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Deciding realizability of a given polyhedral map on a (compact,
connected) surface belongs to the hard problems in discrete ge-
ometry from the theoretical, algorithmic, and practical points of
view.

In this paper, we present a heuristic algorithm for the realiza-
tion of simplicial maps, based on the intersection segment func-
tional. This heuristic was used to find geometric realizations in
R

3 for all vertex-minimal triangulations of the orientable surfaces
of genera g = 3 and g = 4. Moreover, for the first time, exam-
ples of simplicial polyhedra in R

3 of genus 5 with 12 vertices
have been obtained.

1. INTRODUCTION

A polyhedral map on a surface is a (finite) set of polygons
(with at least three sides) that are glued together (topo-
logically) along edges to form the surface in such a way
that there are no self-identifications on the boundaries of
the polygons, and two polygons are disjoint or intersect
in exactly one edge or one vertex. We thus can think of
a polyhedral map as a combinatorial model for a surface.

For a given polyhedral map it is natural to try to visu-
alize it as a polyhedron in three-space or in some higher-
dimensional space R

d such that every polygon is the con-
vex hull of its vertices and two polygons are disjoint in
R

d, intersect in a common edge and are not coplanar,
or intersect in a common vertex. Such a realization is
usually called a geometric or polyhedral realization, with
straight edges, plane polygons, and no nontrivial inter-
sections (with neighboring polygons being not coplanar).

Example 1.1. A polyhedral map on the 2-sphere S2 con-
sisting of the polygons 123, 12478, 13568, 2354, 4567,
and 678 together with a corresponding realization in R

3

is displayed in Figure 1.
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FIGURE 1. A polyhedral map on S2 and a correspond-
ing geometric realization in R

3.

Realizability of maps on the 2-sphere S2 was proved
by Steinitz [Steinitz 22, Steinitz and Rademacher 34];
see also [Grünbaum 03, Chapter 13], [Ziegler 95, Lec. 4]):
Every polyhedral map on the 2-sphere S2 is geometrically
realizable in R

3 as the boundary complex of a convex 3-
polytope.

However, not all polyhedral maps are realizable. For
example, simple polyhedral maps (i.e., maps with all ver-
tices of valence three) on surfaces different from the 2-
sphere S2 are not realizable in any R

d (see [Grünbaum 03,
Exercises 11.1.7, 13.2.3]).

Example 1.2. All equivelar maps of type 6–3 on the torus
(i.e., maps consisting of only 6-gons with every vertex
belonging to exactly three 6-gons) are simple and there-
fore cannot be realized in any R

d. The smallest example
(see Figure 2) of the family is the combinatorial dual of
Möbius’s 7-vertex triangulation of the torus [Möbius 86].
A “realization” of this 6–3 torus with flat but nonconvex
6-gons, the Szilassi torus, was given in [Szilassi 86].

Betke and Gritzmann found a further combinatorial
obstruction to geometric realizability [Betke and Gritz-
mann 82]: Let W be any subset of the set of odd
valent vertices of a polyhedral map M2 and let FW

be the set of facets containing some vertex of W . If
2|FW | ≤ |W |, then M2 is not realizable in any R

d. Again,
the Betke–Gritzmann obstruction rules out realizability
of 6–3 equivelar maps on the torus, but the obstruction
was also used in [McMullen et al. 82] to show nonrealiz-
ability for other, nonsimple, families of equivelar maps.
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FIGURE 2. The nonrealizable 6–3 equivelar map with
14 vertices on the torus.

In a simplicial map (i.e., a triangulation of a sur-
face as a simplicial complex) every triangle contains
at most three odd valent vertices, from which it can
be deduced that |FW | ≥ |W | for every subset W of
odd valent vertices. Thus, the Betke–Gritzmann ob-
struction cannot be applied to simplicial maps to show
nonrealizability.

In 1967 Grünbaum proposed cf. [Grünbaum 03, Chap-
ter 13] that every triangulated torus should be geo-
metrically realizable in R

3. This famous conjecture re-
mained open for forty years and was proved in 2007 in
[Archdeacon et al. 07]. For the class of triangulations
of the projective plane with one face removed, geomet-
ric realizability in R

3 was proved in [Bonnington and
Nakamoto 08]. However, not every triangulated Möbius
strip needs to be realizable in R

3. A counterexample
appears in [Brehm 83].

Until rather recently, no computational tools were
available to actually find realizations for simplicial sur-
faces. In the past thirty years, the most promising ap-
proach to obtaining a polyhedral realization in R

3 for a
given triangulation was to try to build a physical model,
for example by exploiting symmetries or by employing
the rubber-band technique of [Bokowski 08].

Very basic heuristic procedures for finding realiza-
tions in R

3 for larger classes of examples were used in
[Fendrich 03] (to show that all triangulated tori with
up to 11 vertices are realizable via embeddings in the
2-skeletons of random 4-polytopes) and in [Lutz 08] (to
obtain realizations for triangulations of the orientable
surface of genus 2 via choosing coordinates randomly).
These methods, although useful in processing larger
numbers of examples, are less powerful than human imag-
ination in leading to a physical model.

