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It has been conjectured for some time that the set of poles of a
rotationally symmetric two-sheeted hyperboloid breaks into two
disjoint sets if symmetry is broken by contraction perpendicular
to the original axis of symmetry. We provide the first reliable
visualizations of this process, confirming previous conjectures
and motivating new ones.

1. INTRODUCTION

Despite its being a branch of geometry, there are surpris-
ingly few visualizations of the objects or results of study
of global differential geometry, since even approximate
computations are difficult due to their global nature. See
[Berger, 00] for a recent historical survey.

Poles are points whose cut-locus is void, but explicit
cut-loci are essentially intractable by pure mathematics
today. For example, it is still not known whether the cut-
loci of ellipsoids, even of revolution, are all topological
segments.

This was stated in [von Braunmiihl, 1882], which is an
extract, with various extensions, of an earlier paper which
appeared in 1878. The problem is that von Braunmiihl
was using Jacobi’s last “theorem”, still not proved (see
for example page 39 of [Arnold, 1994]). Jacobi’s state-
ment is linked with many other topics.

The only known cut-loci are for compact symmetric
spaces, one kind of homogeneous metric on the three-
dimensional sphere and von Mangoldt surfaces of revo-
lution (which include paraboloids and two-sheeted hy-
perboloids) [Tanaka, 92a]. The field is a very natural
one, concerning the uniqueness of shortest connections
between points.

In 1880, Hans von Mangoldt wrote a paper with the
title “About those Points on Positively Curved Surfaces
which have the Property that the Geodesic Curves pro-
ceeding from them never cease to be Shortest” [von Man-
goldt, 1881]. This was a continuation of a line of inquiry
begun by Jacobi, and subsequently worked on by others
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such as von Braunmiihl, as mentioned above. Von Man-
goldt’s paper includes proofs of many statements con-
cerning such points, which we call poles, for paraboloids
and two-sheeted hyperboloids. In particular, he de-
scribed qualitatively how the set of poles of a hyperboloid
changes as it is compressed in one direction, destroying
rotational symmetry. See [Tanaka, 92a] and references
therein for a review of more recent work in this area.
We consider the family of two-sheeted hyperboloids
(we consider only one sheet) given by the parametrization

z=+/1+px? + 92

It will be convenient to give the point of intersection of

(1-1)

these surfaces with the z-axis a name, so we will call the
point (z,y,z) = (0,0,1) the Scheitel, the German name
von Mangoldt gave this point. An umbilic point is a point
on the surface at which the two principal curvatures are
equal. For p = 1, the Scheitel is the only umbilic point.
For 0 < p <1 and p > 1, there are two umbilic points.
Von Mangoldt made the following two statements
about the set of poles of two-sheeted hyperboloids:

1. The set of poles of a rotationally symmetric two-
sheeted hyperboloid includes the Scheitel of the sur-
face, and is bounded by a circle centred at this point.

2. If one breaks rotational symmetry by making one of
the equal axes smaller, then the set of poles tightens
around the Scheitel until the set of poles breaks into
two disjoint sets, each containing an umbilic point.

The surface given by (1-1) is rotationally symmetric for
p =1
shorter described by von Mangoldt corresponds to mak-

The process of making one of the equal axes

ing p ever greater than 1. Values of p less than 1 corre-
spond to a hyperboloid stretched in one direction. Note
that for p = 0, the surface is flat and all points are poles.

Von Mangoldt did not prove the second statement,
only that the umbilic points are always poles and that
the Scheitel ceases to be one for sufficiently large defor-
mations of the surface (for sufficiently large values of p).
We wish to make a contribution to the understanding of
this process in the form of experimental data. It is hoped
that proofs motivated by our visualizations will appear
in the future.

2. ALGORITHM

The projection of any point on the surface given by (1-1)
onto the (z,y)-plane is unique, and we will use z and y
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FIGURE 1. The pole identification algorithm. The point
on the left is a pole: the geodesic curves proceeding from
it have a fixed radial ordering (0, 1, ... , 14, 15). The point
on the right is not a pole, since the geodesics’ ordering
changes (to 0, 6, 7, ... , 12,13, 3, 14, 2, 4, 15, 1, 5).

as coordinates in the following. The geodesic equations
of the surface are

|: z" } :fp(m7$/7y’y/)_ [ P.Z }’

y" (2-1)

where differentiation is with respect to arc length s and

(pza’ +yy)’ - (p$’2 + y’2) (1 +pz® +y?)

