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An alternative to the traditional curve-straightening flow on pe-
riodic curves in surfaces is introduced. The implementation of
this flow produces periodic geodesics in minutes rather than
hours. The flow is also simpler to initiate since its use of a
penalty method permits initial curves that are not necessarily
in the surface. Compact and noncompact examples are pro-
vided as well as examples with trivial and nontrivial free homo-
topy classes. The explicit curve-straightening flow on circles in
Euclidean space is derived to help check the consistency of the
implementations.

1. INTRODUCTION

1.1 Geodesics

Geodesics, i.e., the non-Euclidean generalization of
straight lines, continue to be the subject of much re-
search. The initial value problem that produces a so-
called geodesic ray requires the solution of a second or-
der nonlinear differential equation that typically cannot
be solved explicitly. Fortunately, it is straightforward
to numerically generate approximate geodesic rays. The
problem of finding a length-minimizing curve connect-
ing two given points also leads to geodesics. In this case,
things are more involved since it is now necessary to solve
a boundary value problem. Neither of these two problems
is as demanding as the problem of numerically generating
a periodic geodesic. A periodic geodesic is a parameter-
ized curve γ of constant speed characterized by the fact
that its acceleration has no tangential part and γ satisfies
periodic boundary conditions.

1.2 Alternative Flows

Several different flow methods, such as a variety of curve-
shortening [Grayson 89] and curve-straightening flows
[Langer and Singer 87, Linnér 91], have been proposed
as means to accomplish the task of producing periodic
geodesics. As far as we know, only one of these meth-
ods, traditional curve-straightening, has an implemen-
tation capable of generating periodic geodesics in gen-
eral surfaces that are diffeomorphic to a sphere; see
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[Linnér 04]. The tendency of the curve-shortening flow
to shrink an initial periodic curve down to a point ren-
ders this technique less useful in such surfaces. Ideas to
combat this through area-preserving modifications have
been explored by Gage [Gage 90], but no general exam-
ples have been produced.

1.3 Curve-Straightening

The implementation of the curve-straightening flow in
[Linnér 04] is interactive. It is also a hybrid since it
utilizes both symbolic and numeric capabilities of Math-
ematica. As a consequence, it is a very time-consuming
process to generate a periodic geodesic. The purpose of
the present article is to report on a related but different
approach now implemented in Fortran.

1.4 New Method

This new approach has the following in common with the
previous method. It seeks to minimize the elastic energy,
given by

∫
γ
κ2ds, in a suitable space of periodic curves

confined to a given surface. Here κ is the so-called geo-
desic curvature and s is the arc length parameter. Both
methods use Sobolev space gradients as their primary
tool. There are different options as to how to deal with
the three main difficulties: the constraint to stay in the
surface, the demand that the curve is periodic, and the
reduction of the elastic energy down to zero.

1.5 Existence and Convergence

A strong motivation behind the development of algo-
rithms designed to produce periodic geodesics is the
recent comprehensive existence results in the case of
sphere-like surfaces. In the works by Franks [Franks 92]
and Bangert [Bangert 93] it is shown that there are infi-
nitely many geometrically distinct periodic geodesics in
a sphere with an arbitrary Riemannian metric. Since the
total squared geodesic curvature is zero at each periodic
geodesic, it is very natural to use steepest descent as a
tool to locate these global minima. It is, however, not
known if the negative gradient trajectories always con-
verge. The example in Section 2 illustrates divergence in
the Euclidean plane where there are no periodic geodes-
ics. It is shown in [Linnér 98] that divergence is possible
even in the presence of a global minimum. A second
motivation behind the development of these tools is the
desire to learn more about the convergence or divergence
along steepest descent.

1.6 Geometric Properties along Steepest Descent

In [Linnér 03] several examples illustrate how a change
of Sobolev metric affects geometric properties of curves

along the flow. Little is known about the geometric influ-
ence of the Neuberger-Sobolev gradients [Neuberger 97]
and the use of conjugate gradient steps in the setting
of infinite-dimensional manifolds. The rest of this paper
initiates an investigation into this. Few steepest descent
flows in infinite-dimensional manifolds are explicit. The
case of evolving circles in the Euclidean plane provides
one example where the evolution of the length is explicit
and not trivial, see Section 2.

