of SL2(C).

1. INTRODUCTION

Let A be a Poisson algebra over C. We are interested
in linear functionals A→ C satisfying {a, b} �→ 0 for all
a, b ∈ A. Such functionals are called Poisson traces on A.
The space of Poisson traces is denoted by HP0(A)∗, and
is dual to the vector space HP0(A) := A/{A,A}, known
as the zeroth Poisson homology, which coincides with the
zeroth Lie homology.

Here, we study the case that A = OG
V is the algebra of

G-invariant polynomial functions on a nonzero symplec-
tic vector space V , for a finite subgroup G < Sp(V ). We
will let 2n > 0 denote the dimension of V . We also con-
sider the larger space HP0(OG

V ,OV ) := OV /{OG
V ,OV },

as well as its dual, HP0(OG
V ,OV )∗, which is the space of

functionals φ on OV that are invariant under the flow of
G-invariant Hamiltonian vector fields, i.e., φ({f, g}) = 0
for all f ∈ OG

V and g ∈ OV . Note that HP0(OG
V ,OV )∗ is

a G-representation, and its G-invariants form the space
of Poisson traces on OG

V .
In general, not very much is known about such Pois-

son traces. In [Alev et al. 00], a related quantity was com-
puted: the dimension of the space of Hochschild traces on
DG
X , where DX is the algebra of differential operators on

X ⊆ V , a Lagrangian subspace. The algebra DG
X is natu-

rally a quantization of OG
V , and its Hochschild traces are

defined as HH0(DG
X )∗ := (DG

X /[DG
X ,DG

X ])∗.
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More precisely, equip OV with its natural grading
by degree of polynomials and DX with its natural fil-
tration (which is known as the additive or Bernstein
filtration). Then grDX = OV , and there is a canon-
ical surjection HP0(OG

V ) � gr HH0(DG
X ), and similarly

HP0(OG
V ,OV ) � gr HH0(DG

X ,DX ). As a result, the di-
mension of the space of Hochschild traces is a lower
bound for the dimension of the space of Poisson traces.
In some special cases, the lower bound is attained,
i.e., the surjection is an isomorphism. For example,
HP0(OG

V ) ∼= gr HH0(DG
X ) is known to hold when V =

C2 , and in [Etingof and Schedler 09], this was general-
ized to the case V = C2n = (C2)⊕n and G = Sn �Kn

for K < SL2(C) (certain cases were shown previously
in [Butin 09], and this result was conjectured by Alev
[Butin 09, Remark 40]). In [Etingof and Schedler 12], it
will be shown that HP0(OG

V ) ∼= gr HH0(DG
X ) when G =

Sn+1 is a Weyl group of type An acting on its reflection
representation V = C2n (but not for the Dn case).

The following explicit formula for HH0(DG
X ,DX ) as a

G-representation is an easy generalization of the main
result of [Alev et al. 00]. Let C[G]ad denote the G-
representation with underlying vector space the group
algebra C[G], but with the conjugation action of G.

Lemma 1.1. As a G-representation, HH0(DG
X ,DX ) is iso-

morphic to the subrepresentation of C[G]ad spanned by
elements g ∈ G such that g − Id is invertible.

We stress, however, that the above lemma says
nothing about the filtration on HH0(DG

X ,DX ) and
hence about the grading on gr HH0(DG

X ,DX ). In the
aforementioned cases in [Etingof and Schedler 09] and
[Etingof and Schedler 12], HP0(OG

V ) is computed along
with its grading, so when it is also isomorphic to
gr HH0(DG

X ), one obtains the grading on the latter.
Although we will not use it, the argument of Lemma

1.1 applies more generally to show that HH∗(DG
X ,DX ) ∼=

C[G]ad as G-representations, with HHj (DG
X ,DX ) map-

ping to the span of elements g such that rk(g −
Id) = dimV − j. In particular, HH∗(DG

X ,DX ) is al-
ways finite-dimensional. This is not necessarily true
for HP∗(OG

V ,OV ); see, e.g., [Etingof and Ginzburg 10,
Theorem 2.4.1.(ii)], which implies that HP∗(OG

V ) is
infinite-dimensional when G is nontrivial and V is two-
dimensional.

However, thanks to [Berest et al. 04, Section 7] (see
also [Etingof and Schedler 10]), the space HP0(OG

V ,OV )
is finite-dimensional. On the other hand, explicit upper
bounds are known in only a few cases. The first aim of

this paper is to prove explicit upper bounds, which allow
us to compute precisely HP0(OG

V ,OV ) and HP0(OG
V ) for

small enough G and low enough dimension of V with
the help of computer programs.

More precisely, it is not very computationally useful
to prove an upper bound on dim HP0(OG

V ,OV ), since
this does not immediately render its computation fi-
nite. Instead, we find upper bounds on the top degree
of HP0(OG

V ,OV ) as a graded vector space. This renders
the computation of HP0(OG

V ,OV ) finite.
To prove such a bound, we use the following refor-

mulation exploited in [Berest et al. 04, Section 7]. Given
any Poisson algebra A and any f ∈ A, the condition
that a functional ϕ ∈ A∗ kills {f,A} can be rewritten as
ξf (ϕ) = 0, where ξf is the Hamiltonian vector field cor-
responding to f , which acts on A by ξf (g) = {f, g} and
acts on A∗ by the negative dual. In the case that A = OV

is a polynomial algebra, we may canonically identify the
graded dual A∗, defined by (A∗)i := (A−i)∗, with OV ∗ .
Call this isomorphism F : A∗ ∼→ OV ∗ .

Under this isomorphism,

F (ξf (ϕ)) = FD (ξf )F (ϕ),

where FD (ξf ) is a kind of Fourier transform of ξf : for
every v ∈ V ∗, w ∈ V , and m ≥ 0, FD (vm∂w ) = w∂mv .
Here, ∂v and ∂w are differentiation operators defined by
∂w (v) = v(w) = ∂v (w). More generally, FD : DV

∼→ Dop
V ∗

is an anti-isomorphism of rings of differential operators,
given by v �→ ∂v and ∂w �→ w.

As a result, HP0(OG
V ,OV )∗ is identified with the solu-

tions h ∈ OV ∗ of the differential equations

FD (ξf )(h) = 0,∀f ∈ OG
V .

To help understand the main argument below, we will
make the above explicit using coordinates (although we
do not strictly need to do this—everything below can
be formulated invariantly; we will at least take care to
distinguish between vector spaces and their duals).

Suppose that OG
V is generated as a commutative al-

gebra by elements h1 , . . . , hk , and V = X ⊕ Y is sym-
plectic with complementary Lagrangian subspaces X and
Y . Let us write V ∗ = X∗ ⊕ Y ∗, where the inclusions
X∗, Y ∗ ⊆ V ∗ are defined by X∗ = Y ⊥ and Y ∗ = X⊥. Fix
bases (x1 , . . . , xn ) and (y1 , . . . , yn ) of X∗ and Y ∗, re-
spectively, with dual bases (x∗1 , . . . , x

∗
n ) and (y∗1 , . . . , y

∗
n )

of X and Y , and assume that under the symplectic
pairing (−,−), (x∗i , y

∗
j ) = δij = −(y∗j , x

∗
i ). In particular,

OV = C[x1 , . . . , xn , y1 , . . . , yn ]. The symplectic form in-
duces the isomorphism V ∼→ V ∗ given by xi �→ y∗i and
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yi �→ −x∗i , and hence the Poisson bracket satisfies
{xi, yj} = δij = −{yj , xi}.

Then HP0(OG
V ,OV )∗ ⊆ OV ∗ identifies with the solu-

tions of the differential equations
n∑
i=1

(
y∗i FD

(
∂hj
∂xi

)
− x∗i FD

(
∂hj
∂yi

))
(g) = 0. (1–1)

Note that in (1–1), we needed only the restriction of FD
to OV ,

FD : C[x1 , . . . , xn , y1 , . . . , yn ] (1–2)
∼→ C[∂x1 , . . . , ∂xn , ∂y1 , . . . , ∂yn ].

The reason that we wrote ∂hj
∂xi

instead of ∂x∗
i
(hj ) above

was to avoid confusion with the product of the two ele-
ments ∂x∗

i
, hj ∈ DV ∗ , which will not be in OV , and simi-

larly with ∂hj
∂yi

.
Next, for every v ∈ V ∗, we can evaluate the above

equations at v:
n∑
i=1

(
y∗i (v)FD

(
∂hj
∂xi

)
− x∗i (v)FD

(
∂hj
∂yi

))
(g)(v) = 0.

(1–3)
This shows that the Taylor coefficients
F (∂x1 , . . . , ∂xn , ∂y1 , . . . , ∂yn )(g)(v) of g at v (for F

a polynomial) depend only on the class of F in the
quotient Rv := C[∂x1 , . . . , ∂xn , ∂y1 , . . . , ∂yn ]/Jv (and on
g), where Jv is the ideal generated by the constant-
coefficient operators on the left-hand side of (1–3),
i.e., the elements Dv ′h1 , . . . , Dv ′hk , where v′ ∈ V is the
element corresponding to v ∈ V ∗ via the symplectic
form, and Dv ′ is the directional derivative operation
Dv ′ : OV → OV .

Note that Jv does not actually depend on the choice
of generators h1 , . . . , hk ∈ OG

V , since if we adjoin an-
other polynomial hk+1 ∈ OG

V to the list h1 , . . . , hk , the
new equation (1–3) is already implied by the previous k
equations due to the Leibniz rule, Dv ′(fg) = (Dv ′f)g +
(Dv ′g)f .

As a result, we deduce that

dim HP0(OG
V ,OV )∗ ≤ dimRv ,∀v ∈ V ∗.

This is the upper bound found in
[Etingof and Schedler 10, Proposition 3.5] (with the
Fourier transform of the proof found there), and it
gives a precise version of the proof that HP0 is finite-
dimensional from [Berest et al. 04, Section 7], once
one notices that dimRv is finite for generic v ∈ V ∗.1

1 This is true because the support of Jv is generically {0}. This
holds with minimal dimRv when v does not annihilate any sub-

However, the main drawback is that there is no relation,
in general, between the grading on HP0(OG

V ,OV ) and
that on Rv . The first main goal of this paper is to
overcome this problem.

Much of this paper will concern the special case that
G < GL(X) < Sp(V ), where the embedding GL(X) <
Sp(V ) is defined by sending A ∈ GL(X) to A⊕ (A−1)∗ ∈
Sp(X ⊕ Y ).

We now outline the contents of the paper. First, Sec-
tion 2 gives an elementary bound on dimRv using regular
sequences, using an argument we will need again in Sec-
tion 3. We also apply these results in Section 2.1 to bound
the number of irreducible finite-dimensional representa-
tions of filtered quantizations as well as the number of
zero-dimensional symplectic leaves of filtered Poisson de-
formations, although this is not needed for the rest of the
paper.

In Sections 3 and 4, we refine the argument out-
lined in the present section in two different ways to ob-
tain computationally useful bounds on the top degree of
HP0(OG

V ,OV ). In Section 3, we apply the above argument
in the case v ∈ X∗ and G < GL(X) < Sp(V ) to obtain
an upper bound on the top degree of HP0(OG

V ,OV ). In
Section 4, for arbitrary G (not necessarily preserving a
Lagrangian subspace) and for arbitrary v ∈ V such that
Rv is finite-dimensional, we define a square matrix Av

of size dimRv such that the dimension of the degree m-
part dim HP0(OG

V ,OV )∗m is bounded by the dimension
of the m-eigenspace of A. We do this by lifting genera-
tors f1 , . . . , fN of Rv to differential operators F1 , . . . , FN
on V ∗, and considering the differential equations satis-
fied by all vectors of the form (F1(T ), . . . , FN (T )) for
T ∈ HP0(OG

V ,OV )∗ upon evaluation on the line C · v.
Next, in Section 5, we will apply these results and com-

puter programs [Ren and Schedler 10] written by two
of the authors in Magma to obtain HP0(OG

V ,OV ) for
many groups G, including all finite subgroups of SL2(C),
the Coxeter groups of rank ≤ 3 and types A4 , B4 = C4 ,
and D4 , and the exceptional Shephard–Todd complex re-
flection groups G4 , . . . , G22 < GL2 < Sp4 (except for G18

and G19 , where we could obtain only HP0(OG
V ) and with-

out proof). Combining the latter with results of Section
7, we obtain a classification of complex reflection groups
of rank two for which HP0(OG

V ,OV ) ∼= gr HH0(DG
X ,DX )

space of the form V K for K = StabG (u) �= {1} and u ∈ V ; see
[Etingof and Schedler 10, Theorem 4.13]; cf. [Berest et al. 04, Sec-
tion 7]. For a more general result that implies the generic finite-
dimensionality of Rv , see Remark 2.2 below.
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as well as those for which HP0(OG
V ) ∼= gr HH0(DG

X ), and
give the Hilbert series in these cases.

In the final two sections, we explicitly compute
HP0(OG

V ,OV ), as well as its grading and G-structure, for
several infinite families of groups in Sp4. Namely, in Sec-
tion 6, we give an explicit description of HP0(OG

V ,OV )
in the case that G < Sp4 is abelian (where it coincides
with HP0(OG

V )), classify such groups that have the prop-
erty that HP0(OG

V ) ∼= gr HH0(DG
X ), and give the rele-

vant Hilbert series. In Section 7, we explicitly com-
pute HP0(OG

V ,OV ) for the complex reflection groups
G = G(m, p, 2) and classify those having the proper-
ties HP0(OG

V ,OV ) ∼= gr HH0(DG
X ,DX ) and HP0(OG

V ) ∼=
gr HH0(DG

X ).
Throughout this article, G always denotes a finite

group, and V a finite-dimensional symplectic vector
space. The algebra OV and the space HP0(OG

V ,OV )
are nonnegatively graded, whereas their duals, OV ∗ and
HP0(OG

V ,OV )∗, are nonpositively graded.

2. AN ELEMENTARY BOUND ON DIMENSION
USING KOSZUL COMPLEXES

We begin with an elementary explicit bound on the di-
mension of HP0(OG

V ,OV ). While for computational pur-
poses, we ultimately want to bound its top degree, we
include this both because it may be of independent in-
terest, and because we will generalize it in Section 3.1 to
give a bound also on the top degree. Additionally, in the
next subsection we apply it to representation theory.

We will consider Jv to be an ideal of OV via (1–2). If
h1 , . . . , h2n ∈ Jv is a collection of homogeneous elements
that forms a regular sequence, i.e., hi is a non-zero-divisor
in OV /(h1 , h2 , . . . , hi−1) for all i, then the Hilbert series
of R = OV /(h1 , . . . , h2n ) can be computed using the as-
sociated Koszul complex, and one obtains

h(Rv ; t) ≤ h(R; t) =
∏2n

i=1(1 − t|hi |)
(1 − t)2n . (2–1)

Here we say that
∑

i ait
i ≤ ∑

i bit
i if ai ≤ bi for all i.

We can construct such a regular sequence from a regu-
lar sequence g1 , . . . , g2n ∈ OG

V using the following lemma,
which essentially follows from [Etingof and Schedler 10,
Theorem 3.1]. We will actually state and prove it more
generally.

Lemma 2.1. Let U be an arbitrary finite-dimensional vec-
tor space and g1 , . . . , gdim U ∈ OU a regular sequence of
homogeneous elements of degree ≥ 2. Then for generic

u ∈ U , the directional derivatives Dug1 , . . . , Dugdim U

also form a regular sequence.

Remark 2.2. In particular, the ideal in OU generated by
Dug1 , . . . , Dugdim U has finite codimension for generic u.
Specializing to the case that U = V is symplectic of di-
mension 2n > 0, G < Sp(V ) is finite, and g1 , . . . , g2n ∈
OG
V , then for v ∈ V ∗ and u ∈ V the corresponding el-

ement by the symplectic form, this ideal is contained
in Jv . Hence, this result strengthens the fact from
[Etingof and Schedler 10, Section 3] that Jv has finite
codimension for generic v ∈ V ∗, once one notes that a
regular sequence g1 , . . . , g2n ∈ OG

V of positively graded
homogeneous elements always exists (the elements must
have degree ≥ 2 unless V G �= {0}, in which case Jv is
generically the unit ideal).

Proof. We will prove that for generic u, the vanishing lo-
cus Yu of the functions Dug1 , . . . , Dugdim U is {0}. Hence
they form a complete intersection, and therefore a reg-
ular sequence (by standard characterizations of regular
sequences; see, e.g., [Eisenbud 95, Sections 17, 18]). Note
that Yu is nonempty and invariant under scaling, since
g1 , . . . , gdim U are homogeneous of degrees ≥ 2. So we
need to prove only that dimYu = 0.

The inclusion of polynomial algebras

C[g1 , . . . , gdim U ] ⊆ OU

defines a map φ : U → Adim U . Since g1 , . . . , gdim U define
a regular sequence, φ is a finite map, i.e., OU is a finite
module over the polynomial subalgebra C[g1 , . . . , gdim U ].
Now consider the locus

Z := {(v, u) ∈ TU | v ∈ U, u ∈ TvU,Dugi(v) = 0,∀i}.
We are interested in the intersections (U × {u}) ∩ Z =
(Yu × {u}), for each fixed u.

For every 0 ≤ r ≤ dimU , consider the locus Ur of
v ∈ U at which the map φ has rank r, i.e., the deriva-
tives D(g1)|v , . . . , D(gdim U )|v evaluated at v span a
dimension-r subspace of T ∗

v U . Then the intersection
Z ∩ (TU |Ur

) is a vector bundle of rank dimU − r over Ur .
We claim that dimUr ≤ r. This implies that dimZ ≤

dimU . Thus (U × {u}) ∩ Z = (Yu × {u}) has dimension
zero for generic u (since Yu is always nonempty), as de-
sired.

It remains to prove the claim that dimUr ≤ r. Assume
that Ur is nonempty. If we restrict φ to Ur , then we obtain
a finite map Ur → φ(Ur ). Generically, this restriction has
rank dimUr , but by definition, the rank is at most r.
Hence dimUr ≤ r.
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We return to the case of the symplectic vector space V .

