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We compute many dimensions of spaces of finite type invari-
ants of virtual knots (of several kinds) and the dimensions of the
corresponding spaces of “weight systems,” finding everything to
be in agreement with the conjecture that “every weight system
integrates.”

1. “STANDARD” VIRTUAL KNOTS

For “classical” finite type invariants of ordinary knots,
as defined by the schematic difference relation →

− (see, e.g., [Bar-Natan 95]), it is well known that
“every weight system integrates.” In other words, every
linear functional on chord diagrams that satisfies the 4T
relation is the “top derivative” of some finite type invari-
ant. Indeed, this simple minded statement is the main
implication of the existence of the celebrated Kontse-
vich integral and of configuration space integrals, and it is
closely related to perturbative Chern–Simons theory and
to the theory of Drinfel’d associators (see overviews at
[Bar-Natan and Stoimenow 97, Bar-Natan 06]).

The purpose of this note is to support the conjecture
that the same is true in the context of v-knots, or virtual
knots (and in fact, also in several closely related con-
texts). In this case, finite type invariants are defined by
the schematic difference relation → − (see Sec-
tion 2 for details).

We wrote a computer program1 to compute the di-
mensions dimWn of spaces of weight systems (of v-
knots) of various degrees, and using the Polyak alge-
bra of [Goussarov et al. 00], to compute the dimensions
dimVn/Vn−1 (or dimVn/n−1 , for short) of the spaces of fi-
nite type invariants (of v-knots) of various degrees (mod-
ulo invariants of lower degree). The results are displayed
in Tables 1 and 2.

1 This paper, programs, and related documentation are available on-
line at http://www.math.toronto.edu/∼drorbn/papers/v-Dims/.
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n 0 1 2 3 4 5
dimWn 1 0 0 1 4 17

dim Vn /n−1 1 0 0 1 4 17

TABLE 1. Dimensions for round v-knots.

n 0 1 2 3 4 5
dimWn 1 0 2 7 42 246

dim Vn /n−1 1 0 2 7 42 246

TABLE 2. Dimensions for long v-knots.

Conjecture 1.1. The pattern of equalities appearing above
continues. That is, every weight system for v-knots comes
from a finite type invariant of v-knots.

In Section 3, we study several variations of the notion
of virtual knots and state analogous conjectures about
their finite type invariants and weight systems.

2. FINITE TYPE INVARIANTS AND WEIGHT SYSTEMS

For completeness, in this section we state all the defini-
tions required for Conjecture 1.1, following Kauffman’s
original definition of virtual knots [Kauffman 99] and
Goussarov, Polyak, and Viro’s treatment of finite type
invariants of virtual knots [Goussarov et al. 00].2

Definition 2.1. [Kauffman 99] A round virtual knot dia-
gram is an immersion of an oriented circle in the plane
(regarded up to planar isotopy) that has two allowed
types of crossings: real and virtual, denoted by and

, modulo the real Reidemeister moves, virtual Reide-
meister moves, and mixed Reidemeister 3 moves. Real
Reidemeister moves can be found in Figure 1. For the
virtual moves and the mixed Reidemeister 3 move, see
Figure 2.

We can consider formal linear combinations of virtual
knot diagrams and extend the notion of finite type in-
variants to virtual knots.

Definition 2.2. [Goussarov et al. 00] A semivirtual cross-
ing is a real crossing minus a virtual crossing, while all
other crossings remain the same. Given an integer n, we
say that an invariant of virtual knots is of type n if it
vanishes on all virtual knot diagrams with more than n

2 An alternative notion of finite type invariants of virtual knots is
given in [Kauffman 99].

semivirtual crossings, and an invariant is of finite type
(or is a finite type invariant) if it is of type m for some
finite m. The space of all type-n invariants is denoted
by Vn .

In analogy to the classical case, every finite type in-
variant induces a “weight system.”

Definition 2.3. An arrow diagram is a diagram that con-
tains an oriented circle, called the skeleton, and arrows
joining pairs of distinct points on the skeleton, modulo
the relations FI, 6T, and XII (see Figure 3). The degree
of a diagram is its number of arrows. The space of all
arrow diagrams of degree n is denoted by �An , and its
dual is denoted by Wn . A degree-n weight system is an
element of Wn .