1.7 Organization

This paper is organized as follows. Section 2 presents the
necessary mathematical concepts and fixes the notation.
It also contains a description of the curve-straightening
flow in the Euclidean plane. The evolution of a unit
length circle is described explicitly. Section 3 provides
an overview of the implementation of the new method,
which is based on the Neuberger-Sobolev gradient and
the Polak-Ribiere nonlinear conjugate gradient method.
Section 4 provides examples and a discussion of our com-
putational experience. Section 5 summarizes the article
by comparing the new method to the previous.

2. SPECIFICS

To provide a gentle introduction to the techniques and
the notation, we present all the details in the first case
considered.

2.1 The Euclidean Case

In almost all cases, the flow along the negative gradi-
ent trajectories of the elastic energy restricted to peri-
odic curves of arbitrary length is not explicit. In the
case of periodic curves in the Euclidean plane, the flow
formulas simplify so that at least some trajectories are
completely explicit. To see this, consider regular curves
γ : [0, 1] → R

2 of length Lγ parameterized so that
|γ′(s)| = Lγ for all s in [0, 1]. There is a unique tan-
gent angle θ : [0, 1] → R with θ(0) ∈ [0, 2π), and
γ′(s) = (x(s), y(s)) = Lγ(cos θ(s), sin θ(s)). The signed
curvature κ : [0, 1] → R is given by κ(s) = θ′(s)/Lγ . It is
now convenient to work with pairs (θ, L), and if necessary
integrate to recover γ.

2.2 Elastic Energy

The elastic energy is proportional to the quantity

J(θ, L) =
1

2L

1∫
0

(θ′(s))2ds.
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Rotate γ so that the initial tangent is horizontal, and
define

H0 =
{
θ ∈W 2

1 [0, 1] |θ(0) = 0
}
.

This Sobolev space consists of absolutely continuous
functions with derivatives in L2[0, 1]. Let R

+ denote
the positive real numbers and choose the domain so that
J : H0 × R

+ → R. We disallow curves with a tangent
discontinuity by requiring θ(1) = η · 2π, where η is the
integer known as the rotation number. The Riemannian
structure on T (H0 ×R

+) = TH0 ×TR
+ = H0 ×R is the

traditional

〈(vθ, vL), (wθ, wL)〉 =

1∫
0

v′θ(s)w
′
θ(s)ds+ vLwL.

2.3 Gradient

In infinite dimensions it becomes important to distin-
guish between the “directional” derivative and the gra-
dient. They are related by

DJ(θ, L)(vθ, vL) = 〈∇J(θ, L), (vθ, vL)〉 ,
where the right-hand side depends on the choice of Rie-
mannian structure. Since

DJ(θ, L)(vθ, vL) = −vL
J(θ, L)
L

+
1
L

1∫
0

θ′(s)v′θ(s)ds,

it follows that the two components of the gradient are
given by ∇J(θ, L)θ = θ/L, and ∇J(θ, L)L = −J(θ, L)/L.
Observe that

∇J(θ, L)θ(1) −∇J(θ, L)θ(0) = θ(1)/L = η · 2π/L,
so for nonzero rotation number the tangent direction
will not stay periodic. More generally, it is necessary
to project onto the tangent space of the manifold of all
periodic curves given by

Ωη =

{
(θ, L) ∈ H0 × R

+

∣∣∣∣∣Gx(θ, L) = Gy(θ, L) = 0,

Φ(θ, L) = η · 2π

}
,

where

Gx(θ, L) = L

∫ 1

0

cos θ(s)ds,

Gy(θ, L) = L

∫ 1

0

sin θ(s)ds, and

Φ(θ, L) = θ(1).
The derivatives are given by

DGx(θ, L)(vθ, vL) =

vL

∫ 1

0

cos θ(s)ds− L

∫ 1

0

vθ(s) sin θ(s)ds,

DGy(θ, L)(vθ, vL) =

vL

∫ 1

0

sin θ(s)ds+ L

∫ 1

0

vθ(s) cos θ(s)ds,

and DΦ(θ, L)(vθ, vL) = vθ(1). When these nonlin-
ear functionals are restricted to Ωη, their derivatives
no longer depend on vL, and hence ∇Gx(θ, L)L =
∇Gy(θ, L)L = ∇Φ(θ, L)L = 0. Integration by parts fur-
ther reveals that

DGx(θ, L)(vθ, vL) =

1∫
0

v′θ(s)y(s)ds,

and

DGy(θ, L)(vθ, vL) = −
1∫

0

v′θ(s)x(s)ds.

The gradients are given by

∇Gx(θ, L)θ =
∫ s

0

y(u)du,

∇Gy(θ, L)θ = −
∫ s

0

x(u)du, and

∇Φ(θ, L)θ = s.

