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We construct by computer all W-graphs corresponding to ir-
reducible representations of Hecke algebras H (g, n) for n up
to 15, using a modification of a method proposed by Lascoux
and Schitzenberger (which fails forn > 13).

1. INTRODUCTION

V. Jones [1985] discovered a polynomial invariant
in one variable for oriented knots and links, later
generalized into the Homfly invariants in two vari-
ables [Freyd et al. 1985]. Jones [1987] also defined
another two-variable invariant X (g, \) of an ori-
ented link L, given by

1- Aq o e
Ko = (-] (o)
where « is any element of the braid group B, with
& = L, e is the exponent sum of «, and 7 is the
representation of B,, in the Hecke algebra H(g,n)
sending the standard generators of B, to those of
H(g,n).

Ocneanu’s trace tr g; for each generator g; is de-
fined by

tr gi = Z WY(q7 Z) try Gi,
Y

where Y is a Young diagram associated with a par-
tition of n, and try is the trace on the Hecke alge-
bra obtained by evaluating the sum of the diagonal
entries on the image of g; in the matrix representa-
tion 7y (see the precise definition in [Jones 1987]).

Two ways to compute trg; are known. One is
due to P. Hoefsmit [1974] and H. Wenzl [1985],
and is not well adapted to computer calculations,
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because it involves square roots of certain polyno-
mials. The other, introduced by A. Lascoux and
M. Schiitzenberger [1981], is combinatorial in na-
ture and uses the W-graphs defined by Kazhdan
and Lusztig [1979] for irreducible representations
of the symmetric group S,. Its explicit formula is
given in [Gyoja 1986; 1987].

The difficulty with the Lascoux—Schiitzenberger
method is the construction of the W-graphs. Those
authors proposed an algorithm for this construc-
tion (Section 2), but did not give a proof of its va-
lidity. In an earlier version of the present article,
we verified the validity of the Lascoux—Schiitzen-
berger algorithm for n < 12. However, after sub-
mission, the referee informed us that Tim Maclar-
nan had found, years before, an example with n =
14 where the W-graph is not correctly generated;
in other words, the representation matrix obtained
by the Lascoux—Schiitzenberger algorithm did not
satisfy the defining relations of H(g,14) in that
case.

We therefore extended our computations, and
confirmed that the method fails for n = 14 and
15. By introducing certain modifications, we were
able to overcome the incompleteness of the algo-
rithm for these values of n, and constructed all
W-graphs for irreducible representations of Hecke
algebras H(q,n) for n up to 15. This is described in
Section 3, where we also give a table of cases where
the original Lascoux—Schiitzenberger method fails.

The situation for » > 16 remains open.

2. THE METHOD OF LASCOUX AND
SCHUTZENBERGER

Let A(n) be the set of partitions of a positive inte-
ger n, a partition being a sequence (A1, Az, ..., Ag)
of positive integers such that ) . A; = n and A\; >
A2 > -+ > Ag. For example, A(6) has 11 elements:

{(6), (5,1), (4,2), (4,1,1), (3,3), (3,2,1), (3,1,1,1),
(2,2,2), (2,2,1,1),(2,1,1,1,1), (1,1,1,1,1, 1) }.

An element of A(n) can be pictorially expressed as
a Young diagram, where the row lengths indicate

the elements of the partition. Therefore a Young
diagram is characterized by row lengths that are
nonincreasing as we go down, and column lengths

that are nonincreasing from left to right:
(3,2,1) (4,1,1)

A standard Young tableau associated with a par-
tition in A(n) is an assignment of distinct integers
1,...,n to the boxes in the Young diagram of the
partition, in such a way that numbers within each
row increase left to right, and numbers within each
column increase top to bottom. For example, the
partition (3,2,1) € A(6) admits the following stan-
dard Young tableaux:

