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Motivated in part by various questions of Serre, Labourie and
Lubotzky, we consider the question of representing the funda-
mental group of the figure eight knot complement into SL(3, Z).
We explore questions of faithfulness and finite index for such
representations.

1. INTRODUCTION

Representations of the fundamental groups of finite-
volume hyperbolic surfaces and finite-volume hyperbolic
3-manifolds into Lie groups have long been studied. Clas-
sical cases such as the case of the Lie groups SL(2, R),
SL(2,C), and SU(2) have provided powerful tools for the
study of these groups, and the geometry and topology of
the manifolds. More recently, this has been pursued in
other Lie groups (see [Cooper et al. 06], [Goldman 90],
and [Schwartz 07], to name a few).

In particular, [Cooper et al. 06] provides a powerful
method for the construction of representations into the
groups SL(n, R ) for n ≥ 3. This paper was motivated by
an examination of the integral points of such represen-
tations with a view to addressing questions about the
subgroup structure of SL(3, Z). In particular, we give a
partial answer to a question of Lubotzky, which we now
describe.

The group SL(3, Z) has the congruence subgroup
property, and in this sense its finite-index subgroup struc-
ture is much simpler than that of a lattice in SL(2,C).
However, some interesting questions about the structure
of subgroups of finite index remain. For example, the
following question is asked in [Lubotzky 86, Section 4,
Problem 1]:

Question 1.1. For n ≥ 3, does SL(n, Z) contain arbitrar-
ily small two-generator finite-index subgroups?

By “arbitrarily small,” Lubotzky means that ev-
ery finite-index subgroup of SL(3, Z) contains a two-
generator subgroup of finite index.
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Some progress on Question 1.1 is given in
[Sharma and Venkataramana 05], where it was shown
that any noncocompact irreducible lattice in a higher-
rank real semisimple Lie group contains a subgroup
of finite index that is generated by three elements. In
addition, it is known that Question 1.1 has an affirmative
answer for SL(n, Zp) (see [Lubotzky and Mann 87]). In
this paper we provide evidence for an affirmative answer
for the case n = 3:

Theorem 1.2. The group SL(3, Z) contains a family {Nj}
of two-generator subgroups of finite index with the prop-
erty that ∩Nj = 1.

The nature of the subgroups used to resolve this
question is perhaps as interesting as the resolution it-
self: Using the method developed in [Cooper et al. 06],
we produce two one-parameter families of representa-
tions of π1(S3 \ K) into SL(3, R ), where K is the figure-
eight knot. These families have the property that inte-
gral specializations of subgroups of this image group, in
particular the group itself and the image of the fiber
group, give some potentially very interesting subgroups
of SL(3, Z). A sketch of this construction is described in
Section 7.1.

We now give an overview of the content and some
further results in this note. In Section 2 we introduce
two families of representations, Fk and FT , of the figure-
eight-knot group into SL(3, R ) that are irreducible with
a small number of exceptions. Integral specializations
of the parameters k and T give representations into
SL(3, Z). In order to prove Theorem 1.2, we first prove
the following result.

Theorem 1.3. Fix k ∈ Z (respectively nonzero T ∈ Z).
Then the image of the fiber groups ρk (F ) (respectively
βT (F )) are Zariski-dense subgroups of SL(3, R).

This has the interesting consequence that the figure-
eight-knot group surjects all but finitely many of the fi-
nite simple groups PSL(3, p).

In Section 3, we examine in greater detail the family
βT , which is used to prove Theorem 1.2.

Theorem 1.4. Fix a nonzero integer value of T . Then the
group βT (F ) (and therefore βT (Γ)) has finite index in
SL(3, Z). Furthermore, ∩T >0βT (F ) = 1.

The fact that each βT (F ) has finite index rests on a
result of Venkataramana (see [Venkataramana 87, Theo-
rem 3.7]), which requires Zariski denseness and the con-
struction of certain unipotent elements. The fact that
the family is cofinal in T exploits a reducible special-
ization. We remark that while it follows from the state-
ment that the index [SL(3, Z) : βT (F )] approaches ∞ as
T approaches ∞, the proof gives little idea what these
indices actually are. They can be estimated, however,
and a method for this is described at the end of Sec-
tion 2; the indices are typically enormous. For exam-
ple, [SL(3, Z) : β7(F )] must be divisible by 1064332260 =
22 · 32 · 5 · 17 · 347821.

In Section 4, we do some similar analysis for the family
ρk . The situation for these representations is a good deal
more delicate, and there is apparently none of the uni-
form behavior that made the family βT tractable. We are
able to prove finite index only for k = 0, 2, 3, 4, 5, and our
method fails for other values. It appears to be very dif-
ficult to decide whether the subgroups ρk (F ) have finite
index for k ≥ 6. However, as in the previous paragraph,
we are able to estimate the indices, and if they are fi-
nite, they are gigantic, which seems to be independently
interesting.

In Section 5, we indulge in some speculation and
potential applications directed toward the nature of
finitely generated infinite-index subgroups; these remain
very mysterious. Some work has been done on this (see
[Venkataramana 87] and Section 3). However, some very
basic questions remain unanswered. For example, an old
question from [Serre 74] asks whether SL(3, Z) is coher-
ent (i.e., whether finitely generated subgroups of SL(3, Z)
are finitely presented). A question of a similar flavor is
whether SL(3, Z) has the finitely generated intersection
property (i.e., the intersection of finitely generated sub-
groups of SL(3, Z) is finitely generated).

One of the reasons that such questions have remained
mysterious is the extraordinary difficulty of producing
subgroups inside SL(3, Z) that are interesting. If the rep-
resentations ρk (for k ≥ 6) have infinite index, they seem
to be potentially useful in this regard, since one could
then conjecture that the image of the stable letter does
not power into the image of the fiber group, which suffices
to disprove the finitely generated intersection property.
This is explained in Theorem 5.2. With a little more,
one can address the coherence question (see Section 5.2).
A natural question raised by this work is whether there
are any injections of finite-volume hyperbolic 3-manifold



414 Experimental Mathematics, Vol. 20 (2011), No. 4

groups into SL(3, Z). This and some related issues are
also touched upon in Sections 5 and 6 (in which we also
collect some assorted final comments). The appendix con-
tains some hints about calculations.

2. TWO REPRESENTATIONS OF THE
FIGURE-EIGHT-KNOT GROUP

Let K denote the figure-eight knot and let Γ = π1(S3 \
K). As is well known, Γ admits a presentation coming
from the fact that S3 \ K is a once-punctured torus bun-
dle over S1 . If we choose generators x and y for the fiber
group (which we shall denote by F ) and z as the stable
letter, then Γ is presented as

〈
x, y, z | z · x · z−1 = x · y, z · y · z−1 = y · x · y〉

.

Given this presentation, the following proposition can be
checked directly by matrix multiplication.

Proposition 2.1. Define a map ρk : Γ −→ SL(3, Z[k]) by

ρk (x) = Xk =

⎛⎜⎝1 −2 3
0 k −1 − 2k

0 1 −2

⎞⎟⎠ ,

ρk (y) = Yk =

⎛⎜⎝−2 − k −1 1
−2 − k −2 3
−1 −1 2

⎞⎟⎠ ,

ρk (z) = Zk =

⎛⎜⎝ 0 0 1
1 0 −k

0 1 −1 − k

⎞⎟⎠ .