2.4 Projection

The task at hand is to determine the scalar fields λx, λy

and µ so that ∇Jπ := ∇J − λx∇Gx − λy∇Gy − µ∇Φ ∈
TΩη. Specifically, one needs(

θ(s)
L

− λx

∫ s

0

y(u)du

+ λy

∫ s

0

x(u)du− µs,−J(θ, L)
L

)
∈ TΩη.

Observe that, due to the second component of the pro-
jected gradient, there are no periodic critical points, and
hence each negative gradient trajectory must diverge.
Since the values of the three functionals are constant
on Ωη, it must be that the three derivatives vanish in
the directions given by TΩη. This leads to three linear
equations that, in the H0 component, correspond to the
matrix equation

DGx(
∫ s

0
y) −DGx(

∫ s

0
x) DGx(s)

DGy(
∫ s

0
y) −DGy(

∫ s

0
x) DGy(s)∫ 1

0
y − ∫ 1

0
x 1





λx

λy

µ


 =


DGx( θ

L )
DGy( θ

L )
η · 2π

L


 ,

where most arguments are suppressed.



148 Experimental Mathematics, Vol. 14 (2005), No. 2

2.5 Steepest Descent

The matrix equation simplifies to


∫ 1

0
y2 − ∫ 1

0
xy

∫ 1

0
y

− ∫ 1

0
xy

∫ 1

0
x2 − ∫ 1

0
x∫ 1

0
y − ∫ 1

0
x 1





λx

λy

µ


 =




∫ 1

0
κy

− ∫ 1

0
κx

η · 2π
L


 ,

where the left-hand side involves the center of mass and
second order inertia. The right-hand side is related to
the so-called Steiner curvature centroid. The evolution
along the negative gradient trajectory satisfies

d

dτ
(θτ , Lτ ) = −∇πJ(θτ , Lτ )

in flow time τ . This flow equation typically cannot be
solved explicitly. There is, nonetheless, at least one ex-
ample where things work out completely. Suppose the
initial curve of the flow is a circle of unit length so
that θ0 = 2πs, L0 = 1, and η = 1. A routine, albeit
lengthy, calculation shows that (λx)0 = (λy)0 = 0, and
µ0 = 2π initially. It follows that ∇πJ(θτ , Lτ )θ = 0,
and hence (λx)τ = (λy)τ = 0 with µτ = 2π/Lτ . The
curve evolves as a circle, i.e., θτ = θ0 for all times τ.
Since ∇πJ(θτ , Lτ )L = −J(θτ , Lτ )/Lτ , it follows that the
length evolves as the solution to the following initial value
problem:

d

dτ
Lτ =

2π2

L2
τ

, L0 = 1.

The solution is Lτ = 3
√

1 + 6π2τ .

2.6 General Surfaces

The rest of this article concerns general regular surfaces
of the form M =

{
p ∈ R

3 |f(p) = 0
}

where f : R
3 → R,

and ∇f(p) �= 0 for all p in M . Observe, that κ now
stands for the geodesic curvature, and the angle θ mea-
sures the signed difference between the tangent direc-
tion and a reference direction that is parallel-transported
along the curve. When γ is a curve of unit speed in M

and n = ∇f/ |∇f | is the unit normal to the surface, then
the following holds:

|κ| = |γ′′(s) − γ′′(s) · n(γ(s))n(γ(s))| .
The implementation described in [Linnér 04] handles this
general case, but at a sluggish pace. For instance, the
explicit case described in the previous paragraph takes
100 steps in 6 minutes using Mathematica 5.0 on a Win-
dows PC running an AMD Athlon at 1.2-GHz. A more
complicated surface with nonzero Hessian Hf and deriv-
ative DHf slows the method to about an hour. Inci-
dentally, the circles associated with the pair (θτ , Lτ ) now
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FIGURE 1. Circles of varying length in the Euclidean plane.

spin around the fixed initial point as their radii grow;
see Figure 1. Unlike in the special explicit case, here the
tangent angle is measured with respect to the parallel-
transported initial tangent vector. The initial tangent
vector is free to change in this general case, and it does
so. This spinning is an example of a general effect due
to the choice of Riemannian structure; see [Linnér 03] for
details.

3. NEW METHOD

In this section we describe a new method for construct-
ing a discrete approximation to a periodic geodesic in a
regular surface M . The method is based on Neuberger’s
theory of Sobolev gradients [Neuberger 97], and is simi-
lar to the methods used in [Renka 03] and [Renka 04a].
The primary innovation here is the treatment of nonlin-
ear equality constraints. We found that a simple penalty
method was remarkably effective, at least for our test
cases.