1]ae] [1]3]6] |1 6] [1]3]e] |1 6] [1]4]5
2|5 2 3]s 2[4 3 26
3 4 4 5 5 3

1[3]5] [1]2]s] [1]3]a] [1]2]a] [1]2]3] [1]3]5
26 3 26 3|6 4 2]4
4 4 5 5 5 6

1[2]s] [1]3]4] [1]2]a] [1]2]3

3]a 2 35 4|5

6 6 6 6

Usually we denote a standard Young tableau by the
associated word, which is the sequence of integers
obtained by reading the entries row by row, from
left to right, from bottom to top. Thus the words
associated with the tableaux above are

325146 425136 435126 524136 534126 326145
426135 436125 526134 536124 546123 624135
634125 625134 635124 645123.

Let X = {x;,2,,...,2:} be the collection of
words associated with a Young diagram (or par-
tition) Y. The following procedure associates with
Y a graph G(Y) with vertex set X (see also [Gyoja
1986; 1987)).
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Algorithm [Lascoux and Schiitzenberger 1981]

1. Let ¢ = wyiwyjws and ¢’ = wyijwqiws be ver-
tices in G(Y'), where w;, w, and w; are subwords
that may be empty and w, does not contain any
number in the range [4, j|. Then z is adjacent to z’
in G(Y). In the example above, this makes 325146
and 425136 adjacent, but not 425136 and 625134.

2. Let x be a vertex in G(Y). For each ¢ with
1 <i<n—2, define a vertex 2 as follows:

pattern matched by x

witwy (3 + Dws (i + 2)wy
w1y (Z + 2)1112 (’L + 1)’!1)3’i11)4
’wﬂu&(i + 2)103(i + 1)w4
w1 (Z + 1)1U2’iIU3 (Z + 2)w4
w1 (1 + 2)watws (7 + 1)wy

value of z(®

undefined
undefined
w1 (Z + 1)’11)2(2 + 2)w3iw4
w1 (Z + 2)w2iw3 (’L + 1)’11)4
w1 (7 4 1)watws (i + 2)wy

(Here w;, we, ws and w, are subwords of z, which
may be empty.) Then, for any pair of vertices
and 2’ that are adjacent by the preceding step, we
make (¥ and ') adjacent as well. For example,
xy = 425136 and x4 = 524136 are adjacent in G(Y')
by step 1, so :rgz) = 325146 and a:ff) = 534126 are
adjacent in G(Y').

3. Apply step 2 repeatedly until no more adjacent
pairs appear.

3. IRREDUCIBLE REPRESENTATIONS OF
HECKE ALGEBRAS H(q, n)

Let H(g,n) be the C-algebra on the generators
J1,92, . .-, 9n_1 defined by the relations

9; = (¢—1)gi +4q,
9i9i+19i = gi+19i9i+1,
9i9; = 959 ifli—jl 22
Then H (g, n) is called a Hecke algebra of type A, 1,
and the g; are its standard generators.
Let Y be a Young diagram for a partition in
A(n), and let X = {x;,2s,...,2,} be the collec-

tion of words associated with Y. For each element
z of X, define I(x) as the set of 4 € {1, ..., n—1}

such that the row containing ¢ is above the one con-
taining ¢4 1 in z (where x is regarded as a standard
Young tableau). For instance, if x = 645123 in our
running example, we have I(z) = {3,5}.

Given a triple {X, I, u}, where I is the function
of z just introduced and p is an arbitrary function
X x X — {0,1}, we define square matrices T} of
size s, for j =1, ..., n — 1. The (I, m)-entry of T
is, by definition,

—1 if I=m and j € I(z;);
g ifl=m and j¢1I(x;);

Va ifl#m, jel(z)\I(zy), and p(z, <) =1;
0 otherwise.

We call {X,I,u} a W-graph corresponding to Y
if the matrices T} satisfy the defining relations of
Hecke algebras H(g,n) under the representation
my with 7y (g;) =Ty, for j =1, ..., n —1 [Gyoja
1984; Kazdan and Lusztig 1979].

