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Serre’s conjecture relates two-dimensional odd irreducible char-
acteristic p representations to modular forms. We discuss a gen-
eralization of this conjecture (due to Ash and Sinnott) to higher-
dimensional Galois representations. In particular, we give a re-
finement of the conjecture in the case of wildly ramified Galois
representations and we provide computational evidence for this
refinement.

1. INTRODUCTION

In [Ash and Sinnott 00], Ash and Sinnott state a con-
jecture which relates certain n-dimensional Galois rep-
resentations to arithmetic cohomology classes. This con-
jecture is the beginning of a vast generalization of Serre’s
conjecture relating two-dimensional odd irreducible Ga-
lois representations defined over F̄p with mod p reduc-
tions of modular forms. Both Serre’s conjecture and its
generalization predict a weight for an object correspond-
ing to a Galois representation. Serre’s conjecture gives a
precise prediction of the weight of a modular form cor-
responding to any odd irreducible two-dimensional Ga-
lois representation. On the other hand, in certain cases
the conjecture of Ash and Sinnott asserts that at least
one of several weights yields a cohomology eigenclass
corresponding to an odd n-dimensional Galois represen-
tation. In this paper we discuss a refinement of the
conjecture of Ash and Sinnott clarifying which of their
predicted weights should actually contain an eigenclass
corresponding to a given Galois representation, and we
present computational evidence for this refinement. We
note that Ash and Sinnott only dealt with niveau one Ga-
lois representations—in [Ash et al. 02] their conjecture is
extended to more general Galois representations, but the
ambiguity is not addressed. In this paper, we do not
address the ambiguity in the case of higher niveau rep-
resentations. The computational evidence in this paper
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only concerns niveau one representations in characteris-
tic p with 5 ≤ p ≤ 17. In addition, examples of wildly
ramified Galois representations in characteristics two and
three appear in [Ash et al. 04] and [Ash et al. 03]. The
results of the computations done in these papers also sup-
port the refined conjecture.

2. THE CONJECTURE OF ASH AND SINNOTT

2.1 Definitions

In this section, we give brief definitions of the objects
relating to the conjecture of Ash and Sinnott. These
definitions follow [Ash and Sinnott 00] and [Ash et al. 02],
and these papers should be consulted for more details.

2.1.1 Hecke operators. Let Γ0(N) be the subgroup
of matrices in SLn(Z) whose first row is congruent to
(∗, 0, . . . , 0) modulo N . Define SN to be the subsemi-
group of integral matrices in GLn(Q) satisfying the same
congruence condition and having positive determinant
relatively prime to N .

If we let H(N) be the F̄p algebra of double cosets
Γ0(N)\SN/Γ0(N), then H(N) is a commutative algebra
that acts on the cohomology and homology of Γ0(N) with
coefficients in any F̄p[SN ]-module. We call this algebra of
double cosets the Hecke algebra and its elements Hecke
operators. We single out certain Hecke operators related
to diagonal matrices—namely, for a prime � let D(�, k)
be the diagonal matrix with the first n − k diagonal en-
tries equal to 1 and the remaining k entries equal to �.
The Hecke operator (or double coset) corresponding to
D(�, k) will then be denoted by T (�, k).

Definition 2.1. Let V be an H(pN)-module, and sup-
pose that v ∈ V is a simultaneous eigenvector for all
T (�, k) such that T (�, k)v = a(�, k)v with a(�, k) ∈ F̄p

for all prime � not dividing pN and all k between 0 and
n inclusive. Let ρ : GQ → GLn(F̄p) be a representation
unramified outside pN and assume that

n∑
k=0

(−1)k�k(k−1)/2a(�, k)Xk = det(I − ρ(Frob�)X)

for all � not dividing pN . Then we say that ρ is attached
to v or that v corresponds to ρ.

Note that in the definition of attached there is no ex-
plicit connection between ρ and v, except that there is a
coincidence of eigenvalues and coefficients of the charac-
teristic polynomial of the Frobenius elements. In addi-
tion, in all cases that we discuss, we will have (N, p) = 1.

2.1.2 Irreducible GLn(Fp)-modules. In place of the
weight in Serre’s conjecture we use an irreducible
GLn(Fp)-module. Such modules are parametrized by cer-
tain n-tuples of integers.