Then ρk is a homomorphism.

While these matrices appear fairly innocuous, we will
show that they generate rather interesting subgroups. For
example, we shall show that if k = 5, then 〈X5 , Y5〉 has
finite index in SL(3, Z). While we are unable to say ex-
actly what this index is, we can prove that it must be
divisible by 22 · 33 · 5 · 312 · 127 · 331.

The second family of representations is described as
follows.

Proposition 2.2. Define a map βT : Γ −→ SL(3, Z[T ]) by

βT (x) = XT =

⎛⎜⎝−1 + T 3 −T T 2

0 −1 2T

−T 0 1

⎞⎟⎠ ,

βT (y) = YT =

⎛⎜⎝ −1 0 0
−T 2 1 −T

T 0 −1

⎞⎟⎠ ,

βT (z) = ZT =

⎛⎜⎝ 0 0 1
1 0 T 2

0 1 0

⎞⎟⎠ .

Then βT is a homomorphism.

In either case, an integral specialization gives the fol-
lowing corollary.

Corollary 2.3. For integral k or T , ρk (Γ), βT (Γ) ≤
SL(3, Z).

Henceforth we shall refer to these families of represen-
tations as Fk and FT . We begin with some basic analysis
of this pair of families of representations, beginning with
the issue of irreducibility.

Lemma 2.4. The representations ρk and βT are each irre-
ducible except possibly for four exceptional values of their
parameter.

In particular, ρk is irreducible for all k ∈ Z, and βT

is irreducible for all nonzero T ∈ Z.

Proof. Suppose that the representation ρk is reducible.
Then since n = 3, there must be an invariant one-
dimensional subspace either for ρk or for the associated
contragredient representation (i.e., the representation ob-
tained by composing the given representation with the
inverse transpose).

It follows that if the representation is reducible, then
ρk ([x, y]) must have eigenvalue 1. A computation shows
that the characteristic polynomial of this element is

pk (Q) = 1 + (−17 − 2k − 2k2)Q
+ (6 − 8k − 7k2 + 2k3 + k4)Q2 − Q3 ,

which when evaluated at Q = 1 gives

pk (1) = (−11 + k + k2)(1 + k + k2).

Thus ρk is irreducible (even when restricted to F ) except
possibly for the four values of k that are roots of this
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equation. In particular, it is irreducible for any special-
ization k ∈ Z.

We argue similarly for βT . In this case, the characteris-
tic polynomial of the image of the commutator evaluated
at 1 is −T 3(−8 + 3T 3), and the result follows as above. 
�

Remark 2.5. The case of the factor (−8 + 3T 3) that arises
in the analysis of the family FT indeed determines a re-
ducible representation, and we will make use of this later
(see Section 3 for an explicit discussion of this).

Our next general observation concerns the Zariski
denseness of these representations. This will be needed
for the proof of Theorem 1.2.

Theorem 2.6. Fix k ∈ Z (respectively nonzero T ∈ Z).
Then the image of the fiber groups ρk (F ) (respectively
βT (F )) are Zariski-dense subgroups of SL(3, R).

Of course, this implies that the groups ρk (Γ) and
βT (Γ) are Zariski dense. The case T = 0 is rather dif-
ferent, since β0(Γ) is finite. An easy computation shows
that the image of the group F is a Z/2 × Z/2 group on
which β0(z) acts as the obvious element of order three.

Notation 2.7. Throughout, we will denote the finite
groups (P) SL(n, F p) and (P)GL(n, F p) by (P) SL(n, p)
and (P)GL(n, p) respectively.

The proof of Theorem 2.6 is structured in the fol-
lowing way. A key ingredient is the following result
[Lubotzky 97, Proposition 1 with n = 3].

Proposition 2.8. Let Γ < SL(3, Z) and assume that for
some odd prime p ≥ 3, Γ surjects onto SL(3, p), under the
reduction homomorphism modulo p. Then Γ is a Zariski-
dense subgroup of SL(3, R).

We then combine Proposition 2.8 with the following
theorem.

Theorem 2.9. Let G be a finitely generated nonsolvable
subgroup of SL(3, Z). Suppose that there is an element
g ∈ G whose characteristic polynomial is Z-irreducible
and noncyclotomic.

Then for infinitely many primes p, reduction modulo
p surjects G onto SL(3, p).

The result of Theorem 2.6 will then follow by exhibit-
ing some explicit elements of the type required by Theo-
rem 2.9.

Proof of Theorem 2.9. Our strategy will be to apply re-
sults about the structure of subgroups of SL(3, p) due
to Bloom. In fact, [Bloom 67] deals with subgroups of
PSL(3, p), but we will simply blur this distinction here.
Indeed, it is easy to see that G surjects SL(3, p) if and
only if it surjects PSL(3, p), so there is no loss in consid-
ering only SL(3, p). We give the argument here.

One way is clear, and so if now G surjects PSL(3, p)
and not SL(3, p), then the image of G in SL(3, p) is some
proper subgroup G0 < SL(3, p). Denoting the center of
SL(3, p) by Z, it follows that SL(3, p) = 〈G0 , Z〉. Now, Z

is either the trivial group or a cyclic group of order 3.
Thus, we will now assume that Z is cyclic of order 3. It
follows from this that G0 is a normal subgroup of SL(3, p)
of index 3. However, this is impossible, since SL(3, p) is
a perfect group.

We state only what will be needed from [Bloom 67]
for us. This statement follows directly from [Bloom 67,
Theorems 1.1 and 7.1]. Note that in the notation of
[Bloom 67], α = 1.

Theorem 2.10. [Bloom 67] Suppose that p is a prime and
H is a proper subgroup of PSL(3, p). Then H has one of
the following forms:

(1) If H has no nontrivial normal elementary abelian
subgroup, then H is isomorphic to one of PSL(2, p),
PSL(2, 7), A5 , A6 , and A7 .

(2) If H contains a nontrivial normal elementary sub-
group, then H has a normal subgroup N that is one of
the following: cyclic of index ≤ 3, a diagonal subgroup
with H/N isomorphic to a subgroup S3 , a normal el-
ementary abelian p-subgroup with H/N isomorphic
to a subgroup of GL(2, p).

We will use this result to show that for infinitely many
p, the modulo-p reduction of G cannot be any of the ex-
ceptional groups provided by Theorem 2.10. This proves
that G must surject SL(3, p) for any such p.

We begin by noting the following. The first two ex-
ceptional types in clause (2) are solvable groups of class
at most three. Since G is nonsolvable, there is a nontriv-
ial element in any term of the derived series, so that if
we fix an element in the third term of the derived series,
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then except for possibly finitely many primes, the mod-p
reduction of this element will be nontrivial.

It follows that by restricting to sufficiently large
primes, we can assume that the mod-p reduction of G

is of neither of those two types.
Let g ∈ G be an element with irreducible noncyclo-

tomic characteristic polynomial provided by the hypoth-
esis. In particular, g has infinite order. Let n be the least
common multiple of the orders of all elements of all of
the finite groups PSL(2, 7), A5 , A6 , and A7 coming from
the list given in Theorem 2.10(1).