It was conjectured in [Lascoux and Schiitzen-
berger 1981] and [Gyoja 1986; 1987] that, if u is
the adjacency relation of the graph G(Y') defined
by the algorithm in Section 2, then {X,I,u} is a
W-graph. As detailed below, we have checked that
this conjecture is true for n up to 13, but false for
n = 14 and 15.

Moreover, we have introduced a modification in
the definition of G(Y') so that the conjecture for
the modified G(Y') remains valid for n = 14, 15.

To test the conjecture, we wrote software to con-
struct the sets I(z) and the graph G(Y') for any
Young diagram Y with n < 15. We performed
direct matrix calculations to check whether the re-
sulting matrices satisfy the defining relations of
Hecke algebras H(gq,n), and we found that three of
the 135 representations for n = 14 and twenty-one
of the 176 representations for n = 15 do not satisfy
the necessary relations (more specifically, they fail
the conjugacy and commutation relations). This is
summarized in Table 1.

(As mentioned in Section 1, it has been known
for years that the algorithm of Section 2 sometimes
fails, but to our knowledge the cases of failure have
not previously been recorded in the literature.)
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n s Y e
14 48048 {5,4,3,2} 68
68640 {5,4,2,2,1} 50
48048 {4,4,3,2,1} 68
15 30030 {6,5,4} 8
128700 {6,5,3,1} 68
100100 {6,5,2,2} 48
175175 {6,4,3,2} 322
243243 {6,4,2,2,1} 250

54054 {5,5,4,1} 48
96525 {5,5,3,2} 232
125125  {5,5,2,2,1} 110
81081 {5,4,4,2} 80
75075 {5,4,3,3} 100

292864  {5,4,3,2,1} 1720
125125  {5,4,2,2,2} 110
243243 {5,4,2,2,1,1} 250

75075 {4,4,4,2,1} 100
81081  {4,4,3,3,1} 80
96525  {4,4,3,2,2} 232
175175 {4,4,3,2,1,1} 322
100100 {4,4,2,2,2,1} 48
54054  {4,3,3,3,2} 48
128700 {4,3,3,2,2,1} 68
30030 {3,3,3,3,2,1} 8

TABLE 1. Representations not accounted for by
the Lascoux—Schiitzenberger method. The second
column gives the size of the representation matri-
ces T, and the last gives the number of edges miss-
ing from G(Y) (see Table 2).

Very recently, Naruse [1994] found the W-graph
associated with the Young diagram {4,4,3,2,1}
using Kazhdan-Lusztig polynomials and a com-
putational construction. We compared his results
with ours and found that there are 68 edges that
the algorithm of Section 2 fails to detect. These
edges can be generated from the following eight by
repeated application of step 2 of the algorithm:

87C36B25AE149D-C8A36E25BD1479
87C36B25AE149D-C8E6AB279D1345
C4837B26AE159D-C8E4AB267D1359
C7B36A259E148D-CAE6BD27891345
76B5AE249D138C-EAB67C248D1359
B6A59E248D137C-EAB68C249D1357
D6A59E248C137B-DAE68C249B1357
A6E59D248C137B-EAC68D249B1357

Here A stands for 10, B for 11, and so on.

One may ask whether the Lascoux—Schiitzen-
berger algorithm can be salvaged so as to always
yield a W-graph. This turns out to be possible, at
least for n = 14 and 15, by adding to the graph
G(Y) edges suggested by failures in the commu-
tation relations. The modified algorithm below al-
lowed us to find the correct W-graphs for all Young
diagrams with n = 14 and 15. (Unfortunately we
do not have a proof that it works for higher values
of n.)