For example, 864 of the 865 vertex-minimal triangu-
lations of the orientable surface of genus 2 were realized
with the random realization method in [Lutz 08], with a
total computation time of 30 CPU months. However, it
was impossible to randomly realize the remaining exam-
ple (with the highest combinatorial symmetry of the 865
examples). A computer search was run unsuccessfully
for more than a month before the example was realized
within a day by Bokowski with the rubber-band method
[Bokowski 08].

In this paper, we present a heuristic algorithm for find-
ing polyhedral realizations for (closed, orientable) simpli-
cial surfaces in R

3 that for the first time surpasses the
physical approach with respect to its processing time and
its qualitative range of examples. In particular, we show
that all vertex-minimal triangulations of the orientable
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surfaces of genera g = 3 and g = 4 are realizable. We
also provide examples of vertex-minimal simplicial poly-
hedra of genus 5 with 12 vertices.

In the following section we give a brief survey of re-
alizability results for surfaces, vertex-minimal triangula-
tions, and algorithmic aspects of deciding realizability.
Section 3 is devoted to our realization heuristic based
on the intersection segment functional. Computational
results are presented in Section 4. An extension of our
approach to convex realizations of triangulated spheres
is discussed in Section 5.

2. REALIZABILITY OF POLYHEDRAL SURFACES AND
POLYHEDRAL COMPLEXES

In general, every d-dimensional simplicial complex (with
n vertices) is polyhedrally embeddable in R

2d+1, since it
can be realized as a subcomplex of the boundary com-
plex of the cyclic polytope C(n, 2d+2); cf. [Grünbaum 03,
Exercise 4.8.25, p. 67]. However, it is shown in [van Kam-
pen 43] and [Flores 33] that d-dimensional simplicial com-
plexes cannot always be embedded topologically in R

2d,
e.g., the d-skeleton Skd(Δ2d+2) of the (2d + 2)-simplex
Δ2d+2 is not embeddable in R

2d. For further examples
and references see [Matoušek 03, 5.1], [Novik 00], and
[Schild 93].

For smooth d-manifolds, it is proved in [Whitney 44]
that they can be smoothly embedded in R

2d, and [Pen-
rose et al. 61] shows that for 0 < 2(k + 1) ≤ d, every
k-connected PL (i.e., piecewise linear) d-manifold has a
PL embedding in R

2d−k. In particular, surfaces have PL
embeddings in R

4. Orientable surfaces (with or without
boundary) and nonorientable surfaces with boundary are
even PL embeddable in R

3 (which follows from the clas-
sification of surfaces in [Dehn and Heegaard 07]). Closed
nonorientable d-manifolds cannot be embedded topolog-
ically in R

d+1; cf. [Bredon 97, p. 353].
Thus, for triangulated orientable surfaces (with or

without boundary) and for triangulated nonorientable
surfaces with boundary we have

• PL embeddability in R
3 and

• polyhedral realizability in R
5.

Triangulations of closed nonorientable surfaces are

• not (topologically) embeddable in R
3,

• but are PL embeddable in R
4,

• and are polyhedrally realizable in R
5.

Perles showed (cf. [Grünbaum 03, 11.1.8]) that a poly-
hedral map is realizable in some R

d if and only if it is
realizable in R

5.
A natural approach to establishing geometric realiz-

ability in R
3 for polyhedral maps on orientable surfaces

of genus g ≥ 1 is to identify a given polyhedral map
as a subcomplex of the boundary complex of a convex
4-polytope P . The Schlegel diagram of P then yields
coordinates for the realization in R

3; see, for example,
[McMullen et al. 82] for realizations of equivelar maps
obtained this way, and [Altshuler 71a, Altshuler 71b] for
combinatorial properties on maps that guarantee realiz-
ability via Schlegel diagrams.

[Altshuler and Brehm 84] gives a polyhedral map T8

on the torus with only eight vertices that is realizable
in R

3 (cf. also [Simutis 77]), but not via the Schlegel
diagram of a convex 4-polytope. In fact, the map T8 is
not isomorphic to a subcomplex of the boundary complex
of any convex polytope [Altshuler and Brehm 84].

Realizability (via subcomplexes of convex 5-polytopes)
of triangulations of the torus and the projective plane in
R

4 was proved in [Brehm and Schild 95], thereby sharp-
ening the result of [Barnette 83] on the geometric realiz-
ability of triangulations of the projective plane in R

4.
Polyhedral surfaces that are obtained by projections

(of 2-dimensional subcomplexes) of higher-dimensional
polytopes together with obstructions to projectability
are discussed in [Rörig 09, Rörig and Sanyal 09, Rörig
and Ziegler 09]. Knotted realizations of triangulated
tori are studied in [Lutz and Witte 07]. For further re-
sults and references on polyhedral maps see [Brehm and
Wills 93, Brehm and Schulte 97, Ziegler 08b].

2.1 Simplicial Maps

Let M be a (closed) triangulated surface with n = f0

vertices, f1 edges, and f2 triangles, i.e., M has face-vector
f = (n, f1, f2). If M has Euler characteristic χ(M), then
by Euler’s equation,

n − f1 + f2 = χ(M).

Double counting of the incidences between edges and tri-
angles of the triangulation yields 2f1 = 3f2. So together,

f = (n, 3n − 3χ(M), 2n− 2χ(M)).

