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The goal of this paper is to give a conjectural census of complex
hyperbolic sporadic triangle groups. We prove that only finitely
many of these sporadic groups are lattices.

We also give a conjectural list of all lattices among sporadic
groups, and for each group in the list we give a conjectural
group presentation, as well as a list of cusps and generators
for their stabilizers. We describe strong evidence for these con-
jectural statements, showing that their validity depends on the
solution of reasonably small systems of quadratic inequalities in
four variables.

1. INTRODUCTION

The motivation for this paper is to construct discrete
groups acting on the complex hyperbolic plane H2

C , more
specifically lattices (where one requires in addition that
the quotient by the action of the discrete group have fi-
nite volume). Complex hyperbolic spaces Hn

C are a natu-
ral generalization to the realm of Kähler geometry of the
familiar non-Euclidean geometry of Hn

R . The space Hn
C

is simply the unit ball in C n , endowed with the unique
Kähler metric invariant under all biholomorphisms of the
ball; this metric is symmetric and has nonconstant nega-
tive real sectional curvature (holomorphic sectional cur-
vature is constant). The group of holomorphic isometries
of Hn

C is the projectivized group PU(n, 1) of a Hermitian
form of Lorentzian signature (n, 1).

It is a well-known fact due to Borel that lattices ex-
ist in the isometry group of any symmetric space, but
the general structure of lattices and the detailed study
of their representation theory brings forth several open
questions. The basic construction of lattices relies on the
fact that for any linear algebraic group G defined over
Q , the group of integral matrices G(Z) is a lattice in
G(R ). The group G(Z) is clearly discrete, and the fact
that it is a lattice follows from a theorem of Borel and
Harish-Chandra. More generally, to a group defined over
a number field (i.e., a finite extension of the rationals),
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one can associate a group defined over Q by a process
called restriction of scalars. One is naturally led to the
general notion of arithmetic group, keeping in mind that
one would like to push as far as possible the idea of tak-
ing integral matrices in a group defined over Q . For the
general definition of arithmeticity, we refer the reader to
Section 2. In the context of the present paper, the arith-
meticity criterion in that section (Proposition 2.2) will
be sufficient.

It is known since deep work of Margulis that lattices
in the isometry group of any symmetric space of higher
rank (i.e., rank ≥ 2) are all arithmetic. There are four
families of rank-1 symmetric spaces of noncompact type,
namely

Hn
R , Hn

C , Hn
H , H2

O .

Lattices in the isometry groups of the last two families
(hyperbolic spaces over the quaternions and the octo-
nions) are all known to be arithmetic, thanks to work of
Corlette and Gromov–Schoen.

On the other hand, nonarithmetic lattices are known
to exist in PO(n, 1) (which is the isometry group
of Hn

R ) for arbitrary n ≥ 2. A handful of examples
coming from Coxeter groups were known in low di-
mensions before Gromov and Piatetski-Shapiro found
a general construction using so-called interbreeding
of well-chosen arithmetic real hyperbolic lattices (see
[Gromov and Piatetski-Shapiro 88]).

The existence of nonarithmetic lattices in PU(n, 1)
(the group of holomorphic isometries of Hn

C ) for arbitrary
n is a longstanding open question. Examples are known
only for n ≤ 3, and they are all commensurable with com-
plex reflection groups. More specifically, it turns out that
all known nonarithmetic lattices in PU(n, 1) for n = 2
or 3 are commensurable with one of the hypergeomet-
ric monodromy groups listed in [Deligne and Mostow 86]
and [Mostow 86] (the same list appears in [Thurston 98]).

The goal of this paper is to announce (and give
outstanding evidence for) results that exhibit several
new commensurability classes of nonarithmetic lattices
in PU(2, 1). Our starting point was the investigation
in [Parker and Paupert 09] of symmetric triangle groups,
i.e., groups generated by three complex reflections of or-
der p ≥ 3 in a symmetric configuration (the case p = 2
was studied in [Parker 08]).

With Ri , i = 1, 2, 3, denoting the generators, the sym-
metry condition means that there exists an isometry J

of order 3 such that JRiJ
−1 = Ri+1 (indices modulo 3).

It turns out that conjugacy classes of symmetric trian-
gle groups (with generators of any fixed order p ≥ 2) can

then be parameterized by

τ = Tr(R1J),

provided we represent isometries by matrices for R1 and
J in SU(2, 1) (see Section 3 for basic geometric facts
about complex hyperbolic spaces).

Following [Parker and Paupert 09], we denote by
Γ
( 2π
p , τ

)
the group generated by R1 and J as above. The

main problem is to determine the values (p, τ) of the pa-
rameters such that Γ(2π

p , τ) is a lattice in PU(2, 1). It is a
difficult problem to do this in all generality (see the dis-
cussions in [Mostow 80] and [Deraux 05], for instance).

To simplify matters, we shall concentrate on a
slightly smaller class of groups. The results in
[Parker and Paupert 09] give the list of all values of p, τ
such that R1R2 and R1J are either parabolic, or ellip-
tic of finite order. When this condition holds, we refer to
such a triangle group as doubly elliptic (see Section 4).

It turns out that the double ellipticity condition is in-
dependent of p, and the values of τ that yield doubly el-
liptic triangle groups come in two continuous 1-parameter
families, together with 18 isolated values of the parame-
ter τ .

The continuous families yield groups that are sub-
groups of so-called Mostow groups, i.e., those whose gen-
erating reflections satisfy the braid relation

RiRi+1Ri = Ri+1RiRi+1 .

In that case, the problem of determining which pa-
rameters yield a lattice is completely solved (see
[Mostow 80, Mostow 88] for the first family and
[Parker and Paupert 09] for the second).

The isolated values of τ corresponding to doubly el-
liptic triangle groups are called sporadic values, and the
corresponding triangle groups are called sporadic tri-
angle groups (the list of sporadic values is given in
Table 1). It has been suspected since [Parker 08] and
[Parker and Paupert 09] that sporadic groups may yield
interesting lattices.

In fact, the work in [Paupert 10] shows that only one
sporadic triangle group is an arithmetic lattice; moreover,
most sporadic triangle groups are not commensurable
with any of the previously known nonarithmetic lattices
(the Picard, Mostow, and Deligne–Mostow lattices). The
precise statement of what “most sporadic groups” means
is given in Theorem 4.8; see also [Paupert 10]. The prob-
lem left open is of course to determine which sporadic
groups are indeed lattices.

To that end, it is quite natural to use the first author’s
computer program (see [Deraux 05]), and to go through
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σ1 = eiπ /3 + e−iπ /6 2 cos(π/4) σ2 = eiπ /3 + e−iπ /6 2 cos(π/5) σ3 = eiπ /3 + e−iπ /6 2 cos(2π/5)
σ4 = e2π i/7 + e4π i/7 + e8π i/7 σ5 = e2π i/9 + e−iπ /9 2 cos(2π/5) σ6 = e2π i/9 + e−π i/9 2 cos(4π/5)
σ7 = e2π i/9 + e−iπ /9 2 cos(2π/7) σ8 = e2π i/9 + e−iπ /9 2 cos(4π/7) σ9 = e2π i/9 + e−iπ /9 2 cos(6π/7)

TABLE 1. The 18 sporadic values are given by σj or σj , j = 1, . . . , 9. They correspond to isolated values of the parameter τ for
which any Γ

(
2π
p
, τ
)

is doubly elliptic, i.e., R1R2 and R1J are either parabolic or elliptic of finite order.

an experimental investigation of the Dirichlet domains
for sporadic groups. The goal of the present paper is to
report on the results of this search, which turn out to be
quite satisfactory.

We summarize the results of our computer experimen-
tation in the following conjecture (see Section 4 and Ta-
ble 1, for the meaning of the parameters σ1 , . . . , σ9).

Conjecture 1.1. The following sporadic groups are nonar-
ithmetic lattices in SU(2, 1):

cocompact:

Γ
(

2π
5
, σ4

)
, Γ

(
2π
8
, σ4

)
, Γ

(
2π
12
, σ4

)
.

noncocompact:

Γ
(

2π
3
, σ1

)
, Γ

(
2π
3
, σ5

)
, Γ

(
2π
4
, σ1

)
,

Γ
(

2π
4
, σ4

)
, Γ

(
2π
4
, σ5

)
, Γ

(
2π
6
, σ1

)
,

Γ
(

2π
6
, σ4

)
.

In fact, we have obtained outstanding evidence that
Conjecture 1.1 is correct, but this evidence was obtained
from numerical computations using floating-point arith-
metic, and it is conceivable (though very unlikely) that
the results are flawed because of issues of precision, in a
similar vein as the analysis in [Deraux 05] of the results
in [Mostow 80]. Instead of arguing that the computer ex-
perimentation is not misleading, we will prove Conjec-
ture 1.1 in [Deraux et al. 11] using more direct geometric
methods.

Note that the only part of Conjecture 1.1 that is con-
jectural is the fact that the groups in question are lattices.
The fact that these groups are not arithmetic follows
from the results in [Parker and Paupert 09, Paupert 10].
The groups other than Γ(2π

4 , σ1) and Γ(2π
6 , σ1) are known

to be incommensurable with Deligne–Mostow–Picard lat-
tices by [Paupert 10] (in fact, for Γ(2π

4 , σ4) and Γ(2π
6 , σ4),

this follows from noncocompactness by the arguments in
[Paupert 10]).

Computer experiments also suggest that Conjec-
ture 1.1 is essentially optimal. More specifically, sporadic
groups that do not appear in the list seem not to be lat-
tices (most of them are not discrete; a handful seem to
have infinite covolume), apart from the following:

Γ
(

2π
3
, σ4

)
, Γ

(
2π
2
, σ5

)
, Γ

(
2π
2
, σ5

)
.

These exceptions are in fact completely understood, and
they are all arithmetic; the last two groups are both
isomorphic to the lattice studied in [Deraux 05] (see
[Parker 08]). As for the first group, partly thanks to work
in [Parker and Paupert 09], we have the following theo-
rem.

Theorem 1.2. Γ
( 2π

3 , σ4
)

is a cocompact arithmetic lattice
in SU(2, 1).