/ /
$7$7 ) =
Fol vv) (14 pz? +p222+292) (1 + pz? + y?)

(2-2)
These equations are numerically well-behaved, in partic-
ular because a hyperboloid is asymptotically flat, mean-
ing that f, rapidly goes to zero as z? + y? increases.
Their numerical analysis is routine and will not be dis-
cussed here. As we will see, there are geometrical sources
of error which are more difficult to control.

The algorithm is quite simple. A pole is a point on a
surface for which none of the geodesic curves proceeding
from it intersect. If such geodesic curves intersect, then
there will be a change in their radial ordering (see Figure
1), and the point can be labeled as not being a pole.
Otherwise the point is labeled as being a pole.

We compute a large number (N) of geodesic curves
all beginning at the candidate pole, with initial angles
(measured in their projection onto the (z,y)-plane) 0,
2r /N, 47 /N, ..., (N —1)27/N. These geodesic curves are
all computed up to the large but finite length d,,q.. We
then compute the angles of their endpoints with respect
to the origin (which will be close to the candidate point
if dypaz 1s truly large) and thereby their radial ordering.

The algorithm is correct when both N and d,;q, be-
come infinite. Errors occur when two geodesic curves
from a candidate point do intersect, but at a distance
greater than d,,qz, or when those geodesic curves com-
puted all intersect an even number of times, such that
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their radial ordering appears to have been conserved. In
both cases, a point which is actually not a pole is labeled
as being one.

Unless otherwise stated, all computations have been
performed with N = 8192 and d,,,q, = 10%°.

3. ANALYSIS

Let (M, g) be a surface of revolution homeomorphic to
R2, i.e., a complete smooth Riemannian manifold home-
omorphic to R? which admits a point p such that the
Gaussian curvature of (M, g) is constant on S, (t) := {q €
M; d(p,q) =t} for each ¢t > 0, where d denotes the Rie-
mannian distance function of (M, g). The point p on M
is called the vertex of M. The Riemannian metric g can
be written as

g = dr® + m(r)2do? (3-1)
in geodesic polar coordinates (r,f) around the vertex.
The function m : (0,00) — (0, 00) is equal to

m(r(@) = /94 (= =)

for each ¢ € M\{p} and extensible to a smooth odd
function on R with m’(0) = 1. From now on we assume

(3-2)

that litm inf m(t) is non-zero. Hence there exists a posi-
—00

tive number ay such that m’ > 0 on [0,2a1], m(2a1) =
inf{m(¢t); t > 2a;}. Let f : [0,m(2a1)] — R be the in-
verse function of m|g 24,]. Then there exists a smooth
function h on [0,m(2a;)] satisfying f/(t) = 1 + t?h(t).
For each point ¢ € M\{p}, let 7, : [0,00) — M denote
the unit speed geodesic emanating from ¢ = 7,(0) with
7,(d(p,q)) = p. The following theorem was proved in
[Tanaka, 92b] (see (1.20), (1.21) and (2.6).

Theorem 3.1. Let (M, dr? + m(r)2d6?) denote a surface

of revolution with vertex p, where (r,0) denotes geodesic

polar coordinates around p. Suppose that litm inf m(t) is
—00

non-zero. Then for each point ¢ € M\{p}, a (non-zero)
Jacobi field Y (t) along 74(t) with Y (0) = 0 is given by

m(ay)

L @) hm@)— [ th (@) de

m(a1)

. (/ s [l

1 al

Y(t)=|2|-

0

B

for each t > p:=d(p,q). Furthermore, if floo Wdr is
finite, then

Y (t) = (2m)2 <C(L) / LQI(T)drf / LQI(T)dr) (%)w)
’ ’ (3-4)
where
T L(t) — tL/
o(L) = 4 / %dt (3-5)
0
and
L(t) = 2xm(?). (3-6)

Let i(q) denote the injectivity radius of ¢ € M (see
[Chavel, 93]).