Corollary 2.3. If A ⊆ OV is a graded Poisson subalgebra
containing a regular sequence g1 , . . . , g2n ∈ A of homoge-
neous positively graded elements, then

dim HP0(A,OV )∗ ≤
2n∏
i=1

(|gi | − 1). (2–2)

Proof. This follows immediately if none of the gi have
degree one. On the other hand, if gi has degree one, then
{gi,OV } = OV , since {gi,−} is a directional derivative
operator, so HP0(A,OV ) = 0.

For example, if G < GL(X) < Sp(V ) is a complex re-
flection group and A = OG

V , one could take g1 , . . . , gn and
gn+1 , . . . , g2n to be homogeneous generators of the poly-
nomial algebras OG

X and OG
Y , where V = X ⊕ Y is as in

the introduction. Then we deduce that

dim HP0(OG
V ,OV )∗ ≤

n∏
i=1

(|gi | − 1)2 <
n∏
i=1

|gi |2 = |G|2 .

On the other hand, by Lemma 1.1,

dim HH0(DG
X ,DX ) = |{g ∈ G : g − Id is invertible}|,

and as explained in the introduction, this gives a lower
bound for dim HP0(OG

V ,OV ). Hence, we deduce the fol-
lowing.

Corollary 2.4. If G < GL(X) < Sp(V ) is a complex re-
flection group, then

|{g ∈ G : g − Id is invertible}| ≤ dim HP0(OG
V ,OV )∗

< |G|2 .

However, in individual cases, one can do much better
than this by directly computing dimRv .

2.1. Applications to Representation Theory and
Poisson Geometry

The material of this subsection is not needed for the rest
of the paper; we include it because it is a natural con-
sequence of the preceding results. Let A =

⊕
i≥0 Ai be a

nonnegatively graded commutative algebra with a Pois-
son bracket of degree −d < 0, i.e., {Ai,Aj} ⊆ Ai+j−d . A
filtered quantization is a filtered associative algebra B =⋃
i≥0 B≤i such that grB = A as a commutative algebra,

[B≤i , B≤j ] ⊆ B≤(i+j−d) , and gri+j−d [a, b] = {gri a, grj b}
for all a ∈ B≤i , b ∈ B≤j .

Next, given an arbitrary associative algebra B and
any finite-dimensional representation ρ of B, the trace
functional Tr(ρ) : B → C annihilates [B,B] and hence
defines an element of HH0(B)∗. Given nonisomorphic
finite-dimensional irreducible representations ρ1 , . . . , ρm ,
the trace functionals Tr(ρi) are linearly independent (by
the density theorem), and hence dim HH0(B) ≥ m. In the
situation that B is a filtered quantization of A, one has
a canonical surjection HP0(A) → gr HH0(B) (as in the
case of A = OG

V and B = DG
X treated in the introduc-

tion). Hence, the number of irreducible representations
of B is at most dim HP0(A).

By the material from [Etingof and Schedler 10] re-
called in the introduction, we have the following result.

Corollary 2.5. [Etingof and Schedler 10] If G < Sp(V ) is
finite, B an arbitrary filtered quantization of OG

V , and
v ∈ V ∗, then there are at most dimRv irreducible finite-
dimensional representations of B.

Applying Corollary 2.3, we immediately obtain the fol-
lowing.

Corollary 2.6. If g1 , . . . , g2n ∈ OG
V is a regular se-

quence of homogeneous positively graded elements, then
for every filtered quantization B of OG

V , there are at
most

∏
i(|gi | − 1) irreducible finite-dimensional represen-

tations.

Applying Corollary 2.4 yields the next corollary.

Corollary 2.7. If G is a complex reflection group and
B a filtered quantization of OG

V , then there are fewer
than |G|2 irreducible finite-dimensional representations
of B.

As pointed out after Corollary 2.4, in individual cases,
one can compute dimRv directly, and it is typically much
lower than this. Moreover, dimRv is actually a bound
on dim HP0(OG

V ,OV ), which is in general much larger
than the upper bound dim HP0(OG

V ) above. Finally, again
for G a complex reflection group, when B is a spheri-
cal symplectic reflection algebra quantizing OG

V (see Re-
mark 2.9 for the notion; note that these are also called
spherical Cherednik algebras in the present case that G
is a complex reflection group), then it is actually known
that there are fewer than | Irrep(G)| irreducible finite-
dimensional representations of B, where Irrep(G) is the
set of isomorphism classes of irreducible representations
of G. This is much better than Corollary 2.7 in these
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cases. However, in general, there might exist quantiza-
tions B more general than these.

The main goal of this paper is to introduce and
apply techniques to explicitly compute HP0(OG

V ) in
many cases. This in particular provides the better up-
per bound dim HP0(OG

V ) on the number of irreducible
finite-dimensional representations of quantizations B of
OG
V . These cases include many complex reflection groups,

allowing us to replace the bound |G|2 above by this im-
proved bound. For example, by Theorem 5.14 below, ap-
plying also Lemma 1.1, we have the following result.

Corollary 2.8. If G < GL2 < Sp4 is one of the
complex reflection groups G(m, 1, 2), G(m,m, 2),
G(4, 2, 2), G(6, 2, 2), or G4 , G5 , G6 , G8 , G9 , G14 , or G21 ,
then HP0(OG

V ) ∼= gr HH0(DG
X ) has dimension equal to

the number of conjugacy classes of elements g ∈ G such
that g − Id is invertible, i.e., | Irrep(G)| − Rank(G) − 1,
where Rank(G) equals the number of conjugacy classes
of complex reflections of G. Hence, this bounds the
number of irreducible finite-dimensional representations
of every filtered quantization of OG

C4 .

Note that in the case G(m, 1, 2), this is a special case
of [Etingof and Schedler 09, Corollary 1.2.1], which gives
this upper bound in the case G = G(m, 1, n) for arbi-
trary m and n (as well as for G = Sn �Kn for arbi-
trary K < SL2(C)). In the other cases, this bound is new.
Similarly, the bounds dim HP0(OG

V ) for the other groups
G < GL2 < Sp4 considered in this paper are new.

Remark 2.9. The filtered quantizations of OG
V in-

clude all the associated noncommutative spherical
symplectic reflection algebras (SRAs), defined in
[Etingof and Ginzburg 02]. Recall that SRAs are cer-
tain deformations of OV �G, and spherical SRAs are of
the form B = eB̃e, where e = 1

|G |
∑

g∈G g ∈ C[G] is the
symmetrizer element. Noncommutative spherical SRAs
are those associated to those B̃ obtainable by deform-
ing DX �G, where X ⊆ V is a Lagrangian subspace
(the SRAs form a universal family of deformations of
DX �G).

Remark 2.10. Similarly, one can make a statement
about the commutative spherical SRAs. Namely, these
are filtered commutative algebras B equipped with a
Poisson bracket satisfying {B≤i , B≤j} ⊆ B≤i+j−d such
that grB = OG

V as a Poisson algebra. More gener-
ally, if grB = A, where B is a filtered commuta-
tive algebra equipped with a Poisson bracket satis-

fying {B≤i , B≤j} ⊆ B≤i+j−d and A is equipped with
the associated graded Poisson bracket of degree −d <
0, then one obtains a canonical surjection HP0(A) �
gr HP0(B). Hence dim HP0(B) ≤ dim HP0(A). In partic-
ular, the number of zero-dimensional symplectic leaves
(i.e., points whose maximal ideal is a Poisson ideal)
of B is dominated by dim HP0(A), the same bound as
on the number of irreducible finite-dimensional repre-
sentations of filtered quantizations of A, described in
the above results. This is because the zero-dimensional
symplectic leaves of B all support linearly independent
Poisson traces on B, given by evaluation at that point,
and the space of Poisson traces on B is the vector
space HP0(B)∗. Hence the number of zero-dimensional
symplectic leaves of commutative spherical symplectic
reflection algebras associated to G is dominated by
dim HP0(OG

V ), and hence by the same bounds described
above.

3. THE CASE G < GLn < Sp2n

As in the introduction, suppose X is a Lagrangian sub-
space of V , and Y a complementary Lagrangian such
that V = X ⊕ Y . In this section we restrict to the case
that G < GL(X) < Sp(V ). As in the introduction, we
may equip OV with a G-invariant bigrading, in which
|X∗| = (1, 0) and |Y ∗| = (0, 1). The total degree is the
sum of these degrees. When an element f has bidegree
(a, b), we will also say that degX ∗ f = a and degY ∗ f = b.
Similarly, we equip OV ∗ with the bigrading in which
|X| = (−1, 0) and |Y | = (0,−1), and when g ∈ OV ∗ has
bidegree (a, b), we say that degX g = a and degY g = b.
The total degree is again the sum of these degrees.

If we take v ∈ X∗, we can read off degY g (for biho-
mogeneous g ∈ OV ∗) from its Taylor expansion at v: it
is given by the unique j ≥ 0 such that there exists F of
degree j in Y ∗ such that

F (∂x1 , . . . , ∂xn , ∂y1 , . . . , ∂yn )(g)(v) �= 0.

Moreover, considering (1–3), we see that Jv is a bihomo-
geneous ideal. Hence, we deduce that

dim{g ∈ HP0(OG
V ,OV )∗ | degY (g) = −j}

≤ dim{F ∈ Rv | degY ∗ F = j}, ∀v ∈ X∗, j ≥ 0.

That is, we get a bound on the Hilbert series of
HP0(OG

V ,OV )∗ with respect to the Y -grading, in terms
of the Y ∗-grading on Rv (for v ∈ X∗).

Next, we note that HP0(OG
V ,OV ) is concentrated in

bidegrees (i, i), i ≥ 0, since it is annihilated by the ac-
tion of the Hamiltonian vector field of

∑
i xiyi , i.e., the
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difference of degrees operator, ξ∑
i xi yi

(g) = (degY g −
degX g)g (for bihomogeneous g ∈ OV ). Hence the total
degree of homogeneous elements of HP0(OG

V ,OV )∗ is al-
ways twice the degree in Y (equivalently, twice the degree
in X). We deduce the following result.

Theorem 3.1. For all v ∈ X∗,

h(HP0(OG
V ,OV ); t) ≤ h((Rv ,degY ); t2).

Thus, the top degree of (HP0(OG
V ,OV ) is dominated by

twice the top degree of Rv in Y .

Here, (Rv ,degY ) denotes the ring Rv equipped with
its grading by degree in Y .

For the purpose of computing the top degree only, one
can simplify the computation somewhat. Namely, the top
degree of Rv in Y is the same as the top degree of Rv :=
Rv/(X∗). This follows because Rv is bihomogeneous. So
we obtain

topdeg(HP0(OG
V ,OV )) ≤ 2 · topdeg(Rv ).

Explicitly, if v′ ∈ Y is the element dual to v ∈ X∗ via the
symplectic pairing, then Rv = OY /(Dv ′gi)gi ∈OY

, where
OY ⊂ OV are the functions of degree zero in X∗, which
we also identify with OV /(X∗). That is, we can restrict
to those gi that are only polynomials in the yi . This has
a particular advantage when G is a complex reflection
group, since there, OG

Y is a polynomial algebra whose
structure is well known. We will exploit this below.

3.1. A Bound on Top Degree Using Koszul Complexes

If we combine Theorem 3.1 with (2–1), we obtain the
following result.

Corollary 3.2. Suppose that h1 , . . . , h2n ∈ Jv are bihomo-
geneous and form a regular sequence, for v ∈ X∗. Then

h(HP0(OG
V ,OV ); t) ≤

∏2n
i=1(1 − t2 degY (hi ))

(1 − t2)2n .

The disadvantage of the above corollary is the need
to verify the regular sequence property. Since the condi-
tion v ∈ X∗ is not generic, we cannot immediately apply
Lemma 2.1. To ameliorate this, we can use an alternative
approach, using the polynomial algebra in only the sec-
ond half of the variables, OY . Namely, rather than com-
puting Rv , one can compute Rv = Rv/(X∗) mentioned
above, at the price of bounding only the top degree. Let
us write Rv = OY /Jv , where Jv = Jv/((X∗) ∩ Jv ).

Thus, if h1 , . . . , hn ∈ Jv form a regular sequence in
OY ∗ , then

topdeg(HP0(OG
V ,OV )) ≤ 2

n∑
i=1

(|hi | − 1).

Applying Lemma 2.1, we obtain the following corollary.

Corollary 3.3. If g1 , . . . , gn are homogeneous and form a
regular sequence in OG

Y , then

topdeg(HP0(OG
V ,OV )) ≤ 2

∑
i

(|gi | − 2).

3.2. Complex Reflection Groups

In the case of complex reflection groups, OG
Y is a polyno-

mial algebra generated by homogeneous elements whose
degrees are well known [Shephard and Todd 54]; see also
[Broué et al. 98, Appendix 2]. Thus, in this case, we can
apply Corollary 3.3 to generators g1 , . . . , gn of OG

Y . We
thus deduce from Corollary 3.3 explicit bounds on the
top degree of HP0:

Corollary 3.4. The top degrees of HP0(OG
V ,OV ) for com-

plex reflection groups G are at most the following:

Sn+1 : n(n− 1),
G(m, p, n),m, n > 1 : n(n− 1)m+ 2mn/p− 4n,
G(m, 1, 1) : 2(m− 2), G4 : 12, G5 : 28, G6 : 24,
G7 : 40, G8 : 32, G9 : 56, G10 : 64, G11 : 88, G12 : 20,
G13 : 32, G14 : 52, G15 : 64, G1692, G17 : 152,
G18 : 172, G19 : 232, G20 : 76, G21 : 136, G22 : 56,
G23 : 24, G24 : 36, G25 : 42, G26 : 60, G27 : 84,
G28 : 40, G29 : 72, G30 : 112, G31 : 112, G32 : 152,
G33 : 80, G34 : 240, G35 : 60, G36 : 112, G37 : 224.

Remark 3.5. Since the elements g1 , . . . , gn can be ex-
tended to a generating set for OV by elements in the
ideal (X∗), e.g., the corresponding generators of OG

X , the
directional derivatives Dv ′g1 , . . . , Dv ′gn actually generate
Jv ⊆ OY . Hence, the above bounds coincide with those
obtained from Rv itself using Theorem 3.1, and we lose
nothing by applying the regular sequence arguments.

This is in stark contrast to the estimate dimRv < |G|2
of Corollary 2.4 (or even dimRv ≤ ∏

i(|gi | − 1)2), where
one can do much better, in general, by computing dimRv

directly.

In the case Sn+1, the above bound is found
in [Mathieu 95], up to the equivalence of
[Ren and Schedler 12, Theorem 1.5.1]; in the other



148 Experimental Mathematics, Vol. 21 (2012), No. 2

cases, the bounds are new (except for the rank-1 case,
G(m, 1, 1), where HP0(OG

V ,OV ) ∼= HP0(OG
V ) is known

to have dimension 2(m− 2)). Using the methods of
this paper, we have computed the actual top degree
in the cases of rank ≤ 2 (with the possible exception
of G18 , G19) as well as for certain Coxeter groups of
higher rank, which generally differs substantially from
the above. See Remark 7.8 for the top degree in the
cases G(m, p, 2), and Theorem 5.15 for the top degree in
some of the exceptional cases G4 , . . . , G22 .

4. THE SYSTEM OF INVARIANT HAMILTONIAN
VECTOR FIELDS RESTRICTED TO A LINE

Now let G < Sp(V ) and v ∈ V ∗ be arbitrary. Although
we know that elements in HP0(OG

V ,OV )∗ are determined
by their Taylor coefficients by representatives of Rv , in
general, the grading on Rv is unrelated to the grading on
HP0(OG

V ,OV )∗ (note that Rv is obtained by evaluating
at v, which in particular replaces some polynomials on
V ∗ that have nonzero grading by numbers). To fix this
problem, we will use Rv to construct a local system on
the line C · v and make use of the Euler vector field, which
multiplies by the (correct) degree on HP0(OG

V ,OV )∗.
Let f1 , . . . , fN be a homogeneous basis for Rv , and

let F1 , . . . , FN ∈ DV ∗ be differential operators on V such
that (grFi)|T ∗

v V
∗ ≡ fi (mod Jv ). Here, restricting grFi ∈

OT ∗V ∗ to T ∗
v V

∗ means evaluating the coefficients of the
principal symbol grFi of Fi at the point v, obtaining
an element of OT ∗

v V
∗ ∼= C[∂x1 , . . . , ∂xn , ∂y1 , . . . , ∂yn ]. For

instance, we can let each Fi be a constant-coefficient
differential operator corresponding to a lift of fi to
C[∂x1 , . . . , ∂xn , ∂y1 , . . . , ∂yn ].

Claim 4.1. For every φ ∈ DV ∗ , there exists an operator
of the form ψ =

∑
i ciFi for ci ∈ C such that φ(g)|C·v =

ψ(g)|C·v for all g ∈ HP0(OG
V ,OV )∗ (i.e., solutions of

(1–1)).

In other words, the derivatives of solutions g ∈ OV ∗

of (1–1), evaluated on the line C · v, depend only on
the Fi(g).

Using the claim, for every ξ ∈ DV ∗ , there exists an
N ×N matrix Cξ ∈ MatN (C) such that

(ξ ◦ F1(g), . . . , ξ ◦ FN (g))|C·v (4–1)
= Cξ (F1(g), . . . , FN (g))|C·v ,∀g ∈ HP0(OG

V ,OV )∗.