The fact that this group is discrete was proved in
[Parker and Paupert 09, Proposition 6.4], the point be-
ing that all nontrivial Galois conjugates of the relevant
Hermitian form are definite. In fact, it is the only spo-
radic group that is contained in an arithmetic lattice, by
[Paupert 10]. In order to check that it is cocompact, one
uses the same argument as in [Deraux 06]. More specifi-
cally, one needs to verify that the Dirichlet domain is co-
compact. This can be done without knowing the precise
combinatorics of that polyhedron (it is enough to study a
partial Dirichlet domain, and to verify that all the 2-faces
of that polyhedron are compact; see [Deraux 06]).

The nondiscreteness results we prove in Section 9 of
this paper are close to proving optimality of the state-
ment of the conjecture, but the precise statement is some-
what lengthy (see Theorem 9.1). For now, we simply state
the following.

Theorem 1.3. Only finitely many sporadic triangle groups
are discrete.
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2. ARITHMETIC LATTICES ARISING FROM
HERMITIAN FORMS OVER NUMBER FIELDS

For the sake of completeness, we recall in Defini-
tion 2.1 the general definition of arithmeticity (see also
[Zimmer 84, Chapter 6]). For the purposes of the present
paper, the special case of arithmetic groups arising from
Hermitian forms over number fields will be sufficient (see
Proposition 2.2 below).

Borel and Harish-Chandra proved that if G is a linear
algebraic group defined over Q , then G(Z) is a lattice
in G(R ). Recall that a real linear algebraic group defined
over Q is a subgroup G of GL(n,R ) for some n such that
the elements of G are precisely the solutions of a set of
polynomial equations in the entries of the matrices, with
the coefficients of the polynomials lying in Q ; one writes
G(R ) = G and G(Z) = G ∩ GL(n,Z). From their result,
one can deduce that any real semisimple Lie group con-
tains infinitely many (distinct commensurability classes
of) lattices, either cocompact or noncocompact.

One obtains the general definition by extending this
notion to all groups equivalent to groups of the formG(Z)
in the following sense.

Definition 2.1. Let G be a semisimple Lie group, and
Γ a subgroup of G. Then Γ is an arithmetic lattice
in G if there exist an algebraic group S defined over
Q and a continuous homomorphism φ : S(R )0 −→ G

with compact kernel such that Γ is commensurable with
φ(S(Z) ∩ S(R )0).

The fact that Γ as in the definition is indeed a lattice
follows from the Borel–Harish-Chandra theorem.

Here we focus on the case of integral groups aris-
ing from Hermitian forms over number fields. This
means that we consider groups Γ that are contained
in SU(H,OK ), where K is a number field, OK de-
notes its ring of algebraic integers, and H is a Hermi-
tian form of signature (2, 1) with coefficients in K. Note
that OK is usually not discrete in C , so SU(H,OK ) is
usually not discrete in SU(H). Under an additional as-
sumption on the form ϕH of the Galois conjugates (ob-
tained by applying field automorphisms ϕ ∈ Gal(K) to
the entries of the representative matrix of H), the group
SU(H,OK ) is indeed discrete (see part 1 of the following
proposition).

Proposition 2.2. Let E be a purely imaginary quadratic
extension of a totally real field F , and H a Hermitian
form of signature (2, 1) defined over E. Then the follow-
ing hold:

(1) SU(H;OE ) is a lattice in SU(H) if and only if for all
ϕ ∈ Gal(F ) not inducing the identity on F , the form
ϕH is definite. Moreover, in that case, SU(H;OE ) is
an arithmetic lattice.

(2) Suppose Γ ⊂ SU(H;OE ) is a lattice. Then Γ is arith-
metic if and only if for ϕ ∈ Gal(F ) not inducing the
identity on F , the form ϕH is definite.

Part 1 of the proposition is quite natural (and moti-
vates the formulation of the general definition of arith-
meticity). Indeed, it is a general fact that one can embed
OK discretely into C r by

x �→ (ϕ1(x), . . . , ϕr (x)),

where ϕ1 , . . . , ϕr denote the distinct embeddings of K
into the complex numbers (up to complex conjugation).

The group S =
∏r

j=1 SU(ϕj H) can be checked to be
defined over Q (this is an instance of a general pro-
cess called restriction of scalars). Its integer points corre-
spond to

∏r
j=1 SU(ϕj H,OK ), which is a lattice in S(R )

by the theorem of Borel and Harish-Chandra.
Now the key point is that the assumption on the Galois

conjugates amounts to saying that the projection
r∏

j=1

SU(ϕj H) → SU(ϕ1H)

onto the first factor has compact kernel, hence maps dis-
crete sets to discrete sets (compare with Definition 2.1).
This implies that SU(H,OK ) is a lattice in SU(H).

The proof of part 2 of Proposition 2.2 is a
bit more sophisticated (see [Mostow 80, Lemma 4.1],
[Deligne and Mostow 86, 12.2.6], or [Paupert 10, Propo-
sition 4.1]). Note that when the group Γ as in the propo-
sition is nonarithmetic, it necessarily has infinite index
in SU(H,OK ) (which is nondiscrete in SU(H)).

3. COMPLEX HYPERBOLIC SPACE AND ITS
ISOMETRIES

For the reader’s convenience we include a brief summary
of key definitions and facts about complex hyperbolic
geometry; see [Goldman 99] for more information.

Let 〈·, ·〉 be a Hermitian form of signature (n, 1) on
C n+1, which we can describe in matrix form as

〈v, w〉 = w∗Hv.

The unitary group U(H) is the group of matrices that
preserve this inner product, i.e.,

U(H) = {M ∈ GL(n+ 1,C ) : M ∗HM = H}.
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The signature condition amounts to saying that after
an appropriate linear change of coordinates, the Hermi-
tian inner product is the standard Lorentzian Hermitian
product

−v0w0 + v1w1 + · · · + vnwn ,

whose unitary group is usually denoted by U(n, 1). For
computational purposes, it can be convenient to work
with a nondiagonal matrix H (as we do throughout this
paper), but of course, under the (n, 1) signature assump-
tion, U(H) is isomorphic to U(n, 1).

As a set, Hn
C is just the subset of projective space Pn

C

corresponding to the set of negative lines in C n+1, i.e., C -
lines spanned by a vector v ∈ C n+1 such that 〈v, v〉 < 0.
Working in coordinates where the form is diagonal, any
negative line is spanned by a unique vector of the form
(1, v1 , . . . , vn ), and negativity translates into

|v1 |2 + · · · + |vn |2 < 1,

which shows how to describe complex hyperbolic space
as the unit ball in C n .

It is often useful to consider the boundary of complex
hyperbolic space, denoted by ∂Hn

C . This corresponds to
the set of null lines, i.e., C -lines spanned by nonzero vec-
tors v ∈ C n+1 with 〈v, v〉 = 0. In terms of the ball model
alluded to in the previous paragraph, the boundary is of
course simply the unit sphere in C n .

The group PU(H) clearly acts by biholomorphisms on
Hn

C (the action is effective and transitive), and it turns
out that PU(H) is actually the group of all biholomor-
phisms of complex hyperbolic space. There is a unique
Kähler metric on Hn

C invariant under the action of PU(H)
(it can be described as the Bergman metric of the ball).
We will not need any explicit formula for the metric;
all we need is the formula for the distance between two
points (this will be enough for the purposes of the present
paper). Writing X,Y for negative vectors in C n+1 and
x, y for the corresponding C -lines in Hn

C , we have

cosh2

(
ρ
(
x, y
)

2

)
=

|〈X,Y 〉|2
〈X,X〉〈Y, Y 〉 .

The factor 1/2 inside the hyperbolic cosine is included
for purposes of normalization only (it ensures that the
holomorphic sectional curvature of Hn

C is −1, rather than
just any negative constant).

It is not hard to see that

Isom(Hn
C ) = PU(n, 1) � Z/2,

where the Z/2 factor corresponds to complex conjugation
(any involutive antiholomorphic isometry would do).

The usual classification of isometries of negatively
curved metric spaces, in terms of the analysis of the fixed
points in

H
n
C = Hn

C ∪ ∂Hn
C ,

is used throughout in the paper. Any nontrivial g ∈
PU(n, 1) is of precisely one of the following types:

elliptic: g has a fixed point in Hn
C ;

parabolic: g has exactly one fixed point in H
n
C , which

lies in ∂Hn
C ;

loxodromic: g has exactly two fixed points in H
n
C , which

lie in ∂Hn
C .

In the special case n = 2, there is a simple formula in-
volving the trace of a representative G ∈ SU(2, 1) of
g ∈ PU(2, 1) to determine the type of the isometry g (see
[Goldman 99, p. 204]).

We will sometimes use a slightly finer classification for
elliptic isometries, calling an element regular elliptic if
any of its representatives has distinct eigenvalues. The
eigenvalues of a matrix A ∈ U(n, 1) representing an ellip-
tic isometry g all have modulus one. Exactly one of these
eigenvalues has an eigenvector v with 〈v, v〉 < 0 (the span
of v gives a fixed point of g in Hn

C ), and such an eigen-
value will be said to be of negative type. Regular elliptic
isometries have an isolated fixed point in Hn

C .
Among nonregular elliptic elements, one finds complex

reflections, whose fixed-point sets are totally geodesic
copies of Hn−1

C embedded in Hn
C . More specifically, such

“complex hyperplanes” can be described by a positive
line in C n+1, i.e., a C -line spanned by a vector v with
〈v, v〉 > 0. Given such a vector, the set of C -lines con-
tained in

v⊥ =
{
w ∈ C n+1 : 〈v, w〉 = 0

}
intersects Hn

C in a copy of Hn−1
C . The point in projective

space corresponding to v is said to be polar to the hy-
perplane determined by v⊥. In terms of the ball model,
these copies of Hn−1

C simply correspond to the intersec-
tion with the unit ball of affine hyperplanes in C n . If v
is a positive vector, any isometry of Hn

C fixing the lines
in v⊥ can be described in U(n, 1) as

x �→ x+ (ζ − 1)
〈x, v〉
〈v, v〉 v

for some ζ ∈ C with |ζ| = 1. The corresponding isometry
is called a complex reflection, ζ is called its multiplier,
and the argument of ζ is referred to as the rotation angle
of the complex reflection.
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Note that the respective positions of two complex hy-
perplanes are easily read off in terms of their polar vec-
tors. Indeed, we have the following (see [Goldman 99,
p. 100]).