A triangulated surface with n vertices obviously has at
most f1 ≤ (

n
2

)
edges. By plugging in f1 = 3n − 3χ(M),

we obtain Heawood’s bound [Heawood 90] from 1890 that
a triangulation of a 2-manifold M of Euler characteristic
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χ(M) has at least

n ≥
⌈

1
2

(
7 +

√
49 − 24χ(M)

)⌉

vertices. Heawood’s bound is sharp for all surfaces, ex-
cept for the orientable surface of genus 2, the Klein bottle,
and the nonorientable surface of genus 3, where an extra
vertex has to be added to the lower bound.

Corresponding vertex-minimal triangulations (i.e., tri-
angulations with the minimal possible number of ver-
tices) of the real projective plane RP2 with six vertices
and of the 2-torus with seven vertices (Möbius’s torus
[Möbius 86]) were already known in the nineteenth cen-
tury, but it took until 1955 to complete the construction
of (series of) examples of vertex-minimal triangulations
for all nonorientable surfaces [Ringel 55] and until 1980
for all orientable surfaces [Jungerman and Ringel 80].

If a given triangulation of an orientable surface is re-
alizable in R

3, then so are subdivisions of it that are
obtained by successively subdividing edges and trian-
gles. Hence, vertex-minimal triangulations apparently
are good candidates for nonrealizable simplicial maps.
Here triangulations with

n =
1
2

(
7 +

√
49 − 24χ(M)

)
(2–1)

are of particular interest (cf. [Császár 50]), since for these
we have f1 =

(
n
2

)
, that is, the respective triangulations

are neighborly with complete 1-skeleton (which should
make realizability difficult).

A polyhedral realization of the combinatorially unique
vertex-minimal 7-vertex triangulation of the torus with
f = (7, 21, 14) was given in [Császár 50] (although re-
alizability possibly was known already to Möbius; cf.
[Möbius 86, p. 553], [Reinhardt 85], and see [Lutz 02]
for additional comments).

The next case of equality in (2–1) yields 59 examples of
vertex-minimal 12-vertex triangulations of the orientable
surface of genus 6 [Altshuler et al. 96]; see below.

2.2 Realizability versus Nonrealizability
of Simplicial Maps

For every individual triangulation of an orientable sur-
face, realizability (in R

3) can be decided algorithmically
by the following two-step procedure; cf. [Bokowski 01],
[Bokowski and Sturmfels 89, Chapter VIII]:

1. Enumerate all oriented matroids compatible with the
given triangulation. If there are none, then the trian-
gulation is not realizable.

2. Otherwise, decide realizability of the oriented ma-
troids from step 1 via solving associated polynomial
systems of inequalities.

Theoretically, the second step can be done algorith-
mically (for example, with Collins’s cylindrical alge-
braic decomposition algorithm [Collins 75]). In practice,
however, there are no methods known that work suffi-
ciently fast to yield results even for small examples. See
[Bokowski 01] and [Bokowski and Sturmfels 89, Chap-
ter VIII] for more comments on this and on algebraic
tools such as final polynomials. For general polyhedral
maps on orientable surfaces, Brehm proved that the re-
alizability problem is NP-hard (as a consequence of his
universality theorem for realization spaces of maps; cf.
[Ziegler 08a]). The complexity of the realization problem
restricted to simplicial maps is unknown. In fact, it was
open for a long time whether there are any nonrealizable
examples at all.

In a major breakthrough, Bokowski and Guedes de
Oliveira showed [Bokowski and Guedes de Oliveira 00]
(using ten CPU years) that one of the 59 vertex-
minimal 12-vertex triangulations of the orientable sur-
face of genus 6 has no compatible orientable matroid and
therefore is not realizable.

Schewe substantially improved the enumeration of
compatible orientable matroids [Schewe 07, Schewe 10]
and was able to verify that in fact, all 59 vertex-
minimal 12-vertex triangulations of the orientable sur-
face of genus 6 are nonrealizable. Moreover, he found
three examples of nonrealizable vertex-minimal 12-vertex
triangulations of the orientable surface of genus 5.

At least for one of these examples it is possible to re-
move a triangle from the triangulation while maintaining
nonrealizability. Connected sums with other triangula-
tions then still are nonrealizable. Hence, for every ori-
entable surface of genus g ≥ 5, there are triangulations
that cannot be realized geometrically in R

3.
Apart from the approach via oriented matroids, non-

realizability results (for simplicial maps in R
3) seem to

be difficult to achieve: [Novik 00] associates an integer
program with a given triangulation, which, if it has no
solution, yields nonrealizability. Improved systems have
been proposed in [Timmreck 08]. So far, however, all
tested systems for orientable surfaces either had solutions
or turned out to be computationally intractable. In a dif-
ferent approach, [Brehm 83] uses a linking number argu-
ment to show that there is a nonrealizable triangulation
of the Möbius strip with nine vertices.
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2.3 Heuristics for the Realization of Simplicial Maps

Until recently, it was considered to be rather difficult
and time-consuming to find realizations for given tri-
angulations. Examples of polyhedral realizations of
vertex-minimal triangulations of the orientable surfaces
of genera 3 and 4 with 10 and 11 vertices, respectively,
were constructed by hand in [Brehm 81, Brehm 87] and
[Bokowski and Brehm 87, Bokowski and Brehm 89].
Some of these examples were found by exploiting com-
binatorial symmetries of the triangulations, others with
the rubber-band technique of [Bokowski 08].