In particular, if ξ is the Euler vector field, i.e., ξ(g) =
deg(g) · g, and if the Fi are homogeneous (under the
C∗ action on V , i.e., deg u = −1 for all u ∈ V , and

deg ∂w = 1 for all w ∈ V ∗) of degrees d1 , . . . , dN ≥ 0, and
g ∈ HP0(OG

V ,OV )∗ is homogeneous, then

Cξ (F1(g), . . . , FN (g))|C·v − (d1F1(g), . . . , dN FN (g))|C·v
= deg(g)(F1(g), . . . , FN (g))|C·v ,

i.e., deg(g) is an eigenvalue of the matrix Bξ := Cξ −
Diag(d1 , . . . , dN ), and (F1(g), . . . , FN (g))|C·v is an eigen-
vector. Here Diag(d1 , . . . , dN ) denotes the diagonal ma-
trix with entries d1 , . . . , dN .

Now, for λ ∈ C and C a square matrix, let Eλ(C) de-
note the λ-eigenspace of C. We obtain the following the-
orem.

Theorem 4.2. For arbitrary v ∈ V ∗, degree di lifts Fi of
generators fi of Rv to DV ∗ , and Cξ satisfying (4–1) for
ξ the Euler vector field,

h(HP0(OG
V ,OV )∗; t) ≤

∑
i≤0

dimEi(Bξ )ti , (4–2)

where Bξ := Cξ − Diag(d1 , . . . , dN ).

It seems that the theorem has the disadvantage that
many choices are involved. In particular, there are many
possible choices of the matrix Cξ . We claim, nonetheless,
that up to conjugation, the set of possible Bξ depends
only on the choice of line C · v, and not on the choice of
fi and Fi . Changing the fi and Fi amounts to a combi-
nation of linear changes of basis (which change Cξ by the
corresponding linear changes of basis), adding homoge-
neous elements to Fi of the same degree as Fi that send
HP0(OG

V ,OV )∗ to elements that are zero along C · v (this
does not change Cξ ), or multiplying the Fi by homoge-
neous polynomials in OV ∗ (which does not change Bξ ).
Hence, the set of possible matrices Bξ is independent of
these choices up to conjugation, and depends only on the
line C · v. Thus, the same is true for the set of possible
bounds (i.e., possible polynomials on the right-hand side
of (4–2)).

Still, even for fixed v, there are in general several non-
conjugate choices of Bξ . This is because in general, N
may exceed dim HP0(OG

V ,OV ), and so the coefficients
ci given by Claim 4.1 are not uniquely determined. In
practice, however, using only a single choice of Bξ , the
bound one obtains is often equal to the top degree of
HP0(OG

V ,OV ) (or only a few degrees higher), in contrast
to the performance of the methods of Section 3.

We will explain in Section 4.1 below how to turn this
into a practical algorithm.
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Proof of Claim 4.1. Let

IH := 〈DV ∗FD (ξf ) | f ∈ OG
V 〉 ⊂ DV ∗

be the left ideal generated by the Fourier transforms
of Hamiltonian vector fields of invariant functions. Note
that the solutions g ∈ HP0(OG

V ,OV )∗ ⊂ OV ∗ are exactly
the elements annihilated by IH .

It is evident that if g ∈ HP0(OG
V ,OV )∗ and β ∈ IH ,

then β(g)|C·v = 0. Moreover,

(gr IH )|T ∗
v V

∗ ⊇ Jv = (gr(ξf ) : f ∈ OG
V )|T ∗

v V
∗

as ideals of

OT ∗
v V

∗ = C[∂x1 , . . . , ∂xn , ∂y1 , . . . , ∂yn ].

Let Iv ⊆ OV ∗ be the ideal of functions vanishing at v ∈
V ∗. Then lifts of fi to elements Fi ∈ DV ∗ span DV ∗/(Iv ·
DV ∗ + IH ), since the latter is filtered and its associated
graded vector space is

C[∂x1 , . . . , ∂xn , ∂y1 , . . . , ∂yn ]/(gr IH )|T ∗
v V .

Therefore, for every φ ∈ DV ∗ , there exists a linear
combination ψ =

∑
i ciFi such that φ− ψ ∈ Iv · DV ∗ +

IH , and it follows that ψ(g)|C·v = φ(g)|C·v for all g ∈
HP0(OG

V ,OV )∗.

4.1. Algorithmic Implementation

In [Ren and Schedler 10], the authors algorithmically
construct the Cξ above. The first step is to compute the
fi in a way that remembers additional information. Nor-
mally, one computes generators fi for Rv by computing
a Gröbner basis for Jv with respect to some ordering of
monomials in ∂x1 , . . . , ∂xn , ∂y1 , . . . , ∂yn , e.g., the graded
reverse-lexicographical ordering (grevlex), whose defini-
tion is recalled below. (Note that we will use monomials
to refer to products of powers of the variables). We will
perform this computation, following the Buchberger al-
gorithm, while simultaneously keeping track of lifts of the
Gröbner-basis elements to elements of DV ∗ , as follows.

Recall that the (commutative) Buchberger algorithm
works in the following manner. Fix a polynomial ring
C[z1 , . . . , zn ]. Equip the monomials with an ordering,
such as the grevlex ordering: za1

1 · · · zann < zb1
1 · · · zbnn if

either a1 + · · · + an < b1 + · · · + bn or a1 + · · · + an =
b1 + · · · + bn , and for some 1 ≤ i ≤ n, ai < bi and aj = bj
for all j > i. We require that g < h imply fg < fh for
monomials f , g, and h, and that g < h when g has lower
total degree than h (which are both true for the grevlex
ordering).

Next, given an ideal I = (g1 , . . . , gm ) ⊂ C[z1 , . . . , zn ],
we compute a Gröbner basis as follows. Assume that the

gi are all monic, i.e., their leading monomials (with re-
spect to the monomial ordering) have coefficient one. De-
note the leading monomial of an element g by LM(g).

Then for every pair i �= j, we define the monomial
h := lcm(LM(gi), LM(gj )), and consider the element gij
obtained by rescaling h

LM (gi )
· gi − h

LM (gj ) gj to be monic
(unless it is zero, in which case we set gij = 0). If gij = 0,
we throw it out. Otherwise, we reduce gij modulo the
g1 , . . . , gm , i.e., if LM(gk ) | LM(gij ), we replace gij with
gij − LM (gi j )

LM (gk ) gk .
If the result is zero, we discard it, and otherwise, we

rescale it to be monic. We then iterate this until we either
obtain zero (which we discard) or a monic polynomial g
such that LM(gk ) � LM(g) for all k, which we adjoin to
the collection {g1 , . . . , gm} of generators of I. (Note that
we could have skipped the case lcm(LM(gi), LM(gj )) =
gigj , since then we always obtain zero.) Furthermore, if
LM(gi) | LM(gj ), then we discard gj (this is the case
where (gi, gj , gij ) = (gi, gij )), and similarly swapping i

and j. This process is then repeated until exhaustion,
i.e., all pairs of elements in the generating set have been
computed (and no new elements remain to be added).

In our algorithm, we perform the Buchberger algo-
rithm for Jv while keeping track, for every generator of
Jv , of a differential operator in IH (the left ideal gen-
erated by Hamiltonian vector fields) lifting the given el-
ement. Namely, we begin with the lifts ξfi of fi for all
i = 1, 2, . . . , N . Every time we compute the element

h

LM(gi)
· gi − h

LM(gj )
gj ,

for h = lcm(LM(gi), LM(gj )), given lifts g̃i , g̃j of gi, gj ∈
Jv to IH , we also compute

h

LM(gi)
· g̃i − h

LM(gj )
g̃j ,

which is a lift to IH . Here we view

h

LM(gi)
and

h

LM(gj )

as constant-coefficient differential operators. We then
rescale and reduce while also keeping track of the lift
to IH .

In the end, we arrive at a Gröbner basis (gi) for Jv to-
gether with (noncanonical) lifts (g̃i) of the basis elements
to IH .

Using these lifts, we can reduce φ = ξ ◦ Fj ∈ DV ∗ to a
linear combination ψ =

∑
i ciFi modulo Iv · DV ∗ + IH , as

follows: We work in DV ∗/(Iv · DV ∗), which identifies with
OT ∗

v V
∗ ∼= C[∂x1 , . . . , ∂xn , ∂y1 , . . . , ∂yn ] as a vector space.
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Define

IH := (IH + Iv · DV ∗)/(Iv · DV ∗),

which is a vector subspace. Under the above identifica-
tion, IH is filtered (by order of differential operators),
and gr IH ⊇ Jv . Let g̃i ∈ IH be the image of g̃i ∈ IH un-
der this quotient. Then gr g̃i = gi . We may now reduce
φ ∈ DV ∗/(Iv · DV ∗) modulo IH by iteratively reducing
grφ modulo Jv such that every time we subtract g · gi
from grφ for g ∈ C[∂x1 , . . . , ∂xn , ∂y1 , . . . , ∂yn ] a constant-
coefficient differential operator, we simultaneously sub-
tract g · g̃i from φ.

5. COMPUTATIONAL RESULTS

We developed computer programs in Magma

[Ren and Schedler 10] to compute HP0(OG
V ,OV )

using the above theory. First, we wrote programs that
compute HP0(OG

V ,OV ) (together with its grading and
G-structure) up to a specified degree. Then, we wrote
programs that compute the bounds of Theorems 3.1 and
4.2.

It turns out that in practice, the bound produced by
Theorem 4.2 (using the matrix Bξ ) is much sharper than
that of Theorem 3.1 (which is applicable only to the case
G < GL(X) < Sp(V )). In particular, in most cases we
tested, the top integer eigenvalue of −Bξ (for appro-
priate v ∈ V ∗) was in fact equal to the top degree of
HP0(OG

V ,OV ) (recall that the degrees of HP0(OG
V ,OV )

are nonpositive, which is why we have a minus sign in
−Bξ ). This is good because it can also be applied to
arbitrary G < Sp(V ). The downside is that the compu-
tation required can be much slower, and sometimes too
slow.

In the case of groups G < GL(X) < Sp(V ), we actu-
ally use both techniques: first we apply Section 3 to com-
pute the (generally less sharp) bound 2 · topdeg(Rv ) on
the top degree; this is usually very fast, and for complex
reflection groups, the result is already in Corollary 3.4.
Next, we compute −Bξ and its eigenvalues, working over
a prime field Fp for p larger than the first bound. This
can be effectively computed in some cases in which it is
not over a number field. Although in theory, this could
produce a less sharp bound than over a number field, in
practice, it is quite effective, and one obtains a useful
bound (often the actual top degree).

Finally, once we have this bound on degree, we use
our programs to explicitly compute HP0(OG

V ,OV ) up to
that top degree, working over a number field (either the
field of definition of G, generally a cyclotomic field, or a

smaller subfield containing the coefficients of generators
of the invariant ring, over which one can therefore define
OG
V ; for example, for some of the exceptional Shephard–

Todd groups of rank two, one can compute generators of
OG
V with rational coefficients even though the generators

of G do not have rational coefficients). If this is too slow,
one could work over a prime field Fp containing primi-
tive |G|th roots of unity, although then the result would
technically yield an upper bound only for the (G-graded)
Hilbert series of HP0(OG

V ,OV ) (in practice, one will prob-
ably get the right answer if the prime p is large). However,
if one obtains in this way a group HP0(Fp [V ]G,Fp [V ]) of
dimension

|{g ∈ G | (g − Id) is invertible}| = dim HH0(DG
X ,DX )

(cf. Lemma 1.1), then this must be the correct dimen-
sion, since this is a lower bound for dim HP0(OG

V ,OV ),
and therefore one may conclude that HP0(OG

V ,OV ) ∼=
gr HH0(DG

X ,DX ).

5.1. Subgroups of SL2(C)

In [Alev and Lambre 98], the groups HP0(OG
V ) were com-

puted for V = C2 and G < Sp(V ) = SL2(C) a finite sub-
group (for an alternative computation, one can special-
ize [Etingof and Schedler 09] to the rank-one case). The
associated varieties V/G are well known and are called
Kleinian (or du Val) singularities. It then follows from
Lemma 1.1 (the main result of [Alev et al. 00]) that
HP0(OG

V ) ∼= gr HH0(DG
X ).

In this subsection, we extend this by computing
HP0(OG

V ,OV ). Our main result is Theorem 5.3 below,
which we expand on in the subsequent sections.

Definition 5.1. Given a graded vector spaceK, letKev de-
note the span of the even-graded homogeneous elements
of K.

The following elementary lemma explains our interest
in the even-graded subspace. From now on, let X ⊆ V

always denote a Lagrangian subspace.

Lemma 5.2. Let V be an arbitrary finite-dimensional
symplectic vector space and G < Sp(V ) finite. Then
gr HH0(DG

X ,DX ) is concentrated in even degrees.

Proof. First suppose that − Id ∈ G. Since − Id is central,
it acts trivially on C[G]ad and hence on HH0(DG

X ,DX ) by
Lemma 1.1. Since the action of − Id on gr HH0(DG

X ,DX )
is by (−1)deg , this implies that it is concentrated in even
degrees.
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In the general case, let K := 〈G,− Id〉. Then
HH0(DG

X ,DX ) is a quotient of HH0(DK
X ,DX ), so this

also holds on the level of associated graded vector spaces.
Therefore, by the above paragraph, gr HH0(DG

X ,DX ) is
concentrated in even degrees.

Let D̃m denote the dicyclic subgroup of order 2m
(for m even), which is the inverse image of the dihe-
dral subgroup Dm of SO(3,R) under the double cover
by SU(2,C). It is well known (the “McKay correspon-
dence”) that all finite subgroups of SL2(C) are either
cyclic, dicyclic, or one of the three exceptional groups
Ã4 , S̃4 , and Ã5 , which are the preimages of the tetrahe-
dral, octahedral, and icosahedral rotation subgroups of
SO(3,R) in SU(2,C) < SL2(C) under the double cover
SU(2,C) � SO(3,R).

By the McKay correspondence, the cyclic, dicyclic,
and exceptional groups correspond to the simply laced
extended Dynkin diagrams of types Ã, D̃, and Ẽ, respec-
tively: the vertices are the irreducible representations of
the group, and given an irreducible representation, the
decomposition of its tensor product with the defining
representation C2 into irreducibles is given by the ver-
tices adjacent to the one corresponding to the original
irreducible representation.

Theorem 5.3. If G < SL2(C) is finite, then the
composition HP0(OG

V ,OV )ev ↪→ HP0(OG
V ,OV ) �

gr HH0(DG
X ,DX ) is an isomorphism. The Hilbert series

of h(HP0(OG
V ,OV ); t) is given by

1 + t2 + · · · + t2(m−2) , G ∼= Z/m; (5–1)

1 + (2t+ 3t2 + 2t3 + · · · + 3tm−2) + 2tm (5–2)

+ (tm+2 + tm+4 + · · · + t2m−4) + t2m , G ∼= D̃m ;

1 + 2t+ 3t2 + 4t3 + 5t4 + 4t5 + 4t6 + 2t7 + 4t8 + 3t10

+ t12 + t14 + t20 , G ∼= Ã4 ; (5–3)

1 + 2t+ 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 6t7 + 6t8 + 6t9

+ 6t10 + 4t11 + 6t12 + 2t13 + 4t14 + 3t16 + 3t18

+ t20 + t24 + t32 , G ∼= S̃4 ; (5–4)

1 + 2t+ 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9

+ 11t10 + 10t11 + 10t12 + 10t13 + 10t14 + 10t15

+ 10t16 + 10t17 + 10t18 + 8t19 + 10t20 + 6t21 + 6t22

+ 4t23 + 6t24 + 2t25 + 6t26 + 5t28 + 3t30 + t32 + 3t34

+ t36 + t44 + t56 , G ∼= Ã5 , (5–5)

and h(HP0(OG
V ); t) is given by (5–1) when G ∼= Z/m, and

(1 + t4 + · · · + t2m ) + tm , G ∼= D̃m ; (5–6)

1 + t6 + t8 + t12 + t14 + t20 , G ∼= Ã4 ; (5–7)

1 + t8 + t12 + t16 + t20 + t24 + t32 , G ∼= S̃4 ; (5–8)

1 + t12 + t20 + t24 + t32 + t36 + t44 + t56 , G ∼= Ã5 .
(5–9)

By the lemma, the composition HP0(OG
V ,OV )ev →

gr HH0(DG
X ,DX ) is always a surjection. The fact that it

is injective follows from the explicit formulas for Hilbert
series above, since this together with Lemma 1.1 shows
that the dimensions are equal. Thus, below, we restrict
our attention to proving (5–1)–(5–5).

On the other hand, the map HP0(OG
V ,OV ) �

gr HH0(DG
X ,DX ) itself is not injective when G < SL2(C)

is not abelian, since HP0(OG
V ,OV ) is not concentrated

in even degrees. Nonetheless, by the above formulas (or
[Alev and Lambre 98]) together with Lemma 1.1, the re-
striction to invariants, HP0(OG

V ) � gr HH0(DG
X ), is an

isomorphism.

Remark 5.4. The above gives examples in which
HP0(OG

V ,OV ) is not concentrated in even degrees, but
HP0(OG

V ) is. It is natural to ask for an example in which
HP0(OG

V ) itself is not concentrated in even degrees. We
construct such examples in Section 8.

Remark 5.5. The fact that HP0(OG
V ,OV )ev ∼=

gr HH0(DG
X ,DX ) is quite special to the above case.

For many groups G (such as many examples discussed
below), HP0(OG

V ) � gr HH0(DG
X ), and the former is

concentrated in even degrees (in the cases below,
G < GL(X) < Sp(V ), so HP0(OG

V ,OV ) itself is auto-
matically concentrated in even degrees, by the discussion
at the beginning of Section 3). There are also ex-
amples in which HP0(OG

V ) ∼= gr HH0(DG
X ) but still

HP0(OG
V ,OV )ev � gr HH0(DG

X ,DX ). For example, this
holds when G is the complex reflection group G(4, 2, 2)
or G(6, 2, 2) as discussed below.

As already remarked, formulas (5–6)–(5–9) were first
computed in [Alev and Lambre 98], but we include them,
since they follow directly from the (apparently new) for-
mulas (5–1)–(5–5) of the theorem.2 Note that when G is

2 As is well known, (5–6)–(5–9) can be more compactly described
as

∑
i
t2(m i −1) , where mi are the Coxeter exponents of the root
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abelian (and hence cyclic, since V = C2), by Lemma 6.1
below, HP0(OG

V ,OV ) = HP0(OG
V ), so (5–1) also follows

from [Alev and Lambre 98]. Thus, we do not need to dis-
cuss the cyclic case at all, but we do so anyway, since the
computation is short and simple.