Lemma 3.1. Let v1 , v2 be positive vectors in C n+1 , and
let L1 , L2 denote the corresponding complex hyperplanes
in Hn

C . Let

C =
|〈v1 , v2〉|2

〈v1 , v1〉〈v2 , v2〉 .

Then the following hold:

(1) L1 and L2 intersect in Hn
C if and only if C < 1. In

that case, the angle θ between L1 and L2 satisfies
cos θ = C.

(2) L1 and L2 intersect in ∂Hn
C if and only if C = 1.

(3) L1 and L2 are ultraparallel if and only if C > 1. In
that case, the distance ρ between L1 and L2 satisfies
cosh ρ

2 = C.

Lemma 3.1 will be used to derive the discreteness test
in Section 9 (the complex hyperbolic Jørgensen’s inequal-
ity established in [Jiang et al. 03]).

Parabolic isometries are either unipotent or screw
parabolic; in the former case they are also called Heisen-
berg translations (because the group of unipotent isome-
tries fixing a given point on ∂Hn

C is isomorphic to
the Heisenberg group H2n−1). There are two conjugacy
classes of Heisenberg translations: the vertical transla-
tions (corresponding to the center of the Heisenberg
group, which happens to be its commutator subgroup as
well) and the nonvertical translations (see [Goldman 99]
for more details on this discussion).

4. SPORADIC GROUPS

In this section we establish some notation and re-
call the main results from [Parker and Paupert 09] and
[Paupert 10].

Definition 4.1. A symmetric triangle group is a group
generated by two elements R1 , J ∈ SU(2, 1), where R1 is
a complex reflection of order p and J is a regular elliptic
isometry of order 3.

The reason we call this a triangle group is that it is a
subgroup of index at most three in the group generated
by three complex reflections R1 , R2 , and R3 , defined by

R2 = JR1J
−1 , R3 = JR2J

−1 ,

and we think of their three mirrors as describing a “trian-
gle” of complex lines (however, the mirrors of the various
Rj need not intersect in general).

The basic observation is that symmetric triangle
groups can be parameterized up to conjugacy by the or-
der p of R1 and

τ = Tr(R1J).

We denote by ψ = 2π/p the rotation angle of R1 , and by

Γ
(
ψ, τ

)
the group generated by a complex reflection R1 , J as
above.

The generators for this group can be described explic-
itly by matrices of the form

J =

⎡
⎢⎣

0 0 1
1 0 0
0 1 0

⎤
⎥⎦ , ( 4–1)

R1 =

⎡
⎢⎣
e2iψ/3 τ −eiψ/3 τ

0 e−iψ/3 0
0 0 e−iψ/3

⎤
⎥⎦ . ( 4–2)

These preserve the Hermitian form 〈z,w〉 = w∗Hτ z,
where

Hτ =

⎡
⎢⎣

2 sin(ψ/2) −ie−iψ/6τ ieiψ/6τ

ieiψ/6τ 2 sin(ψ/2) −ie−iψ/6τ

−ie−iψ/6τ ieiψ/6τ 2 sin(ψ/2)

⎤
⎥⎦ .

The above matrices always generate a subgroup Γ of
GL(3,C ), but the signature of Hτ depends on the val-
ues of ψ and τ . For any fixed value of ψ, the parameter
space for τ is described in [Parker and Paupert 09, Sec-
tions 2.4, 2.6].

Definition 4.2. The symmetric triangle group generated
by R1 and J as in (4–1) and (4–2) is called hyperbolic if
Hτ has signature (2, 1).

In order to get a tractable class of groups, we shall as-
sume that R1J is elliptic, and that R1R2 = R1JR1J

−1 is
either elliptic or parabolic. The motivation for this con-
dition is explained in [Parker 08, Parker and Paupert 09]
(it is quite natural in the context of the search for lattices,
rather than discrete groups of possibly infinite covolume).



Deraux et al.: Census of the Complex Hyperbolic Sporadic Triangle Groups 473

τ p with Hτ hyperbolic p where nondiscrete Result used
σ1 [3,∞) 7, 8, [10,∞) Proposition 9.10

9 Proposition 9.15
σ1 [3, 7] 5, 7 Proposition 9.11

3, 6, 7 Proposition 9.16
σ2 [3,∞) [6, 9], [11,∞) Proposition 9.12

10 Proposition 9.17
σ2 [3, 19] [6, 9], [11, 19] Proposition 9.13

10 Proposition 9.17
σ3 [3,∞) [3,∞) [Parker and Paupert 09, Proposition 4.5]
σ3 [3, 6] [3, 6] [Parker and Paupert 09, Proposition 4.5]
σ4 [4, 6] [4, 6] Proposition 9.9
σ4 [3,∞) 7, [9, 11], [13,∞) Proposition 9.7
σ5 [2,∞) 7, [9, 11], [13,∞ Proposition 9.8
σ5 {2, 4} 4 Proposition 9.9
σ6 [3,∞) 3, 4, [6∞) [Parker and Paupert 09, Proposition 4.5 ]

5 Proposition 9.9
σ6 [3, 29] 3, 4, [6∞) [Parker and Paupert 09, Proposition 4.5 ]

5 Proposition 9.9
σ7 [2,∞) 5, 6, [8, 13], [15,∞) Proposition 9.14
σ7 {2}
σ8 [4, 41] [4, 41] [Parker and Paupert 09, Corollary 4.2 ]
σ8 [4,∞) [4,∞) [Parker and Paupert 09, Corollary 4.2 ]
σ9 [3,∞) [3,∞) [Parker and Paupert 09, Corollary 4.2 ]
σ9 [4, 8] [4, 8] [Parker and Paupert 09, Corollary 4.2 ]

TABLE 2. Values of the parameter where Knapp or Jørgensen show nondiscreteness. The second column gives the values of p
for which the Hermitian form Hτ has signature (2, 1) (taken from [Parker and Paupert 09]). The third and fourth columns give
values of p for which a well-chosen subgroup fails the Knapp test or the Jørgensen test (and hence the group is not discrete).
If this was done in [Parker and Paupert 09], we give the reference. For some values of τ we apply Knapp and Jørgensen to two
different complex reflections in the group (in which case the results are listed on two separate lines).

A basic necessary condition for a subgroup of PU(2, 1)
to be discrete is that all its elliptic elements have finite
order; hence we make the following definition.

Definition 4.3. A symmetric triangle group is called dou-
bly elliptic if R1J is elliptic of finite order and R1R2 =
R1JR1J

−1 is either elliptic of finite order or parabolic.

The list of parameters that yield doubly elliptic
triangle groups was obtained in [Parker 08] (see also
[Parker and Paupert 09]) using a result of Conway and
Jones on sums of roots of unity. We recall the result in
the following theorem.

Theorem 4.4. Let Γ be a symmetric triangle group
such that R1J is elliptic and R1R2 is either elliptic or
parabolic. If R1J and R1R2 have finite order (or are
parabolic), then one of the following holds:

� Γ is one of Mostow’s lattices (τ = eiφ for some φ).

� Γ is a subgroup of one of Mostow’s lattices (τ =
e2iφ + e−iφ for some φ).

� Γ is one of the sporadic triangle groups, i.e., τ ∈
{σ1 , σ1 , . . . , σ9 , σ9}, where the σj are given in Ta-
ble 1.

Therefore, for each value of p ≥ 3, we have a fi-
nite number of new groups to study, the Γ(2π/p, σi)
and Γ(2π/p, σi), which are hyperbolic. The list of spo-
radic groups that are hyperbolic is given in the table of
[Parker and Paupert 09, Section 3.3] (and we give them
here in Table 2); for the sake of brevity we recall only the
following result.

Proposition 4.5. For p ≥ 4 and τ ∈ {σ1 , σ2 , σ3 ,

σ4 , σ5 , σ6 , σ7 , σ8 , σ9}, the group Γ(2π/p, τ) is hyper-
bolic.

It was shown in [Parker and Paupert 09] that some
of the hyperbolic sporadic groups are nondiscrete (see
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[Parker and Paupert 09, Corollary 4.2, Proposition 4.5,
Corollary 6.4]), essentially by using the lists of discrete
triangle groups on the sphere, the Euclidean plane, and
the hyperbolic plane (this list is due to Schwarz in the
spherical case, and to Knapp in the hyperbolic case). For
the convenience of the reader, we recall the main nondis-
creteness results from [Parker and Paupert 09] in the fol-
lowing proposition.

Proposition 4.6. For p ≥ 3 and τ or τ ∈ {σ3 , σ8 , σ9},
Γ(2π/p, τ) is not discrete. Also, for p ≥ 3, p �= 5, and
τ or τ = σ6 , Γ(2π/p, τ) is not discrete.

The new nondiscreteness results contained in Section 9
push the same idea much further, by a series of tech-
nical algebraic manipulations (in some places we use
Jørgensen’s inequality and a complex hyperbolic version
of Shimizu’s lemma due to the second author; see Theo-
rem 9.5).

The main results of [Paupert 10] are the following two
statements. The first result was obtained by applying the
arithmeticity criterion from Proposition 2.2. The second
result was obtained by finding a commensurability invari-
ant that distinguishes the various groups Γ, namely the
field Q [Tr Ad Γ] (the trace field of the adjoint represen-
tation of Γ).

Theorem 4.7. Let p ≥ 3 and τ ∈ {σ1 , σ1 , . . . , σ9 , σ9}, and
suppose that the triangle group Γ(2π/p, τ) is hyperbolic,
and that it is a lattice in SU(Hτ ). Then Γ(2π/p, τ) is
arithmetic if and only if p = 3 and τ = σ4 .