Corollary 3.2. Let p be the vertex of the paraboloid z =
22 +y2. Then

lim d(p, q) Ini(q) = 1.

q—p

(3-7)

Proof: Let q be any point on the paraboloid distinct from
p. Then i(q) satisfies

(3-8)

where Y (¢) denotes the Jacobi field in Theorem 3.1 (see
[Tanaka, 92b]). Hence we have

(=}

i(g)—p

+/pﬁdr+ / ﬁdrzo. (3-9)

al al

Here m(r) satisfies the differential equation

1

m(r) = V14 4m(r)?

with initial condition m(0) =0 (3-10)
in our case. Hence by I’'Hopital’s rule, we get
2
2
i OS2 (3-11)

r—oo /1 + 4m?2(r)

r—oc T
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By 'Hopital’s rule, (3-10) and (3-11) we have

e 2
1 P
li ——dr=-1i — ] =-1. (3-12
o [ iy == jim, (265) 442
a1
i(q)—p i(q)
lim / Ldr = lim / 1dr
p—>+0p m2(r) p—>+0p r
al al
= lim d(p,q) Ini(q). (3-13)
q—p

Note that i(g) goes to infinity as p — +0. By multiplying
p to the Equation (3-9) and taking a limit, we get

lim d(p, q) Ini(q) = 1. (3-14)
a=p
O

Corollary 3.3. Let q be a point that is not a pole on the
hyperboloid z = \/1+ 22 + y? and q the pole which is
closest to q. Then
lim d(q,q) i(q) (3-15)
9—q

18 positive.

Proof: Let q be any point that is not a pole. Then i(q)
satisfies Y'(i(¢)) = 0, where Y (¢) denotes the Jacobi field
in Theorem 1. In our case,

jm%mdt

is finite, where m satisfies the differential equation

iy [ 14+ m(r)? e s _
m(r) = T3 2m()? with initial condition m(0) = 0.

(3-16)

(3-17)
Hence by Theorem 3.1,
e(L) — 7 L dr — /Oo Ldr =0 (3-18)
L2(r) L)
P i(q)—p

From Theorem 2.1 in [Tanaka, 92b], it follows that

o0

c(L) = / L(t)™2dt,

r(M)

(3-19)

where (M) = d(p, q). Thus by (3-18),

By L’Hopital’s rule, we get

i (ile) - pl( Z L21(r) dr= (L/(ioo))2 - %

Since p — r(M) = d(q, q),

o p

o 1 o L

(}LH};(Z(CI) —p) / 20 dr = ;L%Z(Q) / L2(r) dr
r(M) M

L2(r a—q
(3-22)
By multiplying i(g) — p to the Equation (3-20),
S lim i(q) d(q,q) = L (3-23)
L2(r(M)) a—a 272
Thus
lim i(0) d(a, @) = 55 LA (r(M)) = 2m(r(M))* (3-24)
is positive. |

3.1 Asymptotic Scaling

Estimating the error of our algorithm is not an easy mat-
ter, despite the fact that the numerical integration of the
geodesic equations is standard. The reason is that the
influence of the finite values of N and d,,qz 1S not obvi-
ous.

The finite value of d,,., produces points which are
not poles, because geodesic curves proceeding from them
intersect at a distance greater than d,, ., therefore being
incorrectly labeled as poles.

In the case of a rotationally symmetric two-sheeted
hyperboloid (in our case p = 1), we proved in Corollary
3.3 that the distance to the first (nearest) intersection of
geodesic curves from a point ¢ which is not a pole (this
point’s injectivity radius i(q)) is asymptotically inversely
proportional to this point’s distance to the nearest pole
(asymptotic in the sense that the inverse proportionality
becomes more apparent the closer the two points are).
We know that the projection of the set of poles of this
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surface onto the (z,y)-plane is a circle centered on the
origin. A consequence of the asymptotic scaling is that
we expect the algorithm to compute a radius which is
too large by an amount which is inversely proportional
t0 dinaz, given that N is large enough. This is discussed
further in Section 4.1.

We do not have a similar proven result for asymptotic
scaling relating to N, but experimentally we find that the
error in the radius of the projection of the set of poles for
p = 1 is inversely proportional to the square of N. See
Section 4.1 for details.

4. INDEPENDENT CHECKS

In the following, we will use the few quantitative results
known to independently check the output of our visual-
ization program.

4.1 The Radius of the Set of Poles for p = 1.

In Section III of his paper, von Mangoldt went into great
detail in proving the statement that the set of poles of
the surface given by (1-1) with p = 1 includes the Schei-
tel and is bounded by a circle centered at this point.
We wish to compute the radius of this circle using such
methods as von Mangoldt provided, and use this to check
the accuracy of the visualization program. We base our
discussion on the explicit determination of this radius
in Theorem 2.1 of [Tanaka, 92b], since this is much less
involved than von Mangoldt’s derivation.