A simple computer heuristic (by choosing coordinates
randomly) was used in [Lutz 08] to show that 864 of the
865 examples of vertex-minimal triangulations of the ori-
entable surface of genus 2 are realizable. The remaining
case then was settled by Bokowski with the rubber-band
method [Bokowski 08]. All 865 examples were later found
to have realizations with small coordinates [Hougardy et
al. 07a], i.e., all these examples are realizable with inte-
ger coordinates in general position in the (4 × 4 × 4)
cube. Moreover, realizations in the (5 × 5 × 5) cube
were obtained for 17 of the 20 vertex-minimal triangula-
tions with 10 vertices of the orientable surface of genus 3
by isomorphism-free enumeration of possible coordinate
configurations in general position [Hougardy et al. 07b].

In the following, we will discuss an improved heuristic
to obtain polyhedral realizations in R

3 for triangulations
of orientable surfaces. In particular, we will show that all
vertex-minimal triangulations of the orientable surfaces
of genera g = 3 and g = 4 are realizable and that there
are examples of simplicial polyhedra of genus 5 with 12
vertices.

3. REALIZATION WITH THE INTERSECTION
SEGMENT FUNCTIONAL

As mentioned in the previous section, there have been so
far three major heuristics for the realization of simplicial
surfaces (of genus g ≥ 1) in R

3:

• by explicit geometric construction [Bokowski and
Brehm 87, Bokowski and Brehm 89, Brehm 81,
Brehm 87] (e.g., via the rubber-band technique of
[Bokowski 08]);

• by choosing coordinates randomly [Lutz 08];

• by enumeration of realizations with small coordi-
nates [Hougardy et al. 07a, Hougardy et al. 07b,
Hougardy et al. 08].

a b

c

d
e

f

r
s

p

q

FIGURE 3. Two intersecting triangles.

As a more sophisticated approach we suggest to pro-
ceed as follows. For a given triangulation (of an ori-
entable surface of small genus with few vertices):

1. start with random coordinates for the vertices of the
triangulation,

2. and then “move vertices around” to eventually obtain
a realization.

For the second step we take as an objective to mini-
mize the intersection segment functional :

Let M2 be a triangulated orientable surface
with vertex set V and let VZ3 be a set of |V |
integer vertices in general position in R

3. Then
every pair of nonneighboring triangles of M2 co-
ordinatized with the coordinates of VZ3 either
has empty intersection in R

3, intersects in one
vertex, or intersects in a segment; see Figure 3
for the intersection segment p–q of two triangles.
The sum of the lengths of the intersection seg-
ments over all pairs of nonneighboring triangles
is the intersection segment functional.

We require that the points be in general position, i.e.,
no three points lie on a line and no four points lie in a
plane, in order to avoid degenerate intersections of trian-
gles. Further, we use integer coordinates and therefore
move the points in the second step above on the integer
grid Z

3 only.
Our aim then will be to find integer coordinates in

general position for which the intersection segment func-
tional vanishes for the given triangulation.

From an initial set of random coordinates we proceed
to minimize the intersection segment functional by a local
search of hill-climbing type:

In every step, we randomly pick a vertex v ∈ VZ3

and a coordinate direction ±x, ±y, or ±z, and
then move the vertex v one integer step in the
respective direction. If the resulting set of coor-
dinates is in general position and the new value
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FIGURE 4. A “nonrealization” of the octahedron with
locally minimal functional.

of the intersection segment functional is strictly
smaller than before, the move is accepted and
the next step is executed. Otherwise, the move
is discarded and we start anew from the previ-
ous set of coordinates.

If all possible choices of moves have been tested
for some set of coordinates without improve-
ment, then we are stuck in a local minimum. In
this case, for one step only, we choose one of the
admissible moves, i.e., a move that yields a set
of coordinates in general position, but that not
necessarily decreases the intersection segment
functional. From there, we then try to continue
to decrease the intersection segment functional
in a new direction.

Example 3.1. Local minima with a positive value of the
intersection segment functional can occur even for small
triangulations. For example, the boundary of the octa-
hedron with triangles

123, 124, 135, 145, 236, 246, 356, 456,

and furnished with coordinates (in general position)

1 : (4, 4, 6), 2 : (5, 6, 6), 3 : (9, 7, 4),

4 : (5, 9, 1), 5 : (4, 6, 3), 6 : (1, 5, 7),

attains a local minimum for the intersection segment
functional with value 3.17; see Figure 4 for a visualiza-
tion.

3.1 Details of the Algorithm

Initially, the vertices of the triangulation are placed ran-
domly at general positions in a cube of size 50× 50× 50.
This cube is chosen at the center of a larger (250×250×

250) cube that we take as the bounding box for all possi-
ble positions of the vertices during the local search.

After the choice of starting positions, the smaller cube
is not used.

• Thus, we allow the diameter of the vertex set to in-
crease moderately (which possibly helps to decrease
the intersection segment functional by unfolding the
initial shape).

• At the same time there is a fixed lower bound for the
change, at every step, of the intersection segment
functional (determined by the size of the bounding
box and the fact that we admit integer coordinates
only). In this way, we avoid the sequence of improve-
ments for the functional converging to zero.