In a similar fashion we can define long virtual knot
diagrams (if we replace “circle” in Definition 2.1 by “a
line”) as well as the corresponding notions of finite type
invariants, arrow diagrams (where the skeleton is now a
line instead of a circle), and weight systems. A sample
(long) arrow diagram is shown in Figure 4. As far as we
know, this paper is the first time the XII-relation appears
in the literature, and its derivation will be presented in
Section 4.

In the case of classical knots, it is well known (see,
for example, [Bar-Natan 95]) that every type-n invariant
has a degree-n weight system (which satisfies the FI and
4T relations) and that its weight system determines it
up to invariants of type n − 1. The analogue of this fact
for virtual knots is the following proposition, which holds
both in the “round” and in the “long” cases.

Proposition 2.4. For each positive integer n there is an
injection ι from Vn/Vn−1 to Wn .

Proof. The only thing to verify is that the FI, 6T,
and XII relations hold. The first two appear in
[Goussarov et al. 00]. The last is discussed in Sec-
tion 4.

It remains open as to whether ι is always a sur-
jection, or equivalently, whether “every weight system
comes from an invariant.” Tables 1 and 2 contain com-
putational results that answer this question in the affir-
mative for small n (1 ≤ n ≤ 5).

In addition to the round and long virtual knots, we
will introduce several other kinds of virtual knot theory
in the next section, and for each such variation, we have
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FIGURE 1. Five types of Reidemeister moves. The “b” or “braidlike” moves R2b and R3b have all strands oriented
the same way; such configurations could appear in a braid. The “c” or “cyclic” moves R2c and R3c contain a planar
domain whose boundary is oriented cyclically. Such configurations cannot appear within a braid. Where no orientation
is indicated, we mean “any.”

computational results that show that all weight systems
come from finite type invariants up to degree 5, just as
in the round and long cases.

3. VARIANTS

The theory of finite type invariants of ordinary knots is
rather “rigid”—it is the same for round or long knots,
the framed and unframed cases are not too different (in
particular, a complete understanding of one is equivalent
to a complete understanding of the other), and there is
little else that can be tinkered with. This is not the case
for virtual knot theory—round and long and framed and
unframed appear to be quite different, and there are sev-
eral other “parameters” that can be turned on and off at
will, leading to a significant number of apparently differ-
ent “virtual knot theories.” In each such theory we start
with a collection of virtual knot diagrams and then mod
it out by some Reidemeister moves (see Figure 1). Some
of the possible choices follow:

Skeleton choices: We can take the skeleton of our vir-
tual knots to be a circle (the “round” case) or a line
(the “long” case). In the case of a line, we may restrict
our attention to virtual knot diagrams all of whose (real)
crossings are “descending” (a crossing is descending if the
first time it is visited along the parameterization of the
knot it is visited on the “over” strand).

R23 choices: We may mod out by all R2 and R3 moves
(this is the “standard” case), or only by the “braidlike”
moves R2b and R3b, or we may skip R3 moves altogether
and mod out only by R2b and R2c (“R2 only”). (See
Figure 1.)

R1 choices: We may or may not mod out by R1 moves.

FIGURE 2. The virtual and mixed Reidemeister moves.

Other choices: The “overcrossings commute” relation is
studied extensively in [Bar-Natan 11] and will not be
studied here. “Flat” and “free” virtual knots are stud-
ied in [Manturov 2009a, b] and will not be studied here.
“Virtual braids” are left for a future study.

Each such virtual knot theory has a notion of finite
type invariants (always defined by → − ), and
each one has a notion of “weight systems” (see Section 4).
Hence the question, “does every weight system come from
a finite type invariant?” makes sense in many ways. We
have studied 18 = 3 × 3 × 2 of these ways:

Conjecture 3.1. (18 in 1.) For each skeleton choice
(“round,” “long,” or “descending”), with R2 and R3
given either the “standard” or the “braidlike” or the “R2
only” treatment, with or without R1, and for every nat-
ural number n, every degree-n weight system comes from
a type-n invariant.