Definition 2.2. An n-tuple (a1, a2, . . . , an) of integers is
said to be p-restricted if 0 ≤ an ≤ p − 2 and 0 ≤ ai −
ai+1 ≤ p − 1 for 1 ≤ i < n.

Theorem 2.3. [Doty and Walker 92, page 412] The collec-
tion of irreducible GLn(Fp)-modules is in one-to-one cor-
respondence with the collection of p-restricted n-tuples.

Definition 2.4. Given a p-restricted n-tuple (a1, . . . , an),
we will denote the associated irreducible GLn(Fp)-
module by F (a1, . . . , an).

We will also use an additional notation in stating
the conjecture. For an n-tuple (a1, . . . , an) of inte-
gers we will denote by (a1, . . . , an)′ the set of all n-
tuples (b1, . . . , bn) such that (b1, . . . , bn) is p-restricted
and bi ≡ ai (mod p − 1) for each i. We note that there
may be several n-tuples which satisfy the condition to
be in (a1, . . . , an)′. For example, working modulo 5,
(1, 0, 0)′ will contain both (1, 0, 0) and (5, 4, 0). The set
(a1, . . . , an)′ will contain more than one n-tuple whenever
some ai ≡ ai+1 (mod p−1). The main point of this paper
is to predict which elements of (a1, . . . , an)′ will satisfy
the conjecture of Ash and Sinnott in certain cases. We
will often denote by F (a1, . . . , an)′ the set of irreducible
modules corresponding to n-tuples in (a1, . . . , an)′.

Definition 2.5. A resolution of (a1, . . . , an)′ is any n-
tuple (b1, . . . , bn) which is one of the n-tuples contained in
(a1, . . . , an)′. A resolution of F (a1, . . . , an)′ is any mod-
ule contained in F (a1, . . . , an)′.

2.1.3 Level and nebentype. For a fixed prime q, fix
an embedding of GQq

→ GQ, and let Gq,i be the result-
ing lower numbering filtration of ramification subgroups.
With this notation, Gq,0 is an inertia group of q, and Gq,i

with i > 0 are wild ramification subgroups. We will often
denote Gq,0 by Iq.

Given a Galois representation ρ : GQ → GLn(F̄p), we
let M = F̄n

p be acted on by GQ via ρ in the natural way.
We define gq,i = |ρ(Gq,i)|. Then set

nq =
∞∑

i=0

gq,i

gq,0
dim M/MGq,i .
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Note that this sum is finite, since eventually the images
under ρ of the ramification groups are trivial. In addi-
tion, by the same reasoning used in [Serre 87] for two-
dimensional representations, each nq is a nonnegative in-
teger, and nq = 0 for all but finitely many primes q.

Definition 2.6. With ρ as above, we define the level of ρ

to be
N(ρ) =

∏
q �=p

qnq ,

where the product runs over all primes q not equal to p.

To define the nebentype, we factor det ρ = ωkε, where
ω is the cyclotomic character modulo p and ε : GQ → F̄×

p

is a character which is unramified at p. By class field
theory, we may consider ε as a character

ε : (Z/N(ρ)Z)× → F̄×
p

and then pull it back to SN via

SN → (Z/N(ρ)Z)× → F̄×
p ,

where the first map takes a matrix in SN to its (1,1) entry.
We then define Fε to be the one-dimensional space F̄p

considered as an SN -module with the action given by ε.
Finally, if V is a GLn(Fp)-module we define

V (ε) = V ⊗ Fε.

2.2 The Conjecture

We now state a version of the conjecture given by Ash
and Sinnott [Ash and Sinnott 00]. Note that their con-
jecture is stronger than what is stated here, in that it
deals not only with irreducible representations, but also
with reducible representations.

Conjecture 2.7. Let ρ : GQ → GLn(F̄p) be a continuous
irreducible representation such that if p is odd, the image
of complex conjugation is conjugate to a diagonal matrix
with alternating 1s and (−1)s on the diagonal. Assume
that we can conjugate ρ so that

ρ|Ip
=




ωa1 ∗ · · · ∗
ωa2 · · · ∗

. . . ∗
ωan


 .

Let N be the level of ρ and ε the nebentype, as defined
above. Then for some resolution (b1, . . . , bn) of (a1−(n−
1), a2 − (n − 2), . . . , an−1 − 1, an)′ and

V = F (b1, . . . , bn),

ρ is attached to a cohomology eigenclass in

H∗(Γ0(N), V (ε)).