As mentioned in the introduction, curves will now be
treated without the help of the tangent angle. As a con-
sequence, the length of the curve is no longer explicit.
The curves are parameterized by arc length. Specifically,
denote by γ : [0, L] → M a parametric representation of
a unit speed curve in M with total length L: f(γ(s)) = 0
and |γ′(s)| = 1 for all s in [0, L]. The elastic energy based
on the geodesic curvature of γ is proportional to the
L2-norm squared of the tangential curvature component:

J(γ) =
∫ L

0

|Kg(s)|2 ds,

where

Kg(s) = γ′′(s) − 〈γ′′(s), n(γ(s))〉n(γ(s))

is a vector equal to the projection of the acceleration vec-
tor γ′′(s) onto the orthogonal complement of the surface
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normal n at γ(s). The J here has a different domain
compared to before and the factor 1/2 is dropped. A
geodesic is characterized by J(γ) = 0. The periodic end
conditions are γ(0) = γ(L) and γ′(0) = γ′(L).

3.1 Discretization

Let γ now denote the polygonal curve defined by a cycli-
cally ordered sequence of m vertices γi, i = 1, . . . ,m.
Note that our discrete representation of γ includes the
derivative approximations defined below along with the
vertices. We denote segment lengths by ∆si, midpoint
unit tangent vectors by ∆γi, and vertex curvature vectors
by ∆2γi:

∆si = ‖γi − γi−1‖,
∆γi =

γi − γi−1

∆si
,

and
∆2γi =

∆γi+1 − ∆γi

(∆si + ∆si+1)/2

for i = 1, . . . ,m, where γ0 = γm, ∆sm+1 = ∆s1, and
∆γm+1 = ∆γ1.

The integral defining geodesic curvature is approxi-
mated by the composite trapezoidal rule giving the dis-
cretized energy functional

E(γ) = .5
m∑

i=1

(‖ui‖2)∆ai,

where
∆ai = ∆si + ∆si+1,

ui =
(
I − nint

i

)
∆2γi,

and
ni = ∇f(γi)/‖∇f(γi)‖.

3.2 Minimization Problem

We have the constrained optimization problem of min-
imizing E(γ) subject to the end conditions and the m
nonlinear constraints F (γ) = 0, where the ith compo-
nent of F (γ) is f(γi) for i = 1, . . . ,m. The periodic end
conditions are implicit in the expressions for ∆s1, ∆γ1,
and ∆2γm.

For the nonlinear constraints, we add a penalty func-
tion to the energy functional, giving

φ(γ) = E(γ) + .5wF (γ)tF (γ),

where w is a positive penalty weight. As w increases, the
solution to the unconstrained problem of minimizing φ

approaches the solution to the constrained problem. Un-
fortunately, the Hessian of φ also becomes more nearly

singular, and the optimization problem becomes increas-
ingly ill-conditioned, as w increases. We therefore solve a
sequence of problems with increasing values of w, using
each solution as the initial estimate for the subsequent
problem.

3.3 Descent

The functional φ is minimized by a gradient descent
method using the discretized Sobolev gradient defined
below. The method of steepest descent, although noto-
riously slow with the ordinary gradient, is effective with
our gradient, but a nonlinear conjugate gradient method
is faster, with a typical speedup factor of about three.
Our code and test results are based on the Polak-Ribiere
variant of the Fletcher-Reeves conjugate gradient method
[Polak 71].

The iteration is

γk+1 = γk + αkdk (k = 0, 1, 2, . . .),

where

dk = −gk +
(gk − gk−1)tgk

gk−1
tgk−1

dk−1,

gk is the Sobolev gradient of φ at γk, γ0 is an initial
solution estimate, and αk is computed by a line search—
minimization of ψ(αk) = φ(γk + αkdk). We use Brent’s
univariate optimization algorithm which combines golden
section search with parabolic interpolation [Brent 73].
The iteration is restarted with a steepest descent itera-
tion (dk = −gk) after every n steps, where n was (some-
what arbitrarily) chosen to be 3 in our tests.