The element gn is not the identity, and its entries are
bounded above by M , say, so that as long as we consider
primes p > M , the reduction modulo p of gn will not be
trivial, since g has order too large for the image group to
be on that list.

Henceforth we consider only primes that are suffi-
ciently large for the considerations of the previous two
paragraphs to apply. We next make the following claim.

Claim 2.11. Let p(Q) be the characteristic polynomial of
the element g. Then there are infinitely many primes p

for which p(Q) is irreducible over F p .

Proof. This is a standard consequence of the Čebotarev
density theorem (see [Narkiewicz 04, Section 7.3]). We
sketch the details.

Let K denote the number field generated over Q by a
root of p, and R the ring of integers of K. By assumption,
p has degree 3 and is Z-irreducible. Hence [K : Q ] = 3.

The claim will follow once we establish that there are
infinitely many rational primes p that remain totally inert
to K; i.e., the ideal pR has norm p3 .

Let M denote the Galois closure of K/Q . The possi-
bilities for the Galois group of M/Q are the cyclic group
of order 3 and the symmetric group S3 . In the former
case, M = K, and the conclusion follows from the state-
ment of the Čebotarev density theorem applied to the
generator of the Galois group.

For the case that the Galois group is S3 , we argue as
follows. The possible splitting types for rational primes
p that are unramified to M are for p to split com-
pletely, or split as a product of prime ideals of M of
the form P1P2 with NP1 = NP2 = p3 or P1P2P3 with
NP1 = NP2 = NP3 = p2 . The Čebotarev density theo-
rem implies that there are infinitely many such rational
primes p of each type. By considering the factorization of
p in K and then in M/K, it follows that the case in which
p splits with NP1 = NP2 = p3 gives infinitely primes P

in K with NP = p3 as required. This concludes the proof
of Claim 2.11.

We further restrict attention to those primes p for
which Claim 2.11 holds. The argument is now com-
pleted by showing that for these primes, we may simul-
taneously rule out both the remaining case from clause
(1) (i.e., PSL(2, p)) and the nonsolvable possibility of
clause (2).

Let p be a prime that leaves p(Q) irreducible over
F p . This polynomial defines a unique cubic extension
L = F p(λ) of degree 3 over F p . Associated to the field
extension L/F p there is a norm map N : L → F p (see
[Morandi 96, Section II.8], for example) that in our set-
ting can be described as follows (see [Morandi 96, Propo-
sition II.8.6]): If α ∈ L has f(x) = xm + · · · + a1x + a0

as its irreducible polynomial over F p , then N(α) =
(−1)a3/m

0 .
Restricting the norm map to the nonzero elements,

we obtain a multiplicative homomorphism µ : L∗ −→ F ∗
p .

Note that our given λ lies in the kernel of µ, since N(λ) =
(−1) · (−1) = 1.

We claim that ker(µ) has order p2 + p + 1 = (p3 −
1)/(p − 1). The reason is this: Note that any extension
of finite fields L/F p is always Galois with cyclic Galois
group. Thus, we may apply Hilbert’s Theorem 90 (See
[Morandi 96, Section II.10]). Here this says that if one
fixes a generator σ of Gal(L/F p), then every element
of norm 1 may be written as a/σ(a) for some element
a ∈ L∗.

Now consider the homomorphism L∗ −→ ker(µ) de-
fined by a → a/σ(a). Hilbert’s result implies that this
is surjective, and the kernel is those elements of the
field fixed by the Galois group, i.e., F ∗

p . Thus |ker(µ)| =
p2 + p + 1, as required.

Hence λ has multiplicative order dividing p2 + p + 1.
It follows that for the primes under consideration, the
order of g divides p2 + p + 1.

Now observe that p2 + p + 1 is prime to both p and p +
1. Furthermore, an easy argument shows that the only
prime that could divide both p2 + p + 1 and p − 1 is 3.

Moreover, if p is congruent to 2 modulo 3, then p2 +
p + 1 is not divisible by 3, and if p is congruent to 1
modulo 3, then writing p = 3r + 1, we see that p2 + p +
1 = 3(1 + 3r + 3r2). In particular, 3 divides p2 + p + 1
with multiplicity at most one.

The upshot of this simple discussion is that the order
of g modulo p is a divisor of 3τ , where τ divides p2 + p +
1 and is prime to 3. Therefore, the element g3 modulo
p has order τ , where τ is prime to p, p − 1, and p +
1 and therefore prime to the orders of both PSL(2, p)
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and GL(2, p) (see [Newman 72], for example). In either
of these cases we deduce easily that the mod-p reduction
of g3 must be trivial; however, this was ruled out by the
use of large primes. 
�

Proof of Theorem 2.6. The proof of Theorem 2.6 is con-
cluded by exhibiting elements of the type required by
Theorem 2.9; it is easily seen that for the given integral
specializations, the image of the fiber group contains a
free group of rank 2, which rules out the possibility of a
solvable image.

We work with the representations ρk ; the computation
for βT is entirely analogous. Fix some integral value of k

and focus attention on the commutator element [Xk, Yk ];
we claim that this satisfies the conditions of Theorem 2.9.

Recall from the proof of Lemma 2.4 that the charac-
teristic polynomial of this element is

pk (Q) = 1 + (−17 − 2k − 2k2)Q
+ (6 − 8k − 7k2 + 2k3 + k4)Q2 − Q3 .

One sees easily from this that the commutator has infinite
order for any value of k. 
�

Claim 2.12. pk (Q) is irreducible over Z for all k ∈ Z.

Proof. It suffices to prove the claim by reducing pk (Q)
modulo 2. Since pk (Q) is cubic, one need only check that
pk (Q) cannot have a linear factor.

Thus assume first that k is even. Then pk (Q) modulo 2
becomes Q3 + Q + 1, which has no linear factor. When k

is odd, notice that the coefficient of Q2 becomes k4 + k2 ,
which is even, and so once again the reduction of pk (Q)
modulo 2 is Q3 + Q + 1.

This concludes the proof of the Zariski denseness for
the representations ρk (and βT ). 
�

As in [Lubotzky 97], Strong Approximation can
be applied to prove the following corollary (using
[Weisfeiler 84]).

Corollary 2.13. For all but a finite number of primes p ∈
Z, Γ surjects the finite simple group PSL(3, p).

Remark 2.14. The figure-eight knot admits a Seifert-
fibered space surgery with base orbifold group the
(2, 3, 7)-triangle group. Finite quotients of this group (so-
called Hurwitz groups) have been widely studied, and us-
ing this, it can be shown that the figure-eight-knot group
surjects many infinite families of nonabelian finite sim-
ple groups. However, it was shown in [Cohen 81] that the

only Hurwitz group of the form PSL(3, p) for p a prime
has p = 2. Thus our construction gives more information.

We close this section with some comparisons between
the families Fk and FT .

Remark 2.15. For T 
= 0, the image group βT (Γ) contains
many “obvious” unipotent elements, whereas for k ≥ 6,
the groups ρk (Γ) do not. This is easily seen by checking
that y2 , (yxy)2 , and (x−1y)2 are all mapped to unipotent
elements by βT . Although this does not directly account
for the finite-index results proven below, it is perhaps
suggestive. For example, despite extensive searching, we
have been unable to find a rank-one unipotent element
in ρ6(F ).