For evidence supporting this conjecture see [Ash and
Sinnott 00] and [Ash et al. 02]. Note that requiring ρ|Ip

to
have powers of the cyclotomic character on the diagonal
when upper triangularized limits us to niveau one Galois
representations. Higher niveau Galois representations are
not considered in this paper. In addition, we remark that
for p = 2, there is no condition on the image of complex
conjugation.

3. REFINING THE CONJECTURE

We now give a refinement of the conjecture. This re-
finement allows us to predict which of the several pos-
sible weights given by the prime notation actually yield
an eigenclass, rather than making the statement that at
least one of several weights works. The refinement is de-
rived from Serre’s conjecture for two-dimensional repre-
sentations, and we will computationally test it for three-
dimensional representations.

Let V be an n-dimensional F̄p-vector space and let Ip

act on V via ρ. Since ρ|Ip
is upper triangularizable, we

may choose a basis {vi}1≤i≤n with respect to which ρ

has the form stated in the conjecture. Now, since ρ|Ip
is

upper triangular with respect to the basis (v1, . . . , vn), Ip

acts on the space Vi = span(v1, . . . , vi). For convenience,
we will set V0 to be the subspace of V consisting of only
the zero vector. Now we have an Ip-stable filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V.

Define Wi = Vi+1/Vi−1. Then Ip acts on Wi via ρ,
and, with respect to a basis consisting of the images of
vi and vi+1 in Wi, the action of Ip on Wi is given by the
two-dimensional representation

ρi =
(

ωai ∗
0 ωai+1

)
.

In the case where ai �≡ ai+1+1 (mod p−1) the prime no-
tation will not give multiple possibilities for the weights,
and Conjecture 2.7 does not need to be refined. In
the case where ai ≡ ai+1 + 1 (mod p − 1) we distin-
guish between three cases: ρi may be tamely ramified,
peu ramifiée, or très ramifiée, according to the defini-
tions of Serre [Serre 87, page 186]. We then choose an
n-tuple (b1, b2, . . . , bn) that is p-restricted, contained in
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(a1 − (n− 1), a2 − (n− 2), . . . , an−1 − 1, an)′ and subject
to the condition that

bi − bi+1 =

{
p − 1 if ρi is très ramifiée;
unrestricted if ρi is not très ramifiée.

(3–1)
Note that the case in which ρi is not très ramifiée in-
cludes both the peu ramifiée case and the case in which
ρi is tamely ramified at p. We then replace the predicted
weight(s) in the conjecture, namely

F (a1 − (n − 1), a2 − (n − 2), . . . , an−1 − 1, an)′

by any
F (b1, b2, . . . , bn),

satisfying our more stringent requirement. Our conjec-
ture is then:

Conjecture 3.1. Let ρ : GQ → GLn(F̄p) be a continuous
irreducible representation such that if p is odd, the image
of complex conjugation is conjugate to a diagonal matrix
with alternating 1s and (−1)s on the diagonal. Assume
that we can conjugate ρ so that

ρ|Ip
=




ωa1 ∗ · · · ∗
ωa2 · · · ∗

. . . ∗
ωan


 .

Let N be the level of ρ and ε the nebentype, as de-
fined above. Then for those resolutions (b1, b2, . . . , bn)
of (a1 − (n− 1), a2 − (n− 2), . . . , an−1 − 1, an)′ satisfying
Equation (3–1), ρ is attached to a cohomology eigenclass
in

H∗(Γ0(N), F (b1, . . . , bn)(ε)).

We note [Ash and Sinnott 00, page 3] that for irre-
ducible three-dimensional ρ we can show that if ρ is at-
tached to any cohomology eigenclass, then it is attached
to an eigenclass appearing in H3. Hence, in our computa-
tional examples we just compute H3 using the techniques
of [Ash et al. 02, Section 8]. In addition, it is easy to see
that for irreducible two-dimensional ρ the refined con-
jecture is just the niveau one case of Serre’s conjecture
[Serre 87].

4. COMPUTING WILD RAMIFICATION

We will use the following theorem to compute the depth
of certain wild ramification filtrations.