An admissible step, then, is a movement of one vertex by
one integer in one of the coordinate directions such that
the resulting set of coordinates is in general position and
is within the bounding box.

• If the intersection segment functional becomes zero,
a realization for the given triangulation is found.

• If a realization is not found within a fixed period of
time T , the whole process is restarted for the tri-
angulation, beginning with the random selection of
the starting coordinates (in the smaller cube). In
so doing we try to overcome situations in which the
process cycles between different local minima.

A standard problem with local search algorithms is the
appropriate choice of the parameters that govern the
procedure. For some of the 20 examples of vertex-
minimal 10-vertex triangulations of the orientable surface
of genus 3 we tried the following variants:

• We chose different sizes for the initial cube, ranging
from 5 × 5 × 5 to 500 × 500 × 500.

• We allowed the bounding box to be between one and
eight times the size of the initial cube.

• If the segment functional decreased by moving one
vertex in one direction, we moved the vertex as far
as possible in that direction (until the intersection
segment functional began to increase again).

• In case of a local minimum, we determined all pairs
of vertices for which the exchange of their positions
decreased the intersection segment functional. We
then executed one such exchange at random. If there
was no such pair, we randomly exchanged two arbi-
trary vertices.
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• Instead of minimizing the intersection segment func-
tional we tried to minimize the normalized intersec-
tion segment functional, which is obtained from the
intersection segment functional by dividing by the
total length of the edges of the coordinatized trian-
gulation.

• We first generated ten thousand sets of initial co-
ordinates, from which we selected the set with the
smallest functional before starting the local search.

From all these variants the previously described one
turned out to have the best performance. This variant
then was used to find realizations for other triangulations.

3.2 Test Sets of Minimal Triangulations

If some triangulation of an orientable surface is realiz-
able, then so are all subdivisions of it that result from the
starting triangulation by an iterative sequence of elemen-
tary subdivisions of triangles and edges (see Figure 5).
For every geometrically realized triangulation in such a
sequence, we can always place the new vertex slightly
“above” or “below” the respective triangle or the respec-
tive edge of the previous realization. Alternatively, we
could choose all new vertices on the original surface and
then slightly perturb the coordinates of the new vertices
into general position.

A triangulation of a surface is minimal if it does not
result from a triangulation with fewer vertices by a se-
quence of elementary subdivisions. If all minimal tri-
angulations of a surface are realizable, then all triangu-
lations of the surface are realizable. Unfortunately, for
surfaces of genus g ≥ 1, the set of minimal triangulations
is infinite: it comprises the infinite set of triangulations
with all vertices of degree at least 5, since for any such
triangulation we can replace the star of a vertex (i.e., all
triangles that contain the vertex) with a patch that has
more vertices, but all of degree at least 5; see Figure 6.
Equivelar triangulations of surfaces of genus g ≥ 1 are

FIGURE 5. Subdivisions of a triangle and of an edge.

FIGURE 6. Replacement of the star of a vertex of degree 5.

FIGURE 7. Expansion (respectively contraction) of an edge.

minimal. For g = 1 there are infinitely many equive-
lar triangulations, whereas for each g > 1 there are only
finitely many examples; cf. [Sulanke and Lutz 09].

A finite subset (of the set of minimal triangulations)
of particular interest for testing realizability is the set
of vertex-minimal triangulations. If these are realizable,
then this should give a strong indication that in fact, all
triangulations of the surface are realizable.

A larger, but still finite, set of minimal triangulations
that contains all vertex-minimal triangulations is defined
as follows: If we allow edge expansions (with edge con-
tractions as inverses (see Figure 7) instead of elementary
subdivisions, then for every surface there is only a finite
set (see [Barnette and Edelson 88]) of irreducible trian-
gulations for which no edge can be contracted without
changing the topological type of the triangulation. Un-
fortunately, it is unclear a priori whether a realizable tri-
angulation of an orientable surface of genus g ≥ 1 remains
realizable after the expansion of an edge.

At least for every explicit polyhedral realization it can
easily be tested whether a particular edge expansion can
be carried out (via a system of linear constraints on the
link of the respective vertex; we thank the anonymous
referee for pointing this out to us).

It follows from [Steinitz and Rademacher 34, Sec-
tion 46] that every triangulated 2-sphere can be reduced
to the boundary of the tetrahedron by a sequence of
edge contractions; that is, the boundary of the tetra-
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g nmin Types

0 4 1
1 7 1
2 10 865
3 10 20
4 11 821
5 12 751,593
6 12 59

TABLE 1. Numbers of vertex-minimal triangulations
of the orientable surfaces of genus g ≤ 6.

hedron is the only irreducible triangulation of the
2-sphere. The number of irreducible triangulations of the
torus was determined by Grünbaum and independently
in [Lavrenchenko 87]: there are 21 such examples with up
to 10 vertices, and they are all realizable. It is shown in
[Sulanke 06a, Sulanke 06b, Sulanke 05] by enumeration
that there are exactly 396,784 examples of irreducible
triangulations (with up to 17 vertices) of the orientable
surface of genus 2.