Algorithm (modified Lascoux—Schiitzenberger)

1. Using the algorithm of Section 2, calculate the
adjacency matrix and I(z) for each word z.

2. Calculate Tj, for j =1, ..., n— 1.

3. Form the commutator matrices C;; = T;T; —
T;T;fori=1,...,n—3and j=7+2,...,n—1.
If there is a nonvanishing C; ;, tentatively add an
edge to the graph G(Y) as follows. If the (I,m)-
entry of C; ; is non zero, add to G(Y') a pair (z;, zj)
such that the (I, k)-entry of T; or T} is nonzero, or
a pair (zg,Z,,) such that the (k,m)-entry of T; or
T; is nonzero. After such an edge has been tenta-
tively added, carry out step 2 of the algorithm of
Section 2 and recompute the matrices 7; and their
commutators. If the total number of nonzero en-
tries in the commutators has decreased, accept the
additional edge permanently; otherwise, discard it.

4. Repeat the preceding step as long as there are
nonzero commutator matrices and it is possible to
find acceptable edges.

The algorithm is successful if eventually all the
commutator matrices are zero. In this case the
matrices T} obviously satisfy the defining relations
of the Hecke algebras H(g,n).

It is well known that the representation given by
a W-graph corresponding to a Young diagram is ir-
reducible [Gyoja 1984; Kazdan and Lusztig 1979].
Hence the matrices T} give, in fact, irreducible rep-
resentations of the Hecke algebras H(g,n).

The results of our calculations are given in Ta-
bles 1 and 2. Table 1, as already mentioned, shows
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n=14 Y ={5,4,3,2}

7B59D348C126 AE-BC78D349E1256 A
7D59C348B126 AE-CD78E349A1256B
9D58C347B126AE-CD89E34AB12567
7B59C348E126 AD-BC78E349A1256D
5948D37BE126 AC-DE89A456B1237C
5D49B37AE1268C-DE9AB456C12378
9D57B36AE1248C-DE9AB56781234C
9D7BE456A1238C-DE9AB456C12378

n=14 Y ={54,221}

B6A59248D137CE-B9D5A24CE13678
87C6B35AE1249D-CBE78359A1246D

n=15 Y ={6,5,4}

47AD369CE1258BF-ACDE4678F12359B
58BE47ADF12369C-BDEF5789A12346C

n=15 Y =1{6,5,3,1}

847B26ADF1359CE-B7DF289AC13456E
76AD459CF1238BE-D79F45ABC12368E
BT7TAE4569D1238CF-EABC456DF 123789
C58B347AE1269DF-C8AE34BDF125679
958D347CF126 ABE-D89F34ABC12567E
A59D348CF1267TBE-D9AF34BCE125678

n=15 Y ={6,5,2,2}

7TD6A459CF1238BE-DF7945ABC12368E
8C5B347AE1269DF-CE8A34BDF125679
9D58347CF126 ABE-DF8934ABC12567E
AD59348CF1267TBE-DF9A34BCE125678

n=15 Y ={6,4,3,2}

5948C37BE126 ADF-CE89A456B1237DF
8C47B36AE1259DF-CE8AB46791235DF
5C48B37AE1269DF-CE8AB456D12379F
7TB6AE459D1238CF-BD79E45AF12368C
7TB6AD459F1238CE-BD79F45AC12368E
TE6AD459C1238BF-DE79F45AB12368C
AE69D348C1257BF-DE9AF34BC125678
9D58C347B126 AEF-CD89E34AB12567F
8C7BE346A1259DF-CE8AB346D12579F
9E58D347C126 ABF-DE89F34AB12567C
6A59D48CF1237TBE-DF9AB567C12348E
9D58C47BF1236 AE-DF9BC578A12346E
6D59C48BF1237AE-DF9BC567E12348A
5A49D38CF1267BE-DF9AB456C12378E
5D49C38BF1267AE-DF9BC456E12378A
9D8CF346B1257TAE-DF9BC346E12578A
6A59D348C127TBEF-AC68D349E1257BF
6A59C348E127BDF-AC68E349B1257DF
6D59C348B127TAEF-CD68E349A1257BF
6E59D348C127ABF-DE68F349A1257BC

n=15 Y ={6,4,2,2,1}

B6A49258D137CEF-B9ID4A25CE13678F
87C6B45AE1239DF-CBE78459A1236DF
C7B5A269E1348DF-CAE5B26DF 134789
98D7C34BF1256 AE-DCF8934AB12567E