3.4 Sobolev Gradient

Denote by S0 the set of perturbations for γ which pre-
serve the end conditions. This is the space of all m-
vectors of vertices. A Sobolev inner product associated
with a curve (the current approximation to the solution)
γ is

〈g,h〉γ =
∫
〈g′′(s),h′′(s)〉 ds+ w2

0

∫
〈g(s),h(s)〉 ds,

where s is the arc length associated with γ, and w0 is
a positive weight. Note that this is positive (defines an
inner product) on functions with square integrable second
derivatives and is intrinsic to the curve (independent of
the parametrization). The purpose of the second term is
both to force positivity and to allow some control over the
conditioning of the smoothing operator defined below.
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The discretized inner product on S0 is

〈g,h〉γ = .5
m∑

i=1

(〈∆2gi,∆2hi〉 + w2
0〈gi,hi〉

)
∆ai

= 〈Dg,Dh〉2m,

(3–1)

where D =
(
D2

D0

)
: (R3)m → (R3)2m is the discrete

differential operator defined by

D2gi =
√
.5∆ai∆2gi,

D0gi = w0

√
.5∆aigi,

and, for r, s ∈ (R3)m, the discretized L2 inner product is

〈r, s〉m =
m∑

i=1

〈ri, si〉.

Note that ∆2gi involves the second divided difference of
g values and values of ∆si = ‖γi−γi−1‖, not ‖gi−gi−1‖,
which would involve g in a nonlinear fashion.

We have 〈g,h〉γ = 〈Dg,Dh〉2m = 〈DtDg,h〉m =
〈DtDg,h〉S0 . Now let g be the Sobolev gradient
(γ-gradient) of φ at γ. Then by the Rietz Representation
Theorem,

φ′(γ)h = 〈∇φ(γ),h〉S0 = 〈g,h〉γ = 〈DtDg,h〉S0

for all h ∈ S0. Thus the Sobolev gradient g is defined by

g =
(
DtD

)−1 ∇φ(γ).

The 4th order smoothing operator (DtD)−1 may be
thought of as a preconditioner for the gradient descent
method, but it is chosen in a far less ad hoc manner than
is usually the case with preconditioners.

An expression for the discretized L2 gradient ∇φ(γ)
is obtained by simply differentiating the expression for
φ. The operator D is represented by a 2m by m matrix
which is applied to each of the three components of an
element of S0. Note that D2 is tridiagonal with nonze-
ros in the upper right and lower left corners. Hence, the
symmetric positive definite order-m matrix DtD is pen-
tadiagonal except for three nonzero elements in the cor-
ners. The linear systems are solved by a direct method
(using a Cholesky RtR factorization for upper triangular
matrix R).

3.5 Software

A well-documented portable Fortran-77 implementation
of the new method is available from the second author.
An interactive surface plotting program is also available

[Renka 04b]. The Mathematica implementation of the
previous method is available from the first author in the
notebook format. There is also Mathematica code avail-
able to help import the Fortran output into a notebook.

4. EXAMPLES

4.1 The Explicit Example Revisited

In order to verify the explicit expression for evolution of
length in the planar circles, as well as to test the integrity
of our implementation of the new method, we ran some
tests using steepest descent with fixed constant step-size
(10−5) and the ordinary L2-gradient. Using m = 22 and
beginning with a discretization of a circle of circumfer-
ence 1, we computed 500,000 iterations. All iterates cor-
respond to circles centered at the origin, and Table 1
demonstrates that the curve lengths evolve at the pre-
dicted rate. The four columns contain the number of it-
erations, the computed curve length, the flow time, and
the predicted curve length based on τ , respectively. The
association of the time increment ∆τ = 3.54 with an
iteration count of 105 was obtained by evaluating the in-
verted formula τ(L) = (L3 − 1)/(6π2) at the computed
value L = 5.951.

4.2 Speed Improvement

The second example (Figure 2) compares the computa-
tional performance of the implementation of the curve-
straightening flow in [Linnér 04] with the new algorithm
and its Fortran implementation. It is not really a fair
comparison since this new implementation uses com-
piled code and the previous method does not. Regard-
less, one goal is the development of a much faster gen-
erator of periodic geodesics. The surface is given by
2x2 + 3y2 + 5z2 + x3z+ yz3 = 1. The fourth order terms
perturb the ellipsoid so that symmetries are removed.
With initial curve the ellipse with z = 0 using the same
hardware (AMD 1.2-GHz Athlon PC), a periodic geo-
desic is generated in less than 2 seconds, compared to

Iterations L τ Lτ

0 .9966 0.00 1.000
105 5.951 3.54 5.950

2 × 105 7.491 7.08 7.490
3 × 105 8.573 10.62 8.572
4 × 105 9.434 14.16 9.434
5 × 105 10.162 17.70 10.161

TABLE 1. Computed and predicted curve lengths.
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FIGURE 2. Periodic geodesic on 2x2 + 3y2 + 5z2 + x3z +
yz3 = 1.

several hours using Mathematica. The two implementa-
tions produce the exact same periodic geodesic. Observe
that the z component of the geodesic is no longer con-
stant.