Although it might be desirable to test realizability
for a larger set of irreducible triangulations, we re-
stricted ourselves to vertex-minimal ones. There is only
one unique vertex-minimal triangulation of the torus,
i.e., Möbius’s 7-vertex torus [Möbius 86], for which
[Császár 50] gives an explicit polyhedral model. Vertex-
minimal triangulations of the orientable surfaces of
genera 2 and 3 were enumerated in [Lutz 08], those of
genera 4 and 5 in [Sulanke and Lutz 09], and the vertex-
minimal examples of genus 6 in [Altshuler et al. 96];
see Table 1 for the corresponding minimal numbers of
vertices nmin and the respective numbers of combinato-
rial types of triangulations.

4. COMPUTATIONAL RESULTS

4.1 Genus 2

In [Lutz 08], geometric realizations for 864 of the 865
vertex-minimal 10-vertex triangulations of the orientable
surface of genus 2 were found with the random realization
approach in a total computation time of 30 CPU months
on a 2.8-GHz processor; the remaining example then was
realized with the rubber-band method [Bokowski 08]. For
realizations of the 865 examples with small coordinates,
see [Hougardy et al. 07a] and the comments above. With
our new heuristic algorithm, based on the intersection
segment functional, realizations for the 865 triangula-
tions were obtained in a total time of 218 CPU minutes
on a 3.5-GHz processor.

4.2 Genus 3

Realizations for 5 of the 20 vertex-minimal 10-vertex
triangulations of the orientable surface of genus 3
were constructed by hand in [Bokowski and Brehm 87,
Brehm 81, Brehm 87]. The random realization approach
of [Lutz 08], however, produced no results for these 5 (and
for the other 15) examples, where we stopped the search
after one CPU week each. Therefore, the basic random
realization approach is not suitable for triangulations of
surfaces of higher genus (or with more vertices). For 17
of the 20 triangulations, realizations with small coordi-
nates in the (5× 5× 5) cube were obtained in [Hougardy
et al. 07b]; this search was run (in total) for 2 CPU years
on a 3.5-GHz processor. Thus, the first task for our new
program was to realize the remaining three examples.

Theorem 4.1. All 20 vertex-minimal 10-vertex triangula-
tions of the orientable surface of genus 3 are geometri-
cally realizable in R

3.

Sets of coordinates for the realizations are available
online; see [Hougardy et al. 07b, Lutz 10]. In total, it
took 28 CPU hours on a 3.5-GHz processor to realize the
20 examples with the help of the intersection segment
functional. For two of the last three of the 20 examples,
we later found realizations in the (6 × 6 × 6) cube; cf.
[Lutz 10].

4.3 Genus 4

A first example of a polyhedron of genus 4 with 11 ver-
tices was described in [Bokowski and Brehm 89]. With
our intersection segment functional algorithm we found
realizations for 626 of the 821 vertex-minimal 11-vertex
triangulations of the orientable surface of genus 4. In an
effort to speed up the search, realizations for the remain-
ing 195 triangulations were obtained by recycling of co-
ordinates, that is, whenever a new realization was found,
we tried to reuse the respective set of coordinates for
other triangulations. We also slightly distorted the coor-
dinates and then tried to use these coordinates for other
triangulations; see [Lutz 08] for additional comments.

Theorem 4.2. All 821 vertex-minimal 11-vertex triangu-
lations of the orientable surface of genus 4 are geometri-
cally realizable in R

3.

We needed a total of 9.51 · 1011 steps of the local
search process to realize the 626 triangulations. As time
interval T we chose 15 minutes, so if after 15 minutes
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FIGURE 8. Histogram of the natural logarithms of the
used local search steps for 626 realizations of genus 4.

(about 5.4 · 106 steps) a realization was not reached, the
search was restarted with new initial coordinates.

Figure 8 displays a histogram of the natural logarithms
of the number of used steps. The picture indicates that
the logarithms of the used steps are normally distributed,
i.e., the used steps underlie a log-normal distribution.
To confirm this, we ran as a goodness-of-fit-test [Stuart
and Ord 87, Chapter 30], the Anderson–Darling test (cf.
[Everitt 98, p. 10]). The test estimates the mean to be
19.3 and the standard deviation to be 2. It yields a p-
value of 0.5, which is far above the rejection value of 0.05.
Therefore we can view the logarithms of the used steps to
be normally distributed with the estimated parameters.

Our implementation of the local search process is per-
forming about 3.6 · 105 steps per minute on a 3.5-GHz
processor. Therefore, we needed a total of 5 CPU years
to realize all triangulations. On average, it took 2.9 CPU
days to find a realization for a single triangulation.

4.4 Genus 5

As mentioned in Section 2, [Schewe 07, Schewe 10]
showed that there are at least three examples of vertex-
minimal 12-vertex triangulations of the orientable surface
of genus 5 that cannot be realized geometrically in R

3.
In order to complement Schewe’s result, we tried to

find realizations for at least some of the vertex-minimal
751,593 triangulations. To this end we started our pro-
cess on randomly selected triangulations out of all the
751,593 triangulations. If after 15 minutes a realization
was not found, a new triangulation was selected at ran-
dom. In this way, we tried about 94,000 triangulations,
using a total of 7.52 ·1011 local search steps, a CPU time

FIGURE 9. A polyhedron of genus 5.

of approximately four years, and succeeded in realizing
15 triangulations.

Theorem 4.3. At least 15 of the 751,593 vertex-minimal
12-vertex triangulations of the orientable surface of genus
5 are geometrically realizable in R

3.