Let us write OV = C[x, y] with {x, y} = 1. Using the
symplectic form, we can identify V ∼= Span(x, y), and let
us write matrices according to their action on the basis
pulled back from (x, y). We will use the following elemen-
tary lemma, which holds for arbitrary symplectic V and
G < Sp(V ).

Lemma 5.6. Let (gi) be a collection of Poisson genera-
tors of OG

V . Then {OG
V ,OV } is the sum of the subspaces

{gi,OV }.

Proof. It suffices to show that for all f, g ∈ OG
V and

all h ∈ OV , {fg, h} and {{f, g}, h} are subspaces of
{f,OV } + {g,OV }. This follows from the identities

{fg, h} = {f, gh} + {g, fh},
{{f, g}, h} = {f, {g, h}} − {g, {f, h}},

and the proof of the lemma is complete.

5.1.1. Cyclic Subgroups.

Suppose G ∼= Z/m. We give a short, self-contained proof
of the following result.

Theorem 5.7. [Alev and Lambre 98]

h(HP0(OG
V ,OV ); t) = 1 + t2 + · · · + t2(m−2) ,

and G acts trivially. Moreover, a basis is obtained by the
images of the elements xaya for 0 ≤ a ≤ m− 2.

Proof. Up to conjugation,

G =

〈(
e2πi/m 0

0 e−2πi/m

)〉
.

The ring OG
V is generated by the elements xy, xm , and

ym . It is Poisson generated by the first two elements.
Therefore, by Lemma 5.6, we need to compute only

{xy,OV } and {xm ,OV }. The former is spanned by all
monomials of unequal degrees in x and y. The latter is
spanned by monomials of degree ≥ m− 1 in x. Hence, a
basis for HP0(OG

V ,OV ) is given by (1, xy, . . . , xm−2ym−2).
This recovers the theorem.

system corresponding to the group by the McKay correspondence
(type Am−1 in the case of Z/m, type Dm/2 in the dicyclic case,
and types E6 , E7 , and E8 in the exceptional cases).

5.1.2. Dicyclic Subgroups.

By the classification of finite subgroups of SL2(C) re-
called above, the other infinite family of subgroups is that
of the dicyclic groups, which are given up to conjugation
by

G =

〈(
e2πi/m 0

0 e−2πi/m

)
,

(
0 −1
1 0

)〉
,

for m even. Let ρ0 denote the trivial representation of
G, ρ1 the nontrivial one-dimensional representation that
vanishes on the diagonal elements, ρ3 and ρ4 the other
one-dimensional representations (in either order), τ1 the
standard 2-dimensional representation, and τj the irre-
ducible two-dimensional representation in which the di-
agonal elements act through their jth powers (for 1 ≤
j ≤ m/2 − 1).

The goal of this section is to prove the following result.

Theorem 5.8. As a graded G-representation, H :=
HP0(OG

V ,OV ) is given by

h(HomG (ρ0 ,H); t) = (1 + t4 + · · · + t2m ) + tm ;

h(HomG (ρ1 ,H); t) = (t2 + t6 + · · · + t2m−6) + tm ;

h(HomG (ρ2 ,H); t) = h(HomG (ρ3 ,H); t) = tm/2 ;
h(HomG (τ1 ,H); t) = t;

h(HomG (τj ,H); t) = tj + tm−j , 2 ≤ j ≤ m/2 − 1.

Proof. The invariant ring OG
V is generated by x2y2 , xm +

ym , and xy(xm − ym ). The first two of these are Poisson
generators. By Lemma 5.6, we therefore need to compute
only {x2y2 ,OV } and {xm + ym ,OV }.

First, {x2y2 ,OV } is spanned by

{x2y2 , xayb} = 2(b− a)xa+1yb+1 .

This is the span of all monomials of unequal positive
degrees in x and y.

Next, {xm + ym ,OV } is spanned by

{xm + ym , xayb} = bmxa+m−1yb−1 − amxa−1yb+m−1 .

Up to the previous span, this is the same as the
span of the monomials xayb with either a ≥ m− 1
or b ≥ m− 1, with the exception of the pairs (a, b) ∈
{(m, 0), (0,m), (2m, 0), (m,m), (0, 2m)}, where we obtain
the elements

xm − ym , mx2m −m(m+ 1)xmym ,
m(m+ 1)xmym −my2m .
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FIGURE 1. Labels of the irreducible representations of
Ã4 , S̃4 , Ã5 < SL2 (C) in terms of the McKay graphs
Ẽ6 , Ẽ7 , Ẽ8 , respectively. The defining 2-dimensional
representation is the second from the left in all cases;
tensoring a representation by this representation yields
the direct sum of all adjacent representations.

As a result, the following elements map to a graded basis
of HP0(OG

V ,OV ):

(1) ∪ (xa , ya , xaya)1≤a≤m−2 ∪ (xm + ym )
∪ ((m+ 1)(x2m + y2m ) + xmym ).

Moreover, the span of these elements is G-invariant, and
the theorem follows easily.

5.1.3. Exceptional Subgroups.

Using computer programs written in Magma, we com-
puted for the exceptional subgroups the graded represen-
tations HP0(OG

V ,OV ). In this case, one can prove that
the answer is correct using only the bound on dimension,
dimRv , from the introduction, for a particular choice of
v, since for G < SL2, we have that gr(ξhi ) = (gr ξhi ), as
hi ranges over generators of OG

V . Just to double check,
we also employed the programs using the method of Sec-
tion 4 (since dimRv = dim HP0(OG

V ,OV ) in this case,
this yields precisely the correct Hilbert series, i.e., (4–2)
is an equality).

Label the representations of G ∈ {Ã4 , S̃4 , Ã5}, corre-
sponding to the McKay graph Em , by ρ0 , . . . , ρm , with
ρ0 the trivial representation, according to Figure 1. Our
indexing follows Magma (in particular, indices increase
with the dimension of the irreducible representation).

Theorem 5.9. The graded G-structure of H =
HP0(OG

V ,OV ) is given by:

G = Ã4 :
h(HomG (ρ0 ,H); t) = 1 + t6 + t8 + t12 + t14 + t20 ;
h(HomG (ρ1 ,H); t) = h(HomG (ρ2 ,H); t) = t4 ;
h(HomG (ρ3 ,H); t) = t+ t7 ;
h(HomG (ρ4 ,H); t) = h(HomG (ρ5 ,H); t) = t3 + t5 ;
h(HomG (ρ6 ,H); t) = t2 + t4 + t6 + t8 + t10 .

G = S̃4 :
h(HomG (ρ0 ,H); t) = 1 + t8 + t12 + t16 + t20

+ t24 + t32 ;
h(HomG (ρ1 ,H); t) = t6 + t14 ;
h(HomG (ρ2 ,H); t) = t4 + t8 + t12 + t16 ;
h(HomG (ρ3 ,H); t) = t+ t9 ;
h(HomG (ρ4 ,H); t) = t5 + t7 + t13 ;
h(HomG (ρ5 ,H); t) = t4 + t6 + t8 + t12 ;
h(HomG (ρ6 ,H); t) = t2 + t6 + 2t10 + t14 + t18 ;
h(HomG (ρ7 ,H); t) = t3 + t5 + t7 + t9 + t11 .

G = Ã5 :
h(HomG (ρ0 ,H); t) = 1 + t12 + t20 + t24 + t32

+ t36 + t44 + t56 ;
h(HomG (ρ1 ,H); t) = t+ t13 + t25 ;
h(HomG (ρ3 ,H); t) = t6 + t10 + t14 + t18 + t22 +

t26 + t30 ;
h(HomG (ρ2 ,H); t) = t7 + t13 + t19 ;
h(HomG (ρ4 ,H); t) = t2 + t10 + t14 + t18 + t22 +

t26 + t34 ;
h(HomG (ρ5 ,H); t) = t6 + t8 + t12 + t14 + t18 + t20 ;
h(HomG (ρ6 ,H); t) = t3 + t9 + t11 + t15 + t17 + t23 ;
h(HomG (ρ7 ,H); t) = t4 + t8 + t10 + t12 + 2t16 + t20

+ t24 + t28 ;
h(HomG (ρ8 ,H); t) = t5 + t7 + t9 + t11 + t13 + t15

+ t17 + t19 + t21 .

5.2. Coxeter Groups of Rank ≤ 3 and A4, B4 = C4,
and D4

Theorem 5.10. For every Coxeter group G < GL(X) <
Sp(V ) of rank ≤ 3, we have

HP0(OG
V ,OV ) ∼= gr HH0(DG

X ,DX ).

The resulting Hilbert series is

A1 : 1; A2 : 1 + t2 ; A3 : 1 + 3t2 + 2t4 ;

B2 = C2 : 1 + t2 + t4 ;

B3 = C3 : 1 + 3t2 + 6t4 + 4t6 + t8 ;

H3 : 1 + 3t2 + 6t4 + 10t6 + 15t8 + 9t10 + t12 ;

I2(m) : 1 + t2 + · · · + t2(m−2) .

Also, for types A4 , B4 = C4 , and D4 , we have that

HP0(OG
V ,OV ) ∼= gr HH0(DG

X ,DX )

holds. The resulting Hilbert series are

A4 : 1 + 6t2 + 10t4 + 6t6 + t8 ;

D4 : 1 + 6t2 + 20t4 + 16t6 + 2t8 ;

B4 = C4 : 1 + 6t2 + 20t4 + 31t6 + 28t8 + 15t10 + 4t12 .
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The Hilbert series of HP0(OG
V ) ∼= HH0(DG

X ) in all of
these cases are

A1 , A2 , A3 , A4 : 1; D4 : 1 + t4 + t8 ;

B2 = C2 : 1 + t4 ; B3 = C3 : 1 + t4 + t8 ;

B4 = C4 : 1 + t4 + 2t8 + t12 ; H3 : 1 + t4 + t8 + t12 ;

I2(m) : 1 + t4 + · · · + t4�(m−2)/2�.

Remark 5.11. Partial computer tests have shown that
HP0(OG

V ,OV ) � gr HH0(DG
X ,DX ) for G = F4 , although

we do not know whether the identity holds on the level
of invariants.

Remark 5.12. The surjection HP0(OG
V ,OV ) �

gr HH0(DG
X ,DX ) is not, in general, an isomorphism

for Coxeter groups of rank ≥ 5. Via the equivalence of
[Ren and Schedler 12, Theorem 1.5.1], [Mathieu 95, 8.6]
(see also [Ren and Schedler 12, Example 1.6.1]) shows
that

HP0(OG
V ,OV ) � gr HH0(DG

X ,DX )

when G ∼= Sn+1 is a Weyl group of type An

for n ≥ 5 (but HP0(OG
V ) ∼= gr HH0(DG

X ) for all
types An by [Etingof and Schedler 12]). Also, by
[Etingof and Schedler 12, Appendix A], HP0(OG

V ) �
gr HH0(DG

X ) when G is a Weyl group of type Dn for
n ≥ 7 (but the isomorphism holds for n ≤ 6).

Question 5.13. In the cases F4 , H4 , E6 , E7 , and E8 , does
HP0(OG

V ) ∼= gr HH0(DG
X ) hold? If so, in any case (except

F4), does HP0(OG
V ,OV ) ∼= gr HH0(DG

X ,DX ) hold?

5.3. Complex Reflection Groups of Rank Two

Theorem 5.14. Of the complex reflection groups
of rank two, the ones such that HP0(OG

V ,OV ) ∼=
gr HH0(DG

X ,DX ) are exactly S3 , G(m, 1, 2), G(m,m, 2),
G4 , G6 , G8 , and G14 . The additional groups such that
HP0(OG

V ) ∼= gr HH0(DG
X ) are G(4, 2, 2), G(6, 2, 2), G5 ,

G9 , and G21 .

We also compute the relevant Hilbert series, where
HP0 and HH0 coincide. For the case S3 , this is given in
the previous section, and the G(m, p, 2) case is treated
in Section 7, where we also prove the above theorem in
this case. For the exceptional cases, we used Magma pro-
grams and the techniques of Sections 3 and 4 to compute

HP0(OG
V ,OV ) for all G4 , . . . , G22 except G18 and G19 ,

and computed enough of HP0(OG
V ) for the cases G18 and

G19 to prove that HP0(OG
V ) � gr HH0(DG

X ) (in fact, it
seems we computed all of HP0(OG

V ), but we could not
prove it). We give the results in the cases in which the
isomorphism holds:

Theorem 5.15. The Hilbert series of HP0(OG
V ) ∼=

gr HH0(DG
X ) for the exceptional Shephard–Todd groups

G4 , G5 , G6 , G8 , G9 , G14 , and G21 where this holds are

G4 : 1 + t2 + t4 + t8 ; G5 : 1 + t2 + t4 + 2t6 + 3t8

+ 2t10 + 2t12 + 2t14 + t16 + t20 ;

G6 : 1 + t2 + t4 + t6 + 2t8 + t10 + t12 + t14 + t16 ;

G8 : 1 + t2 + t4 + t6 + 2t8 + t10 + 2t12 + t14 + t16 + t20 ;

G9 : 1 + t2 + t4 + t6 + 2t8 + 2t10 + 3t12 + 2t14 + 3t16

+ 2t18 + 3t20 + t22 + 2t24 + t26 + t28 + t32 ;

G14 : 1 + t2 + t4 + t6 + 2t8 + t10 + 2t12 + 2t14 + 2t16

+ t18 + 2t20 + t22 + t24 + t26 + t28 ;

G21 : 1 + t2 + t4 + t6 + t8 + t10 + 2t12 + 2t14 + 2t16

+ 2t18 + 3t20 + 2t22 + 3t24 + 3t26 + 3t28 + 2t30

+ 3t32 + 2t34 + 3t36 + 2t38 + 2t40 + t42 + 2t44 + t46

+ t48 + t50 + t52 + t56 .

The Hilbert series of HP0(OG
V ,OV ) ∼= gr HH0(DG

X ,DX )
in the cases G4 , G6 , G8 , and G14 in which this holds are

G4 : 1 + 4t2 + 6t14 + 3t6 + t8 ;

G6 : 1 + 4t2 + 9t4 + 7t6 + 5t8 + 4t10 + t12 + t14 + t16 ;

G8 : 1 + 4t2 + 9t4 + 16t6 + 17t8 + 13t10 + 10t12 + 5t14

+ t16 + t20 ;

G14 : 1 + 4t2 + 9t4 + 16t6 + 22t8 + 18t10 + 15t12 + 11t14

+ 7t16 + 6t18 + 2t20 + t22 + t24 + t26 + t28 .

6. ABELIAN SUBGROUPS OF Sp4

In this section, we describe HP0(OG
V ,OV ) in the case

that V = C4 and G is an abelian subgroup of Sp4. By
the following elementary lemma, it suffices to assume
thatG < (C×)2 < GL2 < Sp4, and moreover, in this case,
HP0(OG

V ,OV ) = HP0(OG
V ).

Lemma 6.1. Let G < Sp2n be a finite abelian subgroup.
Then up to conjugation, G < (C×)n < GLn < Sp2n is a
subgroup of diagonal matrices. Moreover, G acts trivially
on HP0(OG

C2 n ,OC2 n ).
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Proof. To prove the first statement, we proceed induc-
tively. There must exist a common eigenvector v1 ∈ C2n

for G. Set V1 := Span(v1). Since G < Sp2n and G stabi-
lizes V1 , it also stabilizes V ⊥

1 . If dimV ⊥
1 > dimV1 , pick

another common eigenvector v2 ∈ dimV ⊥
1 not in V1 , and

set V2 := Span(v1 , v2). Inductively, we form in this way
a sequence of isotropic G-invariant subspaces 0 ⊆ V1 ⊆
V2 ⊆ · · · such that dimVi = i, and we terminate at Vn ,
since only for i = n do we have dimV ⊥

i = i. Then G sta-
bilizes the Lagrangian subspace Vn , and in the eigenbasis
obtained from v1 , . . . , vn together with their duals under
the symplectic form, G < (C×)n < GLn < Sp2n .

For the last statement, note that if G < (C×)n , then
in standard symplectic coordinates, the elements xiyi ∈
OC2 n = C[x1 , . . . , xn , y1 , . . . , yn ] are G-invariant. Since
for a monomial f , we have {xiyi, f} = degxi f − degyi f ,
it follows that HP0(OG

V ,OV ) is a quotient, as a vector
space, of the subalgebra C[x1y1 , x2y2 , . . . , xnyn ] ⊆ OC2 n .
Since this subalgebra is G-invariant, we deduce the state-
ment of the lemma.

Theorem 6.2. G < C× × C× has the property
HP0(OG

V ,OV ) ∼= gr HH0(DG
X ,DX ) if and only if up

to conjugation, G is one of the following groups (for
r,m,A,B ≥ 1):

(i) The cyclic group generated by
(
e2 π i / m 0

0 e±2 r π i / m

)
,

where gcd(r,m) = 1, and either r | (m+ 1) or r |
(m− 1).

(ii) The cyclic group generated by
(
e±2 π i / (m A ) 0

0 e2 π i / m

)
for some choice of sign ±.

(iii) The group generated by
(
e2 π i /A 0

0 1

)
and

( 1 0
0 e2 π i / B

)
.

The proof of the theorem yields a complete descrip-
tion of the resulting graded vector space HP0(OG

V ,OV ) ∼=
gr HH0(DG

X ,DX ). In particular, from Theorem 6.5 and
Figures 2 and 3 (for type (1)), Figure 6 (for type (2)),
and Figure 5 (for type (3)), we deduce the following corol-
lary.