Theorem 4.8. The sporadic groups Γ(2π/p, τ), p ≥ 3 and
τ ∈ {σ1 , σ1 , . . . , σ9 , σ9}, fall into infinitely many distinct
commensurability classes. Moreover, they are not com-
mensurable with any Picard or Mostow lattice, except pos-
sibly when

p = 4 or 6, p = 3 and τ = σ7 ,

p = 5 and τ or τ = σ1 , σ2 , p = 7 and τ = σ4 ,

p = 8 and τ = σ1 , p = 10 and τ = σ1 , σ2 , σ2 ,

p = 12 and τ = σ1 , σ7 , p = 20 and τ = σ1 , σ2 ,

p = 24 and τ = σ1 .

5. DIRICHLET DOMAINS

Given a subgroup Γ of PU(2, 1), the Dirichlet domain for
Γ centered at p0 is the set

FΓ =
{
x ∈ H2

C : d(x, p0) ≤ d(x, γp0),∀γ ∈ Γ
}
.

A basic fact is that Γ is discrete if and only if FΓ has
nonempty interior, and in that case, FΓ is a fundamental
domain for Γ modulo the action of the (finite) stabilizer
of p0 in Γ.

The simplicity of this general notion and its some-
what canonical nature (it depends only on the choice
of the center p0) make Dirichlet domains convenient to
use in computer investigation as in [Mostow 80, Riley 83,
Deraux 05, Deraux 06]. Note, however, that there is no
algorithm to decide whether the set FΓ has nonempty
interior, and the procedure we describe below may never
end (this is already the case in the constant-curvature set-
ting, i.e., in real hyperbolic space of dimension at least
3; see, for instance, [Epstein and Petronio 94]).

Our computer search is quite a bit more delicate
than the search for fundamental domains in the set-
ting of arithmetic groups. The recent announcement
that Cartwright and Steger have been able to find pre-
sentations for the fundamental groups of all so-called
fake projective planes mentions the use of massive com-
puter calculations in the same vein as our work (see
[Cartwright and Steger 10]); however, there are major
differences.

They use Dirichlet domains, but their task is facili-
tated by the fact that the fundamental groups of fake
projective planes are known to be arithmetic subgroups
of PU(2, 1) (see [Klingler 03, Yeung 04]). In particular,
all the groups they consider are known to be discrete a
priori (which is certainly not the case for most complex
hyperbolic sporadic groups). Cartwright and Steger also
use the knowledge of the volumes of the corresponding
fundamental domains (the list of arithmetic lattices that
could possibly contain the fundamental group of a fake
projective plane is brought down to a finite list using
Prasad’s volume formula [Prasad 89]). This allows one
to check whether a partial Dirichlet domain

FW =
{
x ∈ H2

C : d(x, p0) ≤ d(x, γp0),∀γ ∈W
}

determined by a given finite set W ⊂ Γ is actually equal
to FΓ.

For an arbitrary discrete subgroup Γ ⊂ PU(2, 1) and
an arbitrary choice of the center p0 , the set FΓ is
a polyhedron bounded by bisectors (see [Mostow 80,
Goldman 99]), but it may have infinitely many faces, even
if Γ is geometrically finite (see [Bowditch 93]).

Moreover, the combinatorics of Dirichlet domains tend
to be unnecessarily complicated, and one usually expects
that simpler fundamental domains can be obtained by
suitable clever geometric constructions. This general idea
is illustrated by Dirichlet domains for lattices in R 2 : when
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the group is not a rectangular lattice, i.e., not generated
by two translations along orthogonal axes, the Dirichlet
domain centered at any point is a hexagon (rather than
a parallelogram).

In H2
C , Dirichlet domains typically contain digons

(pairs of vertices connected by distinct edges); see Fig-
ure 1. In particular, the 1-skeleton is not piecewise to-
tally geodesic. One can also check that the 2-faces of a
Dirichlet domain can never be contained in a totally real
totally geodesic copy of H2

R , which makes this notion a
little bit unnatural (this was part of the motivation be-
hind the constructions of [Deraux et al. 05], where fun-
damental domains with simpler combinatorics than those
in [Mostow 80] were obtained).

6. EXPERIMENTAL RESULTS

6.1. The G-Procedure

In order to sift through the complex hyperbolic spo-
radic groups, we have run the procedures explained in
[Deraux 05] and [Deraux 06] in order to explore the
Dirichlet domains centered at the center of mass of the
mirrors of the three generating reflections.

In terms of the notation in Section 4, we take p0 to
be the unique fixed point in H2

C of the regular elliptic
element J (this point is given by (1, 1, 1), by (1, ω, ω),
or by (1, ω, ω) for ω = (−1 + i

√
3)/2, depending on the

parameters p and τ).
We start with the generating set W0 =

{R±1
1 , R±1

2 , R±1
3 } for Γ, and construct an increasing

sequence of sets W0 ⊂W1 ⊂W2 ⊂ · · · by the G-
procedure (named after G. Giraud; see [Deraux 05] for
the explanation of this terminology).

First define a G-step of the procedure by:

G(W ) = W∪{α−1β : α, β ∈W yield a nonempty
generic 2-face of FW }.

Here “yielding a nonempty 2-face of FW ” means that the
set of points of FW that are equidistant from p0 , αp0 ,
and βp0 has dimension two (i.e., it has nonempty inte-
rior in the corresponding intersection of two bisectors).
“Generic” means that this 2-face is not contained in a
complex geodesic (see [Deraux 05]).

Definition 6.1. The set W is said to be G-closed if
G(W ) = W .

The sequence Wk is defined inductively by

Wk+1 = G(Wk ).

The hope is that this sequence stabilizes to a G-closed
set W = WN after a finite number of steps. In particular,
this procedure is probably suitable only for the search for
lattices (not for discrete groups with infinite covolume).

6.2. Issues of Precision

The determination of the sequence of sets Wk described
in Section 6.1 depends on being able to determine the
precise list of all nonempty 2-faces of the polyhedron W ,
for a given finite set W ⊂ Γ. The difficult part is to prove
that two bisectors really yield a subset of FW of dimen-
sion smaller than 2 when they appear to do so numeri-
cally.

Recall that the polyhedron FW is described by a (pos-
sibly large) set of quadratic inequalities in four variables
(the real and imaginary parts of the ball coordinates, for
instance), where the coefficients of the quadratic polyno-
mials are obtained from matrices that are possibly very
long words in the generators R1 , R2 , R3 .

The computation of these matrices can be done with-
out loss of precision, since it can be reduced to arithmetic
in the relevant number field (see [Parker and Paupert 09,
Section 2.5]).

It is not clear how to solve the corresponding system
of quadratic inequalities. In order to save computational
time, and for the lack of better methods, we have cho-
sen to do all the computations numerically, with a fixed
(somewhat rough) precision, essentially in the same way
as described in [Deraux 06]. We now briefly summarize
what our computer program does.

For a given (coequidistant) bisector intersection B, we
need a method to test whether B ∩ FW has dimension
two. In order to do this, we work in spinal coordinates
(see [Deraux 05]), and fit the disk B into a rectangular
N ×N grid. The 2-face is declared nonempty whenever
we find more than one point in a given horizontal and in
a given vertical line in the grid. For the default version
of the program, we take N = 1000.

In particular, the above description suggests that
whenever the polyhedron FW becomes small enough, our
program will not find any 2-face whatsoever. If this hap-
pens at some stage k, the program will consider Wk G-
closed and stop.

When fed a group that has infinite covolume, one ex-
pects that the program would often run forever, since in
that case Dirichlet domains tend to have infinitely many
faces. In practice, after a certain number of steps, the
sets Wk are too large for the computer’s capacity, and
the program will crash.
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FIGURE 1. Faces of the Dirichlet domain for Γ(2π/3, σ4 ), drawn in spinal coordinates.

For the groups we have tested (namely all sporadic
groups with p ≤ 24), we have found these three behaviors:

A: The program finds a G-closed set WN = G(WN ), and
the set of numerically nonempty 2-faces is nonempty.

B: The program finds a set WN for which it does not
find any nonempty 2-face whatsoever (in particular,
WN is Giraud closed, so the program stops).

C: The program exceeds its capacity in memory and
crashes.

As a working hypothesis, we shall interpret Behavior B
as meaning that the group is not discrete, and Behavior C
as meaning that the group has infinite covolume (the
latter behavior is of course also conceivable when the
group is actually not discrete, or when we make a bad
choice of the center of the Dirichlet domain).

6.3. Census of Sporadic Groups Generated by
Reflections of Small Order

The computer program available on the first author’s
webpage1 was run for all sporadic groups (see Section 4)
with 2 ≤ p ≤ 24.

1 At http://www-fourier.ujf-grenoble.fr/∼deraux/java.

The groups with p = 2 were analyzed in [Parker 08],
and our program confirms those results; in that case, τ
and τ give the same groups, and only τ = σ5 and σ7

appear to be discrete. Both exhibit Behavior A, but the
first one gives a compact polyhedron; as mentioned in
the introduction, this lattice is actually the same as the
(4, 4, 4; 5)-triangle group, i.e., the group that is studied
in [Deraux 06]; see [Parker 08, Schwartz 02]. The Giraud-
closed polyhedron obtained for σ7 has infinite volume.

For 3 ≤ p ≤ 24, there are few groups that exhibit Be-
havior A (as defined in Section 6.2), namely all groups
with τ = σ4 , those with τ = σ1 , p = 3, 4, 5, 6, and finally
those with τ = σ5 , p = 3, 4, or 5.

Pictures of the (isometry classes of) 3-faces of the
Dirichlet domain for Γ(2π/3, σ4) are given in Figure 1.
We chose to display the faces for that specific group be-
cause its combinatorics are particularly simple among all
sporadic groups (Dirichlet domains for sporadic lattices
can have about a hundred faces).