Theorem 4.1. Let p be a rational prime and let L/Q be
a degree p extension of number fields with Galois closure
K/Q. Suppose that p is wildly ramified in L/Q. Let
n = vp(∆L/Q). Let gp,i be the order of the image of Gp,i

in Gal(K/Q) under the standard projection from GQ to
Gal(K/Q). Then there are integers d and t such that

gp,i =




pt if i = 0
p if 0 < i ≤ d
1 if i > d

,

with n = (p − 1)(1 + d/t) and (d, t) = 1.

Proof: See [Doud 03].

We note that this theorem allows us to determine the
depth of the filtration of wild ramification subgroups just
by examining the discriminant of an extension.

Next, we prove a theorem which indicates a relation-
ship between the depth of the ramification filtration of
the field cut out by a Galois representation and the type
of wild ramification (peu or très ramifiée) occurring in
that representation.

Theorem 4.2. Let Ip be an inertia group above p in GQp

and let ρ : Ip → GL2(Fp) be a wildly ramified continuous
representation of the form(

ωa+1 ∗
ωa

)
.

Then ρ cuts out a totally ramified Galois extension K of
Qnr

p . If the ramification filtration of K/Qnr
p has depth

one, then ρ is peu ramifiée. If the filtration has depth
greater than one, then ρ is très ramifiée.

Proof: Note that since ρ is wildly ramified, the ∗ in the
upper right corner must be nonzero. Let vK be the val-
uation of K, normalized so that a uniformizer of K has
valuation one. Set K0 = Qnr

p and let Kt be the maximal
tamely ramified subextension of K/K0. Then, Kt/K0

has degree p − 1, and we see that Kt = K0(ζp), where
ζp is a primitive pth root of 1. We see easily that the
degree of K/K0 is p(p − 1). Also, from exercise 3(c) on
page 72 of [Serre 79], we see that the depth of the ram-
ification filtration of K/K0 is at most p. The action of
tame ramification on wild ramification [Serre 79, Chap-
ter IV, Section 2, Proposition 9] forces the depth of the
filtration to be either 1 or p.

Suppose that K/K0 (and hence ρ) is peu ramifiée.
Then, from [Serre 87], we see that K = Kt(x1/p) for
some x ∈ K0 with vp(x) ≡ 0 (mod p). Multiplying x
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by a power of a uniformizer we see that we may take
vp(x) = 0. Now vK(x1/p) = 0, hence for a nonidentity
element σ ∈ Gal(K/Kt)

vK(x1/p−σ(x1/p)) = vK(x1/p)+vK(1−ζm
p ) = 0+p = p,

where ζm
p = σ(x1/p)/x1/p. Hence, vK(x1/p − σ(x1/p)) <

p+1, so the pth ramification group of the extension K/K0

is not all of Gal(K/Kt). Therefore, the pth ramification
group is trivial, so the depth of the ramification filtration
of K/K0 is 1.

On the other hand, suppose that K/K0 is très ram-
ifiée. Then K = Kt(x1/p) for some x ∈ K0 such that
vp(x) = n �≡ 0 (mod p). Choose a positive k < p

such that nk ≡ 1 (mod p), and note that Kt(x1/p) =
Kt((xk)1/p). Adjusting by a pth power of a uniformizer
of K0, we may then take x to be a uniformizer of K0.

We now set π = (1−ζp)p/x ∈ Kt. Note that π is a uni-
formizer of Kt, and that Kt(π1/p) = Kt(x1/p). However,
by exercise 4 on page 72 of [Serre 79], we see that the
depth of the ramification filtration is p, which is greater
than one.

We note that the combination of Theorems 4.1 and 4.2,
together with the fact that an unramified base change
does not affect the ramification filtration, allows us to de-
termine whether ρ is très ramifiée merely by studying the
discriminant of the extension cut out by ρ. We will give
a number of examples. Note that all number field cal-
culations in the examples which follow were carried out
using the GP/PARI software package [PARI-Group 00].

5. A TAMELY RAMIFIED EXAMPLE

Let K = Q(α), where α is a root of the polynomial
x4 − x3 + 6x2 − 6x + 1, and let L be the Galois clo-
sure of K. Then Gal(L/Q) ∼= S4, and we note that L/Q

is ramified at 5 with ramification index four, and at 103
with ramification index two. One sees easily that the in-
ertia group at 103 is generated by a two-cycle. Let ϕ be
the three-dimensional mod 5 representation of S4 over
F5 for which transpositions have trace 1. We may then
define ρ to be the composition of the canonical projec-
tion GQ → Gal(L/Q) ∼= S4 and ϕ. We see that since
four-cycles have trace −1,

ρ|I5 ∼

ω3

ω2

ω1


 .

