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Note Added in Proof

Queneau observed that certain 1-additive sequences (defined

by Ulam) are regular in the sense that differences between

adjacent terms are eventually periodic. This paper extends

Queneau’s work and my recent work toward characterizing

periods and fundamental differences of all regular 1-additive

sequences. Relevant computer investigations of associated

nonlinear recurring sequences give rise to unexpected evi-

dence suggesting several conjectures.

1. INTRODUCTIONStarting with two relatively prime positive integersu < v, Ulam [1964, p. ix] de�ned the 1-additivesequence with base fu; vg as the in�nite sequence(u; v) = a1; a2; a3; a4; : : : ;where a1 = u, a2 = v and subsequent terms arerecursively de�ned by the condition that an is thesmallest integer greater than an�1 and having aunique representation ai+aj , for i < j. For exam-ple, when u = 2 and v = 3, the next �fty terms ofthe sequence are5, 7, 8, 9, 13, 14, 18, 19, 24, 25, 29, 30, 35, 36, 40,41, 46, 51, 56, 63, 68, 72, 73, 78, 79, 83, 84, 89, 94,115, 117, 126, 153, 160, 165, 169, 170, 175, 176,181, 186, 191, 212, 214, 230, 235, 240, 245, 266,273.These numbers do not appear to follow any rec-ognizable pattern, and no pattern seems to emergeeven after computation of the �rst several thousandterms. Such erratic behavior characterizes many1-additive sequences [Guy 1981, Problem C4]. Incontrast, when u = 4 and v = 5, a pattern ap-pears [Queneau 1972; Finch 1991]. The sequencein this case breaks naturally into segments of 32terms each, except for three extra terms in the ini-tial segment, shown in boldface: c
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4, 5, 9, 13, 14, 17, 19, 21, 24, 25, 27, 35, 37, 43,45, 47, 57, 67, 69, 73, 77, 83, 93, 101, 105, 109,113, 115, 123, 125, 133, 149, 153, 163, 173,197, 201, 205, 209, 211, 213, 217, 219, 227, 229,235, 237, 239, 249, 259, 261, 265, 269, 275, 285,293, 297, 301, 305, 307, 315, 317, 325, 341, 345,355, 365,389, 393, 397, : : :A 1-additive sequence is regular if successive di�er-ences an+1 � an are eventually periodic, that is, ifthere is a positive integer N such that aN+n+1 �aN+n = an+1 � an for all su�ciently large n. Thesmallest such N is called the period, and the valueD = aN+n� an for large n is called the fundamen-tal di�erence. The asymptotic density of a regular1-additive sequence (relative to the positive inte-gers) is clearly N=D. Hence, the sequence (4; 5)is regular with N = 32; D = 192 and asymptoticdensity equal to 16 � 0:1667.The �rst examples of regular 1-additive sequen-ces were discovered by Queneau [1972], speci�cally,the sequences (2; v) for v = 5, 7 and 9. In [Finch1991] I determined a condition su�cient for anarbitrary 1-additive sequence (u; v) to be regular(Section 2). In [Finch 1992] I found an approxi-mate formula (with error bound) for N in terms ofD for the special case when u = 2 and v � 5. Thisformula is subject to the truth of a highly plausi-ble conjecture (Section 3) and is based on the dis-tribution properties of linear recurring sequencesin �nite �elds given in [Niederreiter 1976]. Thepresent paper summarizes computer investigationsof N and D for certain 1-additive sequences (u; v)with u � 3, from which follow several conjectures.
2. CONDITION FOR REGULARITYThe proof of Theorem 1 is provided in [Finch 1991];it is included here for the sake of completeness.
Theorem 1. A 1-additive sequence having only �-nitely many even terms is regular.Proof: Let e denote the number of even terms inthe 1-additive sequence a1; a2; : : : . Let x1 < x2 <� � � < xe be the even terms and let yk = 12xk foreach k, where 1 � k � e. Given an integer n � ye,let bn be the number of representations of 2n + 1as a sum ai+ aj , for i < j. Observe that ai+ aj =2n + 1 only if either ai or aj is equal to some xk,