In the case of Behavior A, the program provides a list
of faces for the polyhedron FW , and checks whether it
has side-pairings in the sense of the Poincaré polyhedron
theorem (once again, we chose to check this only numer-
ically). There is a minor issue of ambiguity between the
side-pairings, due to the fact that most groups Γ(2π

p , τ)
actually contain J , which means that the center of the
Dirichlet domain has nontrivial stabilizer. Possibly after
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τ p

σ1 p = 3, 4, 6
σ4 p = 3, 4, 5, 6, 8, 12
σ5 p = 3, 4

TABLE 3. Sporadic groups with 3 ≤ p ≤ 24 whose Dirichlet
domain satisfies the hypotheses of the Poincaré polyhedron
theorem, at least numerically.

adjusting the side-pairings by precomposing them with
J or J−1 , all the groups exhibiting Behavior A turn out
to have side-pairings (or at least they appear to, numer-
ically). Another way to take care of the issue of non-
trivial stabilizer for the center of the Dirichlet domain
is of course simply to change the center (within reason-
ably small distance to the center of mass of the mirrors,
since we want the side-pairings obtained from the Dirich-
let domain to be related in simple terms to the original
generating reflections).

In either case, either after adjusting the side-pairings
by elements of the stabilizer, or after changing the cen-
ter, we are in a position to check the cycle conditions of
the Poincaré polyhedron theorem. The general philoso-
phy that grew out of [Deraux 05] (see also [Mostow 80],
or even [Picard 81]) is that the only cycle conditions that
need to be checked are those for complex totally geodesic
2-faces, where the cycle transformations are simply com-
plex reflections. Our program goes through all these com-
plex 2-faces, and computes the rotation angle of the cy-
cle transformations (as well as the total angle inside the
polyhedron along the cycle).

Table 3 gives the list of sporadic groups that exhibit
Behavior A and all of whose cycle transformations rotate
by an angle of the form 2π/k for some k ∈ N ∗ (for τ = σ4 ,
p = 8, one needs to use a center for the Dirichlet domain
other than the center of mass of the mirrors of the three
reflections).

For groups that exhibit Behavior A but whose cy-
cle transformations rotate by angles that are not of
the form 2π/k, all that one can quickly say is that
the G-closed polyhedron cannot be a fundamental do-
main for their action (even modulo the stabilizer of p0),
but the group may still be a lattice. This issue is re-
lated to the question whether the integrality condition of
[Deligne and Mostow 86] is close to being necessary and
sufficient for the corresponding reflection group to be a
lattice (see the analysis in [Mostow 88]).

There is a natural refinement of the procedure de-
scribed in Section 6.1 to handle this case. Suppose a given
cycle transformation g rotates by an angle α, and 2π/α is

Group cycle transformation angle
Γ
(

2π
5 , σ1

)
(R1R2 )2 4π/5

Γ
(

2π
5 , σ5

)
((R1J)5R−1

2 )2 4π/15

TABLE 4. Some problematic rotation angles in Giraud-closed
polyhedra.

not an integer. If that number is not rational, the group
is not discrete (the irrationality can of course be difficult
to prove). If α = 2πm/n for m,n ∈ Z, then some power
h = gk rotates by an angle 2π/n, and it is natural to
replace the G-closed set of group elements W by

W ∪ hWh−1 . (6–1)

One then starts over with the G-procedure as described
in Section 6.1, starting from W0 = W ∪ hWh−1 .

The groups with problematic rotation angles are

Γ
(

2π
5
, σ1

)
, Γ

(
2π
5
, σ5

)
,

and all groups with τ = σ4 , p �= 3, 4, 5, 6, 8, 12. Those
with τ = σ4 are known to be nondiscrete; see Theo-
rem 9.1. The groups Γ(2π

5 , σ1) and Γ(2π
5 , σ5) do not seem

to be discrete. Indeed, their Giraud-closed sets have prob-
lematic rotation angles; see Table 4. In both cases, after
the refinement of (6–1) has been implemented, the G-
procedure exhibits Behavior B.

7. GROUP PRESENTATIONS

From the geometry of the Dirichlet domains for spo-
radic lattices, one can infer explicit group presentations.
Indeed, one knows that the side-pairings generate the
group, and the relations are normally generated by the
cycle transformations; see [Epstein and Petronio 94], for
instance.

Given that there are many faces, it is of course quite
prohibitive to write down such a presentation by hand. It
is reasonably easy, however, to have a computer do this.
Our program produces files that can be passed to GAP
in order to simplify the presentations (it is quite painful,
even though not impossible, to do these simplifications by
hand). It turns out that the presentations coming from
the Dirichlet domains can all be reduced to a quite simple
form (see Table 5).

Note that the results of this section are just as conjec-
tural as the statement of Conjecture 1.1, since they de-
pend on the accuracy of the combinatorics of the Dirich-
let domains.
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Γ
(

2π
3 , σ1

)
: J = 12312312 = 23123123 = 31231231;

13 = Id; (123)8 = Id;
(12)3 = (21)3 ; [1(232)]2 = [(232)1]2 ; 1(23232)1 = (23232)1(23232).

Γ
(

2π
4 , σ1

)
: J = 12312312 = 23123123 = 31231231;

14 = Id; (123)8 = Id; (12)12 ;
(12)3 = (21)3 ; [1(232)]2 = [(232)1]2 ; 1(23232)1 = (23232)1(23232).

Γ
(

2π
6 , σ1

)
: J = 12312312 = 23123123 = 31231231;

16 = Id; (123)8 = Id; (12)6 ; [1(232)]12 = Id;
(12)3 = (21)3 ; [1(232)]2 = [(232)1]2 ; 1(23232)1 = (23232)1(23232);

Γ
(

2π
3 , σ4

)
: J−1 = 1231231 = 2312312 = 3123123;

13 = Id; (123)7 = Id;
(12)2 = (21)2 ;

Γ
(

2π
4 , σ4

)
: J−1 = 1231231 = 2312312 = 3123123;

14 = Id; (123)7 = Id;
(12)2 = (21)2 ;

Γ
(

2π
5 , σ4

)
: J−1 = 1231231 = 2312312 = 3123123;

15 = Id; (123)7 = Id; (12)20 ;
(12)2 = (21)2 ;

Γ
(

2π
6 , σ4

)
: J−1 = 1231231 = 2312312 = 3123123;

16 = Id; (123)7 = Id; (12)12 ;
(12)2 = (21)2 ;

Γ
(

2π
8 , σ4

)
: J−1 = 1231231 = 2312312 = 3123123;

18 = Id; (123)7 = Id; (12)8 ; [1(232)]24 ;
(12)2 = (21)2 ;

Γ
(

2π
12 , σ4

)
: J−1 = 1231231 = 2312312 = 3123123;

112 = Id; (123)7 = Id; (12)6 ; [1(232)]12 ;
(12)2 = (21)2 ;

Γ
(

2π
3 , σ5

)
: J 3 = Id; J1J−1 = 2; J2J−1 = 3; J3J−1 = 1;

13 = Id; (123)10 ;
(12)2 = (21)2 ; 1(232)1(232)1 = (232)1(232)1(232).

Γ
(

2π
4 , σ5

)
: J 3 = Id; J1J−1 = 2; J2J−1 = 3; J3J−1 = 1;

14 = Id; (123)10 ; (13231232)12 ;
(12)2 = (21)2 ; 1(232)1(232)1 = (232)1(232)1(232).

TABLE 5. Conjectural presentations for the groups that appear in Conjecture 1.1. The groups with τ = σ1 , σ4 are generated
by R1 , R2 , and R3 , that is, J can be expressed as a product of the Rj ’s. For τ = σ5 this is not the case, and 〈R1 , R2 , R3 〉 has
index 3 in 〈J,R1 〉.

8. DESCRIPTION OF THE CUSPS OF THE
NONCOMPACT EXAMPLES

The geometry of the Dirichlet domains for sporadic lat-
tices gives information about the isotropy groups of any
vertex. Rather than giving a whole list, we gather infor-

mation about the cusps in the Dirichlet domain and in
M = Γ \ H2

C , by giving the number of cusps, as well as
generators and relations for their stabilizers (see Table 6).

Once again, the results of this section are conjectural
(they depend on the accuracy of the combinatorics of the
Dirichlet domains).



Deraux et al.: Census of the Complex Hyperbolic Sporadic Triangle Groups 479

p τ # cusps # cusps in M Generators Relations
3 σ1 3 1 1, 2 13 = 23 = Id, (12)3 = (21)3

4 σ1 6 1 1, 232 14 = (232)4 = Id, [1(232)]2 = [(232)1]2

6 σ1 6 2 1, 2323 2 16 = (23232)6 = Id, 1(23232)1 = (23232)1(23232)
1, 3 2323 16 = (32323)6 = Id, 1(32323)1 = (32323)1(32323)

4 σ4 3 1 1, 2 14 = 24 = Id, (12)2 = (21)2

6 σ4 6 1 1, 232 16 = (232)6 = Id, 1(232)1 = (232)1(232)
3 σ5 3 1 232, (1J)5 (232)3 = [(IJ)5 ]6 = Id, [(232)(1J)−5 ]2 = [(1J)−5 (232)]2

4 σ5 3 1 1, 2 14 = 24 = Id, (12)2 = (21)2

TABLE 6. Conjectural list of cusps for the noncocompact examples from Conjecture 1.1. All of the relations follow from the
conjectural presentations given in Table 5; some follow directly, while others do so with slightly more work.

9. NONDISCRETENESS RESULTS

In this section we prove some restrictions on the param-
eters for the group Γ(2π/p, τ) to be discrete, aiming to
show the optimality of the statement of Conjecture 1.1.
More specifically, we will prove the following theorem.

Theorem 9.1. Only finitely many of the sporadic triangle
groups are discrete. More precisely:

� For p ≥ 7, Γ
( 2π
p , σ1

)
is not discrete.

� For p = 3, 5, 6, 7, Γ
( 2π
p , σ1

)
is not discrete.

� For p ≥ 6, Γ
( 2π
p , σ2

)
is not discrete.

� For 6 ≤ p ≤ 19, Γ
( 2π
p , σ2

)
is not discrete.

� For p = 4, 5, 6, Γ
( 2π
p , σ4

)
is not discrete.

� For p �= 2, 3, 4, 5, 6, 8, 12, Γ
( 2π
p , σ4

)
is not discrete.

� For p �= 2, 3, 4, 5, 6, 8, 12, Γ
( 2π
p , σ5

)
is not discrete.