TABLE 2.

n=15 Y ={5,54,1}

A369D258CF147TBE-A6CDF289BE13457
B47AF369CE1258D-FABCD4678E12359
837BE26ADF1459C-B7TDEF289AC13456
968CF257BE134AD-F9BCD5678E1234A

n=15 Y ={5,5,3,2}

5C48B37AEF1269D-CE8AB456DF12379
7B6AD459CF1238E-BD79F45ACE12368
TE6AD459CF1238B-DE79F45ABC12368
5A49D368CF127TBE-DF9AB456CE12378
6A59D248CF137TBE-DF9AB567CE12348
6D59C248BF137AE-DF9BC5678E1234A
9D58C347BF126 AE-CD89E34ABF12567
8C7BE346AF1259D-CE8AB346DF12579
7B46A359DF128CE-BD79F34ACE12568
9E58D347CF126 AB-DE89F34ABC12567
8CT7BF256AE1349D-CF8AB256DE13479
6A59D248CF137TBE-AC68D249EF1357B
6D59C248BF137AE-CD68E249AF1357B
9D58C247BF136 AE-DF9BC578AE12346

n=15 Y ={55,221}

B6A49258DF137CE-B9D4A25CEF13678
D6A49258CF137TBE-DI9F4A25BCE13678
98D7C246BF135AE-DCF8926 ABE13457
98D5C247BF136AE-DCF8924ABE13567

n=15 Y ={5,4,4,2}

7B36AE259D148CF-BD79EF356A1248C
5948CF37BE126 AD-CE89AF456B1237D
8C47BF36AE1259D-CE8ABF46791235D
5C48BF37AE1269D-CE8ABF456D12379
TE36AD259C148BF-DE79AF356B1248C
AE369D258C147TBF-DE9ABF356C12478
6A59DF248C137TBE-DF9ABC56781234E
6D59CF248B137AE-DF9BCE56781234A
9D58CF347B126 AE-CD89EF34AB12567
6A59CF248E137BD-AC68EF249B1357D
6D59CF248B137AE-CD68EF249A1357B
9D38CF257B146AE-DF9BCE35781246A

n=15 Y ={5,4,3,3}

7TBE36A259D148CF-BDE79A356F1248C
7TBD36A259F148CE-BDF79A356C1248E
59F48C37BE126AD-CEF89A456B1237D
8CF47B36AE1259D-CEF8AB46791235D
5CF48B37AE1269D-CEF8AB456D12379
TAE36D259C148BF-DEF79A356B1248C
59D48C27BF136AE-9DF5BC278A1346E
8CFT7BE346A1259D-CEF8AB346D12579
6AE59D248C137BF-ACE68D249F1357B
6AE39D258C147TBF-DEF9AB356C12478