Remark 2.16. Somewhat amazingly, the following relation
holds in βT (Γ) for every value of the parameter T :

X−1Y X−1Y X−1X−1Y Y Y XY Y XY −1X

= XY −1XY Y XY Y Y X−1X−1Y X−1Y X−1 .

This appears to be the shortest relation for all but very
small values of T . We have been unable to find an anal-
ogous universal relation for the family Fk , although we
have found some relations in these groups for k ≤ 5.

3. THE IMAGE OF βT

We now discuss each family of representations separately
in greater detail, beginning with the image groups βT (F )
(and βT (Γ)).

We will prove the following result, from which Theo-
rem 1.2 follows.

Theorem 3.1. Fix a nonzero integer value of T . Then the
group βT (F ) (and therefore βT (Γ)) has finite index in
SL(3, Z). Furthermore, ∩T >0βT (F ) = 1.

Note that by Margulis’s normal subgroup theorem
[Margulis 89], it follows that βT (Γ) is of finite index in
SL(3, Z) if and only if βT (F ) has finite index in SL(3, Z).

As indicated in Remark 2.15, the groups βT (Γ)
contain unipotent elements. To prove finite index, we
make use of the following result of Venkataramana (see
[Venkataramana 87, Theorem 3.7]):

Theorem 3.2. Suppose that n ≥ 3 and x ∈ SL(n, Z) is a
unipotent matrix such that x − 1 has matrix rank 1. Sup-
pose that y ∈ SL(n, Z) is another unipotent matrix such
that x and y generate a free abelian group N of rank 2.
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Then any Zariski-dense subgroup of SL(n, Z) containing
N virtually is of finite index in SL(n, Z).

Proof of Theorem 3.1. We shall exhibit unipotent matri-
ces b1 and b2 in βT (F ) such that b1 − 1 has rank 1 and
〈b1 , b2〉 ∼= Z ⊕ Z. That βT (F ) has finite index will then
follow from Theorem 3.2 together with Theorem 2.6.

Taking

b1 = X−1
T · YT · YT · YT · XT · YT · YT · XT · Y −1

T · XT

and

b2 = XT · Y −1
T · XT · YT · YT · XT · YT · YT · YT · X−1

T ,

elementary linear algebra calculations show that both
b1 and b2 are unipotent elements (having characteris-
tic polynomials −(−1 + x)3), and b1 − 1 and b2 − 1 have
rank 1. Conjugating by the matrix P ,⎛⎜⎝ 0 1 1

2T 0 1
1 0 1

⎞⎟⎠ ,

shows that

c1 = P−1b1P =

⎛⎜⎝ 1 0 −T 2(−1 + 2T )(−5 + 3T 3)
0 1 −T (−1 + 2T )(−2 + 3T 3)
0 0 1

⎞⎟⎠
and

c2 = P−1b2P =

⎛⎜⎝1 0 −3T 2(−1 + 2T )
0 1 −T (−1 + 2T )(−2 + 3T 3)
0 0 1

⎞⎟⎠ .

This exhibits the group 〈c1 , c2〉 as acting affinely on the
plane as two translations, so that the group is clearly free
abelian, and it will be isomorphic to Z ⊕ Z, provided the
translations are linearly independent. Since the second
components of the translation vectors are equal, this will
be so if and only if their first components are equal, which
is to say

T 2(−1 + 2T )(−5 + 3T 3) = 3T 2(−1 + 2T ),

i.e., when T 2(−1 + 2T )(−8 + 3T 3) = 0. There are never
any nonzero integral solutions, and the proof that βT (F )
has finite index is complete.

To prove that these groups intersect in the identity as
T varies over positive integers, we argue as follows.

Suppose that there is a nontrivial element g ∈
∩T >0βT (F ). Notice that for any prime divisor p of T , re-
ducing the coefficients of βT (F ) modulo p coincides with

the image of the group F under the representation β0 ,
that is, Z/2 ⊕ Z/2, with matrix image

β0(F ) =

〈⎛⎜⎝−1 0 0
0 −1 0
0 0 1

⎞⎟⎠ ,

⎛⎜⎝−1 0 0
0 1 0
0 0 −1

⎞⎟⎠〉
.

By abuse of notation we will not distinguish β0(F ) from
its images in SL(3, p).

It follows that for any prime p, the image of g on re-
duction modulo p is one of four possible matrices, so that
one of the matrices of β0(F ) must occur infinitely often.
Denoting this matrix by A, we see that A · g lies in in-
finitely many different principal congruence subgroups,
so that A · g = Id, and therefore g = A ∈ β0(F ).

So far, we have shown that ∩T >0βT (F ) contains at
most the four elements of β0(F ).

To rule out the three nontrivial elements, we need to
delve somewhat more deeply into the reducible represen-
tations alluded to earlier. Taking

P =

⎛⎜⎝ 4/T 2 0 0
−2/T 1 1

1 1 0

⎞⎟⎠ ,

we can conjugate the contragredient representation so
that reducibility at (−8 + 3T 3) = 0 becomes obvious:
P−1βT (x)∗P =⎛⎜⎜⎝

−4 + 3 T 3
4

−T 3 ( 1 + 2 T )
4

−T 4
2

3 (−8 + 3 T 3 )
4

−( 1 + 2 T ) (−4 + 3 T 3 )
4

−T (−4 + 3 T 3 )
2

−( 2 + 3 T ) (−8 + 3 T 3 )
4 T

−8−8 T + 2 T 2 + 7 T 3 + 6 T 4
4

−2−4 T + 2 T 3 + 3 T 4
2

⎞⎟⎟⎠
and P−1βT (y)∗P =⎛⎜⎜⎝

−4 + 3 T 3
4

−T 3 ( 1 + 2 T )
4

−T 4
2

8−3 T 3
4

−4−4 T + T 3 + 2 T 4
4

T (−2 + T 3 )
2

( 2 + T ) (−8 + 3 T 3 )
4 T

−( 2 + T ) (−4 + T 2 + 2 T 3 )
4

2 + 2 T −2 T 3 −T 4
2

⎞⎟⎟⎠ .

In particular, any fixed matrix g ∈ SL(3, Z) lying in
∩T >0βT (F ) must have the property that P−1g∗P has
first column with (2, 1) and (3, 1) entries both divisible
by (−8 + 3T 3). However, this does not happen for the
three nontrivial elements of β0(F ). For example, one can
compute that

P−1

⎛⎜⎝−1 0 0
0 −1 0
0 0 1

⎞⎟⎠ P =

⎛⎜⎝−1 0 0
2 1 0

−2 −2 −1

⎞⎟⎠ .

This completes the proof of Theorem 3.1 
�
A more detailed examination of the last aspect of

this proof gives some estimates for the index of these
subgroups. For example, consider the case T = 7. Then
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3 · 73 − 8 = 1021, a prime. Reduction of the group β7(F )
modulo 1021 is reducible, and the above computation
shows that the image group ∆ fits into a short exact se-
quence

1 −→ Z/1021 ⊕ Z/1021 −→ ∆ −→ SL(2, Z/1021) −→ 1

and therefore has order

10212 · 1021(1021 − 1)(1021 + 1) = 1109502522156840.