4.3 Mountain Pass

The third example (Figure 3) illustrates how the flow
may carry two distinct initial curves to two distinct peri-
odic geodesics. The surface is a torus of revolution that
satisfies (

√
x2 + y2−2)2 +z2 = 1. The circles with z = 0

and radii 1 and 3, respectively, are periodic geodesics.
For 0 ≤ t ≤ π/2, the initial curves with z = cos(t) and
radii 2 − sin(t) have the following, perhaps surprising,
behavior. If t < 0.2, then the limit periodic geodesic has
radius 3 with z = 0. If t > 0.3, then the limit periodic
geodesic has radius 1 with z = 0. In particular, the circle
with t = 0, which is a curve where each point has zero
Gaussian curvature, is not exceptional. It is tempting to
speculate that a nongeodesic circle for some t in (.2, .3)
is in fact an elastic curve that appears as a mountain
pass critical point. This belief is strengthened when the
variational equation κss + κ3/2 + κG = 0 for free elastic
curves is analyzed; see [Langer and Singer 84]. Here, G
is the Gaussian curvature of the surface along the curve.
The circles considered here have negative constant geo-
desic curvature κ = cos(t)/(sin(t) − 2). The Gaussian
curvature is the constant G = sin(t)/(sin(t) − 2) along
the circles; see page 157 in [do Carmo 76]. For nonzero
κ the variational equation simplifies to a quadratic equa-
tion with one admissible solution sin(t̂) = 2 − √

3 and
t̂ ≈ 0.271263753.

4.4 Noncompact Surface

The last example (Figure 4) involves a surface with six
“ends” given by x2y2 + y2z2 + z2x2 = 1. Unlike sphere-
like surfaces, in this example it is possible to shrink some
initial curves without the curve degenerating to a point.

FIGURE 3. Two initial curves that tend to different peri-
odic geodesics on (

�
x2 + y2 − 2)2 + z2 = 1.

FIGURE 4. Periodic geodesic on x2y2 + y2z2 + z2x2 = 1.

It is far from obvious how to give an initial curve, with
this property, that is in the surface. The new method
does not require the initial curve to be in the surface, so
here a slanted circle is used. Finally, recall that a stan-
dard right circular cylinder is a much simpler example of
a noncompact surface with periodic geodesics.

5. SUMMARY

The total squared geodesic curvature of a curve is glob-
ally minimized if and only if the curve is a geodesic.
This suggests generating its negative gradient trajecto-
ries inside the infinite-dimensional manifold of curves
subject to the boundary conditions under consideration.
There are several, rather different, ways to implement
this approach. The new ideas presented here address
several of the shortcomings with the method presented
in [Linnér 04]. Although the two methods agree for some
explicit Euclidean examples, there are fundamental dif-
ferences.
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5.1 Smoothness and Constraints

The new method avoids the tangent angle of [Linnér 04].
This complicates the algebraic form of the geodesic cur-
vature, and a Sobolev space of second derivatives is re-
quired. An advantage is that it is now much easier to
deal with the periodic boundary conditions. In particu-
lar, it is no longer necessary to repeatedly solve a pair of
highly nonlinear six-dimensional initial value problems.
The surface constraint enters through a penalty term,
and a noteworthy consequence of this is the freedom
to choose an initial curve that is not necessarily in the
surface.

5.2 Steepest Descent

The two methods approximate the infinite-dimensional
space of periodic curves differently. The previous method
utilizes a Hilbert space basis and a suitable finite Fourier
approximation. The new method tracks a finite num-
ber of points that belong to the curve throughout the
descent. The flow takes place in the ambient Euclidean
space and no “exponential projection” is necessary. The
new method utilizes conjugate gradient steps along the
descent.

5.3 Computational Demand

Finally, as mentioned above, the previous implementa-
tion is tied to Mathematica and does not, currently, per-
form at a speed acceptable for extensive exploration and
experimentation. The new method is implemented in
Fortran and the computations are completed in minutes
rather than hours as before. To support visualization, a
surface viewer is supplied that also shows the curve in the
surface, and for Mathematica users a conversion interface
to help import the Fortran output.
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