The level of ρ is 103 and the nebentype is the quadratic
character ε103 ramified only at 103 (since the inertia at

103 is generated by a transposition). Our conjecture pre-
dicts weights of F (1, 1, 1)′, and, since there is no wild
ramification (hence no ρi is très ramifiée), we predict that
all four resolutions should work. In fact, computations
in weights F (1, 1, 1), F (5, 1, 1), F (5, 5, 1), and F (9, 5, 1)
show that (at least for � < 50) the correct eigenvalues of
T (�, 1) and T (�, 2) exist in the appropriate cohomology
group.

We may also adjust the order of the characters on the
diagonal of ρ. Hence we have

ρ|I5 ∼

ω1

ω3

ω2


 and ρ|I5 ∼


ω2

ω1

ω3


 ,

yielding predicted weights of F (3, 2, 2)′ and F (0, 0, 3)′.
The resolutions of F (3, 2, 2)′ are F (3, 2, 2) and F (7, 6, 2),
and the resolutions of F (0, 0, 3)′ are F (4, 4, 3) and
F (8, 4, 3). Since there is no wild ramification, the revised
conjecture predicts that in both cases, both predicted
weights should work. In fact, computations show that
these four weights all yield cohomology eigenclasses with
the correct eigenvalues (for � < 50) to correspond to ρ.

Other permutations of the diagonal characters yield
three more predictions for weights, namely F (4, 2, 1),
F (5, 4, 2), and F (7, 5, 3), none of which involve the ambi-
guity in which we are interested. Computations show
that these weights also yield cohomology eigenclasses
with the correct eigenvalues (for � < 50) to correspond
to ρ.

6. COMPUTATIONAL EXAMPLES WITH IMAGE
ISOMORPHIC TO S5

We begin by exhibiting a subgroup of GL3(F5) which is
isomorphic to S5. This subgroup is generated by

A =


1 1 0

0 1 1
0 0 1


 , B =


2 4 0

0 1 3
0 0 3


 , C =


0 2 3

4 4 1
4 0 3


 .

We note that A and B satisfy the relations A5 = B4 = I

and BAB−1 = A2, therefore A and B generate a Frobe-
nius group of order 20. In addition, S5 is isomorphic to
the subgroup of GL3(F5) generated by A, B, and C, so
we may define an injection ϕ : S5 → GL3(F5) via this
isomorphism.

Let f(x) ∈ Z[x] be an irreducible degree-five polyno-
mial with Galois group S5. Let α ∈ C be a root of f , let
K = Q(α), and let L be a splitting field of f over Q. We
then get a continuous homomorphism

ρ : GQ → Gal(L/Q) ∼= S5
ϕ−→GL3(F5).
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Assume now that L/Q is wildly ramified at 5. Then,
up to conjugation, the image of an inertia group above
5 is contained in the subgroup of GL3(F5) generated by
A and B. By choosing the appropriate place above 5
we eliminate the ambiguity and say that the subgroup
generated by A and B contains the image of inertia.

Suppose now, that the inertia group above 5 in L/Q

has order 20. Then it is a Frobenius group generated
by σ of order four and τ of order five (where σ and τ

correspond respectively to B and A), with 〈τ〉 � 〈σ, τ〉.
Hence, στσ−1 = τk for some integer k. If we let d

be the depth of the ramification filtration, we see eas-
ily [Serre 79, Doud 03] that στσ−1 = τω(σ)d

. Now since
BAB−1 = A2, we see that ω(σ)d = 2. We note that

ρ|I5 ∼

ωd ∗ ∗

1 ∗
ω−d


 .

There are now three possible cases. We could have
d = 1, 3, or 5. If d = 1 or 5, then the conjecture of Ash
and Sinnott predicts that at least one of the resolutions of
F (−1,−1,−1)′ = F (3, 3, 3)′ will work—in other words,
that at least one of the four weights F (3, 3, 3), F (7, 3, 3),
F (7, 7, 3), and F (11, 7, 3) will yield the correct eigenval-
ues. On the other hand, if d = 3, the conjecture predicts
a weight of F (1,−1, 1)′ = F (5, 3, 1). Note that in the
d = 3 case there is no ambiguity in the weight.