Of course, the group SL(3, Z) will surject SL(3, Z/1021),
which has size

10218
(

1 − 1
10212

)(
1 − 1

10213

)
= 1180879326882889591658400

(see [Newman 72]), so that the index [SL(3, Z) : β7(F )]
must be divisible by the ratio of these two group sizes,
i.e.,

1064332260 = 22 · 32 · 5 · 17 · 347821.

4. THE IMAGE OF ρk

In this section we consider the family Fk . Despite a cer-
tain uniformity linking the two constructions (see the ap-
pendix), the families of representations βT and ρk appear
to behave very differently.

We first prove that for some small values of k, suitable
unipotent elements can be found.

Theorem 4.1. The group ρk (F ) (and therefore ρk (Γ)) has
finite index in SL(3, Z) for k = 0, 2, 3, 4, 5.

Proof. The strategy is the same as that for the proof of
Theorem 3.1, namely for these values of k we are able to
locate inside ρk (F ) rank-one unipotents and unipotent
elements that commute with them. The result will then
follow as before.

Unlike the βT representations, there seems to be no
uniform way to construct the elements in question as k

varies over the values above.
The following are the shortest words 〈u1 , u2〉 known

to the authors for which one can apply this method. To
avoid unnecessarily cluttering the notation, we give the
words as words in the fiber group F ; their ρk images are
the required unipotents:

k = 0: Then u1 = a1b1 , u2 = c1 · d1 , where

a1 = x2y−3xyx−1 ,

b1 = x−1yxy−3x2 ,

c1 = x2y−3x3y−1x,

d1 = xy−1x3y−3x2 .

k = 2: Then u1 = a1b1a
−1
1 b−1

1 , u2 = a1c1a
−1
1 c−1

1 , where

a1 = x3(yx)3y,

b1 = y−1x−1yxy−1xyx−1y−1 ,

c1 = x−1yxy−1x−1yx−1y−1xy.

k = 3: Then u1 = a1b1 , u2 = c1a1b1c
−1
1 , where

a1 = yx−2yx3 ,

b1 = x−3yx4y,

c1 = x2y−1x−1y−1x(xy)−2 .

k = 4: Then u1 = a1 · b1 , u2 = c1 · d1 , where

a1 = (xy)2(yx)−2x2y−1x−2y,

b1 = yx−2y−1x2(xy)−2(yx)2 ,

c1 = y−1x2yx−2(yx)2(xy)−2 ,

d1 = (yx)−2(xy)2x−2yx2y−1 .

k = 5: Then u1 = a1 · b1 , u2 = b1 · c1 , where

a1 = yx−3yx−1y−1xy−1x−1 ,

b1 = x−1y−1xy−1x−1yx−3y,

c1 = y−1x3y−1x−1y−1xy−1x−1 .

This completes the proof of Theorem 4.1. 
�

Remark 4.2. (i) We do not know whether ρk (F ) has finite
index for the values not on this list; the approach out-
lined above seems to encounter difficulties, since for these
other values, we have been unable to locate the required
unipotents. As a byproduct of the proof, we generate the
relation [u1 , u2 ] = 1 in the image of the free group.

The case k = 1 seems different, and this is discussed
in greater detail below.

(ii) As in the case for βT , this method does not
find the index of the subgroup. However, as we shall
show below, one can estimate the index. For example,
[SL(3, Z) : ρ5(F )] is divisible by 22 · 33 · 5 · 312 · 127 · 331.

A possible alternative approach to the finite-index
question is the following: One of our motivations for con-
sideration of these representations was to try to construct
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a representation of the figure-eight-knot group for which
the stable letter does not power into the image of the
fiber group. (See Section 5.1 for why this is of interest.)
However, as we have observed above, [Margulis 89] im-
plies that ρk (Γ) is of finite index in SL(3, Z) if and only
if ρk (F ) has finite index in SL(3, Z). Since ρk (F ) has fi-
nite index in SL(3, Z) implies that ZN

k ∈ Fk = 〈Xk, Yk 〉
for some integer N , we can ask the following question.

Question 4.3. Is there a value of k for which Zk does not
power into 〈Xk, Yk 〉?

We note that for the values k = 0, 1, 2, the element
Zk must power into 〈Xk, Yk 〉. This follows from Theorem
4.1 for k = 0, 2, but this can be shown to be true for
elementary reasons, as we now explain.

The reason is that for these values, the characteris-
tic polynomial of the matrix Zk has exactly one real
root. It is well known that Dirichlet’s unit theorem (see
[Narkiewicz 04, Section 3.3]) implies that the free part of
the unit group of the ring of integers for a field gener-
ated by a root of such a characteristic polynomial must
be cyclic. Thus, some power of Zk must be equal to some
power of [Xk, Yk ]. A simple computation shows that

Z10
0 = [X0 , Y0 ], Z4

1 = [X1 , Y1 ], Z3
2 = [X2 , Y2 ].

The case k = 1 seems particularly interesting. Note
from the discussion of the previous paragraph that ρ1 is a
representation of Γ that factors through the fundamental
group of the −4-surgery on the figure-eight knot. Since
−4 is a boundary slope of the figure-eight knot, the result
of this surgery is a Haken manifold that can be described
as the union of the trefoil-knot exterior and the twisted
I-bundle over the Klein bottle. Some degree of collapsing
of this representation must occur (see Theorem 6.4). As
such, its behavior might indeed be different from that of
other values of k. Some experimentation suggests that
ρ1(Γ) is virtually free.

It is easily shown that for k ≥ 3 (for such k, the charac-
teristic polynomial has three distinct real roots), a power
of Zk can never be a power of [Xk, Yk ].

One way in which a positive answer to Question 4.3
could obtain is if for generic k, Zk powered into Fk . How-
ever, this we can rule out, as the following theorem shows.

Theorem 4.4. For generic k, the element Zk does not
power into the subgroup Fk .

Proof. Let M be the matrix

M =

⎛⎜⎝ (7 − 3
√

5)/2 1 1
(−3 +

√
5)/2 0 −1

(−3 +
√

5)/2 0 −1

⎞⎟⎠ .

Form a new representation r : Γ → SL(3, R ), by setting

r(g) = M−1 · ρk (g)∗ · M,

where as above, ∗ denotes the contragredient. Now set-
ting k = (−1 + 3

√
5)/2, this representation becomes re-

ducible. Notice that this k is a root of (−11 + k + k2);
this is as it must be, given our observations about re-
ducibility and the commutator.

At this value for k, the matrices for r(x) and r(y) have
a common eigenvector, both with eigenvalue one, and this
is an eigenvector for r(z) with eigenvalue (−3 +

√
5)/2.

It follows that r(z) cannot power into 〈r(x), r(y)〉. 
�
While it differs in detail, one can use the kind of

method that was described in Section 3 and exploit
the exceptional representations coming from the roots of
(−11 + k + k2)(k2 + k + 1) to give estimates on the in-
dex of the subgroup ρk (F ). For example, if k = 5, then
52 + 5 − 11 = 19, and as above, this gives that the index
must be divisible by 6858.