Corollary 6.3. In the three cases defined in Theorem 6.2
such that HP0(OG

V ,OV ) ∼= gr HH0(DG
X ,DX ), the follow-

ing hold:

(1) Let us assume that r �≡ ±1 (mod m); otherwise, this
case is covered in (2) below. Define p, q ≥ 1 as
in Section 6.2.1, namely, 1 < p, q < m/2, p ≡ ±r
(mod m), and pq = m± 1. Without loss of generality
(up to conjugating G by the nontrivial permutation

matrix), we can assume p ≤ q. Then

h(HP0(OG
V ,OV ); t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 2t2 + 3t4 + · · · + pt2p−2 + pt2p + · · ·
+pt2q−2 + (p− 1)t2q + · · · + t2p+2q−4 ,

if pq + 1 = m;
1 + 2t2 + 3t4 + · · · + pt2p−2 + pt2p + · · ·

+pt2q−2 + (p− 1)t2q + · · · + 3t2p+2q−8

+t2p+2q−6 , if pq − 1 = m.

(2) In this case,

h(HP0(OG
V ,OV ); t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 2t2 + · · · + (m− 1)t2m−4

+(m− 1)t2m−2 + · · · + (m− 1)t2A−2

+(m− 2)t2A + · · · + t2m+2A−6 , if m ≤ A;
1 + 2t2 + · · · +At2A−2 +At2A + · · ·

+At2m−4 + (A− 1)t2m−2 +· · ·+ t2m+2A−6 ,

if m > A.

(3) Without loss of generality, assume that A ≥ B. Then

h(HP0(OG
V ,OV ); t) = 1 + 2t2 + · · · + (B − 1)t2B−4

+ (B − 1)t2B−2 + · · · + (B − 1)t2A−4

+ (B − 2)t2A−2 + · · · + t2A+2B−8 .

The theorem will follow from a case-by-case analy-
sis of the following general combinatorial description of
HP0(OG

V ,OV ) for arbitrary G < C× × C× < GL2 < Sp4,
which is interesting in its own right.

Let V1 be the minimal set of generators for the semi-
group {xr1xs2 |xr1xs2 ∈ OG

V , (r, s) �= (0, 0)} and let V2 be the
minimal set of generators for the semigroup {xr1ys2 |xr1ys2 ∈
OG
V , (r, s) �= (0, 0)}. Note that the elements of V1 are

those xr1x
s
2 with r, s ≥ 0 and (r, s) �= (0, 0) such that for

all other xr
′

1 x
s ′
2 ∈ OG

V with r′, s′ ≥ 0 and (r′, s′) �= (0, 0),
either r < r′ or s < s′, and similarly for V2 .

Construct a graph Γ as follows. The vertices of Γ are
the points (j, k) such that j, k ≥ −1. For each (r, s) such
that xr1x

s
2 ∈ V1 , we draw an edge between (a+ r, b+ s−

1) and (a+ r − 1, b+ s) for every pair of nonnegative in-
tegers a, b; we then do the same for every xr1y

s
2 ∈ V2 .

Definition 6.4. Let C be the set of connected components
C of Γ such that every vertex of C is a pair (a, b) of
nonnegative integers and such that every pair of adjacent
vertices in C comprises the endpoints of a unique edge
of Γ.
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Theorem 6.5. Pick for each C ∈ C a vertex (aC , bC ) ∈ C.
Then a basis of HP0(OG

V ,OV ) is obtained as the image
of the monomials {xaC1 xbC2 yaC1 ybC2 | C ∈ C}.

Corollary 6.6. The Hilbert series of HP0(OG
V ,OV ) is∑

C∈C t
2aC +2bC . Its dimension is |C|.

Let us describe the connected components of the the-
orem more explicitly. Let

E := {(r, s) ∈ Z2
≥0 \ {(0, 0)} | xr1xs2 ∈ V1 or xr1y

s
2 ∈ V2}.

Then a connected component C of Γ is in C if and only
if it is one of the following:

1. A connected component that is a point (a, b)
with a, b ≥ 0 such that for all (r, s) ∈ E, either
a < r − 1 or b < s− 1.

2. A connected component that is a chain

(a, b+ c), (a+ 1, b+ c− 1), . . . , (a+ c, b)

with a, b, c ≥ 0 such that there is exactly one
edge between any two consecutive points in the
chain, or equivalently, such that for any 0 ≤ i ≤
c− 1, there is exactly one (r, s) ∈ E such that
a+ i ≥ r − 1 and b+ c− i ≥ s.

We will refer to connected components of the first type
as “points of type (1)” and connected components of the
second type as “chains of type (2).” Note that there may
exist chains of type (2) consisting of a single point. We
will not always make a distinction between connected
components consisting of a single point and the point
itself.

Note that elements of E of the form (0, s) and (r, 0)
may generate chains (a, b+ c), (a+ 1, b+ c− 1), . . . , (a+
c, b) that satisfy all the conditions of type (2) except that
either a < 0 or b < 0; these are not included in C.

In practice, to apply the above theorem, it is more
convenient and intuitive to draw a picture called the
staircase. This is the collection of vertices (r − 1, s− 1)
for (r, s) ∈ E, together with some line segments as fol-
lows: Call a vertex (r − 1, s− 1) a corner if (r, s) ∈ E

and for all other (r′, s′) ∈ E, either r < r′ or s < s′. Note
that the points of type (1) above are exactly those (a, b)
such that for every corner (r − 1, s− 1), either a < r − 1
or b < s− 1. Order the corners (r1 , s1), (r2 , s2), . . . such
that r1 < r2 < · · · . We then draw line segments from
(ri, si) to (ri+1 , si) and from (ri+1 , si) to (ri+1 , si+1). Let
the staircase be the region

S := {(x, y) ∈ R2
≥0 | x ≤ ri − 1 or y ≤ si − 1,∀i}.

In general, this region is shaped like a staircase, which
explains our terminology. See Figures 2–6 for examples
of the resulting staircases. In all of these figures except
Figure 4, the shaded regions consist only of vertices ly-
ing in connected components in C (and every connected
component includes at least one vertex in the shaded re-
gion, possibly on the boundary). Moreover, again in all
figures except Figure 4, the plotted vertices are exactly
those appearing in a connected component in C.

Then, the points of type (1) are the lattice points of
S that are not incident to any of the aforementioned line
segments (this includes all the lattice points in the inte-
rior of S). The chains of type (2) are naturally in bijec-
tion with a subquotient of the remaining lattice points in
S, i.e., those incident to one of the aforementioned line
segments.

6.1. Proof of Theorem 6.5

We begin with a series of preliminary lemmas.

Lemma 6.7. OG
V is generated, as an algebra, by x1y1 ,

x2y2 , and the elements of the form xa1x
b
2 , x

a
1y

b
2 , y

a
1x

b
2 ,

and ya1 y
b
2 .

Proof. It is clear that x1y1 and x2y2 are invariants. Since
G is a group of diagonal matrices, f ∈ OV is an invariant
if and only if every term of f is an invariant. For each
monomial xa1

1 xa2
2 yb1

1 y
b2
2 , if a1 ≥ b1 and a2 ≥ b2 , then we

can write

xa1
1 xa2

2 yb1
1 y

b2
2 = (x1y1)b1 (x2y2)b2

(
xa1 −b1

1 xa2 −b2
2

)
.

The other cases are similar.

Lemma 6.8. If a1 �= b1 or a2 �= b2 , then xa1
1 xa2

2 yb1
1 y

b2
2 ∈

{OG
V ,OV }.

Proof. This is a special case of the argument of the proof
of the final statement of Lemma 6.1. Explicitly, if a1 �= b1 ,
then

1
b1 − a1

{
x1y1 , x

a1
1 xa2

2 yb1
1 y

b2
2

}
= xa1

1 xa2
2 yb1

1 y
b2
2 .

If a2 �= b2 , then

1
b2 − a2

{
x2y2 , x

a1
1 xa2

2 yb1
1 y

b2
2

}
= xa1

1 xa2
2 yb1

1 y
b2
2 ,

and the proof is complete.

Proof of Theorem 6.5. By the above lemmas and Lemma
5.6, it suffices to determine, for all a, b ≥ 0, whether
xa1x

b
2y

a
1 y

b
2 ∈ {OG

V ,OV }. By symmetry, {yr1ys2 | xr1xs2 ∈ V1}
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is a minimal set of generators of the semigroup of invari-
ants of the form yr1y

s
2 , and {yr1xs2 | xr1ys2 ∈ V2} is a min-

imal set of generators of the semigroup of invariants of
the form yr1x

s
2 . Furthermore,

{xr1xs2 ,OV } ∩ {xa1xb2ya1 yb2 | a, b ≥ 0}
= {yr1ys2 ,OV } ∩ {xa1xb2ya1 yb2 | a, b ≥ 0},

{xr1ys2 ,OV } ∩ {xa1xb2ya1 yb2 | a, b ≥ 0}
= {yr1xs2 ,OV } ∩ {xa1xb2ya1 yb2 | a, b ≥ 0}.

So {OG
V ,OV } is spanned by {V1 ,OV } and {V2 ,OV }, to-

gether with {xa1yb1xc2yd2 | (a, b) �= (c, d)}. Next,

{xr1xs2 , xa1
1 xa2

2 yb1
1 y

b2
2 } = sb2x

a1 +r
1 xa2 +s−1

2 yb1
1 y

b2 −1
2

+ rb1x
a1 +r−1
1 xa2 +s

2 yb1 −1
1 yb2

2 ,

{xr1ys2 , xa1
1 xa2

2 yb1
1 y

b2
2 } = −sa2x

a1 +r
1 xa2 −1

2 yb1
1 y

b2 +s−1
2

+ rb1x
a1 +r−1
1 xa2

2 yb1 −1
1 yb2 +s

2 .

We are interested in the possible right-hand-side expres-
sions whose monomials have the form xa1x

b
2y

a
1 y

b
2 :

{xr1xs2 , xa1
1 xa2

2 ya1 +r
1 ya2 +s

2 }
= s(a2 + s)xa1 +r

1 xa2 +s−1
2 ya1 +r

1 ya2 +s−1
2

+ r(a1 + r)xa1 +r−1
1 xa2 +s

2 ya1 +r−1
1 ya2 +s

2 ,

{xr1ys2 , xa1
1 xa2 +s

2 ya1 +r
1 ya2

2 }
= −s(a2 + s)xa1 +r

1 xa2 +s−1
2 ya1 +r

1 ya2 +s−1
2

+ r(a1 + r)xa1 +r−1
1 xa2 +s

2 ya1 +r−1
1 ya2 +s

2 .

For simplicity, set [f ] = f + {OG
V ,OV } ∈ HP0(OG

V ,OV ).
Then for every xr1x

s
2 ∈ V1 ,

s(a2 + s)[xa1 +r
1 xa2 +s−1

2 ya1 +r
1 ya2 +s−1

2 ]
+ r(a1 + r)[xa1 +r−1

1 xa2 +s
2 ya1 +r−1

1 ya2 +s
2 ] = 0. (6–1)

For every xr1y
s
2 ∈ V2 ,

− s(a2 + s)[xa1 +r
1 xa2 +s−1

2 ya1 +r
1 ya2 +s−1

2 ]
+ r(a1 + r)[xa1 +r−1

1 xa2 +s
2 ya1 +r−1

1 ya2 +s
2 ] = 0, (6–2)

if r, s ≥ 1; in the case that s = 0,

[xa1 +r−1
1 xa2

2 ya1 +r−1
1 ya2

2 ] = 0, (6–3)

and in the case that r = 0,

[xa1
1 xa2 +s−1

2 ya1
1 ya2 +s−1

2 ] = 0. (6–4)

Since V1 ∪ V2 forms a set of algebra generators of OG
V ,

these span all the relations in HP0(OG
V ,OV ), together

with the relations [xa1x
b
2y

c
1y

d
2 ] = 0 if a �= c or b �= d. Now,

if we represent [xa1
1 xa2

2 ya1
1 ya2

2 ] by the point (a1 , a2) and
each relation by an edge, then we get the subgraph of Γ of
vertices with nonnegative coordinates, together with the
additional relations that [xa1

1 xa2
2 ya1

1 ya2
2 ] = 0 if (a1 , a2) is

adjacent in Γ to a vertex that does not have nonnegative
coordinates.

Let C1 , C2 , . . . be the connected components of Γ con-
taining at least one vertex with nonnegative coordinates.
Let V (Ci) ⊆ HP0(OG

V ,OV ) be the (possibly zero) vec-
tor space spanned by {[xr1xs2yr1ys2 ] | (r, s) ∈ Ci, r, s ≥ 0}.
Then HP0(OG

V ,OV ) =
⊕

i V (Ci).
For any a, b ≥ 0, if for every (r, s) ∈ E, either a <

r − 1 or b < s− 1, then there is no relation involv-
ing [xa1x

b
2y

a
1 y

b
2 ]. Thus, dimV ({(a, b)}) = 1. This accounts

for the points of type (1). Next, if a′, b′ ≥ 0 and
there exists (r, s) ∈ E such that a′ ≥ r − 1 and b′ ≥
s− 1, then (a′, b′) is in a connected component of
Γ that is a chain of the form (a, b+ c), (a+ 1, b+
c− 1), . . . , (a+ c, b). If there is exactly one edge be-
tween any two consecutive points (a+ i, b+ c− i) and
(a+ i+ 1, b+ c− i− 1), and a, b ≥ 0, then there is ex-
actly one relation of the form (6–1) or (6–2) between
the two corresponding terms [xa+i

1 yb+c−i1 xa+i
2 yb+c−i2 ] and

[xa+i+1
1 yb+c−i−1

1 xa+i+1
2 yb+c−i−1

2 ], and no other relations
involving these elements. Therefore,

dimV ({(a, b+ c), (a+ 1, b+ c− 1), . . . , (a+ c, b)}) = 1.

This accounts for the chains of type (2).
If there are two edges between two consecutive points

of a chain, then there are two relations of the form (6–1)
or (6–2). The assumption that V1 , V2 are minimal sets of
generators implies that the two relations are irredundant.
Therefore,

V ({(a, b+ c), (a+ 1, b+ c− 1), . . . , (a+ c, b)}) = 0.

Finally, if a connected component Ci contains a point
(a, b) with a = −1 or b = −1, then there is a relation of
the form (6–3) or (6–4), which implies that V (Ci) = 0.

6.2. Proof of Theorem 6.2

We prove Theorem 6.2 first in the case that G is cyclic
and generated by an element of the form(

e2πi/m 0
0 e2rπ i/m

)
, (6–5)

where gcd(r,m) = 1 (Case I), and then we reduce the
general case (Case II) to this case.

6.2.1. Case I: G is generated by (6–5).

In this subsection, we prove the most difficult part of the
theorem.
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Proposition 6.9. Let G be cyclic and generated by(
e2 π i / m 0

0 e2 r π i / m

)
, where gcd(r,m) = 1. Assume that

|r| ≤ m
2 . Then G has the property HP0(OG

V ,OV ) ∼=
gr HH0(DG

X ,DX ) if and only if r | (m+ 1) or r | (m− 1).

Since gcd(r,m) = 1, it follows from Lemma 1.1,
as mentioned at the beginning of the section, that
dim HH0(DG

X ,DX ) = |G| − 1.
We break the proof into two easy lemmas and one hard

one.
Since G is generated by ( e2 π i / m 0

0 e2 r π i / m ), it follows in
the case r > 0 that xr1y2 is an invariant, and in the case
r < 0, that x−r1 x2 is an invariant. Since also |r| ≤ m/2,
it follows that (|r| − 1, 0) is a corner of the staircase.
Next, let t be an integer such that |t| ≤ m/2 and rt ≡ 1
(mod m). Then G is also generated by ( e2 t π i / m 0

0 e2 π i / m ).
It follows that (0, |t| − 1) is a corner of the staircase. For
ease of notation, let us set p := |r| and q := |t|, so that
(p− 1, 0) and (0, q − 1) are corners of the staircase.

Since rt ≡ 1 (mod m), it follows that either m | (pq +
1) or m | (pq − 1). It suffices to assume that G is non-
trivial, i.e., m > 1. Let k ≥ 0 be such that mk = pq + 1
or mk = pq − 1. Then the proposition reduces to the fol-
lowing lemmas.

Lemma 6.10. If k = 0, then dim HP0(OG
V ,OV ) =

dim HH0(DG
X ,DX ).

Proof. In this case, p = q = 1. Then (0, 0) is a corner of
the staircase, as are (m− 1, 0) and (0,m− 1). The state-
ment of the lemma follows easily.

Lemma 6.11. If k = 1, then dim HP0(OG
V ,OV ) =

dim HH0(DG
X ,DX ).

Proof. If k = 1, then m = pq + 1 or pq − 1. It is straight-
forward to compute dim HP0(OG

V ,OV ) from Figures 2
and 3, which depict the corresponding staircases.

Lemma 6.12. If k ≥ 2 and m > 1, then
dim HP0(OG

V ,OV ) > dim HH0(DG
X ,DX ).

The proof of this final lemma is long and somewhat
technical, so we subdivide it into several parts.

Proof. Note that by assumption, p, q > 1. Write m =
bp+ a for 0 < a < p and m = cq + d for 0 < d < q.

FIGURE 2. The case m = pq+1.

Claim 6.13. (a− 1, b− 1) and (c− 1, d− 1) are corners
of the staircase: (a− 1, b− 1) is the rightmost before (p−
1, 0), and (c− 1, d− 1) is the leftmost after (0, q − 1), as
in Figure 4.

Proof of claim. First, note that b < q/k and c < p/k,
since m = pq±1

k = bp+ a = cq + d. Next, for all a′ such
that a < a′ < p, that a′ + b′p ≡ 0 (mod m) implies that
b′p > m, so that b′ > q/k. Therefore, (a′ − 1, b′ − 1) can-
not be a corner of the staircase. It follows that (a− 1, b−
1) is a corner. Similarly, if d < d′ < q, then (c′ − 1, d′ − 1)
cannot be a corner for any c′, and hence (c− 1, d− 1) is
a corner.