since a sum of two integers is odd if and only if theintegers have di�erent parities. This observationgives rise to the recursive formulabn = eXk=1 �(bn�yk � 1); (1)where �(0) = 1 and �(r) = 0 for r 6= 0. Thesummation simply counts the number of times (outof e) that 2n� xk + 1 is a term in a1; a2; : : : .De�ne now for each n � xe a vector of ye com-ponents,�n = (bn�ye; bn�ye+1; bn�ye+2; : : : ; bn�1):Regularity of the 1-additive sequence a1; a2; : : : isclearly equivalent to eventual periodicity of thevector sequence �xe ; �xe+1 : : : . The components of�n obviously do not exceed e. Since the number ofinteger vectors of length ye whose components arenon-negative and bounded by e is �nite, some �nmust recur, which in turn brings about periodicityby the recursive formula.A wide variety of 1-additive sequences (u; v) ap-pear to satisfy the hypothesis of Theorem 1, thougha proof is not known. Remember that u and v arealways assumed to be relatively prime and thatu < v.
Conjecture 1. (a) These 1-additive sequences have�nitely many even terms: (2; v); for v � 5;(4; v); (5; 6); (u; v); for even u � 6; and (u; v);for odd u � 7 and even v.(b) All other 1-additive sequences have an in�nitenumber of even terms.Evidence supporting both parts of Conjecture 1is entirely empirical in nature. We proceed now toformulate more re�ned versions of Conjecture 1 foreach of the above �ve regular cases.
3. THE CASE (2; v) for v � 5Computer data and formulas derived in [Queneau1972] suggest that the following is true.
Conjecture 2. The sequence (2; v), for v � 5, hasprecisely two even terms, 2 and 2v + 2.This case was examined in detail in [Finch 1992],so a brief summary will su�ce here. If Conjecture 2is true, formula (1) becomesbn = �(bn�1 � 1) + �(bn�v�1 � 1); (2)
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v period N fundamental di�erence D5 32 126 = 2(26 � 1)7 = 23 � 1 26 = 33 � 1 126 = 2(26 � 1)9 444 1778 = 2(23 � 1)(27 � 1)11 1628 6510 = 2(23 � 1)(24 � 1)(25 � 1)13 5906 23;622 = 2(22 � 1)(25 � 1)(27 � 1)15 = 24 � 1 80 = 34 � 1 510 = 2(28 � 1)17 126;960 507;842 = 2(25 � 1)(213 � 1)19 380;882 1;523;526 = 2(22 � 1)(25 � 1)(213 � 1)21 2;097;152 8;388;606 = 2(222 � 1)23 1;047;588 4;194;302 = 2(221 � 1)25 148;814 597;870 = 2(29 � 1)(212 � 1)=727 8;951;040 35;791;394 = 2(228 � 1)=1529 5;406;720 21;691;754 = 2(230 � 1)=9931 = 25 � 1 242 = 35 � 1 2046 = 2(210 � 1)33 127;842;440 511;305;630 = 2(24 � 1)(230 � 1)=6335 11;419;626;400 45;678;505;642 = 2(29 � 1)(210 � 1)(217 � 1)=337 12;885;001;946 51;539;607;546 = 2(22 � 1)(233 � 1)63 = 26 � 1 728 = 36 � 1 8190 = 2(212 � 1)127 = 27 � 1 2186 = 37 � 1 32;766 = 2(214 � 1)255 = 28 � 1 6560 = 38 � 1 131;070 = 2(216 � 1)511 = 29 � 1 19;682 = 39 � 1 524;286 = 2(218 � 1)1023 = 210 � 1 59;048 = 310 � 1 2;097;150 = 2(220 � 1)
TABLE 1. Parameters for the 1-additive sequence (2; v), obtained on the assumption that Conjecture 2 holds.with initial data�(v+1)=2 = (b�(v+1)=2; b�(v�1)=2; : : : ; b(v�3)=2; b(v�1)=2)= (0; 0; : : : ; 0; 1):Replacing the counter variable bn by the indica-tor variable b�n, de�ned to be 1 if 2n+ 1 is a termof a1; a2; : : : and 0 otherwise, and working modulo2, we can simplify formula (2) and obtainb�n = b�n�1 + b�n�v�1 (mod 2);a homogeneous binary linear recurring sequence.Such simpli�cation gives rise to fast computer al-gorithms to compute the period N(v) and the fun-damental di�erence D(v) of (2; v) (Table 1), as-suming Conjecture 2 is true. Only v + 1 bits ofstorage are required at any time, unlike the rapidlyaccumulating storage required when directly com-puting terms of a1; a2; : : : according to their de�ni-tion. One can demonstrate that 12D is the smallestpositive integer k satisfying the equation� 0 Iv1 "Tv �k = Iv+1