In fact, one can go further for the ρk case. One can
compute that for integral k, those primes p that divide
k2 + k + 1 do not give rise to reducible representations,
but correspond to representations for which the image
group is abstractly isomorphic to PSL(2, p), where the 3-
dimensional integral representation arises via SO(τ, F p)
for a suitable and easily computed form τ . For exam-
ple, taking k = 5, so that 52 + 5 + 1 = 31, an analogous
computation shows that the index must be divisible by
57256380. Putting these two computations together gives
that the index of the finite-index subgroup ρ5(F ) is di-
visible by 21814680780 = 22 · 33 · 5 · 312 · 127 · 331.

Using the same analysis, one can estimate indices for
other values of k that are not known to be of finite index,
for example, if ρ6(F ) is of finite index, then this index
must be divisible by 486591826140 = 22 · 32 · 5 · 7 · 432 ·
331 · 631.

5. FINITE OR INFINITE INDEX FOR k ≥ 6? SOME
SPECULATION AND APPLICATIONS

It is an intriguing and apparently difficult problem to un-
derstand the situation regarding the finite-index question
for k ≥ 6. In this section we indulge in some speculation
and offer some applications. These are centered on an old
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question of Serre’s concerning coherence and the finitely
generated intersection property.

For the applications, the most useful information is
whether z powers into the image of F , but one can quite
naturally ask for a strengthening of this:

Question 5.1. Is there any value of k for which ρk is
faithful?

We note that nontrivial normal subgroups inside a hy-
perbolic 3-manifold group must intersect. The fiber group
F is normal in Γ and therefore must meet ker(ρk) in the
event that this kernel is nontrivial. Since the fiber group
is free, and free groups are well known to be Hopfian, it
follows that ρk is faithful if and only if it is faithful when
restricted to F . It is therefore a reasonable (and conve-
nient) measure of the complication of the representation
to check how much collapsing of F there is for a given
integral specialization of k.

One way to proceed to quantify this collapsing is as
follows. Fixing a (small) value for k, we can compare the
number of reduced words in the group 〈Xk, Yk 〉 of length
at most n with the number of reduced words in the free
group of rank two of length at most n.

One can check that in fact, there is not too much
collapsing for most values of k. Moreover, although we
know by Theorem 4.1 that ρk (Γ) has finite index in
SL(3, Z) for k = 0, 2, 3, 4, 5, and so there must be col-
lapsing, the analysis outlined above still gives some
information.

For k = 0, 1, 2, 3 one finds that these sets are strictly
smaller than that of a free group for rather small values
of n. For example, for k = 3, there are 52 elements of
length at most 3, and in the free group there are 53. It
follows that 〈X3 , Y3〉 has a relation of length at most six
coming from the fact that there are two different reduced
words with the same matrix; it is easily computed that
X has order six.

However, the situation changes dramatically for larger
values of k. For example, at k = 4, the number of words
of length 16 or less is the same as that of the free group.
So there are no relations of length 32 or less in 〈X4 , Y4〉
despite the fact that this subgroup has finite index. The
shortest relation we know (coming from the proof of The-
orem 4.1) has length 112.

We now discuss why one might use 3-manifold groups
as an approach to the questions of coherence and the
finitely generated intersection property.

Note that whenever n ≥ 4, SL(n, Z) is easily seen not
to be coherent nor to have the finitely generated inter-

section property. This is because one can inject F × F ,
where F is a free group of rank 2.

5.1. Finitely Generated Intersection Property

Our strategy to violate the finitely generated intersection
property for SL(3, Z) using 3-manifolds is based on the
well-known fact that if M is a finite-volume hyperbolic 3-
manifold that fibers over the circle, then π1(M) does not
have the finitely generated intersection property. In fact,
in our context, in order to disprove the finitely generated
intersection property for SL(3, Z), one needs less than the
faithfulness of ρk .

Theorem 5.2. Suppose that for some integral value k (�,
say), Z� does not power into F� . Then SL(3, Z) does not
have the finitely generated intersection property.

Proof. Take a power of X� such that the subgroup H =〈
Z�,X

R
�

〉
is free of rank two. Then since F� = 〈X�, Y�〉 is

normal in ρ�(Γ), we have that H ∩ F� is normal in the
free group H, but the hypothesis implies that it contains
no powers of Z� and therefore has infinite index. It follows
that H ∩ F� is infinitely generated. 
�

Remark 5.3. The virtual cohomological dimension of
SL(3, Z) is 3 (see [Brown 89, Chapter VII], for instance).
Thus there is no cohomological obstruction for SL(3, Z)
to contain the fundamental group of a finite-volume hy-
perbolic 3-manifold. Indeed, SL(3, Z) contains some 3-
manifold groups, for example the integral Heisenberg
group.

5.2. Coherence

With regard to coherence, a strategy to exploit the family
Fk is summarized in the following proposition.

Proposition 5.4. Suppose that for some k ∈ Z we can ar-
range that ρk (F ) is of infinite index in ρk (Γ) and is not
free. Further suppose that the virtual cohomological di-
mension of ρk (Γ) is 2. Then SL(3, Z) is not coherent.

Proof. By a theorem in [Bieri 76], in a group of cohomo-
logical dimension 2, any finitely presented normal sub-
group is free or is of finite index. Thus applying this to
ρk (Γ), we argue as follows.

We are assuming that ρk (F ) is not free and that it
has infinite index in ρk (Γ), that is, we have exhibited an
infinite-index normal subgroup of ρk (Γ) that is finitely
generated but not free.
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By passing to a torsion-free subgroup of finite index
∆k in ρk (Γ), it follows from standard properties of coho-
mological dimension that ∆k has cohomological dimen-
sion 2. The only possibility from Bieri’s result is that Fk ∩
∆k is not finitely presented. This completes the proof. 
�

6. FINAL COMMENTS

We raise a natural question motivated by this note.

Question 6.1. Does there exist an orientable finite-volume
hyperbolic 3-manifold M for which π1(M) admits a faith-
ful representation into SL(3, Z)?

It is not hard to see that if Σg is a closed orientable
surface of genus g, then π1(Σg ) admits a faithful repre-
sentation into SL(3, Z).

Briefly, the case g = 0, 1 is obvious, and so we can
assume that g ≥ 2. Consider the ternary quadratic form
f = x2 − 3y2 − 3z2 . The group SO(f, Z) is a subgroup of
SL(3, Z) and contains as a subgroup of finite index the
(2, 4, 6) triangle group (see [Mennicke 67]).

By [Edmonds et al. 92], the minimal index of a
torsion-free subgroup in this triangle group is 24, and
this has to be a genus-2 surface group. Since these
representations lie in SO(2, 1), they are not Zariski
dense in SL(3, R). However, we have been informed by
Bill Goldman (private communication) that Kac-Vinberg
have constructed faithful Zariski-dense representations
of some Fuchsian triangle groups into SL(3, Z). He has
kindly allowed us to include the matrices for one such
example.

Example 6.2. [Kac and Vinberg 67] Kac-Vinberg have
shown that the following matrices determine a faithful
Zariski-dense representation of the (3, 3, 4) triangle group
into SL(3, Z):

a =

⎛⎜⎝ 0 2 −1
0 1 0
1 1 −1

⎞⎟⎠ , b =

⎛⎜⎝ 1 0 0
3 0 −1
1 1 −1

⎞⎟⎠ ,

c =

⎛⎜⎝ 1 −1 2
2 −1 1
0 0 1

⎞⎟⎠ .