� Γ
( 2π

4 , σ5
)

is not discrete.
� Γ
( 2π

5 , σ6
)

and Γ
( 2π

5 , σ6
)

are not discrete.
� For p �= 2, 3, 4, 7, 14, Γ

( 2π
p , σ7

)
is not discrete.

The proofs are slightly different for each part of the
statement, as detailed in Table 2. Since all of them are
based either on Knapp’s theorem or on Jørgensen’s in-
equality, we shall briefly review these results in Sec-
tion 9.1.

9.1. Knapp, Jørgensen, and Shimizu

Knapp’s theorem gives a necessary and sufficient con-
dition for a two-generator subgroup of PU(1, 1) to be
discrete, assuming that both generators as well as their
product are elliptic. The reference for Knapp’s theorem
is [Knapp 68]; see also [Klimenko and Sakuma 98]. The
full list of possible rotation angles for A, B, and AB will

FIGURE 2. We shall apply Knapp’s theorem in the spe-
cial case of isosceles triangles; see formula (9–1) for the
relationship between angles and distances.

not be needed here. In fact, we shall use only the fol-
lowing special case of Knapp’s theorem, which applies to
isosceles triangles.

Theorem 9.2. (Knapp.) Consider a triangle in H2
R with

angles α, α, β, and let ∆ be the group generated by the
reflections in its sides. If ∆ is discrete, then one of the
following holds:

� α = π
q and (β = 2π

r or 4π
q ) with q, r ∈ N ∗;

� α = 2π
r and β = 2π

r with r ∈ N ∗.

Remark 9.3. In a few cases, we also use the spherical
version of Knapp’s theorem, which is a result of Schwarz
(see [Parker and Paupert 09]).

Basic hyperbolic trigonometry gives a relationship be-
tween the angles and the length of the base of the triangle
(see Figure 2). Indeed, if the length of the base is 2δ, then

cosh δ sinα = cos
β

2
. (9–1)

This gives a practical computational way to check
whether the conditions of Knapp’s theorem hold.

Note also that the statement of Knapp’s theorem im-
plies that if α = π/q for q ∈ N ∗, and if the angle β is
larger than 2π/3, then the group cannot be discrete. In
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view of formula (9–1), the latter statement is the same
as one would obtain from Jørgensen’s inequality (see
[Jiang et al. 03]):

Theorem 9.4. (Jiang–Kamiya–Parker.) Let A be a com-
plex reflection through the angle 2α = 2π

q with q ∈ N ∗,
with mirror the complex line LA . Let B ∈ PU(2, 1) be
such that B(LA ) and LA are ultraparallel, and denote
the distance between them by 2δ. If

| cosh δ sinα| < 1
2
,

then 〈A,B〉 is nondiscrete.

In certain cases we need to deal with groups gener-
ated by vertical Heisenberg translations (see the defini-
tion in Section 3). In this case we need results that gen-
eralize the above version of Jørgensen’s inequality and
Knapp’s theorem. These results are a complex hyperbolic
version of Shimizu’s lemma, which is [Parker 92, Propo-
sition 5.2], and a lemma of Beardon, which is [Parker 94,
Theorem 3.1]. We combine them in the following state-
ment, which is equivalent to the statements given in
[Parker 92, Parker 94].

Theorem 9.5. (Parker.) Let A ∈ SU(2, 1) be a parabolic
map conjugate to a vertical Heisenberg translation with
fixed point zA . Let B ∈ SU(2, 1) be a map not fixing zA .
If 〈A,B〉 is discrete, then

either Tr(ABAB−1) = 3 − 4 cos2(π/r) or
Tr(ABAB−1) ≤ −1 for some r ∈ N with r ≥ 3. In
particular, if

2 < Tr(ABAB−1) < 3,

then 〈A,B〉 is nondiscrete.

9.2. Using Knapp and Jørgensen with Powers of R1 R2

9.2.1. The General Setup.

Recall from [Parker and Paupert 09] that for any spo-
radic value τ , there is a positive rational number r/s
such that

|τ |2 = 2 + 2 cos(rπ/s), (9–2)

which corresponds to the fact that R1R2 should have
finite order. The values of these r and s are clearly the
same for σj and σj , and are given by the following table:

τ σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

r/s 1/3 1/5 3/5 1/2 1/2 1/2 1/7 5/7 3/7
(9–3)

Straightforward calculation shows that

R1R2 =

⎡
⎢⎣
e2iπ/3p(1 − |τ 2 |) e4iπ/3pτ τ 2 − τ

−τ e2iπ/3p e−2iπ/3pτ

0 0 e−4iπ/3p

⎤
⎥⎦ ,

which has eigenvalues −e2iπ/3periπ/s , −e2iπ/3pe−riπ/s ,
e−4iπ/3p . Therefore (R1R2)s has a repeated eigenvalue.
An e−4iπ/3p -eigenvector of R1R2 is given by

p12 =

⎡
⎢⎣
e−2iπ/3pτ 2 + e4iπ/3pτ − e−2iπ/3pτ

e2iπ/3pτ 2 + e−4iπ/3pτ − e2iπ/3pτ

2 cos(2π/p) + 2 cos(rπ/s)

⎤
⎥⎦ .

For most values of p and τ this vector is nega-
tive, in which case its orthogonal complement (with
respect to Hτ ) gives a complex line in the ball.
Hence (in most cases) it is a complex reflection,
and one checks easily that it commutes with both
R1 and R2 .

Likewise, for most values of p and τ , (R2R3)s is a
complex reflection that commutes with R2 and R3 , and
it fixes a complex line whose polar vector is p23 = J(p12).
If the distance between these two lines is 2δp , then from
Lemma 3.1, we have

cosh2(δp) =
〈p12 ,p23〉〈p23 ,p12〉
〈p12 ,p12〉〈p23 ,p23〉

=

∣∣τ 2 + e−2iπ/pτ − τ
∣∣2(

2 cos(2π/p) + 2 cos(rπ/s)
)2 .

The eigenvalues of (R1R2)s are (−1)s+r e2isπ/3p ,
(−1)s−r e2isπ/3p , e−4isπ/3p . Therefore the rotation angle
of (R1R2)s is (r + s)π + 2sπ/p. This may or may not be
of the form 2π/c. When it is not, we can find a positive in-
teger k such that (R1R2)sk is a complex reflection whose
angle has the form 2π/c. We define 2αp to be the smallest
positive rotation angle among all powers of (R1R2)s .

Assuming that the parameter τ is fixed, the group
Γ(2π/p, τ) is indiscrete, thanks to the Jørgensen inequal-
ity, for the values of p satisfying

cosh δp sinαp =

∣∣τ 2 + e−2iπ/pτ − τ
∣∣ sinαp∣∣2 cos(2π/p) + 2 cos(rπ/s)

∣∣ < 1
2
. (9–4)

Likewise, in order to prove nondiscreteness using
Knapp’s theorem, we seek values of p for which

cosh δp sinαp =

∣∣τ 2 + e−2iπ/pτ − τ
∣∣ sinαp∣∣2 cos(2π/p) + 2 cos(rπ/s)

∣∣
�= cos(π/q) or cos(2αp) (9–5)

for any natural number q.
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Since (R1R2)s is a complex reflection that rotates
through angle (r + s)π + 2sπ/p, we can apply the test
of Jørgensen’s inequality simply to (R1R2)s . Since we
have

∣∣sin((r + s)π + 2sπ/p
)∣∣ = ∣∣2 sin(2sπ/p)

∣∣, this in-
volves finding values of p for which∣∣∣cosh(δp) sin(2sπ/p)

∣∣∣
=

∣∣τ 2 + e−2iπ/pτ − τ
∣∣ | sin(2sπ/p)|

|2 cos(2π/p) + 2 cos(rπ/s)| <
1
2
.

For fixed r and s, as p tends to infinity, the left-hand side
tends to zero. This shows at once that there can be only
finitely many discrete groups among all sporadic groups.
The rest of this paper is devoted to the proof of Theo-
rem 9.1, which is a vast refinement of that statement.

In the next few sections, we shall apply Knapp or
Jørgensen to various powers of R1R2 (other elements in
the group as well) in order to get the better nondiscrete-
ness results.

9.2.2. Cases in Which |τ |2 = 2.

From (9–2), for any τ with |τ |2 = 2, we have r/s = 1/2,
and so

cosh δp =

∣∣τ 2 + e−2iπ/pτ − τ
∣∣∣∣2 cos(2π/p)

∣∣ .

This happens for τ = σ4 , σ4 , σ5 , σ5 , σ6 , and σ6 . For all
these values we have

(R1R2)2

=

⎡
⎢⎣
−e4iπ/3p 0 e2iπ/3pτ + e−4iπ/3pτ 2 − e−4iπ/3pτ

0 −e4iπ/3p e−2iπ/pτ + τ 2 − τ

0 0 e−8iπ/3p

⎤
⎥⎦,

which is a complex reflection commuting with both R1

andR2 , and whose rotation angle is (p− 4)π/p. Note that
(p− 4)π/p = 2π/c for some c ∈ Z ∪ {∞} if and only if p
and c are as given in the following table:

p 2 3 4 5 6 8 12
c −2 −6 ∞ 10 6 4 3

(When p = 4, and hence c = ∞, we find that (R1R2)2 is
parabolic.) For other values of p, by choosing an appro-
priate power k, we can arrange that (R1R2)2k rotates by
a smaller angle than (R1R2)2 :

Lemma 9.6. Let (R1R2)2 be as above. There exists k ∈ Z
such that (R1R2)2k has rotation angle 2αp , where

αp =
gcd(p− 4, 2p)π

2p
.

In particular:

� If p ≡ 1 (mod 2), then gcd(p− 4, 2p) = 1, and so
αp = π

2p .
� If p ≡ 2 (mod 4), then gcd(p− 4, 2p) = 2, and so
αp = π

p .
� If p ≡ 4 (mod 8), then gcd(p− 4, 2p) = 8, and so
αp = 4π

p .
� If p ≡ 0 (mod 8), then gcd(p− 4, 2p) = 4, and so
αp = 2π

p .