Now, in the d = 1 or 5 cases, we need to examine
the local subrepresentations. Let ρ1 and ρ2 be the two
representations, described in Section 3, constructed from
ρ. We see that

ρ1(τ) =
(

1 1
1

)
, ρ1(σ) =

(
2 4

1

)

and

ρ2(τ) =
(

1 1
1

)
, ρ2(σ) =

(
1 3

3

)
.

Hence, we see that the image of inertia under both ρ1

and ρ2 has order 20. Further, it is easy to see that
ker ρ|I5 ⊆ ker ρi, thus the fixed field of ρi is contained
in the fixed field of ρ|I5 . From these two facts, we may
deduce that the ramification filtration of ρi is identi-
cal to that of ρ and, in fact, is identical to the filtra-
tion of ramification subgroups in L/Q. This filtration
is easy to compute by Theorem 4.1. If the discriminant
of K is exactly divisible by 55 then d = 1, and each
ρi is peu ramifiée. If the discriminant of K is divisi-
ble by 59 then d = 5, and each ρi is très ramifiée. In
the peu ramifiée case the refined conjecture predicts that
all four of the weights F (3, 3, 3), F (7, 3, 3), F (7, 7, 3), and

F (11, 7, 3) should contain eigenvalues corresponding to
ρ. In the très ramifiée case the only one of these weights
that should contain the correct eigenvalues is F (11, 7, 3).
We proceed to give examples of each of these cases.

Example 6.1. Let f(x) = x5 − 80x + 160 ∈ Q[x], let α

be a root of f , and let K = Q(α). The discriminant of
K/Q is 5541 and the Galois group of f is S5. There-
fore, f yields an S5-extension as above with d = 1. One
easily checks that the level associated with ρ is 412, and
the nebentype is trivial. This level is too large to allow
computation of the relevant cohomology, so we twist ρ

by the quadratic character ε41 ramified only at 41. Then
ρ ⊗ ε41 has level 41 and nebentype ε41. Note that since
ε41 is trivial on inertia at 5, this twist does not affect
the predicted weights. Thus, eigenvalues corresponding
to ρ should exist in the cohomology in the four weights
predicted above. Computation with these weights, level
41, and nebentype ε41 shows that (at least for � < 50)
these eigenvalues do appear.

Example 6.2. Let f(x) = x5−25x2+55, let α be a root of
f , and let K = Q(α). Then the discriminant of K/Q is
−5911, and therefore d = 5 and we are in the très ramifiée
case. The level of ρ is easily seen to be 112, and its
nebentype is trivial. Twisting as above, we see that ρ⊗ε11
has level 11 and nebentype ε11. The refined conjecture
then indicates that the correct eigenvalues should appear
in the cohomology with weight F (11, 7, 3), level 11, and
nebentype ε11, but not in the cohomology for the other
weights permitted by Ash and Sinnott. Computation
shows that (for � < 50) this is the case.

In Table 1, we give several examples of Galois repre-
sentations, along with cohomology calculations that sup-
port the conjecture. Most of the polynomials defining
these representations were obtained from the online ta-
bles of Jones and Roberts [Jones and Roberts 01]. Each
row of the table contains a quintic polynomial defining
an S5-extension of Q. The Galois representations that we
study are constructed as above, by composing the nat-
ural projection of GQ onto S5 defined by the polynomial
with the given three-dimensional representation. In some
cases, the level of this Galois representation is lowered by
twisting by a character, as in Example 6.1. In all such
cases, the nebentype of the twisted representation is the
same as the character by which the representation was
twisted—this character is indicated in the column labeled
ε(ρ). The discriminant of the S5-extension (which allows
us to predict the weights) and the level of the final Ga-
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∆K N(ρ) ε(ρ) Weights Defining polynomial

5541 41 ε41 F (3, 3, 3), F (7, 3, 3) x5 − 80x + 160

F (7, 7, 3), F (11, 7, 3)

5573 73 ε73 F (3, 3, 3), F (7, 3, 3) x5 + 40x + 5

F (7, 7, 3), F (11, 7, 3)