It is easily checked that b3 = c3 = 1 and a = c · b with
a4 = 1. Note that Zariski denseness can easily be checked
using Theorem 2.9.

Given this, we formulate another version of Ques-
tion 6.1:

Question 6.3. Does there exist a compact orientable hy-
perbolizable 3-manifold M that is not an I-bundle over
a surface and for which π1(M) admits a faithful repre-
sentation into SL(3, Z)?

As remarked in the previous section, it is well known
that SL(3, Z) contains subgroups isomorphic to the fun-
damental group of some closed orientable 3-manifolds. In-
deed, the fundamental groups of the torus bundles mod-
eled on NIL and SOLV geometries all are subgroups.

We now show why NIL geometry gives rise to the only
interesting class of Seifert-fibered spaces with infinite fun-
damental group that admit a faithful representation into
SL(3, Z). We exclude as uninteresting the case that the
manifold is covered by S2 × R .

Theorem 6.4. Let M be a compact orientable Seifert-
fibered space with infinite fundamental group, not covered
by S2 × R or admitting a geometric structure modeled on
NIL. Then π1(M) does not admit a faithful representa-
tion into SL(3, Z).

Proof. Firstly, SL(3, Z) does not contain Z3 . This will
automatically exclude those M admitting a Euclidean
geometry, for in that case, M is covered by the 3-torus.

This follows from an analysis of centralizers of ele-
ments in SL(3, Z). Briefly, let γ ∈ SL(3, Z) be an element
of infinite order. Then the eigenvalues of γ are either ±1,
three distinct real numbers, or one real number and one
pair of complex conjugate numbers. If γ is an element
of a subgroup V = Z3 < SL(3, Z), then it follows that V

must consist of virtually unipotent elements. Otherwise,
the centralizer of γ is (virtually) Z ⊕ Z or (virtually) Z
by Dirichlet’s unit theorem.

Now if x ∈ V , then x also has all eigenvalues ±1. Now
every such element has a square that is unipotent, and so
we deduce from this that V contains a subgroup of finite
index consisting entirely of unipotent elements (consider
the subgroup generated by {g2 : g ∈ V }. We can then
deduce the existence of a Z3 subgroup inside a Borel
subgroup of SL(3, Z), and this is false.

The proof of the theorem is now easily completed. For
let M admit a geometric structure based on H 2 × R or
P̃SL2, with Z = 〈c〉 the center of π1(M) and ρ : π1(M) →
SL(3, Z) a faithful representation.

The discussion above on centralizers applied to
ρ(c) shows that ρ(c) cannot have three real distinct
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eigenvalues or one real eigenvalue and one pair of complex
conjugate eigenvalues. Moreover, if ρ(c) has all eigenval-
ues ±1, it follows from the above discussion that M ad-
mits a geometric structure modeled on NIL. 
�

Remark 6.5. In Section 4 we noted that for k = 2, we
have Z3

2 = [X2 , Y2 ]. This shows that the representation ρ2

factors through (−3/1)-Dehn surgery on the figure-eight-
knot complement. This manifold is a Seifert-fibered space
whose base orbifold is a quotient of H 2 by the (3, 3, 4)
triangle group. Thus Theorem 6.4 shows that in fact, ρ2

factors through the (3, 3, 4) triangle group. Notice that
this triangle group is the triangle group in Kac-Vinberg’s
example. However, Theorem 4.1 shows that the image of
ρ2 is of finite index in SL(3, Z), and so these representa-
tions are very different.

7. APPENDIX

7.1. Construction of ρk and βT

We briefly outline our method for producing the repre-
sentations ρk and βT . It is based on [Cooper et al. 06],
which takes a representation of a group into some higher-
rank Lie group (for our purposes here, SL(3, R)) and at-
tempts to deform it. In this way, we may produce an ex-
act expression for the representation variety through that
point. Of course, this is not always possible, since there
are obstructions to deformation, but the method is usu-
ally rather effective if the representation is deformable.

In [Cooper et al. 06], this was applied in the context of
closed hyperbolic 3-manifolds, where one has a canonical
representation into SO(3, 1) that one tries to deform into
SL(4, R).

In the setting of the figure-eight knot, one does have
a small supply of 3-dimensional real representations (for
example coming from the reduced Burau representation).
This idea was exploited in [Mangum and Shanahan 97].
However, the representations ρk and βT have a rather
more number-theoretic flavor, which we now describe.

We started with a surjection h : Γ → SL(3, 3) given by

h(z) =

⎛⎜⎝0 0 1
1 0 4
0 1 0

⎞⎟⎠ , h(x) =

⎛⎜⎝ 2 2 0
0 2 2
2 0 2

⎞⎟⎠ ,

which was promoted (basically using Hensel’s lemma)
to a representation h3 : Γ → SL(3, Z3) (where Z3 de-

notes the 3-adic integers) with the property that it has
Z-integral character. This representation can be conju-
gated into SL(3, Z), and one can compute that it has
a 2-dimensional character variety of SL(3, R) deforma-
tions. This variety was then computed exactly using the
method of [Cooper et al. 06]. (The authors thank Mor-
wen Thistlethwaite for doing much of the heavy lifting
involved in implementing [Cooper et al. 06] in this last
computation.) The two families Fk and FT correspond
to certain specializations of the parameters.

Remark 7.1. It is easily checked that Γ has no irre-
ducible representation with infinite image in SL(2, Z)
(see [Long and Reid 03]). Indeed, it is shown in
[Long and Reid 03] that there are no infinite represen-
tations of Γ into SL(2,C) with Z-characters.

On the other hand, Γ admits a faithful representation
into SL(4, Z). This is seen as follows: Γ has a represen-
tation as an arithmetic Kleinian group appearing as a
subgroup of index 12 in the Bianchi group PSL(2, O3).
Moreover, this group admits a faithful representation as
a subgroup of SO(p; Z) < SL(4, Z), where p is the quater-
nary quadratic form x2 + y2 + z2 − 3t2 (see, for example,
[Elstrodt et al. 99, Chapter 10.2, Example 7]).

7.2. Computations

We have used Magma to compute some indices. Of
course, this is possible only in the very simplest cases,
since as we have outlined above, usually the index must
be too gigantic for current technology.

For example, for T = −2, the index [SL(3, Z) : β−2(Γ)]
was computed to be 3670016, and [SL(3, Z) : β−2(F )] =
48 · 3670016 = 221 · 7. We now give a brief discussion of
the computation and the Magma routine that is used.

The basic idea is that using the presentation for
SL(3, Z) that is given in [Steinberg 85], we write the
matrix elements generating ρ0(Γ) and β2(Γ) in terms of
these generators. The generators are the six elementary
matrices xij. Computations were done in Mathematica
to arrive at these expressions.

For example, for k = 0, we have

X0 = x12 ∗ x23−1 ∗ x32 ∗ x23−1 ∗ x12−1 ∗ x12−1 ∗ x23−1

∗x23−1

and

Y0 = x12 ∗ x31−1 ∗ x31−1 ∗ x13 ∗ x31−1 ∗ x21−1 ∗ x21−1

∗ x23−1 ∗ x32−1 ∗ x23 ∗ x32−1 ∗ x23 ∗ x23 ∗ x32−1 .