Proof. We want to find k such that k(p− 4)π/p reduced
modulo 2π is “minimal.” More precisely, we write this as

k(p− 4)π
p

− 2πl = 2αp

for k ∈ N ∗, l ∈ N , and we want to find αp of the form π/c

for some c ∈ N . The optimal value of k depends on arith-
metic properties of p. Let d = gcd(p− 4, 2p). Then we
can find integers k and l such that k(p− 4) − l(2p) = d.
This means that k(p− 4)π/p− 2πl = dπ/p, and so αp =
dπ/2p. This proves the first assertion.

If we write (p− 4) = ad and 2p = bd, then after elim-
inating p, we have 2ad+ 8 = bd, and so d = 1, 2, 4, or 8.
It is easy to check which values of p correspond to which
value of d.

In the case c = ∞, the map (R1R2)2 is parabolic. Up
to multiplication by a cube root of unity, we have

Tr
(
(R1R2)2J(R1R2)2J−1

)
= Tr

(
(R1R2)2(R2R3)2

)
= 3 − ∣∣τ 2 + e−2iπ/pτ − τ

∣∣2 .
Thus applying Theorem 9.5 with A = (R1R2)2 and J =
B, we can prove discreteness by computing that µ =
|τ 2 + e2iπ/pτ − τ | and checking that

|µ| < 1 or µ �= cos(π/r) (9–6)

for any r ∈ N , r ≥ 3.
Checking (9–4), (9–5), and (9–6) is best done by a

computer.

Proposition 9.7. Let τ = σ4 = (−1 − i
√

7)/2, and so
r/s = 1/2. Then:

� If p is odd, then (9–4) holds for p ≥ 7.
� If p ≡ 2 (mod 4), then (9–4) holds for p ≥ 10.
� If p ≡ 4 (mod 8), then (9–5) holds for p = 20 and

(9–4) holds for p ≥ 28.
� If p ≡ 0 (mod 8), then (9–4) holds for p ≥ 16.

Thus for all the values of p given above, 〈(R1R2)2 , J〉,
and hence Γ

( 2π
p , σ4

)
, is not discrete.
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Proof. For the sake of concreteness, we list some of the
values in the following table:

p αp cosh(δp ) sin(αp ) inequality
7 π/14 0.4257 . . . (9–4)
9 π/18 0.2650 . . . (9–4)
10 π/10 0.4423 . . . (9–4)
14 π/14 0.2774 . . . (9–4)
20 π/5 0.6748 . . . (9–5)
28 π/7 0.4754 . . . (9–4)
16 π/8 0.4601 . . . (9–4)
24 π/12 0.2889 . . . (9–4)

Proposition 9.8. Let τ = σ5 = e2iπ/9 + e−iπ/92 cos(2π/5),
and so r/s = 1/2. Then:

� If p is odd, then (9–4) holds when p ≥ 7.
� If p ≡ 2 (mod 4), then (9–4) holds when p ≥ 10.
� If p ≡ 4 (mod 8), then (9–5) holds when p = 20,

and (9–4) holds when p ≥ 28.
� If p ≡ 0 (mod 8), then (9–4) holds when p ≥ 16.

Thus for all the values of p given above, 〈(R1R2)2 , J〉,
and hence Γ

( 2π
p , σ5

)
, is not discrete.

Proof. Some values are given in the following table:

p αp cosh(δp) sin(αp) inequality

7 π/14 0.4977 . . . (9–4)
9 π/18 0.3011 . . . (9–4)

10 π/10 0.4974 . . . (9–4)
14 π/14 0.3032 . . . (9–4)

20 π/5 0.7202 . . . (9–5)
28 π/7 0.4988 . . . (9–4)

16 π/8 0.4980 . . . (9–4)
24 π/12 0.3053 . . . (9–4)

Recall from [Parker and Paupert 09] that Γ
( 2π
p , σ4

)
has signature (2, 1) exactly when 4 ≤ p ≤ 6, that
Γ
( 2π
p , σ5

)
has signature (2, 1) exactly when p = 2 or 4,

and that Γ
( 2π
p , σ6

)
and Γ

( 2π
p , σ6

)
are not discrete except

possibly when p = 5. Hence for each of these values of τ ,
we have only finitely many things to check. We gather
these cases into a single result.

Proposition 9.9.

� If τ = σ4 = (−1 + i
√

7)/2, and so r/s = 1/2, and
p = 4, then (9–6) holds.

� If τ = σ4 = (−1 + i
√

7)/2, and so r/s = 1/2, and
p = 5, then (9–4) holds.

� If τ = σ4 = (−1 + i
√

7)/2, and so r/s = 1/2, and
p = 6, then (9–5) holds.

� If τ = σ5 = e−2iπ/9 + eiπ/92 cos(2π/5), and so
r/s = 1/2, and p = 4, then (9–6) holds.

� If τ = σ6 = e2iπ/9 + e−iπ/92 cos(4π/5), and so
r/s = 1/2, and p = 5, then (9–5) holds.

� If τ = σ6 = e−2iπ/9 + eiπ/92 cos(4π/5), and so
r/s = 1/2, and p = 5, then (9–5) holds.

Thus for these values of τ and p, we have that
〈(R1R2)2 , J〉, and hence Γ(2π

p , τ), is not discrete.

Proof. Suppose τ = σ4 = (−1 + i
√

7)/2. If p = 4, we
have

∣∣τ 2 + e−2iπ/pτ − τ
∣∣ =√3 −

√
7 = 0.595 . . . .

If p = 5, then αp = π/10 and cosh(δp) sin(αp) =
0.445 . . . . If p = 6, then αp = π/6 and cosh(δp) sin(αp) =
0.550 . . . ∈ (cos(π/3), cos(π/4)).

If τ = σ5 = e−2iπ/9 + eiπ/92 cos(2π/5) and p = 4, then

∣∣τ 2 + e−2iπ/pτ − τ
∣∣ =

√
7 +

√
5 − 3

√
3 −√

15
2

= 0.289 . . . .

If τ = σ6 = e2iπ/9 + e−iπ/92 cos(4π/5) and p = 5, then
cosh(δp) sin(αp) = 0.937 . . . ∈ (cos(π/8), cos(π/9)).

If τ = σ6 = e−2iπ/9 + eiπ/92 cos(4π/5) and p = 5, then
cosh(δp) sin(αp) = 0.750 . . . ∈ (cos(π/4), cos(π/5)).

9.2.3. Cases in Which |τ |2 = 3.
We now consider the case |τ |2 = 3, which happens for
τ = σ1 or σ1 . In this case, r/s = 1/3 and

(R1R2 )3 =⎡
⎢⎣
e2 iπ /p 0 (e−2 iπ /p − 1)

(
e−2 iπ /3p τ 2 + e4 iπ /3p τ − e−2 iπ /3p τ

)
0 e2 iπ /p (e−2 iπ /p − 1)

(
e2 iπ /3p τ 2 + e−4 iπ /p τ − e2 iπ /3p τ

)
0 0 e−4 iπ /p

⎤
⎥⎦.

This is a complex reflection commuting with both R1

and R2 , with angle 6π/p. As above, we want to check
whether (9–4) holds for αp the smallest possible rotation
angle of powers of (R1R2)3 .

� If p ≡ 1 or 2 (mod 3), then we can find k, l ∈ N such
that 6kπ/p− 2πl = 2π/p. Hence αp = π/p.

� If 3 divides p, then 6π/p is already in the form 2π/c;
hence αp = 3π/p.
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Proposition 9.10. Let τ = σ1 = eiπ/3 + e−iπ/62 cos(π/4)
and so r/s = 1/3. Then:

� If p ≡ 1 or 2 (mod 3), then (9–5) holds when p = 7
and (9–4) holds when p ≥ 8.

� If p is divisible by 3, then (9–5) holds when p = 12,
15, or 18, and (9–4) holds when p ≥ 21.

Thus for all the values of p given above, 〈(R1R2)3 , J〉,
and hence Γ

( 2π
p , σ1

)
, is not discrete.

Proof. Some values are given in the following table:

p αp cosh(δp ) sin(αp ) inequality
7 π/7 0.6510 . . . (9–5)
8 π/8 0.4969 . . . (9–4)
12 π/4 0.8134 . . . (9–5)
15 π/5 0.6510 . . . (9–5)
18 π/6 0.5416 . . . (9–5)
21 π/7 0.4631 . . . (9–4)

From [Parker and Paupert 09] we know that if τ =
σ1 = e−iπ/3 + eiπ/62 cos(π/4), then the only values of p
that give signature (2, 1) are those with 3 ≤ p ≤ 7.

Proposition 9.11. Let τ = σ1 = e−iπ/3 + eiπ/62 cos(π/4),
and so r/s = 1/3.

� If p = 5, then (9–5) holds.
� If p = 7, then (9–4) holds.

Thus for p = 5 and 7, we see that 〈(R1R2)3 , J〉, and hence
Γ
( 2π
p , σ1

)
, is not discrete.

9.2.4. Cases in which |τ |2 = 2 + 2 cos(π/5).

This happens for τ = σ2 or σ2 . In that case, r/s = 1/5
and (R1R2)5 is a complex reflection with eigenvalues
e10iπ/3p , e10iπ/3p , e−20iπ/3p . Thus it has rotation angle
10π/p.

� If p is not divisible by 5, then we can find k, l ∈ N
such that 10kπ/p− 2πl = 2π/p. Hence αp = π/p.

� If p is divisible by 5, then 10π/p is already in the
form 2π/c; hence αp = 5π/p.

Proposition 9.12. Let τ = σ2 = eiπ/3 + e−iπ/62 cos(π/5),
and so r/s = 1/5.

� If p is not divisible by 5, then (9–5) holds when p =
6 or 7, and (9–4) holds when p ≥ 8.

� If p is divisible by 5, then (9–5) holds when 15 ≤
p ≤ 30 and (9–4) holds when p ≥ 35.

Thus for these values of p, we see that 〈(R1R2)5 , J〉, and
hence Γ

( 2π
p , σ2

)
, is not discrete.