over Z2, where Ip is the p� p identity matrix and"v = (0; : : : ; 0; 1). One can also show, using tech-niques developed in [Niederreiter 1976], thatN andD are related byjN(v)� 14D(v)j � 2(v�1)=2:We emphasize that these results depend on thetruth of Conjecture 2, which remains unproven.Another unsolved problem regards the patternthatN(v) andD(v) exhibit at the values v = 2m�1(Table 1). Is N(2m�1) = 3m�1 and D(2m�1) =2(22m � 1) for all m � 3?
4. THE CASE (4; v)This is perhaps the most interesting of the �ve reg-ular cases. All discussion within this section restson the truth of the following conjecture:
Conjecture 3. (a) The sequence (4; v) has preciselythree even terms, 4, 2v + 4 and 4v + 4, whenv 6= 2m � 1 for any m � 3.(b) When v = 2m�1 for some m � 3, the sequence(4; v) has precisely four even terms, 4, 2v + 4,4v + 4 and 2(2v2 + v � 2).



60 Experimental Mathematics, Vol. 1 (1992), No. 1

v N D v N D5 32 192 = 25(5 + 1) 35 826 53267 = 23 � 1 1;927;959 11;301;098 37 776 9728 = 28(37 + 1)9 88 640 = 26(9 + 1) 39 108;966 620;79611 246 1318 41 824 10;752 = 28(41 + 1)13 104 896 = 26(13 + 1) 43 632 563215 = 24 � 1 � � 45 856 11;776 = 28(45 + 1)17 248 2304 = 27(17 + 1) 47 7;226;071 41;163;94019 352 2560 49 896 12;800 = 28(49 + 1)21 280 2816 = 27(21 + 1) 51 1488 13;31223 5173 29;858 53 928 13;824 = 28(53 + 1)25 304 3328 = 27(25 + 1) 55 856 716827 10;270 57;862 57 952 14;848 = 28(57 + 1)29 320 3840 = 27(29 + 1) 59 97;150;536 553;730;58431 = 25 � 1 � � 61 968 15;872 = 28(61 + 1)33 712 8704 = 28(33 + 1) 63 = 26 � 1 � �
TABLE 2. Parameters for the 1-additive sequence (4; v), assuming the truth of Conjecture 3. No periodicitywas detected up to 3:65� 109 terms for sequences marked with asterisks.Assume �rst that v 6= 2m � 1 for any m. In thiscase, formula (1) becomesbn = �(bn�2 � 1) + �(bn�v�2� 1) + �(bn�2v�2� 1);(3)with initial data�(v+1)=2=(b�(3v+3)=2; b�(3v+1)=2; : : : ; b(v�3)=2; b(v�1)=2)= (0;0; : : : ;0;1):One can, as in Section 3, simplify formula (3) bysuppressing some of the information in bn. Work-ing modulo 3, we getb�n = 2(b�n�2(b�n�2 + 1) + b�n�v�2(b�n�v�2 + 1)+ b�n�2v�2(b�n�2v�2 + 1)) (mod 3);a ternary quadratic recurring sequence. This sim-pli�cation, however, o�ers no known theoreticaladvantage, since no results for quadratic recurringsequences have been proved that parallel those forlinear recurring sequences.If we assume instead that v = 2m � 1 for somem, a recursive formula analogous to formula (3)is obtained with four terms instead of three. Onecould, as above, rewrite the recursive formula asa certain quaternary cubic recurring sequence but,again, at no known advantage.Table 2 presents results of N and D computa-tions for (4; v) and was made assuming Conjecture3 holds. An asterisk denotes those sequences forwhich no periodicity was detected up to 3:65� 109

terms; such sequences possess either very long pe-riods or very long transient phases (initial stretchesbefore periodicity begins). For comparison's sake,we note that the transient phase of (4; 7) containsapproximately 1:36� 107 terms.The most striking feature of Table 2 is the man-ner in which N and D behave according to theresidue of v modulo 4. When v � 3 mod 4, notrends are evident. In contrast, when v � 1 mod 4,the following behavior appears to hold:
Conjecture 4. If v � 1 mod 4, the fundamental dif-ference of the 1-additive sequence (4; v) is