424 Experimental Mathematics, Vol. 20 (2011), No. 4

The following routine was run in Magma (following a
suggestion of Eamonn O’Brien):

G〈x12, x13, x21, x23, x31, x32〉 := Group〈x12, x13, x21,

x23, x31, x32 | (x12, x13), (x21, x23), (x31, x32),
(x12, x32), (x21, x31), (x21, x13) ∗ x23−1 , (x12, x23)
∗ x13−1 , (x13, x23), (x13, x32) ∗ x12−1 ,

(x31, x12) ∗ x32−1 , (x23, x31) ∗ x21−1 , (x32, x21)
∗ x31−1 , (x12 ∗ x21−1 ∗ x12)4〉;

S := sub〈G | x12 ∗ x23−1 ∗ x32 ∗ x23−1 ∗ x12−1 ∗ x12−1

∗ x23−1 ∗ x23−1 , x12 ∗ x31−1 ∗ x31−1 ∗ x13 ∗ x31−1

∗ x21−1 ∗ x21−1 ∗ x23−1 ∗ x32−1 ∗ x23 ∗ x32−1 ∗ x23
∗ x23 ∗ x32−1〉;

ToddCoxeter (G,S : Hard, Workspace := 108 ,

Print := 106);

In the case T = −2, the elements X−2 and Z−2 in
terms of the generators are

X−2 = x21 ∗ x31 ∗ x32 ∗ x23−1 ∗ x13 ∗ x31−1

∗ (x12 ∗ x13−5 ∗ x23)−1

and

Z−2 = x312 ∗ x23−2 ∗ x12 ∗ (x13 ∗ x31−1 ∗ x13)−2

∗ x12 ∗ x21−4 .

ACKNOWLEDGMENTS

The authors are very grateful to Eamonn O’Brien and
Morwen Thistlethwaite for help with various computa-
tional aspects. In addition, we thank Bill Goldman for
helpful correspondence and for making some of his un-
published calculations available to us.

Both authors were partially supported by the National
Science Foundation.

REFERENCES

[Bieri 76] R. Bieri. “Normal Subgroups in Duality Groups
and in Groups of Cohomological Dimension 2.” J. Pure
Appl. Algebra 7 (1976), 35–51.

[Bloom 67] D. M. Bloom. “The Subgroups of PSL(3, q) for
Odd q.” Trans. Amer. Math. Soc. 127 (1967), 150–178.

[Brown 89] K. Brown. Buildings. New York: Springer, 1989.

[Cohen 81] J. Cohen. “On Non-Hurwitz Groups and Non-
congruence Subgroups of the Modular Group.” Glasgow
Math. J. 22 (1981), 1–7.

[Cooper et al. 06] D. Cooper, D. D. Long, and M. Thistleth-
waite. “Computing Varieties of Representations of Hy-
perbolic 3-Manifolds into SL(4, R).” Experimental Math.
15 (2006) 291–305.

[Edmonds et al. 92] A. L. Edmonds, J. H. Ewing, and R. S.
Kulkarni. “Torsion Free Subgroups of Fuchsian Groups
and Tessellations of Surfaces.” Invent. Math. 69 (1992),
331–346.

[Elstrodt et al. 99] J. Elstrodt, F. Grunewald, and J. Men-
nicke. Discontinuous Groups and Harmonic Analysis
on Three-Dimensional Hyperbolic Spaces. New York:
Springer, 1999.

[Goldman 90] W. M. Goldman. “Convex Real Projective
Structures on Compact Surfaces.” J. Diff. Geom. 31
(1990), 791–845.

[Long and Reid 03] D. D. Long and A. W. Reid. “Inte-
gral Points on Character Varieties.” Math. Annalen 325
(2003), 299–321.

[Lubotzky 86] A. Lubotzky. “Dimension Function for Dis-
crete Groups.” In Proceedings of Groups—St. Andrews
1985, London Math. Soc. Lecture Note Ser. 121, pp. 254–
262. Cambridge, UK: Cambridge Univ. Press, 1986.

[Lubotzky 97] A. Lubotzky. “One for Almost All: Genera-
tion of SL(n, p) by Subsets of SL(n, Z).” In Algebra, K-
Theory, Groups, and Education (New York, 1997), Con-
temp. Math. 243, pp. 125–128. Providence: Amer. Math.
Soc., 1999.

[Lubotzky and Mann 87] A. Lubotzky and A. Mann, “Pow-
erful p-Groups II: p-adic Analytic Groups.” J. of Algebra
105 (1987), 506–515.

[Kac and Vinberg 67] V. Kac and E. Vinberg, “Quasi-
Homogenous Cones.” Mat. Zametki 1 (1967), 347–354.

[Mangum and Shanahan 97] B. Mangum and P. Shanahan.
“Three-Dimensional Representations of Punctured Torus
Bundles.” J. Knot Theory Ramifications 6 (1997), 817–
825.

[Margulis 89] G. Margulis. Discrete Subgroups of Semi-simple
Lie Groups, Ergeb. der Math. 17. New York: Springer,
1989.

[Mennicke 67] J. Mennicke. “On the Groups of Units of
Ternary Quadratic Forms with Rational Coefficients.”
Proc. Royal Soc. Edinburgh Sect. A 67 (1966/67), 309–
352.



Long and Reid: Small Subgroups of SL(3, Z) 425

[Morandi 96] P. Morandi. Field and Galois Theory, Graduate
Texts in Math. 167. New York: Springer, 1996.

[Narkiewicz 04] W. Narkiewicz. Elementary and Analytic
Theory of Algebraic Numbers, third edition, Springer
Monographs in Mathematics. New York: Springer, 2004.

[Newman 72] M. Newman. Integral Matrices. New York: Aca-
demic Press, 1972.

[Schwartz 07] R. E. Schwartz. Spherical CR Geometry and
Dehn Surgery, Annals of Math. Studies 165. Princeton:
Princeton University Press, 2007.

[Serre 74] J-P. Serre. “Problems.” In Proc. Conf. Canberra
(1973), Lecture Notes in Math. 372, pp. 734–735. Berlin:
Springer, 1974.

[Sharma and Venkataramana 05] R. Sharma and T. N.
Venkataramana. “Generations for Arithmetic Groups.”
Geom. Dedicata 114 (2005), 103–146.

[Steinberg 85] R. Steinberg. “Some Consequences of the Ele-
mentary Relations in SLn .” In Finite Groups—Coming of
Age (Montreal, 1982), Contemp. Math. 45, pp. 335–350.
Providence: Amer. Math. Soc., 1985.

[Venkataramana 87] T. N. Venkataramana. “Zariski Dense
Subgroups of Arithmetic Groups.” J. Algebra 108 (1987),
325–339.

[Weisfeiler 84] B. Weisfeiler. “Strong Approximation
for Zariski Dense Subgroups of Semi-simple Alge-
braic Groups.” Annals of Math. 120 (1984), 271–
315.

D. D. Long, Department of Mathematics, University of California, Santa Barbara, CA 93106, USA
(long@math.ucsb.edu)

A. W. Reid, Department of Mathematics, University of Texas, Austin, Texas 78712, USA (areid@math.utexas.edu)

Received April 8, 2010; accepted August 12, 2010.