Using our program, we have verified the above conjec-
ture for n ≤ 5 in all 18 cases. Below, we display the di-
mensions of the spaces Vn/n−1 of type-n invariants mod-
ulo invariants of lower type (for each case). By our com-
puter’s hard work, the dimensions of the spaces Wn of
weight systems are exactly the same, so they do not re-
quire a separate table. This equality of dimensions for all
n is precisely the content of our conjecture. In all cases,
dimV0 = dimW0 = 1, so we display the dimensions only
for n = 1, 2, 3, 4, 5; see Table 3.

In our computations we used the Polyak algebra tech-
niques of [Goussarov et al. 00] for the V spaces and
straightforward linear algebra for the W spaces described
below. The typical n = 5 computation involves determin-
ing the rank of a very sparse matrix with a few tens of
thousands of rows and columns and takes about an hour
of computer time. The main part of the program was
written in Mathematica with the heavier rank computa-
tions delegated to LinBox.3

3 Available online at http://www.linalg.org.
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FIGURE 3. The 6T, FI, and XII relations in standard “skein” notation. Only the varying parts of the diagrams involved
are shown; their skeleton pieces (labeled i, j, and k above) can be assembled along a long or a round skeleton in any way,
and outside the parts shown, more arrows can be inserted.

Why bother? Why bother with such an “18 in 1” con-
jecture? We believe that virtual knots in general, and
the question studied here on finite type invariants of vir-
tual knots in particular, might form the correct topolog-
ical framework for the study of quantum groups and the
quantization of Lie bialgebras [Haviv 02, Bar-Natan 11,
Etingof and Kazhdan 96]. But we are not sure yet which
class of virtual knots it is that we should study. Is it the
standard class, as in Section 1, or is it the one closest
to Lie bialgebras, as in (c) of Table 3? Or maybe it is
something else, closely related?

Thus we believe that at least some of the 18 cases
in Conjecture 3.1 are deeply interesting. As for the rest
(the cases involving “R2 only” or “descending v-knots,”
for example), these may play two kinds of roles in the
future:

1. The apparently harder cases, involving all Reide-
meister moves and round or long skeletons, ap-
pear quite hard. The “easier” cases may serve
as “baby versions” that will force us to develop

some of the techniques that we may later use
while studying the harder cases.

2. We certainly hope that eventually all 18 cases
(and maybe a few more) of Conjecture 3.1 will
find a uniform solution. Thus the presence of so
many variants of Conjecture 3.1 may serve as a
further test of our understanding. Suppose we
solved one of the “harder” cases. Is our solu-
tion modular enough to resolve all other cases
as well?

4. ARROW DIAGRAMS AND RELATIONS

This is a short descriptive section intended only to spell
out in brief, for reasons of completeness, the defini-
tions of the spaces Wn of weight systems for each of
the cases that we have considered. The details of how
and why the spaces described below are related to fi-
nite type invariants of virtual knots can be found in
[Goussarov et al. 00, Polyak 00].

dim Vn /n−1 / dimWn for . . . round v-knots long v-knots descending v-knots

standard R23 mod R1 0, 0, 1, 4, 17(a) 0, 2, 7, 42, 246(a) 0, 0, 1, 6, 34
no R1 1, 1, 2, 7, 29 2, 5, 15, 67, 365 1, 1, 2, 8, 42

braidlike R23 mod R1 0, 0, 1, 4, 17(b) 0, 2, 7, 42, 246(b) 0, 0, 1, 6, 34(b)

no R1 1, 2, 5, 19, 77 2, 7, 27, 139, 813(c) 1, 2, 6, 24, 120(d)

R2 only mod R1 0, 0, 4, 44, 648 0, 2, 28, 420, 7808 0, 0, 2, 18, 174
no R1 1, 3, 16, 160, 2248 2, 10, 96, 1332, 23880 1, 2, 9, 63, 570

TABLE 3. The knots labeled (a) are the “standard” virtual knots, as in Section 1. (b) The equality of these numbers with the
numbers two rows above is a bit tricky. It is not true that R1 and the braidlike R23 imply the cyclic R23. Yet at the level of
arrow diagrams, FI and 6T do imply the XII relations (naming as in Section 2). Thus the equality of dimWn ’s is obvious, and
assuming Conjecture 3.1 it implies the equality of the dimVn /n−1 ’s. (c) The spaces measured in this box are dual to (long arrow
diagrams)/(6T relations), and these are the spaces most closely related to Lie bialgebras [Haviv 02, Leung 08, Bar-Natan 11].
Thus in the long run this box may prove to be the most important of the variants of “virtual knots” studied here. (d) We can
show that in this case dimWn ≤ n! but we are missing the other inequality necessary to prove that dimWn = n!.
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FIGURE 4. A typical arrow diagram of degree 6 (meaning, having exactly six arrows beyond the bolder “skeleton” line
at the bottom).