We first compute the number ¢(L) defined by (3-5),
where L(t) is the length of the curve composed of points
at a distance t (arc length) from the Scheitel, and then
(assuming that ¢(L) is positive) the unique zero point of
the function

oo

F(r) =c(L) _/L%(s)ds’

r

(4-1)

which is the radius (in arc length from the Scheitel) of
the set of poles.

On a two-sheeted rotationally symmetric hyperboloid,
the curve of points a distance ¢ from the Scheitel is a
circle, and its length L is 27 times the Euclidean distance
in R? from any of its points to the axis of symmetry. Due
to rotational symmetry, we can restrict ourselves to the
plane given by y = 0, which the surface intersects at the
curve given by z = v/1 + z2. Given an arc length ¢, we
can compute the z-coordinate of a point on this curve at
the distance ¢ along the curve from the Scheitel, naming
this coordinate m(t), and we have L(t) = 2rm(t), as

in Equation (3-6). In practice, the function m(t) can
be computed as the solution of the ordinary differential
equation given by (3-17).

We obtain
¢(L) =~ 0.0360682470577406 (4-2)
and the radius
r ~ 1.016650084 (4-3)
for which
m(r) ~ 0.931802372. (4-4)

This last number is the radius of the projection of the set
of poles onto the (x,y)-plane. The projection is a disk
centred at (0,0). The visualization routines produce the
value of

m(r) ~ 0.931802654 . (4-5)

Now we are in a position to discuss the asymptotic
scaling laws for our algorithm’s error in computing the
set of poles of this surface (p = 1).

First we use Corollary 3.3 and check whether the error
in m(r) is asymptotically inversely proportional to dmaz,
given a large enough value of N. In our experiments, we
used the radius computed above (Equation (4-4)) as the
exact result. We concluded that we are indeed approach-
ing asymptotic scaling, but that the effect of the finite
value of N is significant.

Given the value of m(r) (Equation (4—4)), we can com-
pute the value of the constant on the right hand side of
(3-24). We must remember that the data correspond to
distances and errors in distances computed in the pro-
jection onto the (z,y)-plane. Correcting for this, we find
that the constant should have the value of approximately
1.015. This is indeed consistent with our data. It is dif-
ficult to say more due to the effect of the finite value of
N.

One can of course also investigate the effect of varying

N for a given, large value of dyq. (i.e. 10%9). If we
extrapolate to 1/N = 0, we find
m(r) ~ 0.931802371, (4-6)

which is in excellent agreement with (4-4). The data
strongly suggest scaling of the form

(r) & mir) + 5t (4-7)

for large dnas, but we have not been able to prove this.
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FIGURE 2. p = co: The surface (1-1) has become two flat pieces, each bounded by a hyperbola and joined at this
common boundary. The two illustrations on the left show geodesic curves from the points (0.4,0.05) and (0.6,0.1), the
upper and lower plots respectively. These curves are grey on the same flat piece as their source, and black after they have
reflected and are on the other piece. The upper plot corresponds to a pole, since none of the geodesic curves intersect
other than at their source. The lower plot corresponds to a point which is not a pole. The two illustrations on the right
show the rate of change of the angle of the black geodesic curves as a function of the angle at which they left their source
on the other side of the surface. A source point is not a pole if this rate can be negative.

4.2 The Values of p for which the Scheitel is a Pole

In Section V of von Mangoldt’s paper, he proved that one
can make the Scheitel cease being a pole by increasing p
beyond 1. He proved the existence of a critical value of
p without explicitly computing it, but did provide the
necessary equations (the Jacobi equation applied to the
curve -, which we define as the intersection of the surface
given by (1-1) and the plane given by z = 0). We get
the estimate

Ppe ~ 4.856874, (4-8)
which corresponds well with the estimate derived from
the visualization routines, which is

e ~ 4.85688. (4-9)

4.3 Some Educated Guesswork concerning p = co

This Section will not contain any proofs, but details of
a computation which we feel supports one of the conjec-
tures we will formulate later.

As p tends towards infinity, the surface (1-1) becomes
more and more like two identical flat pieces joined at their
common boundary (the curve given by x = 0 and z =
V14 9y?%). We choose to parametrize each piece using
(X,Y)-coordinates, where

(X,Y) = (z2-1,9). (4-10)

Note that X > v1+ Y2 — 1, and that the coordinates
of the Scheitel are (0,0). These coordinates have the ad-
vantage that the distance from the Scheitel to any point
on either flat piece is simply v X2 + Y2. For the moment
we are assuming that X > 0, but later on we will see that
it makes sense to indicate which piece one is on by using
the sign of X.