Proof. Some values are given in the following table:

p αp cosh(δp ) sin(αp ) inequality
6 π/6 0.631 . . . (9–5)
7 π/7 0.516 . . . (9–5)
8 π/8 0.438 . . . (9–4)
15 π/3 0.908 . . . (9–5)
20 π/4 0.729 . . . (9–5)
25 π/5 0.601 . . . (9–5)
30 π/6 0.508 . . . (9–5)
35 π/7 0.440 . . . (9–4)

From [Parker and Paupert 09], we know that if τ =
σ2 = e−iπ/3 + eiπ/62 cos(π/5), then the Hermitian form
has signature (2, 1) only when 3 ≤ p ≤ 19.

Proposition 9.13. Let τ = σ2 = e−iπ/3 + eiπ/62 cos(π/5),
and so r/s = 1/5.

� If p is not divisible by 5, then (9–5) holds when p =
6, and (9–4) holds when 7 ≤ p ≤ 19.

� If p is divisible by 5, then (9–5) holds when p = 15.

Thus for these values of p, we see that 〈(R1R2)5 , J〉, and
hence Γ

( 2π
p , σ2

)
, is not discrete.

Proof. Some values are given below:

p αp cosh(δp ) sin(αp ) inequality
6 π/6 0.5660 (9–5)
7 π/7 0.4713 (9–4)
15 π/5 0.8718 (9–5)

9.2.5. Cases in Which |τ |2 = 2 + 2 cos(π/7).

This happens for τ = σ7 or σ7 . In this case, r/s = 1/7.
The only group with τ = σ7 and signature (2, 1) is p = 2.
This group is a relabeling of the group with τ = σ7 and
p = 2. It is discrete. So for the remainder of this section
we consider the case τ = σ7 = e2iπ/9 + e−iπ/92 cos(2π/7).

Then (R1R2)7 is a complex reflection with eigenval-
ues e14iπ/3p , e14iπ/3p , e−28iπ/3p ; thus it has rotation angle
14π/p.
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� If p is not divisible by 7, then we can find k, l ∈ N
such that 14kπ/p− 2πl = 2π/p. Hence αp = π/p.

� If p is divisible by 7, then 14π/p is already in the
form 2π/c; hence αp = 7π/p.

Proposition 9.14. Let

τ = σ7 = e2iπ/9 + e−iπ/92 cos(2π/7),

and so r/s = 1/7.

� If p is not divisible by 7, then (9–5) holds for p = 5
or 6 and (9–4) holds when p ≥ 8.

� If p is divisible by 7, then (9–5) holds for 21 ≤ p ≤
42 and (9–4) holds when p ≥ 49.

Thus for these values of p we see that 〈(R1R2)7 , J〉, and
hence Γ

( 2π
p , σ7

)
, is not discrete.

Proof. Some values are given below:

p αp cosh(δp ) sin(αp ) inequality
5 π/5 0.929 . . . (9–5)
6 π/6 0.702 . . . (9–5)
8 π/8 0.476 . . . (9–4)
21 π/3 0.921 . . . (9–5)
28 π/4 0.739 . . . (9–5)
35 π/5 0.608 . . . (9–5)
42 π/6 0.514 . . . (9–5)
49 π/7 0.444 . . . (9–4)

9.3. Using Knapp and Jørgensen with Powers of
R1 R2 R3 R−1

2

9.3.1. The General Setup.

A straightforward calculation shows that

R1R2R3R
−1
2

=

⎡
⎢⎢⎢⎣
(1−|τ 2 −τ |2 )
e−2 i π / 3 p

(τ−(τ 2 −τ )τ )
e2 i π / 3 p −τ 2 +

(
τ 2 − τ

) (|τ |2 − e2iπ/p
)

τ
(
τ − τ 2) (1−|τ |2 )

e4 i π / 3 p

τ (|τ |2 −1+e2 i π / p )
e2 i π / 3 p

(τ−τ 2 )
e2 i π / 3 p

−τ
e2 i π / p e2iπ/3p + e−4iπ/3p |τ |2

⎤
⎥⎥⎥⎦,

and hence

Tr(R1R2R3R
−1
2 ) = e2iπ/3p(2 − |τ 2 − τ |2) + e−4iπ/3p .

An e−4iπ/3p eigenvector of R1R2R3R
−1
2 is given by

p1232 =

⎡
⎢⎣

e−4iπ/3p
(
τ(1 − e2iπ/p) − (τ 2 − τ)τ

)
|τ |2(1 − e−2iπ/p) − τ(τ 2 − τ) − |1 − e2iπ/p |2

e−2iπ/p
(
τ(1 − e−2iπ/p) − (τ 2 − τ)τ

)
⎤
⎥⎦ .

Suppose that |τ 2 − τ |2 = 2 + 2 cos(r′π/s′). Then
(R1R2R3R

−1
2 )s is a complex reflection. The values of r′

and s′ are clearly the same for σj and σj . They are given
in the following table (see [Parker and Paupert 09]):

τ σ1 σ2 σ3 σ4 σ5 σ6

r′/s′ 1/2 1/3 1/3 2/3 2/5 4/5

Let 2δ′p denote the distance from its mirror to the
image of its mirror under J (with polar vector p2313 =
J(p1232)). Then from Lemma 3.1,

cosh(δ′p) =
|〈p2313 ,p1232〉|
|〈p1232 ,p1232〉|

=

∣∣(1 − e2iπ/p)τ + |τ |2(τ 2 − 2τ) + e−2iπ/pτ 2
∣∣

2 cos(2π/p) + 2 cos(r′π/s′)
.

Let α′
p be the smallest nonzero angle through which a

power of (R1R2R3R
−1
2 )s rotates. Let δ′p , r

′, and s′ be
as above. In order to prove nondiscreteness using the
Jørgensen inequality, we need to find values of p such
that

cosh δ′p sinα′
p

=

∣∣(1 − e2iπ/p)τ + |τ |2(τ 2 − 2τ) + e−2iπ/pτ 2
∣∣ sinα′

p∣∣2 cos(2π/p) + 2 cos(r′π/s′)
∣∣

<
1
2
. (9–7)

In order to prove nondiscreteness using Knapp’s theorem,
we must find values of p for which

cosh δ′p sinα′
p

=

∣∣(1 − e2iπ/p)τ + |τ |2(τ 2 − 2τ) + e−2iπ/pτ 2
∣∣ sinα′

p∣∣2 cos(2π/p) + 2 cos(r′π/s′)
∣∣

�= cos(π/q) or cos(2αp) (9–8)

for a natural number q.

9.3.2. When |τ 2 − τ |2 = 2

When |τ 2 − τ |2 = 2, we have τ = σ1 or σ1 , and r′/s′ =
1/2. Moreover, (R1R2R3R

−1
2 )2 is a complex reflection

with angle (p− 4)π/p. So we proceed as in Section 9.2.2.
In particular, α′

p is given by Lemma 9.6.
Using Proposition 9.10, we already know that when

p = 7, 8 or p ≥ 10, then Γ(2π
p , σ1) is not discrete. There-

fore, we restrict our attention to p ≤ 9.

Proposition 9.15. Let τ = σ1 = eiπ/3 + e−iπ/62 cos(π/4),
and so r′/s′ = 1/2. Then (9–8) holds for p = 9. Thus
〈(R1R2R3R

−1
1 )2 , J〉, and hence also Γ

( 2π
p , σ1

)
, is not dis-

crete.
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Proof. In this case, α′
p = π/18 and cosh(δ′p) sin(α′

p) =
0.686 . . . ∈ (cos(π/3), cos(π/4)

)
.

For σ1 , recall from [Parker and Paupert 09] that
Γ
( 2π
p , σ1

)
has signature (2, 1) exactly when 3 ≤ p ≤ 7.

Proposition 9.16. Let τ be equal to σ1 = e−iπ/3 +
e+iπ/62 cos(π/4), and so r′/s′ = 1/2. Then

� If p = 3 or p = 6, then (9–8) holds.
� If p = 7, then (9–7) holds.

Thus for p = 3, 6, or 7, the group 〈(R1R2R3R
−1
1 )2 , J〉,

and hence also Γ
( 2π
p , σ1

)
, is not discrete.

Proof. The values of cosh(δ′p) sin(α′
p) are as follows:

p αp cosh(δ′p ) sin(α′
p ) inequality

3 π/6 0.982 . . . (9–8)
7 π/14 0.269 . . . (9–7)
6 π/6 0.859 . . . (9–8)

9.3.3. Cases in Which |τ 2 − τ |2 = 3

We consider only the case τ = σ2 or σ2 (since σ3 or σ3

were already handled in [Parker and Paupert 09]). In this
case, r′/s′ = 1/3. Then (R1R2R3R

−1
1 )3 is a complex re-

flection with angle 6π/p. So we proceed as in Section
9.2.3.

Namely:

� If p is not divisible by 3, then some power gives an
angle αp = π/p.

� If p is divisible by 3, then some power gives αp =
3π/p.

In order to use Jørgensen, we check whether
cosh δ′p sinαp < 1

2 .
For τ = σ2 , using Propositions 9.12 and 9.13, we need

to consider only the cases in which p ≤ 5 or p = 10. This
method yields nothing new for p ≤ 5.

Proposition 9.17. Let p = 10.

� If τ = σ2 = eiπ/3 + e−iπ/62 cos(π/5), and so r′/s′ =
1/3, then (9–8) holds.

� If τ = σ2 = e−iπ/3 + eiπ/62 cos(π/5), and so r′/s′ =
1/3, then (9–7) holds.

Thus for p = 10 and τ = σ2 or σ2 , the group
〈(R1R2R3R

−1
2 )3 , J〉 is not discrete. Hence Γ

( 2π
10 , σ2

)
and

Γ
( 2π

10 , σ2
)

are not discrete.

Proof. When p = 10 and τ = σ2 , we have

cosh(δ′p) sin(α′
p) = 0.6181 . . . ∈ (cos(π/3), cos(π/4)

)
.

When p = 10 and τ = σ2 , we have cosh(δ′p) sin(α′
p) =

0.3871 . . . < 1/2.
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