D(v) = 2m+3(v + 1);
where m is the largest integer satisfying 2m < v.No similar formula for N(v) appears to be valid;an approximate relationship to D(v) analogous tothat for (2; v) is all that can be hoped for.
5. THE CASE (5; 6)For this single unusual regular 1-additive sequence,we have:
Conjecture 5. The sequence (5; 6) has precisely thir-teen even terms: 6, 16, 26, 36, 80, 124, 144, 172,184, 196, 238, 416 and 448.
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u = 6 u = 8 u = 10v N D N D N D7 9365 62;450 � � � �9 � � 180 1440 � �11 218 1408 299;214 2;183;224 1782 15;31213 252 1664 232;025 1;689;694 314 249615 � � 2;287;191 16;687;270 � �17 14;089;505 93;609;388 306 2720 1618 13;056
TABLE 3. Parameters for the 1-additive sequence (u; v), for even u � 6 and odd v, assuming the truth ofConjecture 6. Dashes denote pairs (u; v) for which either u � v or u and v are not relatively prime.By formula (1) and assuming Conjecture 5, onedetermines that N = 208 and D = 1720 after atransient phase exceeding 1:56� 105 terms.

6. THE CASE (u; v) FOR EVEN u � 6This is the case for which the least is known. Tran-sient phases appear to be particularly lengthy forsequences of this type|over 2� 108 terms for thesequence (8; 17)|resulting in very long computa-tion times. The starting point for these computa-tions is this:
Conjecture 6. The sequence (u; v), for even u � 6,has 2 + 12u even terms, namely, u + 2pv for 0 �p � 12u and (2u+ 4)v.Table 3 summarizes periods and fundamentaldi�erences for this case. Only more extended com-putations will reveal possible formulas or approxi-mate relationships for N and D.
7. THE CASE (u; v) FOR ODD u � 7 AND EVEN vThis case contrasts unexpectedly with the otherfour cases. For �xed u, both N and D are evi-dently simple linear expressions in v, under the as-sumption that v is su�ciently large relative to u.The transient phases here are not quite as long asin Section 6, making the computer-aided discoveryof these linear expressions possible.
Conjecture 7. The sequence (u; v), for odd u � 7and even v, has 2+ 12v even terms, namely, 2qu+vfor 0 � q � 12v and u(2v + 4).Table 4 summarizes periods and fundamentaldi�erences for this case. Based on this table andon similar results for u = 13, 15, 17 and 19, wehave:

Conjecture 8. Let u � 7 be an odd integer. Thereexists an integer v0 such that, for even integers v �v0, periods N and fundamental di�erences D forthe 1-additive sequence (u; v) are necessarily of theform N(v) = fN (u)v + gN (u);D(v) = fD(u)v + gD(u):The corresponding coe�cients for the �rst few val-ues of u are as follows:u fN gN fD gD v07 6 10 112 224 389 14 �2 144 288 5611 64 194 704 1408 3013 19 �56 208 416 5615 42 672 480 960 5217 28 �180 272 544 11819 48 �60 608 1216 120
Apart from evidence that gD is always equal to2fD, no trends in the coe�cients are apparent. Thesimplicity of these formulas for N and D suggestthat a proof of Conjecture 8 for �xed u may bepossible by directly listing the terms a1; a2; : : : asfunctions of (large) v. However, since transientphases are quite large|more than 90v+828 termsfor (7; v), for example|such a proof would almostcertainly demand the use of computers.