FIGURE 3. The case m = pq-1.
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FIGURE 4. The staircase for k ≥ 2.

In particular, it follows that c ≤ a and d ≥ b (see Fig-
ure 4). (A direct proof of this also follows from the argu-
ment of Claim 6.13: first one shows c < p/k and b < q/k;
then if a < c < p, it would follow that d > q/k, a contra-
diction.) To summarize, 0 < c ≤ a < p and 0 < b ≤ d <

q.
Note also that b = �mp � = � qk � and c = �mq � = � pk �. By

our assumptions, p, q < m/2, and hence also b, c ≥ 2.

Claim 6.14. p+ b− 2 ≤ m− p.

Proof of claim. First, note that

(m− p)−(p+ b− 2) = m+2−2p− b ≥ m+2 − 2p−m

p
.

Now set f(p) = m+ 2 − 2p− m
p . Since f(p) is convex and

1 < p < m
2 , it suffices to prove that f(1) ≥ 0 and f(m2 ) ≥

0. This is clear because they are both 0.

Therefore, glancing at Figure 4, we see that there are
chains beginning at (p− 1, 0), . . . , (p− 1, b− 2) of type
(2) (in the language of the beginning of the section) that
form connected components in C. Similarly, there are
chains of type (2) ending at (0, q − 1), . . . , (c− 2, q − 1).

Next, again from Figure 4, we see that there are points
of type (1) of the form (c− 1, j) with b− 1 ≤ j < d− 1
and of the form (i, b− 1) for c− 1 ≤ i < a− 1, and also
the chains (c− 1, d− 1) and (a− 1, b− 1) of type (2),
each a connected component in C consisting of a sin-

gle vertex (some of which may be equal). Together with
the more obvious points (i, j) of type (1) where either
i < c− 1, j < q − 1 or i < p− 1, j < b− 1, we deduce the
following.

Claim 6.15. dim HP0(OG
V ,OV ) ≥ p(b− 1) + q(c− 1) −

(b− 1)(c− 1) + (d− b) + (a− c) + 1.

Let h denote the difference

dim HP0(OG
V ,OV )

− (
p(b− 1) + q(c− 1) − (b− 1)(c− 1) + (d− b)

+ (a− c) + 1
)
.

In particular, h is at least the number of chains of type
(2) containing vertices (j, k) such that j + k > max{c+
d− 2, a+ b− 2} and j < p− 1, k < q − 1. (The last con-
dition ensures that these chains are not those beginning
with any of the vertices (p− 1, 0), . . . , (p− 1, b− 2) or
ending at any of the vertices (0, q − 1), . . . , (c− 2, q − 1),
which we already counted above.)

In view of the claim and the formula for
dim HH0(DG

X ,DX ), we deduce that

dim HP0(OG
V ,OV ) − dim HH0(DG

X ,DX )
= p(b− 1) + q(c− 1) − (b− 1)(c− 1) + (d− b)

+ (a− c) + 1 − (m− 1) + h

= m− a− p+m− d− q − bc+ b+ c− 1 + d− b

+ a− c+ 1 −m+ 1 + h

= m+ 1 − p− q − bc+ h.

We will need one more inequality, which gives a lower
bound on p, and similarly on q.

Claim 6.16. p ≥ kc+ 1. Similarly, q ≥ kb+ 1.

Proof of claim. pq ≥ km− 1 = k(cq + d) − 1 > kcq. The
same argument shows that q > kb.

We now divide the lemma into five cases. In each case,
we prove that m+ 1 − p− q − bc+ h > 0. Up to symme-
try (swapping r with t), we will assume that b ≥ c.

Case 1: k = 2. Note that since b, c ≥ 2 as remarked at
the beginning of the proof of the lemma, it follows that
p ≥ kc+ 1 ≥ 5 and similarly q ≥ 5.

Case 1a: m = pq−1
2 . In this case, the staircase has three

corners with nonnegative coefficients:

(p− 1, 0),
(
p− 1

2
− 1,

q − 1
2

− 1
)
, (0, q − 1).
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So a = c = p−1
2 and b = d = q−1

2 . Then

m+ 1 − p− q − bc =
pq − 1

2
+ 1 − p− q − p− 1

2
· q − 1

2

=
1
4
(pq − 3p− 3q + 1).

In addition, since p, q ≥ 5, we have at least two additional
chains in C of type (2):(

p− 3
2

,
q − 1

2

)
,

(
p− 1

2
,
q − 3

2

)
and(
p− 3

2
,
q + 1

2

)
,

(
p− 1

2
,
q − 1

2

)
,

(
p+ 1

2
,
q − 3

2

)
.

So h ≥ 2, and it suffices to prove that pq − 3p− 3q + 9 =
(p− 3)(q − 3) > 0, which is obvious.

Case 1b: m = pq+1
2 . In this case, the staircase has four

corners with nonnegative coefficients:

(0, q − 1),
(
p− 1

2
− 1,

q + 1
2

− 1
)
,(

p+ 1
2

− 1,
q − 1

2
− 1

)
, (0, p− 1).

So

a =
p+ 1

2
, b =

q − 1
2

, c =
p− 1

2
, d =

q + 1
2

.

Then

m+ 1 − p− q − bc =
pq + 1

2
+ 1 − p− q − p− 1

2
· q − 1

2

=
1
4
(pq − 3p− 3q + 5).

Also, since p, q ≥ 5, there is at least one additional chain
of type (2) in C:(
p− 3

2
,
q + 1

2

)
,

(
p− 1

2
,
q − 1

2

)
,

(
p+ 1

2
,
q − 3

2

)
.

So h ≥ 1, and it suffices to prove that pq − 3p− 3q + 9 >
0, which we already saw in Case 1a.

Case 2: k ≥ 3, b ≥ 3, c ≥ 3. In this case, m+ 1 − p− q −
bc > 0 follows from the inequalities

p <
m

b
≤ m

3
, q <

m

c
≤ m

3
,

bc =
m− a

p
· m− d

q
<
m2

pq
≤ mpq+1

k

pq
=
m

k
+

m

kpq

<
m

3
+ 1.

Case 3: k ≥ 3, c = 2, b ≥ 4. Since p ≥ kc+ 1 ≥ 7, it fol-
lows that

p <
m

b
≤m

4
, q+

1
2
b≤q +

d

2
=
m

2
,

3
2
b <

3m
2p

≤ 3m
14

.

For the second of these inequalities, see Figure 4 and the
discussion after Claim 6.13. We deduce from the three
lines that

m+ 1 − p− q − bc=m+ 1−p−
(
q+

1
2
b

)
−
(

3
2
b

)
>0.

Case 4: k ≥ 3, c = 2, b = 3. Note that d ≥ b = 3 and a ≥
c = 2. Hence

q =
m− d

c
≤m− 3

2
and p =

m− a

b
≤m− 2

3
.

So m− p− q − 5 ≥ m−17
6 . Since m > bp > bkc ≥ 18, we

conclude that m− p− q − 5 > 0, as desired.

Case 5: k ≥ 3, c = 2, b = 2. Note that

m+ 1 − p− q − bc = m+ 1 − m− a

2
− m− d

2
− 4

=
a+ d− 6

2
.

Therefore, it suffices to prove that 2h+ a+ d > 6.

Case 5a: a = d = 2. In this case, we have at least two
additional chains of type (2) in C: (1, 2), (2, 1) and
(1, 3), (2, 2), (3, 1). Therefore, h ≥ 2, as desired.

Case 5b. If we are not in the case a = d = 2, then (1, 1)
is not a corner of the staircase; in view of Figure 4, this
implies a, d > 2. It suffices to assume that a = d = 3. We
claim that this cannot happen. To obtain a contradic-
tion, assume that a = d = 3. Then m = 2p+ 3 = 2q + 3.
Since m = pq±1

k , 4m divides 4(pq ± 1) = m2 − 6m+ 9 ±
4. Therefore, m is odd, so m | m2 − 6m+ 9 ± 4, and
hence m divides 5 or 13. However, m = 2p+ 3 ≥ 2(kc+
1) + 3 ≥ 17, which is a contradiction.

6.2.2. Case II: The General Case.

In this subsection, we complete the proof of Theorem 6.2
by reducing the general case to Proposition 6.9, which
was proved in the previous subsection.

Lemma 6.17. Let

A = min{r > 0 : xr1x
s
2 ∈ OG

V or xr1y
s
2 ∈ OG

V }.
Then for every invariant of the form xr1x

s
2 or xr1y

s
2 in OG

V ,
we have A | r.
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Proof. It is enough to prove the result for r > 0. Suppose,
to obtain a contradiction, that A � r and that xr1x

s
2 or

xr1y
s
2 is an invariant. We can assume that r is minimal for

this property. There must exist s′, s′′ ≥ 0 such that xA1 x
s ′
2

and xA1 y
s ′′
2 are invariants. In the first case, that xr1x

s
2 is

invariant, it follows also that xr−A1 xs+s
′′

2 is invariant; in
the latter case, that xr1y

s
2 is invariant, it follows also that

xr−A1 ys+s
′

2 is invariant. This contradicts our assumption.

Similarly, let

B = min
{
s > 0 : xr1x

s
2 ∈ OG

V or xr1y
s
2 ∈ OG

V

}
.

Then B divides all of the s appearing in the set. We
construct a group G′ in the following way:

G′ =

{(
ζA 0
0 ξB

)
:

(
ζ 0
0 ξ

)
∈ G

}
.

Then xAr1 xBs2 is an invariant of G if and only if xr1x
s
2 is

an invariant of G′, and xAr1 yBs2 is an invariant of G if and
only if xr1y

s
2 is an invariant of G′.

Lemma 6.18. G =

{(
ζ 0
0 ξ

)
:

(
ζA 0
0 ξB

)
∈ G′

}
.

Proof. It is immediate from the above description that
the two groups have the same invariants. This implies
that the two groups are the same in a standard way:
for example, if G ≤ H and OG

V = OH
V , then the quotient

fields C(V )G and C(V )H will also be equal, and by the
main theorem of Galois theory, G = H.

Lemma 6.19. G′ is generated by
(
e2 π i / m 0

0 e2 r π i / m

)
, for

some integers r,m with gcd(r,m) = 1.

Proof. Let m ≥ 1 be the positive integer such that the
first projection {ζ :

(
ζ 0
0 ξ

)
∈ G′} is the cyclic group gen-

erated by e2πi/m . By the definition of G′, there exists
� ≥ 1 such that x�1x2 ∈ OG ′

V . It follows that the lattice(
Z2)G ′

:=
{

(a, b) ∈ Z2 | xa1xb2 ∈ C(V )G
′
}

is generated by (m, 0) and (�, 1). By assumption,
gcd(�,m) = 1. Thus, we can let r := −�, and then (Z2)G

′

identifies with the lattice invariant under the element
stated in the lemma. This implies that G′ is generated
by the element. In more detail, if K ≤ G′ is the subgroup
generated by this element, then |K| = |Z2/(Z2)K | =
|Z2/(Z2)G

′ | = |G′|.

FIGURE 5. The staircase for type (3) in Theorem 6.2.

We see that Case I of Theorem 6.2, i.e., Proposition
6.9, is equivalent to the case A = B = 1. We divide the
remainder of the theorem into two cases:

Case 1: A > 1 andB > 1. In the case thatG′ is the trivial
group, G is evidently of type (3) in Theorem 6.2, and it
is easy to see that for this group, dim HP0(OG

V ,OV ) =
(A− 1)(B − 1) = dim HH0(DG

X ,DX ). See also Figure 5.

Claim 6.20. If A > 1 and B > 1, and G′ is nontrivial,
then dim HP0(OG

V ,OV ) > dim HH0(DG
X ,DX ).

Proof of claim. Without loss of generality, assume
that A ≥ B. Then dim HH0(DG

X ,DX ) = ABm−
A−B + 1. Now we prove that dim HP0(OG

V ,OV ) ≥
AB dim HP0(OG ′

V ,OV ) + 2(A− 1)(B − 1) by the follow-
ing correspondence:

(i) Let (a, b) be a point that forms a connected compo-
nent of Γ(G′) of type (1). Then for every (r, s) ∈ E(G), ei-
ther a < r/A− 1 or b < s/B − 1. Hence (Aa+ i, Bb+ j)
forms a connected component of Γ(G) of type (1) for
each 0 ≤ i < A, 0 ≤ j < B, because Aa+ i < r − 1 or
bB + j < s− 1 for all (r, s) ∈ E(G).

(ii) Let (a, b+ c), (a+ 1, b+ c− 1), . . . , (a+ c, b) form
a connected component of Γ(G′) of type (2). Then we can
verify that (Aa+ i, B(b+ c) + j) is a connected compo-
nent of Γ(G) of type (1) for each 0 ≤ i < A− 1, 0 ≤ j <

B, and that the chains starting from

(Aa+A− 1, B(b+ c) + j), 0 ≤ j < B,

are connected components of Γ(G) of type (2).
(iii) In addition, each point

(A(m− 1) + i, j) and (i, B(m− 1) + j),

0 ≤ i < A− 1, 0 ≤ j < B − 1, forms a connected compo-
nent of Γ(G) of type (1).
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Thus dim HP0(OG
V ,OV ) ≥ AB dim HP0(OG ′

V ,OV ) +
2(A− 1)(B − 1) ≥ AB(m− 1) + 2(A− 1)(B − 1) >
ABm−A−B + 1 = dim HH0(DG

X ,DX ).

Case 2: A > 1, B = 1 or A = 1, B > 1. Without loss of
generality, assume that A > 1, B = 1.

Claim 6.21. If A > 1 and B = 1, G is nontrivial, and
dim HP0(OG

V ,OV ) = dim HH0(DG
X ,DX ), then G′ is gen-

erated by ( e2 π i / m 0
0 e±2 π i / m ).

For G′ as in the claim, Lemma 6.18 implies that G
is generated by ( e±2 π i / (m A ) 0

0 e2 π i / m ). This accounts for the
groups of type (2) in Theorem 6.2; conversely, it is an easy
consequence of Theorem 6.5 that all of these groups in-
deed satisfy dim HP0(OG

V ,OV ) = dim HH0(DG
X ,DX ). See

also Figure 6. This finishes the proof of the theorem, and
it remains only to prove the claim.

Proof of Claim 6.21. Similarly to (i) and (ii) in Case 1
above,

dim HH0(DG
X ,DX ) = A(m− 1) = Adim HH0(DG ′

X ,DX )

and

dim HP0(OG
V ,OV ) ≥ Adim HP0(OG ′

V ,OV ).

Assume that

dim HP0(OG
V ,OV ) = dim HH0(DG

X ,DX ).

Then we must have

dim HP0(OG ′
V ,OV ) = dim HH0(DG ′

X ,DX ).

Define p, q in the same way as in Case I (note that
we must have k = 0 or k = 1). Then (0, q − 1) is the cor-
ner of the staircase for G′ with x-coordinate equal to
zero. This implies that the staircase for G has the cor-
ner (A− 1, q − 1). However, in this case, it would fol-
low, similarly to the argument in Case 1 of this subsec-
tion, that dim HP0(OG

V ,OV ) > Adim HP0(OG ′
V ,OV ) un-

less q = 1. In the latter case, G′ is as claimed.

7. COMPLEX REFLECTION GROUPS
G(m, p, 2) < GL2 < Sp4

Assumem ≥ 2 and p | m. Up to conjugation, the complex
reflection group G = G(m, p, 2) < GL2 has the form

G =

〈(
e2πi/m 0

0 e−2πi/m

)
,

(
e2πpi/m 0

0 1

)
,

(
0 1
1 0

)〉
.

Let K < G be the index-two abelian subgroup of di-
agonal matrices. As before, let V = C4 and consider

FIGURE 6. The staircase for type (2) in Theorem 6.2.

K < G < Sp(V ) in the standard way. Let r := m/p. Then
the invariants OK

V are spanned by the monomials

xa1x
b
2y

c
1y

d
2 , m | ((a− c) − (b− d)

)
, r | a, b, c, d.

The invariants OG
V are spanned by the sums xa1x

b
2y

c
1y

d
2 +

xb1x
a
2y

d
1 y

c
2 , where a, b, c, d are as above. It follows easily

that as an algebra, OG
V is generated by

x1y1 + x2y2 , x1y1x2y2 , x
m
1 + xm2 , y

m
1 + ym2 , x

r
1x

r
2 ,

yr1y
r
2 , x

jr
1 y

m−jr
2 + xjr2 y

m−jr
1 (1 ≤ j < p), (7–1)

and

xm+1
1 y1 + xm+1

2 y2 , ym+1
1 x1 + ym+1

2 x2 ,

xjr+1
1 y1y

m−jr
2 + xjr+1

2 y2y
m−jr
1 (1 ≤ j < p). (7–2)

The set (7–2) consists of elements obtainable from those
in (7–1) by a linear combination of bracketing with
x1y1x2y2 and multiplying by x1y1 + x2y2 , and hence
(7–1) Poisson generates OG

V . Therefore, {OG
V ,OV } is

spanned by {f,OV }, where f ranges among the elements
listed in (7–1).

In the next subsections we will consider separately the
cases p = 1, p = m, and 1 < p < m. We first consider p =
1, since the computations here will be used in subsequent
subsections as well.

Remark 7.1. The techniques used here might also be able
to handle the case of somewhat more general finite sub-
groups of GL2, namely, those generated by a subgroup
of diagonal matrices together with an off-diagonal ele-
ment with zeros on the diagonal. For such groups, we
can use the subgroup K < G of diagonal matrices, which
has index two, and for which HP0(OK

V ,OV ) was com-
puted in the previous section. In more detail, there is a
natural map HP0(OG

V ) ↪→ HP0(OG
V ,OV ) � HP0(OK

V ,
OV ) = HP0(OK

V ) whose image is HP0(OK
V )G , the part
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symmetric under swapping indices 1 and 2. The dimen-
sion of the latter is roughly 1

2 dim HP0(OK
V ), so estimates

using Theorem 6.5, in the spirit of the previous section,
should suffice to show that HP0(OG

V ) � gr HH0(DG
X ) for

many of these G.