55133 132 1 F (3, 3, 3), F (7, 3, 3) x5 + 5x3 − 15x2 − 15x − 49

F (7, 7, 3), F (11, 7, 3)∗

55174 172 1 F (3, 3, 3), F (7, 3, 3)∗ x5 − 85x − 153

F (7, 7, 3)∗, F (11, 7, 3)∗

5922 22 1 F (11, 7, 3) x5 + 25x − 10

5934 32 1 F (11, 7, 3) x5 + 75x + 105

5972 7 ε7 F (11, 7, 3) x5 − 100x2 − 100x − 55

5974 72 1 F (11, 7, 3) x5 − 175x2 − 1050x − 3640

−5911 11 ε11 F (11, 7, 3) x5 − 25x2 + 55

59172 17 ε17 F (11, 7, 3) x5 − 50x2 + 100x − 65

TABLE 1. S5-representations with predicted weights and levels.

lois representation are also indicated. Finally, we list the
weights predicted by the refined conjecture. With four
exceptions (each denoted by an asterisk), computations
show that all the weights listed in the table work; namely,
in the cohomology with that weight and the correspond-
ing level and nebentype the appropriate eigenvalues exist
(for � < 50) and correspond to the given Galois repre-
sentation. The exceptions are not counterexamples to
the conjecture—they are merely examples for which the
size of the cohomology calculations exceeded our avail-
able computer resources. We include them because the
weights with which we were able to calculate give addi-
tional evidence that the smaller resolution of the prime
notation works in the peu ramifiée case. We note also
that in the très ramifiée cases, weights permitted by the
conjecture of Ash and Sinnott, but not predicted by the
refined conjecture, do not yield eigenvalues correspond-
ing to the given representation.

7. COMPUTATIONAL EXAMPLES ARISING FROM
ELLIPTIC CURVES

Three-dimensional Galois representations can also be ob-
tained as adjoint representations of torsion-point repre-
sentations on elliptic curves. We do one example in detail
and specify the curve and computational results for sev-
eral other examples.

Let E be the elliptic curve defined by the equation

y2 + xy = x3 − 4x − 1.

This curve has conductor 21 [Cremona 00]. Let ϕ : GQ →
GL2(F7) be a seven-division-point representation, and let
L/Q be the fixed field of ϕ. We note that E has mul-
tiplicative reduction at both 3 and 7, thus, by [Darmon
et al. 97, Proposition 2.12] and [Silverman 94, Proposi-
tion V.6.1], we see that

ϕ|I7 ∼
(

ω ∗
1

)

and

ϕ|I3 ∼
(

1 ∗
1

)
,

and that for both restrictions, the ∗ in the upper right
corner is nonzero. (Note that the seventh cyclotomic
character is trivial on I3 [Darmon et al. 97, page 44].)

Further, by [Serre 72, Corollary 1, page 308] we see
that the image of ϕ is isomorphic to all of GL2(F7).

Now let ρ = Ad0(ϕ). Then ρ : GQ → GL3(F7) is a
Galois representation, and the image of ρ is easily seen
to be isomorphic to PGL2(F7).

We have that

ρ|I7 ∼

ω ∗ ∗

1 ∗
ω−1



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and

ρ|I3 ∼

1 ∗ ∗

1 ∗
1


 .

One checks easily that the level predicted for ρ is 32 =
9 and its nebentype is trivial.

Finally, we see that the predicted weight for ρ is F (1−
2, 0 − 1,−1)′ = F (5, 5, 5)′. The conjecture of Ash and
Sinnott then predicts that at least one of the four weights

F (5, 5, 5), F (11, 5, 5), F (11, 11, 5), F (17, 11, 5)

will yield an eigenclass corresponding to ρ. We now need
to determine which of these weights are predicted by the
refined conjecture.

We note that ϕ|I7 must be très ramifiée, by [Darmon
et al. 97, Proposition 2.12(d)] and the fact that v7(jE) =
−2 is not divisible by 7. Each of the subrepresentations
ρ1 and ρ2 have the same kernel as the restriction of ϕ

to inertia, so each of them must also be très ramifiée.
Hence, we see that the only predicted weight for ρ is
the weight with the larger resolution in both positions,
namely F (17, 11, 5).