Since the 94,000 triangulations we tested were chosen
randomly from the list of the 751,593 genus-5 triangula-
tions, probably at least 120 (and perhaps many more) of
the examples are realizable.

Example 4.4. Figure 9 displays one of the polyhedra of
genus 5 with 12 vertices, which has triangles

1 2 3, 1 2 4, 1 3 5, 1 4 6, 1 5 7, 1 6 8, 1 7 9, 1 8 10,

1 9 10, 2 3 6, 2 4 5, 2 5 8, 2 6 10, 2 8 11, 2 9 11, 2 9 12,

2 10 12, 3 5 11, 3 6 8, 3 7 8, 3 7 10, 3 9 10, 3 9 11, 4 5 9,

4 6 11, 4 7 8, 4 7 12, 4 8 9, 4 10 11, 4 10 12, 5 6 9,

5 6 10, 5 7 10, 5 8 12, 5 11 12, 6 7 9, 6 7 12 6 11 12,

8 9 12, 8 10 11

and coordinates

1 : (137, 124, 141) 2 : (107, 118, 143) 3 : (132, 130, 125)

4 : (122, 127, 129) 5 : (124, 129, 132) 6 : (126, 130, 124)

7 : (126, 129, 129) 8 : (122, 125, 138) 9 : (124, 128, 136)

10 : (119, 133, 134) 11 : (120, 130, 135) 12 : (121, 128, 133)

within the (250 × 250 × 250) cube.
For the coordinates for the other 14 examples, see

[Lutz 10].

Combining the result of [Schewe 07, Schewe 10] (that
there are nonrealizable triangulations of the orientable
surface of genus 5) with our finding (that all vertex-
minimal triangulations of surfaces of genus g ≤ 4 are
realizable) gives rise to the following conjecture.
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Conjecture 4.5. Every triangulation of an orientable sur-
face of genus g ≤ 4 is geometrically realizable.

The conjecture holds for genus 0 [Steinitz 22, Steinitz
and Rademacher 34] and for genus 1 [Archdeacon et
al. 07]).

4.5 Examples with More Vertices

We also tried our program on some triangulations of tori
with more vertices. It turned out that it still is possible
to find realizations, although it takes much longer for ev-
ery step of the local search process: There are O(|V |2)
pairs of triangles that have to be considered for the com-
putation, respectively for the update, of the intersection
segment functional. Moreover, there are 6|V | possible
moves from a current set of coordinates that lead to a
new set of coordinates. In the worst case, we are forced
to test almost all these moves just to carry out a sin-
gle improvement step. Finally, the initial value of the
intersection segment functional will be larger for trian-
gulations with more vertices, thus forcing us to perform
more steps.

FIGURE 10. The standard (3 × 10) torus.

FIGURE 11. The standard (3×10) torus with random
coordinates and a proper realization.

Example 4.6. For the standard (3×10) torus (Figure 10),
we started with random coordinates (Figure 11, top) and
an initial value 7924.26 of the intersection segment func-
tional. It then took 3042 local search steps to obtain a
proper realization (Figure 11, bottom).

5. CONVEX REALIZATIONS OF
TRIANGULATED 2-SPHERES

According to [Steinitz 22, Steinitz and Rademacher 34],
every polyhedral map on the 2-sphere S2 is geometrically
realizable in R

3 as the boundary complex of a convex
3-polytope. Tutte’s equilibrium method [Tutte 63] (see
also [Richter-Gebert 96, Section 12.2]) allows us to ob-
tain corresponding realizations algorithmically via first
constructing a planar equilibrium representation of the
edge graph of a given map. The resulting planar graph
can then be interpreted as the Schlegel diagram of a
3-polytope.

Triangulated 2-spheres are realizable as boundary
complexes of simplicial 3-polytopes. However, simpli-
cial 3- and higher-dimensional spheres need not be poly-
topal. The Brückner–Grünbaum 3-sphere [Grünbaum
and Sreedharan 67] and the Barnette 3-sphere [Bar-
nette 73], both with eight vertices, are the smallest ex-
amples of nonpolytopal simplicial spheres.

In the following, we give a simple modification of
our realization heuristic in order to obtain convex real-
izations of triangulated 2-spheres. (Using an intersec-
tion area functional one might generalize this approach
to search for convex realizations of simplicial 3-spheres
in R

4.)
A nonface of a triangulated 2-sphere with n vertices is

a two-element subset (an edge) or a three-element subset
(a triangle) of the ground set of n vertices that does not
constitute a face of the triangulation. In any convex real-
ization (in general position) of the triangulated 2-sphere
as the boundary complex of a simplicial 3-polytope, ev-
ery nonface intersects the interior of the respective poly-
tope. In particular, every face of the boundary 2-sphere
either has no intersection with a given nonface or inter-
sects the nonface in an edge or a vertex of the boundary
sphere.

Hence, by adding to the intersection segment func-
tional the lengths of intersection segments for all pairs of
(nonneighboring) triangles consisting of a triangle of the
triangulation and a triangle that does not belong to the
triangulation, the resulting extended intersection segment
functional can be used to obtain convex realizations for
triangulated 2-spheres. To be more precise, we state the
following proposition.
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Proposition 5.1. If a triangulated 2-sphere has no ver-
tex of degree 3, then the extended intersection seg-
ment functional is zero if and only if a convex re-
alization (with vertices in general position) has been
reached.