8. A GENERALIZATIONStarting with three relatively prime positive inte-gers u < v < w, Queneau [1972] de�ned the (1; 3)-additive sequence with base fu; v; wg as the in�nitesequence (u; v; w) = a1; a2; a3; a4; : : : ;



62 Experimental Mathematics, Vol. 1 (1992), No. 1

u = 7 u = 9 u = 11v N D N D N D8 5874 42;758 � � � �10 830 6594 80;240 630;818 � �12 182 1568 � � 272 246414 � � 258 2304 164 140816 124 1008 546 5184 670 633618 228 2240 � � 708 704020 156 1232 300 3168 842 774422 140 1344 334 3456 � �24 310 2912 � � 488 457626 532 5488 292 4032 1506 21;56028 � � 288 4320 614 528030 132 1792 � � 2114 22;52832 326 4284 984 9792 2242 23;93634 326 4032 636 5184 2370 25;34436 364 4256 � � 2498 26;75238 238 4480 870 11;520 2626 28;16040 250 4704 464 6048 2754 29;56842 � � � � 2882 30;97644 274 5152 584 6624 � �46 286 5376 628 6912 3138 33;79248 298 5600 � � 3266 35;20050 310 5824 780 7488 3394 36;60852 322 6048 614 7776 3522 38;01654 334 6272 � � 3650 39;42456 � � 782 8352 3778 40;83258 358 6720 810 8640 3906 42;24060 370 6944 � � 4034 43;64862 382 7168 866 9216 4162 45;05664 394 7392 894 9504 4290 46;464
TABLE 4. Parameters for the 1-additive sequence (u; v) for odd u � 7 and even v, assuming the truth ofConjecture 7. Dashes denote pairs (u; v) for which either u � v or u and v are not relatively prime.where a1 = u, a2 = v, a3 = w and subsequentterms are recursively de�ned by the condition thatan is the smallest integer greater than an�1 andhaving a unique representation ai+aj+ak, for i <j < k. (A further generalization to (1; t)-additivity,for any t > 1, is brie
y discussed in [Finch 1991].)Broad conditions su�cient for a (1; 3)-additive se-quence to be regular are not known. No fast recur-sive formulas as in the proof of Theorem 1 are avail-able, even conjecturally, so we have little choice butto directly compute terms of a1; a2; : : : from theirde�nition.We show here that examples of regular (1; 3)-additive sequences exist; in fact, we exhibit classes

of regular (1; 3)-additive sequences for which for-mulas for periods N and fundamental di�erencesD can be proved, owing to the shortness of tran-sient phases.
Theorem 2. The periods N and fundamental di�er-ences D for the (1; 3)-additive sequence (1; v; w)are given byN = w + 1 and D = 7w + 1when v = 2 and w � 0 mod 6 and w > 24;N = 13(7w + 9) and D = 21w + 1;when v = 2 and w � 3 mod 6 and w > 45;
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N = w + 1 and D = 7(w + 1);when v = 3 and w � 0 mod 2 and w > 22; andN = 14(w + 3) and D = 5w + 9;when v = 3 and w � 1 mod 4 and w > 17:Proof: For the sake of brevity, we prove only thelast case, omitting the straightforward, if tedious,details. The initial terms of the sequence (1; 3; w),when 17 < w � 1 mod 4, are a1; a2; : : : ; aK , whereK = 14(w + 31) and wherea1 = 1;a2 = 3;ai = w + 4(i� 3) for 3 � i � K � 4;aK�3 = 2w + 5;aK�2 = 2w + 11;aK�1 = 6w + 9;aK = 6w + 11:(The expression for each term is found by summingall triples of distinct preceding terms, keeping trackof which sums are obtained uniquely, and then de-termining the least such sum not already listed asa term of the sequence.) Subsequent terms aK+1+jare of the form cjmodN +D bj=Nc, wherecj = 6w + 19 + 4j for 0 � j � N � 4;cN�3 = 11w + 18;cN�2 = 11w + 20;cN�1 = 11w + 24;

and where N = 14(w + 3) and D = 5w + 9. Thiscompletes the proof.The approach used in the proof of Theorem 2might also be helpful in proving results on the 1-additive sequences in Section 7; but, as discussedthere, any such proof would almost certainly de-pend on computers.
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NOTE ADDED IN PROOFJames H. Schmerl and Eugene Spiegel report, ina personal communication, that they have provedConjecture 2.
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