7.1. The case p = 1

Set G = G(m, 1, 2).

Theorem 7.2. For G = G(m, 1, 2), we have
HP0(OG

V ,OV ) ∼= gr HH0(DG
X ,DX ), and a homoge-

neous basis for the former is given by the images of the
elements

xa1x
b
2y

a
1 y

b
2 (a, b ≤ m− 2);

xm−1
1 xa2y

m−1
1 ya2 + xa1x

m−1
2 ya1 y

m−1
2 (1 ≤ a ≤ m− 1);

xa+b
1 ya1 y

b
2 , xa+b

2 yb1y
a
2 (a+ b ≤ m− 2, b ≥ 1);

bxm−1
1 ym−1−b

1 yb2 − (m− b)xm−1
2 ym−b

1 yb−1
2

(1 ≤ b ≤ m− 1).

The G-graded structure of H = HP0(OG
V ,OV ) ∼=

gr HH0(DG
X ,DX ) follows immediately from this. We will

need some notation for the irreducible representations of
G. Let χ be the tautological one-dimensional represen-
tation of the group of mth roots of unity {e2πki/m}. For
0 ≤ a ≤ m− 1, let ρa := χa ◦ det, so that ρ0 is the trivial
representation. Let ρ−0 be the nontrivial one-dimensional
representation that restricts to the trivial representation
on K, i.e., that is −1 on off-diagonal elements and 1
on diagonal elements. Then let ρ−a := ρ−0 ⊗ ρa . Next, for
a �= b, let τa,b be the two-dimensional irreducible repre-
sentation that restricts to (χa � χb) ⊕ (χb � χa) on K.
There are

(
m
2

)
distinct such irreducible representations.

Note that the corresponding representation in the case
a = b is ρa ⊕ ρ−a .

Corollary 7.3.

h(HomG (ρ0 ,H); t) =
m−2∑
j=0

⌊
j + 2

2

⌋
t2j

+
2m−4∑
j=m−1

⌊
2m− 2 − j

2

⌋
t2j +

m−2∑
j=0

t2m+2j ;

h(HomG (ρ−0 ,H); t) =
m−2∑
j=0

⌊
j + 1

2

⌋
t2j

+
2m−4∑
j=m−1

⌊
2m− 3 − j

2

⌋
t2j ;

h(HomG (τb,−b ,H); t) = (t2b + t2b+2 + · · · + t2(m−b)−2)

+ (2t2(m−b) + 2t2(m−b)+4 + · · · + 2t2m−4) + t2m−2 ,

1 ≤ b < m/2;

If m is odd, then for all other irreducible representations
ρ, HomG (ρ,H) = 0. If m is even, then this is true except
for ρm/2 and ρ−m/2 , for which

h(HomG (ρm/2 ,H); t) = tm + tm+2 + · · · + t2m−4 ;

h(HomG (ρ−m/2 ,H); t) = tm + tm+2 + · · · + t2m−2 .

We omit the proof of the corollary, since it follows
directly from the theorem.

Proof of Theorem 7.2. We will prove that the given el-
ements map to a basis of HP0(OG

V ,OV ). From this it
is easy to deduce that HP0(OG

V ,OV ) ∼= gr HH0(DG
X ,DX ):

we have only to compute that the dimensions are equal,
since there is always a surjection. By Lemma 1.1,
dim HH0(DG

X ,DX ) equals the number of elements g ∈ G

such that g − Id is invertible. There are (m− 1)2 diag-
onal elements without 1 on the diagonal, and m(m− 1)
off-diagonal matrices of determinant not equal to −1, and
these are exactly the elements such that g − Id is invert-
ible. So it is enough to show that dim HP0(OG

V ,OV ) =
(m− 1)(2m− 1), and this follows by computing the num-
ber of basis elements.

We will compute explicitly the brackets of (7–1)
and show that the claimed elements form a basis of
HP0(OG

V ,OV ). Since p = 1, only the first four elements
of (7–1) are needed. So we compute the brackets with
these elements.

First, {x1y1 + x2y2 ,OG
V } is the span of all monomials

xa1x
b
2y

c
1y

d
2 with a+ b �= c+ d.

Next, {x1y1x2y2 ,OG
V } is the span of elements

(c− a)xa−1
1 xb2y

c−1
1 yd2 + (d− b)xa1x

b−1
2 yc1y

d−1
2 .

In the case a+ b = c+ d (otherwise, the monomial is
in the span of the previous paragraph), this reduces to
xa−1

1 xb2y
c−1
1 yd2 − xa1x

b−1
2 yc1y

d−1
2 . So the quotient by this

and the brackets of the previous paragraph is spanned
by the images of the monomials

xa1x
b
2y

a
1 y

b
2 (a, b ≥ 0);

xa+b
1 ya1 y

b
2 , xa+b

2 yb1y
a
2 (a ≥ 0, b > 0). (7–3)

It will be useful to remember the equivalences

xa+b
1 ya1 y

b
2 ≡ xa+b−c

1 xc2y
a−c
1 yb+c2 , (7–4)

xa+b
2 yb1y

a
2 ≡ xc1x

a+b−c
2 yb+c1 ya−c2 , c ≤ a, b > 0,
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which we will use for subsequent relations.
Finally, {xm1 + xm2 ,OG

V } is spanned by

cxa+m−1
1 xb2y

c−1
1 yd2 + dxa1x

b+m−1
2 yc1y

d−1
2 ,

and similarly for {ym1 + ym2 ,OG
V }. In particular (replacing

a by a− (m− 1)), this includes the elements xa1x
b
2y

a+b
1

and xb1x
a
2y

a+b
2 , where a ≥ m− 1 and b ≥ 0. Together with

the spans described in the previous paragraphs, we can
first restrict our attention to the case a+ b+m− 1 =
c+ d− 1, i.e., d = a+ b− c+m. Then we obtain the
monomials of the second two forms of (7–3) in the case
that a ≥ m− 1, i.e.,

xa+b
1 ya1 y

b
2 , xa+b

2 yb1y
a
2 (a ≥ m− 1, b > 0). (7–5)

Brackets with the remaining elements in (7–1) yield, up
to the symmetry of swapping x1 with x2 and y1 with y2

(and still assuming d = a+ b− c+m),

cxa+b+m−1
1 yb+c−1

1 yd−b2 + dxa+b+m−1
2 yc−a1 ya+d−1

2 ,

if a < c, b < d;

xa+b+m−1
1 yb+c−1

1 yd−b2 , if a > c;

(b+m)xa1x
b+m−1
2 ya1 y

b+m−1
2 + axa+b+m−1

1 ya+b−1
1 ym2 ,

if a = c. (7–6)

The final expression of (7–6) together with (7–5) yields
the first monomial of (7–6) when a+ b ≥ m, or equiva-
lently (by changing a and b),

xa1x
b
2y

a
1 y

b
2 , a+ b ≥ 2m− 1. (7–7)

The expressions in the two lines above (7–6) can be
rewritten, by changing a, b, c, d, as

cxa+b
1 ya1 y

b
2 + (a+ b+ 1 − c)xa+b

2 ym−b
1 ya+2b−m

2

(0 < m− b ≤ c ≤ a+ 1, b > 0);

xa+b
1 ya1 y

b
2 , xa+b

2 yb1y
a
2 (b > m). (7–8)

For fixed a and b, if there is more than one possible value
of c in the first equation above, then in fact, both mono-
mials that appear are in the span. So, we can rewrite this
as

(a+ 1)xm−1
1 ya1 y

m−a−1
2 + (m− a− 1)xm−1

2 ya+1
1 ym−a−2

2

(a < m− 1); (7–9)

xa+b
1 ya1 y

b
2 , xa+b

2 yb1y
a
2 (a+ b ≥ m, 0 < b < m).

(7–10)

Applying the aforementioned swap of indices 1 and 2 to
(7–6), we also obtain

(b+m)xb+m−1
1 xa2y

b+m−1
1 ya2 + axa+b+m−1

2 ym1 y
a+b−1
2 .

(7–11)

The overall span (7–5)–(7–11) is now symmetric in swap-
ping indices 1 and 2. It is also almost symmetric in swap-
ping x with y using (7–4), since the latter shows that
xa+b

1 ya1 y
b
2 is equivalent to xb1x

a
2y

a+b
2 when b > 0. However,

(7–6) yields, after swapping x with y and applying (7–4),

(b+m)xa1x
b+m−1
2 ya1 y

b+m−1
2 + axa+b+m−1

2 ym1 y
a+b−1
2 .

Up to (7–11), this is equivalent to

xa1x
b+m−1
2 ya1 y

b+m−1
2 − xb+m−1

1 xa2y
b+m−1
1 ya2 . (7–12)

We conclude that HP0(OG
V ,OV ) is presented as the span

of monomials (7–3) modulo the span of (7–5)–(7–12).
From this, the statement of the theorem easily follows.

7.2. The case p = m, i.e., the Coxeter groups I2(m)

In the case p = m,G(m,m, 2) is the Coxeter group I2(m).

Theorem 7.4. If p = m, then

HP0(OG
V ,OV ) ∼= gr HH0(DG

X ,DX ),

and a homogeneous basis of the former is given by the
images of the elements

xa1y
a
1 + (−1)axa2y

a
2 , 0 ≤ a ≤ m− 2.

We can immediately deduce the graded G-structure.
Let ρ0 be the trivial representation and det the
determinant representation. Let H := HP0(OG

V ,OV ) ∼=
gr HH0(DG

X ,DX ).

Corollary 7.5.

h(HomG (ρ0 ,H); t) = 1 + t4 + · · · + t4�m −2
2 �

and

h(HomG (det,H); t) = t2 + t6 + · · · + t4�m −1
2 �−2 .

Proof of Theorem 7.4. As in the proof of Theorem 7.2, it
is enough to prove that the claimed elements form a basis
of HP0(OG

V ,OV ), since there are m− 1 basis elements
and this equals the number of elements g ∈ G such that
g − Id is invertible (in this case, they are the nontrivial
diagonal elements of G).

To do this, we compute explicitly the remaining brack-
ets of (7–1) needed. In this case, the final element of
(7–1) is unnecessary, since it is a scalar multiple of the
bracket {x1x2 , y

m
1 + ym2 }. So HP0(OG

V ,OV ) is the quo-
tient of the span of (7–3) and also the equivalent mono-
mials according to (7–4), modulo (7–5)–(7–12) together
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with the span of {x1x2 ,OV } + {y1y2 ,OV }. We now com-
pute these spans.

Note that

{x1x2 , x
a
1x

b
2y

c
1y

d
2 } = cxa1x

b+1
2 yc−1

1 yd2 + dxa+1
1 xb2y

c
1y

d−1
2 .

(7–13)
In the case c = 0 or d = 0 but not both, this yields the
monomial xa1x

b+1
2 yc−1

1 or xa+1
1 xb2y

d−1
2 . Applying the same

reasoning replacing x’s with y’s, the y1y2 , cOV is spanned
by monomials

xc1y
a
1 y

b
2 , xc2y

b
1y

a
2 , b ≥ 1. (7–14)

This already includes all but the first type of monomial
in (7–3).

For the remaining type, let us assume a = c− 1 and
b+ 1 = d in (7–13). Then we obtain the element

(a+ 1)xa1x
b+1
2 ya1 y

b+1
2 + (b+ 1)xa+1

1 xb2y
a+1
1 yb2 .

By symmetry, this is the end of the new elements of
{OG

V ,OV } added in the case p = m to those (7–5)–(7–12)
from the previous section. Note that (7–6) and (7–11) to-
gether with (7–14) yield

xa1x
b
2y

a
1 y

b
2 , a ≥ m− 1 or b ≥ m− 1. (7–15)

Now, putting (7–14)–(7–15) together, applied to the
monomials (7–3) modulo (7–4), we can recover all of the
elements (7–5)–(7–12), and we easily deduce the state-
ment of the theorem.

7.3. The Case 1 < p < m

Theorem 7.6. If G = G(m, p, n) < GL2 < Sp4 and 1 <
p < m, then a basis of HP0(OG

V ,OV ) is obtained by the
images of the elements

xa1x
b
2y

a
1 y

b
2 , a < r − 1, b < m− 1 or a < m− 1,

b < r − 1; (7–16)

xa1x
r−1
2 ya1 y

r−1
2 + (−1)a−r+1xr−1

1 xa2y
r−1
1 ya2 , (7–17)

r − 1 ≤ a ≤ m− r − 1;

x1x
m−1
2 y1y

m−1
2 + xm−1

1 x2y
m−1
1 y2 , p = 2; (7–18)

xa+b
1 ya1 y

b
2 , xa+b

2 yb1y
a
2 , b > 0, (7–19)

(either a+ b < 2r − 1 or a < r − 1), and

�k ∈ [b, a+ b] s.t. both
⌊
k+1
r

⌋
+

⌊
a+2b−k

r

⌋ ≥ p and
k �= m/2 − 1;

xa+b
1 ya1 y

b
2 + xa+b

2 yb1y
a
2 , b > 0,

(either a+ b < 2r − 1 or a < r − 1),

a+ 2b ≥ m, and
⌊
a+ b+ 1

r

⌋
= p/2;

xa+b
1 ya1 y

b
2 − xa+b

2 yb1y
a
2 ,

a+ b+ 1
r

=
p+ 1

2
,

b

r
>
p− 1

2
.

We remark that the condition of (7–19) in par-
ticular implies a+ b < m− 1 (by taking k = a+ b ≥
m− 1), so it is consistent with Theorem 7.2, noting
that HP0(OG

V ,OV ) for G = G(m, p, 2) is a quotient of
HP0(OH

V ,OV ) for H = G(m, 1, 2) > G.
Also, note that the statement of the theorem actually

holds when p = m > 2, and reduces to Theorem 7.4, but
since the result is then much simpler, we separated the
two theorems.

Corollary 7.7. For 1 < p < m, HP0(OG
V ,OV ) �

gr HH0(DG
X ,DX ). Also, HP0(OG

V ) � gr HH0(DG
X ) unless

p = 2 and m ∈ {4, 6}, in which case one obtains

h(HP0(OG
V ); t) = h(gr HH0(DG

X ); t) = 1 + t2 + 3t4 + t8 ,

G = G(4, 2, 2); (7–20)

h(HP0(OG
V ); t) = h(gr HH0(DG

X ); t)

= 1 + t2 + 2t4 + 3t6 + 4t8 + t10 + t12 ,

G = G(6, 2, 2). (7–21)

In general, when 1 < p < m,

h(HP0(OG
V ); t) =

2r−5∑
j=0

⌊
j + 2

2

⌋
t2j +

m−2∑
j=2r−4

(r − 1)t2j

+
m+r−4∑
j=m−1

(m+ r − 3 − j)t2j (7–22)

+
�m −2 r

2 �∑
j=0

t4(r+j−1) + δp,2t
2m + δ2|p

r−2∑
i=0

tm+2i ,

where δ2|p = 1 if p is even and δ2|p = 0 otherwise.

It is also possible to use Theorem 7.6 to give an explicit
description of the graded G-structure of HP0(OG

V ,OV )
similarly to Corollaries 7.3 and 7.5, but we omit this,
because it is complicated and less explicit. In computing
the Hilbert series of the G-invariants above, the relevant
basis elements above greatly simplify.

Remark 7.8. As a consequence of the theorem, we see
that for 1 < p < m, the top degree of HP0(OV ,OG

V ) is
the same as the top degree of HP0(OG

V ), which is 2(m+
r − 4) except in the cases p = 2 and m ∈ {4, 6} (ex-
actly the same cases wherein HP0(OG

V ) ∼= gr HH0(OG
V )),

in which case the top degree is 2m. In contrast, The-
orem 7.2 shows that in the case p = 1, the top degree
is 4m− 4, which is also the same as the top degree of
G-invariants; Theorem 7.4 shows that in the case p = m
(i.e., the Coxeter groups of type I2(m)), the top degree
is 2m− 4, while the top degree of G-invariants is either
2m− 4 or 2m− 6, whichever is a multiple of 4. In the
case that m is odd, these produce some of the only ex-
amples of groups considered in this paper such that the
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top degree of HP0(OG
V ,OV ) exceeds that of HP0(OG

V );
the other examples are the groups Sn+1 < GLn < Sp2n
(i.e., the type-An Weyl groups). This does not include
groups mentioned for which we did not actually compute
HP0(OG

V ,OV ), such as the Shephard–Todd groups G18
and G19 in GL2 < Sp4.

Finally, note that the actual top degrees for G(m, p, 2)
above differ from the bounds of Corollary 3.4 (assuming
m > 1). There we have 2m+ 4r − 8, whereas the actual
top degree as above is a constant plus 2m+ 2r (the con-
stant depending on whether p = 1, p = m, or 1 < p < m,
with the special cases (m, p) ∈ {(4, 2), (6, 2)}). The only
cases in which the bound is sharp are p = m, (m, p) =
(4, 2), and (m, p) = (2, 2).

7.3.1. Proof of Theorem 7.6.

We need to compute the spans of brackets with the final
three elements of (7–1), when summed with the spans
already computed from Section 7.1.

First,

{xr1xr2 , xa1xb2yc1yd2 } = crxa+r−1
1 xb+r2 yc−1

1 yd2

+ drxa+r
1 xb+r−1

2 yc1y
d−1
2 .

Together with the similar expression for brackets with
yr1y

r
2 , and up to (7–4), this yields the span of

(a+ 1)xa1x
b+1
2 ya1 y

b+1
2 + (b+ 1)xa+1

1 xb2y
a+1
1 yb2 ,

a, b ≥ r − 1; (7–23)

xa+b
1 ya1 y

b
2 , x

a+b
2 yb1y

a
2 , a+ b ≥ 2r − 1, a ≥ r − 1, b > 0.