Geodesic curves on this surface are straight lines until
At the
boundary, geodesic curves change from the one flat piece
to the other, satisfying the usual law of reflection at a
flat surface (angle of reflection equals angle of incidence).
Two geodesic curves can only intersect on the same flat
piece (i.e. on the same side of the surface). See Figure 2.

Given a source point with coordinates (Xg, Yp) on one
side of the surface (and not on the boundary), and a unit
speed geodesic 7 such that v(0) = (Xo,Ys) and 7/(0) =
(— cos 8, sin ), we label the first point of contact with the
boundary (X1,Y7). We can compute a point (X3, Ya) on
the continuation of this geodesic curve on the other side
(not on the boundary) after reflection.

Now we are in the position to define an algorithm.
This algorithm will not be perfect, but its weaknesses
will be different than those of the visualization software

they reach the boundary of one of the pieces.

used in the remainder of the paper, so its results are of
interest in so far as they agree with others we present.
The idea is to measure the angle of the geodesic curves
with respect to the X-axis after reflection (the black lines
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FIGURE 3. One component of the set of poles for p = co.

in Figure 2), and consider this a function of the angle 0 at
which they left the source point. We ignore the possibility
that a geodesic curve can reflect many times because the
source points we are interested in studying do not give
rise to this. If we define the outgoing angle as

—1 }/2_Yi
Xy — Xy’

a = tan

(4-11)

then we can study the rate of change of a as a function of
0. If « is strictly monotone increasing, then we label the
source point a pole, otherwise not. The plots on the right
hand side of Figure 2 are of o/(6). If we use this algorithm
to look for poles within (Xp,Ys) € [0.2,0.6] x [—0.3,0.3],
then we find the set depicted in Figure 3.

Of course both sides of the surface will have such a
set. We show only one component of the set of poles of
the surface, since the other component is identical to it
in every way except that it is on the other flat piece. One
can in fact consider the surface to be the set

M:{(X,Y): 1X| > \/1+Y2—1}

(4-12)

where the boundary points (v14+Y2 —1,Y) and (1 —
V1+Y2Y) are to be identified for all Y.

The check consists of comparing this set with results
for very large p. This will be done in Section 5.1, where
the (X,Y)-coordinates used here are discussed again. We
can however already state that the comparison is ex-
tremely favourable, and encourage the reader to look
ahead to Figure 8.

4.4 The Set of Poles of a Paraboloid

In this section, we apply the visualization software to
treat the surface given by

z =2+ 9% (4-13)
In Section IV of von Mangoldt’s paper, he proved that the
set of poles consists only of the Scheitel (0,0, 0), which is
the same point as the vertex of this surface.

The proof of the asymptotic scaling law used in the
hyperbolic case does not apply here. Instead, we know
(Corollary 3.2) that the logarithm of the distance to
the first (nearest) intersection of geodesic curves from
a point which is not a pole (this point’s injectivity ra-
dius) is asymptotically inversely proportional to this
point’s distance to the vertex. This means that conver-
gence to correct results is asymptotically proportional
to 1/log(d?,,.,) or, equivalently, 1/10g dyqz, rather than
1/dmaz, making the paraboloid more difficult to treat
than a hyperboloid. The square in 1/log(d2,,,) is due
to the fact that d,,., measures Euclidean distance in
the projection onto the (z,y)-plane rather than distance
along a geodesic on the surface.

The check consists of using our visualization routines
to find the radius of the set of poles of the paraboloid,
which we already know to be zero. We did indeed find
results consistent with the radius going to zero as d;qz
goes to infinity. Changing the value of N (down to 4096)
was found to have an almost insignificant (but otherwise
not surprising) effect.

5. RESULTS FOR THE TWO-SHEETED HYPERBOLOID

For p = 0, we know that all points are poles. Also, the
umbilic points are always poles. In the limit p — oo, the
coordinates of the two umbilic points tend to (£0,0,/2).
The output of the visualization routines is in agreement
with these facts.

Furthermore, the breaking of the set of poles into two
disjoint sets for large enough p already predicted by von
Mangoldt is confirmed (see Figure 4).

What one notices when looking at the set of poles for
very small p (see Figure 5) is that the set of poles is
indeed large, giving one reason to believe that there is
a continuous transition from small, finite sets for p =~ 1
to larger and larger sets as p decreases, until the entire
infinite surface is included for p = 0.