Computation shows that in weight F (17, 11, 5), level 9,
and trivial nebentype, there is a unique eigenclass hav-
ing the correct eigenvalues (for � < 50). On the other
hand, in the other three weights no such eigenclass ex-
ists. Hence, the refinement of the conjecture of Ash and
Sinnott is justified in this case.

Other examples in which similar computations work
are the curves of conductor 33 and 39. These yield three-
dimensional representations of level 9 modulo 11 and
modulo 13 for which both ρ1 and ρ2 are très ramifiée.
As above, only one of the four predicted weights yields
an eigenclass with the correct eigenvalues, and in each
case it is the one predicted by the refined conjecture. In
the case of the representation modulo 11, the conjecture
of Ash and Sinnott predicts the weights F (9, 9, 9)′, and
the refined conjecture predicts the weight F (29, 19, 9).
Computation shows that the only resolution of F (9, 9, 9)′

which yields the correct eigenvalues is F (29, 19, 9). In
the case of the representation modulo 13, the predicted
weights are F (11, 11, 11)′, the refined conjecture predicts
that only F (35, 23, 11) will work, and the only resolution
which yields the correct eigenvalues is F (35, 23, 11).

One may also construct similar examples which are
peu ramifiée by using elliptic curves with good ordinary
reduction at p. For an example, we begin with the elliptic
curve E defined by y2+y = x3−x2−10x−20 of conductor
11 [Cremona 00]. We choose a prime p > 5 for which E

has good ordinary reduction and let ϕ : GQ → GL2(Fp)

be the p-division-point representation. Then by [Darmon
et al. 97, Proposition 2.11(c)],

ϕ|Ip
∼

(
ω ∗

1

)
.

Further, E has multiplicative reduction at 11, so we see,
as above, that

ϕ|I11 ∼
(

1 ∗
1

)
,

with the ∗ nonzero. If we let ρ = Ad0(ϕ), then we see,
as above, that

ρ|Ip
∼


ω ∗ ∗

1 ∗
ω−1


 ,

and that both subrepresentations ρ1 and ρ2 are peu ram-
ifiée, since ϕ is. Hence, the predicted weights for ρ are
all the resolutions of F (−1,−1,−1)′, in other words

F (p − 2, p − 2, p − 2), F (2p − 3, p − 2, p − 2),

F (2p − 3, 2p − 3, p − 2), F (3p − 4, 2p − 3, p − 2).

As in the previous examples, the level of ρ is easily seen
to be 112, and the nebentype is trivial. Hence, we wish
to find an eigenclass with the appropriate eigenvalues in
H3(Γ0(112), V ), where V is any one of the four weights
given above.

The curve E has good ordinary reduction at the
primes 7, 13, and 17. For p = 7, we checked computa-
tionally that the correct eigenvalues (for � < 50) that cor-
respond to ρ appear in weights F (5, 5, 5), F (11, 5, 5), and
F (11, 11, 5). The other predicted weight, F (17, 11, 5), is
too large for us to work with. For p = 13 and p = 17,
we checked computationally that the correct eigenval-
ues (for � < 50) corresponding to ρ appear in weight
F (p−2, p−2, p−2), and the other weights are too large for
us to work with. Nevertheless, these computations give
evidence that in the peu ramifiée case at least the small-
est of the resolutions works, as predicted by the refined
conjecture. We remark that choosing p = 5 would have
yielded a reducible representation [Darmon 95, page 140],
to which the refined conjecture would not apply.

We note that using the main theorem of [Gelbart and
Jacquet 78], one could prove that the ρ derived here as
symmetric squares of torsion-point representations of el-
liptic curves are in some sense modular. However, it is
not clear how to use this to prove the correspondence de-
scribed by the refined conjecture. In [Ash and Tiep 99]
certain symmetric square representations are shown to be
attached to cohomology eigenclasses, but the cases dealt
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with there are level one representations, and the exam-
ples given here have higher level. Therefore, proving that
these symmetric square representations are attached to
the given cohomology eigenclasses seems to be nontrivial.

8. CONCLUSION

In many cases, Ash and Sinnott predict that one of sev-
eral predicted weights yields a cohomology eigenclass at-
tached to a certain Galois representation. All the compu-
tational evidence to date fully supports this conjecture.
In addition, we have presented computational evidence
that the refinement of Ash and Sinnott’s original con-
jecture described in this paper correctly predicts which
of these several weights actually give rise to the correct
systems of eigenvalues.
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