As mentioned in Section 2, the spaces Wn are always
the duals �A�

n of spaces �An of arrow diagrams modulo re-
lations. For different virtual knot theories, we impose on
�An different combinations of “arrow diagram relations”
in Figure 3.

The spaces �An for round and long virtual knots are
described in Section 2. For descending v-knots, the skele-
ton is again a long line, but for the diagrams in �An we
allow only those whose arrows are oriented the same way
as their skeleton (thus the sample diagram in Figure 4
would be excluded because two of its arrows are oriented
against the orientation of the skeleton).

In the case of “standard R23,” we impose both 6T and
XII on �An . In the case of “braidlike R23,” we impose 6T
but not XII. In the “R2 only” case, we impose XII but
not 6T.

We impose the FI relation in �An if and only if we mod
out by R1 at the level of v-knots.

In the case of descending v-knots, we impose 6T only
if i < j < k (as sites along the oriented skeleton); we im-
pose XII only if i < j; and we impose only the properly
oriented “left half” of FI.

The 6T and FI relations appear and are explained in
[Goussarov et al. 00, Polyak 00]. For all we know, this
is relation XII’s maiden appearance in the literature,
and thus an explanation is in order. Below are two brief
derivations of XII, the first direct and elementary, and
the second using the Polyak algebra. All relevant defini-
tions are in [Goussarov et al. 00] and will not be repeated
here.

4.1. A Direct Derivation of XII

The equality

of semivirtual tangles is easy to verify directly, using the
definitions of the semi-virtual crossing, = − ,
and using only (virtual moves and) R2 moves (though

both braidlike and cyclic ones). But in arrow notation,
this is exactly the XII relation.

4.2. A Polyak Algebra Derivation of XII

The Polyak algebra Pn is defined in [Goussarov et al. 00];
it is a space of “signed arrow diagrams” modulo relations
that correspond to the Reidemeister moves of knot the-
ory. The relation corresponding to the R2 move is

(1)

Symbolically, with a denoting the + arrow and b denoting
the − arrow, this is ab + a + b = 0, or b = −a − ab. Solv-
ing for b in terms of a and recalling that in Pn we mod out
by degrees higher than n, we get b = −a + a2 − a3 + · · ·
(a finite sum). Thus the negative arrows can be elimi-
nated in Pn (this of course is very useful computation-
ally, since it lowers the number of arrow diagrams that
one needs to consider by a factor of about 2n ).

But in (1), the orientation of the strands is not spec-
ified, and indeed, for braidlike R2 moves these strands
come out with parallel orientations, while for cyclic R2
moves they come out with opposite orientations. Thus we
get two different formulas for negative arrows in terms of
positive ones. The first, using parallel orientations in (1),
and dropping the signs from the positive arrows, is

(2)

In the second such formula, using opposite orientations
in (1), we flip to the right the strand that was oriented
to the left at the cost of getting all the ak terms totally
twisted:

(3)
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Equating these two formulas and keeping only the
lowest-order terms that don’t cancel, we get the XII re-
lation:

The only benefit of the Polyak algebra derivation of
XII is the following: in the computation of dimPn (which
is the same as dimVn ) in the cases in which all R2 moves
are imposed, one may restrict attention only to + arrows,
but then the full right-hand sides of (2) and (3) have to
be set equal, dropping only the terms of degree higher
than n.

DISCLAIMER

Our computational results suggest what we believe are
interesting conjectures. Yet in programming, bugs are a
fact of life. An independent verification of our numbers,
even without pushing beyond degree 5, would lend fur-
ther support to Conjectures 1.1 and 3.1 and would be
highly desirable.
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