Proof: If a convex realization has been reached, then
obviously the extended intersection segment functional
is zero.

For the other direction, assume that the functional is
zero and that the vertices are in general position. In
case some vertex v is contained in the convex hull of the
other n − 1 vertices, then v is contained in the convex
hull of some subset {v1, v2, v3, v4} of four of the n − 1
vertices: Pick any vertex v1 on the boundary of the
convex hull of the n vertices; then by the general po-
sition assumption, there is a unique triangle {v2, v3, v4}
(opposite to v1 with respect to v) on the boundary of
the convex hull such that the tetrahedron {v1, v2, v3, v4}
contains v.

Without loss of generality, we may assume that no
other of the n−1 vertices is contained in the tetrahedron
{v1, v2, v3, v4}: If there is an additional such vertex, say
v′, then the convex hull of v′ with the triangle on the
boundary of the tetrahedron {v1, v2, v3, v4} opposite to
v′ with respect to v is a tetrahedron (of smaller volume)
that contains v. Moreover, since the smallest example of
a triangulated 2-sphere without a vertex of degree 3 is the
boundary complex of the octahedron with six vertices,
there is at least one vertex of the triangulation that lies
outside the tetrahedron {v1, v2, v3, v4}.

If the vertex v has degree larger than 4, then at least
one of the triangles of the star of v intersects nontrivially
some boundary triangle (a face or a nonface of the tri-
angulation) of the tetrahedron {v1, v2, v3, v4}. The line
segment in which the two triangles intersect contributes a
positive value to the extended intersection segment func-
tional, a contradiction.

If v has degree 4, there are two cases. If the star of
the vertex v contains a vertex different from v1, v2, v3, v4,
then at least one of the triangles in the star of v in-
tersects some triangle of the boundary of the tetra-
hedron {v1, v2, v3, v4}, a contradiction. Otherwise, let
v5 be a vertex outside the convex hull of the ver-
tices v1, v2, v3, v4. Then v lies in the convex hull of
v5 and some triangle {vi1 , vi2 , vi3} of the tetrahedron
{v1, v2, v3, v4}. But then the vertex star of v contains
the vertex v4, which lies outside the tetrahedron spanned
by the vertices vi1 , vi2 , vi3 , v5. This again leads to a
contradiction.

In case a triangulation has vertices of degree 3, non-
convex realizations of the triangulation can have vanish-
ing extended intersection segment functional. The small-
est such example is the bipyramid over a triangle with
one apex pushed inside the convex hull of the other four
vertices.

Nevertheless, we can recursively remove vertices of de-
gree 3 from a given triangulation. The resulting trian-
gulation then is either the boundary of a tetrahedron or
a triangulation with vertices all of degree at least four.
After obtaining a realization for the simplified triangula-
tion, the removed vertices can be added back by placing
them suitably “above” the triangles that they subdivide.

We successfully tested our approach for some small
triangulations of S2: there are 233 triangulations of S2

with 10 vertices, of which 12 examples have no vertices
of degree 3. It took, on average, about five minutes to
obtain convex realizations for these 12 triangulations.

Remark 5.2. Although our main focus in this paper was
on the realization of closed, orientable triangulated sur-
faces, the intersection segment functional can, of course,
also be used to search for realizations in three-space for
other 2-dimensional simplicial complexes. For example,
the functional was modified in [Leopold 09] for a search
for immersions of (orientable or nonorientable) triangu-
lated surfaces, as well as for a search for symmetric real-
izations and immersions.
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jes Tóth, Colloquia Mathematica Societatis János Bolyai
48, pp. 105–116. Amsterdam: North-Holland, 1987.

[Bokowski and Brehm 89] J. Bokowski and U. Brehm. “A
Polyhedron of Genus 4 with Minimal Number of Ver-
tices and Maximal Symmetry.” Geom. Dedicata 29 (1989),
53–64.

[Bokowski and Guedes de Oliveira 00] J. Bokowski and A.
Guedes de Oliveira. “On the Generation of Oriented Ma-
troids.” Discrete Comput. Geom. 24 (2000), 197–208.

[Bokowski and Sturmfels 89] J. Bokowski and B. Sturm-
fels. Computational Synthetic Geometry, Lecture Notes in
Mathematics 1355. Berlin: Springer, 1989.

[Bonnington and Nakamoto 08] C. P. Bonnington and A. Na-
kamoto. “Geometric Realization of a Triangulation on the
Projective Plane with One Face Removed.” Discrete Com-
put. Geom. 40 (2008), 141–157.

[Bredon 97] G. E. Bredon. Topology and Geometry, Graduate
Texts in Mathematics 139, corrected third printing. New
York: Springer, 1997.

[Brehm 81] U. Brehm. “Polyeder mit zehn Ecken vom
Geschlecht drei.” Geom. Dedicata 11 (1981), 119–124.

[Brehm 83] U. Brehm. “A Nonpolyhedral Triangulated
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[Grünbaum and Sreedharan 67] B. Grünbaum and V. P.
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2008.

Stefan Hougardy, Universität Bonn, Forschungsinstitut für Diskrete Mathematik, Lennéstr. 2, 53113 Bonn,
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