Figure 6 supports this picture, and suggests further
that the set of poles for a surface given by some value of p
contains the sets of poles for other surfaces corresponding
to larger values of p. We need to define what we mean by
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FIGURE 4. The set of poles for p = 4.85687918 (above) and p = 5 (below) on the surfaces given by z = /1 + pz? + y2.
The former is less than but very close to the critical value of p. ~ 4.856874. The latter is larger than the critical value,

and the set of poles has broken into two disjoint subsets.

FIGURE 5. The set of poles for p = 0.05 (left) and p = 0.5 (right).

“contains”, because poles are points on their respective
surfaces, and these surfaces only intersect at the curve
given by z = 0 and z = /1 + y2. Our results suggest
that the most useful formulation makes use of geodesic
polar coordinates, and we use these in the following. All
calculations of geodesic polar coordinates were performed
using a slightly modified version of the software package
Loki [Sinclair and Tanaka, 02].

5.1 Conjectures

For any given value of p > 0, compute the set of poles

of the surface given by z = +/1+ px?2 +y2. For each

pole ¢ which is not the Scheitel, compute its geodesic
polar coordinates (r,0) around the Scheitel, by find-
ing the unique unit speed geodesic 7, emanating from
the Scheitel and passing through the pole g, such that
74(0) = (0,0,1) (the Scheitel), defining r by v4(r) = ¢
and 0 by (cosf,sin6,0) = v,(0).

Then compute each pole’s (X,Y)-coordinates, where
X =rcosfandY = rsinf. The Scheitel itself is mapped
to (Xs,Ys) = (0,0). We now have a projection from the
set of poles of a surface for some given value of p to
R2. Let us call these sets in R? P(p). Then our results,
especially Figures 6 and 7, suggest very strongly that
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X

FIGURE 6. The projections onto the (z,y)-plane of the sets of poles for p = 0.5, 1, 2 and 5. The set for p = 0.5 includes
all the black regions and their interiors. The set for p = 1 is a circular disc centred at the origin; it is the grey region
and its interior. The set for p = 2 is the white region and its interior. The set for p = 5 consists of the two disjoint
tear-shaped sets in the middle of the figure. Note that each set contains the next.

0.2

il

Y 0
-0.1

0.1

-0.2

FIGURE 7. The set of poles for p = 4.85687918 (light grey), 5, 6, 10, 20, 100 and 1000 (black). What one should notice
is that each set contains the next. The candidate points were first chosen from a regular grid on the projection of each
surface onto the (z,y)-plane, and the stripes in the figure are an artifact of this grid. Then geodesic polar coordinates
(r,0) around the Scheitel were computed for each pole, and finally each one was plotted in (X,Y)-coordinates, where

X =rcosf and Y = rsinf.

P(p1) € P(p2) — p1 > pa. (5-1)
Finally, we already know that
(i {\/5 - 1} ,0) € lim P(p) (5-2)

(if lim,_ o P(p) exists) because the umbilic points are al-
ways poles, but Figures 7 and 8 suggest that lim,_,~, P(p)
contains more than just these two points. We claim
this because P(10%) appears to the eye to be identical

to P(10%). The limiting set would therefore seem to be
that depicted in Figure 8.

It is at this point that we can return to the
experiments performed in Section 4.3. The (X,Y)-
coordinates used in that Section correspond in every
way to those used here, and allow a direct compar-
ison of Figures 3 and 8. One can immediately see
that they are essentially identical (of course we expect
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FIGURE 8. The set of poles for p = 10000. See the caption of Figure 7 for an explanation of the coordinates used. The
horizontal and vertical lines mark the limiting positions of the umbilic points as p — oco.

some difference because 10* # oo, but when one plots
them together on the same axes no difference is visible).
This excellent match is the primary motivation for our
second conjecture — that lim, ,,, P(p) exists and is the
set shown in Figures 8 and 3.

6. CONCLUSION

We have provided the first quantitatively reliable visu-
alizations of the set of poles of a family of two-sheeted
hyperboloids, capturing a process previously only quali-
tatively described, and making further conjectures.

From a computational point of view, the most inter-
esting result of this investigation has been the role of
differential geometry in the error analysis of our algo-
rithm via asymptotic scaling laws. This demonstrates
once again the mutual interdependence of computational
and traditional mathematics.
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