(7–24)

Together with (7–6), since m ≥ 2r, this also yields

xa1x
b
2y

a
1 y

b
2 , a+ b ≥ r +m− 1. (7–25)

It remains to consider the final element of (7–1) (note
that m− jr = (p− j)r):{

xjr1 y
m−jr
2 + xjr2 y

m−jr
1 , xa1x

b
2y

c
1y

d
2

}
(7–26)

= r
[(
jcxa+jr−1

1 xb2y
c−1
1 yd+m−jr

2

− (p− j)bxa+jr
1 xb−1

2 yc1y
d+m−jr−1
2

)
− (

(p− j)axa−1
1 xb+jr2 yc+m−jr−1

1 yd2

− jdxa1x
b+jr−1
2 yc+m−jr

1 yd−1
2

)]
.

We will assume that (a+ jr − 1) + b = c− 1 + (d+m−
jr), since otherwise, the above is all in the span of
{x1y1 + x2y2 ,OG

V } as noted in Section 7.1.
In the case a+ jr = c, so that the first two terms on

the right-hand side have the form xa
′

1 x
b ′
2 y

a ′
1 y

b ′
2 , we can

simplify the above using (7–23). We can restrict our at-
tention to the case that a+ d < r, since otherwise, all the

terms on the right-hand side are already in the span of
(7–24) and (7–25), using also the relations (7–4). Then
up to the previous spans and rescaling, we obtain

p(a+ jr)xa+jr−1
1 xd+m−jr

2 ya+jr−1
1 yd+m−jr

2

− ((p− j)a− jd)xa+d+m−1
2 ym1 y

a+d−1
2 . (7–27)

In the case a = d = 0, the second term vanishes, and we
obtain the monomial xjr−1

1 xm−jr
2 yjr−1

1 ym−jr
2 in the span.

Otherwise, substituting (7–11), this is equivalent to

(a+ d)p(a+ jr)xa+jr−1
1 xd+m−jr

2 ya+jr−1
1 yd+m−jr

2

+m((p− j)a− jd)xa+d
1 xm−1

2 ya+d
1 ym−1

2 . (7–28)

If instead of a+ jr = c, we have b+ jr = d, i.e., the
second two terms on the right-hand side of (7–26) have
the form xa

′
1 x

b ′
2 y

a ′
1 y

b ′
2 (rather than the first two terms),

then up to (7–12) and swapping j with p− j, we obtain
the same relations.

Let us analyze (7–27) and (7–28) further. Using (7–28)
together with (7–23) (and the case a = d = 0 of (7–27)),
we can replace all monomials of the form xa1x

b
2y

a
1 y

b
2 for

a, b ≥ r − 1 and a+ b ≥ m− 1 by monomials of the form
xa+b−m+1

1 xm−1
2 ya+b−m+1

1 ym−1
2 as above. It remains to see

when two such ways, for fixed a and b, are irredundant,
and hence xa+b−m+1

1 xm−1
2 ya+b−m+1

1 ym−1
2 is itself in the

span. We already saw that the latter is true when a+ b =
m− 1, by (7–6).

In the case that a = 0 and d = 1 of (7–27), then (7–28)
becomes, after dividing by mj,

xjr−1
1 xm−jr+1

2 yjr−1
1 ym−jr+1

2 − x1x
m−1
2 y1x

m−1
2 . (7–29)

In the case that a = 1 and d = 0 of (7–27), applying also
(7–23), we obtain

− jr

m− jr + 1
p(1 + jr)xjr−1

1 xm−jr+1
2 yjr−1

1 ym−jr+1
2

+m(p− j)x1x
m−1
2 y1y

m−1
2 .

Together with (7–29), this yields both monomials above,
and in particular, x1x

m−1
2 y1x

m−1
2 , unless jrp(1 + jr) =

m(p− j)(m− jr + 1). On substituting m = pr, this
equality becomes

j

p− j
=

(p− j)r + 1
jr + 1

.

This holds if and only if j = p− j: if j �= p− j, then 1 is
strictly between both sides. Note further that unless p =
2, we can always choose j so that j �= p− j, and therefore
we obtain the monomial x1x

m−1
2 y1y

m−1
2 in the span.

In the case that a+ d > 1, then (7–28) can be applied
to at least three pairs (a, d) with the same sum, and it
is easy to see that the second monomial (which does not
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change) must be in the span, and hence all the monomials
that appear are in the span. To summarize, (7–26) yields,
in the case c = a+ jr,

xa1x
m−1
2 ya1 y

m−1
2 , a ≥ 2 or a = 1, p > 2. (7–30)

In the remaining case of (7–26), where neither a+
jr = c nor b+ jr = d, provided c, d ≥ 1, using (7–4), then
(7–26) becomes

(jc− (p− j)b)xa+jr−1
1 xb2y

c−1
1 yd+m−jr

2 (7–31)

− ((p− j)a− jd)xa1x
b+jr−1
2 yc+m−jr

1 yd−1
2 .

As before, we assume that the total degree in x1 and x2

equals the total degree in y1 and y2 , i.e., a+ b+ jr =
c+ d+m− jr. In particular, a+ b ≡ c+ d (mod r).

If c = 0 and/or d = 0, then we instead get the same
relation as above, except that we must multiply the first
term above by x1 y1

x2 y2
and/or the second term by x2 y2

x1 y1
, re-

spectively. (Note that if b = c = 0, then the first term is
zero, and if a = d = 0, then the second term is zero.)

The first term above vanishes if and only if jc = (p−
j)b, and the second term if and only if jd = (p− j)a.
One way the first equality can hold is if b = c = 0, in
which case the second monomial appearing above is in
the overall span unless jd = (p− j)a, in which case we
obtain no relations. If b+ c = 1, then the first term does
not vanish, and we obtain a nontrivial relation. If b+
c > 1 and either a, c > 0 or b, d > 0, then we can replace
(a, b, c, d) by (a± 1, b∓ 1, c± 1, d∓ 1), and together with
(7–4), the new expression (7–31) is irredundant unless
j = p− j.

The same arguments apply if we swap b and c with
a and d. So all the monomials that can occur above are
actually in the span, unless we are in one of the cases
b+ c = 1 = a+ d, one of a, c and one of b, d are zero, or
j = p− j and b+ c, a+ d > 0. Even if we are in one of
these cases, by applying also (7–4), we can still obtain the
first monomial in the span if b+ c ≥ r, and the second
monomial in the span if a+ d ≥ r. We can therefore dis-
card the case b+ c = 1 = a+ d, since this together with
b+ c < r and a+ d < r already implies j = p− j.

Next, let us assume that b+ c < r and a+ d < r, in
addition to being in one of the two cases (i) one of a, c
and one of b, d are zero, (ii) j = p− j and b+ c, a+ d > 0.
Then, applying again (7–4), we obtain a single nontriv-
ial relation unless either a = d = 0 and jc = (p− j)b are
both satisfied or b = c = 0 and jd = (p− j)a are both
satisfied. Then we are in case (i), so j = p− j, and either
(1) both a = d = 0 and b = c < r are satisfied, or (2) both
a = d < r and b = c = 0 are satisfied. So in these final
two subcases (1) and (2) only, (7–31) yields no relations

on the monomials (7–3) modulo (7–4), and otherwise we
obtain a single nontrivial relation.

Putting everything together, one may verify that
(7–31) adds to the overall span of {OG

V ,OV } exactly the
following:

xa+b
1 ya1 y

b
2 , b > 0,

⌊
a+ b+ 1

r

⌋
�= p/2, (7–32)

a+ b+ 1
r

�= p+ 1
2

, ∃k ∈ [b, a+ b] s.t.⌊
k + 1
r

⌋
+

⌊
a+ 2b− k

r

⌋
≥ p;

xa+b
1 ya1 y

b
2 − xa+b

2 yb1y
a
2 , b > 0,

⌊
a+ b+ 1

r

⌋
= p/2,

a+ 2b ≥ m; (7–33)

xa+b
1 ya1 y

b
2 + xa+b

2 yb1y
a
2 ,

a+ b+ 1
r

=
p+ 1

2
,

b

r
>
p− 1

2
. (7–34)

Therefore, HP0(OG
V ,OV ) is the quotient of the span of

monomials (7–3) up to (7–4) and the relations (7–23)–
(7–25), (7–30), and (7–32)–(7–34). From this, we easily
obtain the basis claimed in the theorem. A priori, we
might also need to include relations from Section 7.1, but
it is easy to see that they are all spanned by the present
relations, by comparing the basis of the present theorem
with that of Theorem 7.2. Alternatively, one can ver-
ify directly that the aforementioned relations span also
(7–5)–(7–12). This completes the proof of Theorem 7.6.

7.3.2. Proof of Corollary 7.7

First, to prove (7–22), we can use the basis of the theo-
rem: it is easy to see that the dimension of the space of
G-invariants in each degree is the number of terms of the
form xa1x

b
2y

a
1 y

b
2 + xb1x

a
2y

b
1y

a
2 and, in the case p is even, also

x
a+m/2
1 ya1 y

m/2
2 + x

a+m/2
2 y

m/2
1 ya1 , which are in the span of

the elements appearing in the theorem. From this, (7–22)
easily follows.

Now, (7–22) implies that the left- and right-hand
sides of (7–20) are equal by substituting in the given
values of m and p, and similarly for (7–21). To de-
duce from this that HP0(OG

V ) ∼= gr HH0(DG
X ) in the

cases p = 2 and m ∈ {4, 6}, and hence the equality
with the second term in these two equations, it suf-
fices to show that dim HP0(OG

V ) = dim HH0(DG
X ). By

Lemma 1.1, dim HH0(DG
X ,DX ) and dim HH0(DG

X ) equal
the number of elements g ∈ G such that g − Id is invert-
ible and the number of conjugacy classes of such ele-
ments, respectively. First, there are (m− r)r + (r − 1)2

diagonal matrices in G without 1 on the diagonal; of
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these, there are r − 1 or 2r − 1 scalar matrices, depending
on whether p is odd or even, respectively. The diagonal
matrices with distinct diagonal entries appear in conju-
gacy classes of size two. Next, the off-diagonal matrices g
such that g − Id is invertible are those of determinant not
equal to −1, i.e., equal to a nontrivial rth root of unity.
There are m(r − 1) of these. Their conjugacy classes are
of size either m (in the case p is odd) or m/2 (in the case
p is even). Putting this together, we conclude that

dim HH0(DG
X ,DX ) = (2r − 1)(m− 1), (7–35)

dim HH0(DG
X ) =

{
1
2 r(m+ 1) − 1, p is odd,
1
2 r(m+ 4) − 2, p is even.

(7–36)

We easily deduce from this and (7–20) and (7–21) the
fact that dim HH0(DG

X ) = dim HP0(OG
V ) in these cases.

Moreover, using (7–35) and an explicit calculation from
the basis given in the theorem, or using computer pro-
grams from Magma, we see that dim HP0(OG

V ,OV ) >
dim HH0(DG

X ,DX ) in these cases: for (m, p) = (4, 2), we
obtain dimensions 12 > 9, and in the case (m, p) = (6, 2),
we obtain dimensions 34 > 25.

It remains to prove that in all other cases (i.e.,
other than p = 2 and m ∈ {4, 6}), 1 < p < m implies
that HP0(OG

V ) �∼= gr HH0(DG
X ), since this clearly implies

HP0(OG
V ,OV ) � gr HH0(DG

X ,DX ). For this, it suffices to
show that dim HP0(OG

V ) > dim HH0(DG
X ). From (7–22)

we can easily compute dim HP0(OG
V ) by plugging in

t = 1; or we can compute it from the theorem itself and
the observations of the first paragraph of the proof. The
first line becomes the number of elements of the form
xa1x

b
2y

a
1 y

b
2 + xb1x

a
2y

b
1y

a
2 with a ≤ b ≤ m− 2 and a ≤ r − 2,

which is the area of an obvious trapezoid in the plane:
(r − 1)(m− 1) − 1

2 (r − 1)(r − 2). The evaluation of the
second line of (7–22) at t = 1 is δp,2 + �m−2r

2 � + 1 + (r −
1)δ2|p . Altogether, we have

dim HP0(OG
V ) = (r − 1)

(
m− 1

2
r

)
+

⌊
m− 2r

2

⌋
+ (r − 1)δ2|p + 1 + δp,2 . (7–37)

Since the value of the formula in (7–36) for the even case
of p exceeds that of the odd case, let us subtract the
even-case formula from (7–37) and try to see when the
result is positive. We get(

1
2
r−1

)
(m− r − 5)+

⌊
(p− 2)r

2

⌋
+(r − 1)δ2|p−2+δp,2 .

(7–38)
All of the terms above except for the first sum to a non-
negative number unless p = 3 and r = 2. The first term

will be positive whenever r > 2 and (p− 1)r > 5; the sec-
ond condition is satisfied for all pairs (p, r) with r > 2
except when p = 2 and r ∈ {3, 4, 5}. It remains to check
these last cases (along with r = 2).

If r = 2, then the above sum is positive unless ei-
ther p = 2 or p = 3. If p = 2 and r ∈ {3, 4, 5}, then the
above is clearly positive unless r = 3. So this leaves
only the cases (p, r) ∈ {(2, 2), (2, 3), (3, 2)}. The first two
cases are those in which the above is zero and we ac-
tually get HP0(OG

V ) ∼= gr HH0(DG
X ). In the final case,

p = 3, r = 2, dim HP0(OG
V ) = 7 > 6 = dim HH0(DG

X ) (re-
call that (7–38) used the formula (7–36) in the case p is
even). This completes the proof.

8. APPENDIX: EXAMPLES FOR WHICH HP0(OG
V )

IS NONTRIVIAL IN CUBIC DEGREE

Let G be a group and V1 , V2 , and V3 three quaternionic
irreducible representations. Then (Sym2 Vi)G = 0 for all
i ∈ {1, 2, 3}. If, furthermore, (Vi ⊗ Vj )G = 0 for all i �= j

and (V1 ⊗ V2 ⊗ V3)G �= 0, then it follows that the lowest-
degree invariant element in OG

V1 ⊕V2 ⊕V3
is cubic. Equip-

ping V := V1 ⊕ V2 ⊕ V3 with a G-invariant symplectic
form, HP0(OG

V ) will have a nontrivial cubic component,
isomorphic to the cubic part of OG

V itself. Our goal is to
construct such G, V1 , V2 , and V3 .

To do so, we will employ the field F2 and the Arf
invariant. Let m ≥ 1 and let E be an F2-vector space
of dimension 2m. Let QE denote the group of quadratic
forms on E with values in F2 . Corresponding to each
q ∈ QE is a canonical central extension Ẽq of E by F2 ,
since H2(E,F2) = QE . If q is nondegenerate, then it is
well known [Dickson 07, Arf 41] that (E, q) is isomorphic
to either Um

0 or Um−1
0 ⊕ U1 , where U0 and U1 are defined

as F2
2 with the quadratic forms x1x2 and x2

1 + x1x2 + x2
2 ,

respectively. In the former case, q is said to have Arf
invariant 0, and in the latter case, Arf invariant 1; the
Arf invariant is the value that q attains on the majority
of vectors.

It follows that if q is nondegenerate, then Ẽq has a
(unique) irreducible representation Yq of dimension 2m

(note that any such irreducible representation must be
unique and of maximal dimension, since |Ẽq | = 22m+1

equals the sum of squares of dimensions of the irre-
ducible representations). Namely, if q = q1 ⊕ · · · ⊕ qm ,
then Ẽq1 ⊕···⊕qm is a central quotient of

∏
i Ẽqi , and Yq =

Yq1 � · · · � Yqm . This reduces to the case m = 1, where
the central extensions corresponding to U0 and U1 are
just the dihedral and quaternion groups of order eight,
each equipped with a (unique) irreducible 2-dimensional
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representation. It also follows that Yq is equipped with a
canonical Ẽq -invariant bilinear form, which is symmetric
or skew-symmetric, depending on whether the Arf invari-
ant of q is 0 or 1, respectively (since this is true in the case
m = 1). That is, Yq is real or quaternionic, respectively.

Next, there is a canonical group that puts together all
the central extensions for varying q. Let QE be the F2-
vector space of quadratic forms on E. Then H2(E,F2) =
QE , and so there is a canonical element of H2(E,Q∗

E )
yielding a central extension

1 → Q∗
E → G→ E → 1.

Then G also acts on Yq with action factoring through
Ẽq , which is the pushout of the above extension under
the evaluation map q : Q∗

E → F2 . It follows that Yq is
an irreducible representation of G that is real or quater-
nionic, depending on whether the Arf invariant of q is
0 or 1, respectively. Moreover, for distinct nondegener-
ate quadratic forms q1 , q2 , we have Yq1 � Yq2 . Further-
more, one may check that if q1 + q2 is nondegenerate,
then Yq1 ⊗ Yq2

∼= Y 2m
q1 +q2

.
Now suppose that we are given quadratic forms q1 and

q2 of Arf invariant 1 such that q1 + q2 is nondegenerate
and also has Arf invariant 1. Then, setting q3 := q1 + q2 ,
we deduce that (Sym2 Yqi )

G = 0 and (Yqi ⊗ Yqj )
G = 0 for

all i �= j, but since q1 + q2 = q3 , it follows that (Yq1 ⊗
Yq2 ⊗ Yq3 )

G �= 0. Thus, G, Yq1 , Yq2 , and Yq1 +q2 provide
an example of the desired form. In fact, in this case,
setting V := Yq1 ⊕ Yq2 ⊕ Yq3 , the cubic part of Sym(OG

V )
and hence HP0(OG

V ) is isomorphic to (Yq1 ⊗ Yq2 ⊗ Yq3 )
G ,

which is 2m -dimensional.
It is not hard to find such examples. Using Magma,

we found several with m = 2 (the minimum possible
value), such as q1 = x1x2 + x2

3 + x3x4 + x2
4 and q2 =

x2
1 + x1x4 + x2

2 + x2x3 + x3x4 . In this case, setting V :=
Yq1 ⊕ Yq2 ⊕ Yq1 +q2 , the space HP0(OG

V ) is nonzero in cu-
bic degree (where it has dimension 4), and dimV = 12.
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