n=15 Y ={5,4,3,2,1}

C7B36A259E148DF-CAE3BD267F14589
A5948D37CF126BE-D9F4AB357C1268E
98D67C25BF134AE-D9F6BC278A1345E
98D57C46BF123AE-DCF89A456B1237E
D5948C37BF126 AE-D9F4BC357E1268A
76B5AE249D138CF-B7D59E24AF1368C
B6A59E248D137CF-B9D5AE24CF13678
76B5AD249F138CE-B7D59F24AC1368E
B6A59F248D137CE-B9D5AF24CE13678
87C6BF34AE1259D-CBE78F349A1256D
87C36B25AE149DF-C8A36E25BD1479F
D8C7BF456A1239E-DCF8AB456E12379
C4837B26AE159DF-C8E4AB267D1359F
87C36B25AE149DF-C8E6AB279D1345F
C7B36A259E148DF-CAE6BD27891345F
76B5AE349D128CF-EAB67C348D1259F
76B5AE349D128CF-BAD67E348F1259C
C4B37A269E158DF-CAE4BD267F13589
76E5AD349C128BF-EAC67D348F1259B
A9E58D347C126BF-EAC89D34BF12567
B6A59E348D127CF-BAE68D349C1257F
B6A59E348D127CF-EAB68C349D1257F
A6E59D348C127BF-EAC68D349B1257F
B6A59E348D127CF-BAD68E349F1257C
76E5AD249C138BF-D7E59F24AB1368C
E6A59D348C127BF-EAC68D349F1257B
B6A59D348F127CE-BAD68F349C1257TE
A9E58D347C126 BF-D9ESAF34BC12567
D6E59C348B127TAF-DCE68F349A1257B
A6E59D248C137BF-D9E5AF24BC13678
CT7B6AF349E1258D-CBF79E34AD12568
D8C37B26AF1459E-DBF3CE27891456A
87C6BF34AE1259D-FBC78D349E1256 A
C7B6AF349E1258D-FBC79D34AE12568
87TF6BE34AD1259C-FBD78E349A1256C
B7F6AE349D1258C-FBD79E34AC12568
DI9E58C347B126 AF-DCE89F34AB12567
E9D58C347B126 AF-ECD89F34AB12567
A5948D37CF126 BE-D9F8AB456C1237E
D5948C37BF126 AE-DCF89A456B1237E
98D47C36BF125AE-DCF89A467B1235E
D8C47B36AF1259E-DCF8AB46791235E
D5C48B37AF1269E-DCF8AB456E12379
D7C36B25AF1489E-DBF6CE27891345A
A9E46D358C127BF-EAC46D358F1279B
E6D59C348B127AF-ECD68F349A1257B
76C5BF34AE1289D-FBC67D348E1259A
65A49D28CF137BE-D9F5AB267C1348E
65D49C28BF137AE-DIF5BC267E1348A
98D47C26BF135AE-DI9F7BC28AE13456
D8C47B26AF1359E-DBF7CE289A13456
A5948D27CF136BE-A9D5CF278B1346E
98D57C46BF123AE-DI9B57F46CE1238A
A5948D27CF136BE-D9F5AB278C1346E
D5C48B27AF1369E-DBF5CE27891346A
95D48C27BF136 AE-D9F5BC278A1346E
98D4CF257B136 AE-D9F4BC257E1368A
D5948C27BF136 AE-D9F5BC278E1346A

Additional edges needed to complete the graphs obtained by the Lascoux—Schiitzenberger method

into W-graphs, in the cases n = 14 and 15. We use A for 10, B for 11, etc. See also text on next page.
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the Young diagrams for which the original Las-
coux—Schiitzenberger method fails to yield a W-
graph. It also shows the number of additional
edges needed. Table 2 lists some of the additional
edges; the remaining ones are obtained by apply-
ing step 2 of the Lascoux—Schiitzenberger method.
We take advantage of adjointness to omit certain
Young diagrams: for instance, the Young diagram
{4,4,3,2,1} is adjoint to the diagram {5,4, 3,2},
so the auxiliary edges necessary for {4,4,3,2,1}
are easily obtained from those of {5,4,3,2}.

On a Sun SPARCserver 1000 with 160 megabytes
of main memory, our program HeckeRep.c needed
about a week to compute all the G(Y) for Young
diagrams Y associated with A(n), with n < 15, and
the corresponding 7). For n = 15 only, the calcu-
lations took about 137 hours of CPU time and 87
megabytes of main memory.

4. FINAL REMARKS

The first author and J. Murakami have established
the three-parallel version of polynomial invariants
of closed three- and four-braids associated with cer-
tain subspaces of representation matrices of the ir-
reducible representation of H(g,n), for n =9 and
n = 12. See [Ochiai and Murakami 1994].

We are now calculating three-parallel version of
polynomial invariants of closed five-braids using ir-
reducible representations of H(g,15). The results
will be published in a forthcoming article.

There is still no known effective algorithm to
construct irreducible representations of H (g, n) for
large n.
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