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We consider the rational maps given by z — |2]2*7222 + ¢,
for z and ¢ complex and o > % fixed and real. Thecasea =1
corresponds to quadratic polynomials: some of the well-known
results for this conformal case still hold for o near 1, while
others break down. Among the differences between the two
cases are the possibility, for a # 1, of periodic attractors that
do not attract the critical point, and the fact that for a < 1 the
Julia set is smooth for an open set of values of ¢. Numerical
evidence suggests that the analogue of the Mandelbrot set for
this family is connected, but not locally connected if a # 1.

INTRODUCTION

We consider a family of maps that are similar to
quadratic maps in being degree-two branched cov-
ers of the Riemann sphere, but that are not in gen-
eral conformal. Namely, for a > % real and fixed,
we study maps f. given in polar coordinates by

fc(Tew) — T2a62i0 +e.

For o = 1, this is the usual quadratic family (z —
2% + ¢), which has been extensively studied and is
fairly well understood. For « different from one, f,
is only quasiconformal, and very different behavior
can occur, although there are many strong similar-
ities to the conformal case. It is our goal to deter-
mine which results for the quadratic family can be
generalized to maps that are topologically similar
(and when « is close to 1, close to quadratic), and
where such results break down.

In the quadratic family, the orbit of the critical
point completely determines the dynamics. This
is not the case for the maps f.: for example, we
have found periodic attractors that do not attract
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the critical point. For certain parameter values,
the dynamics is dominated by two-dimensional real
behavior: periodic saddle points, invariant circles,
and so on.

Another striking difference with the quadratic
family is the existence of smooth Julia sets. In
the conformal case, the only smooth Julia sets are
the segment [—2,2] (for the map z — 2% — 2) and
the unit circle (for the map z — 2%). The cor-
responding Julia sets for f. are also smooth, but
there are more: we use structural stability tech-
niques to show that for any a < 1, the Julia set is
C*-smooth for all c-values sufficiently near 0.

We also study the connectedness locus (the ana-
logue of the Mandelbrot set), and the bifurcations
that occur in the c-plane. Numerical evidence sug-
gests strongly that the connectedness locus is al-
ways connected, and never locally connected for
a # 1. Furthermore, the bifurcations that occur as
the parameter c varies are considerably more com-
plicated than those in the conformal case, although
there are many similarities. We discuss these issues
at some length in Sections 4 and 5.

1. DEFINITIONS AND ELEMENTARY RESULTS

For o > 0, consider the map @, given by
Qo (re') = ree®
in polar coordinates, or, equivalently, by
Qu(z) = 2lHD/25la= /2

in (z,Z) coordinates, for appropriate branches of
the powers. The family {Q,} is a one-parameter
group: Q, o Qs = Q3. Each @, is a quasicon-
formal homeomorphism of the Riemann sphere of
constant dilatation max(a,a™"). (See [Lehto 1987]
for the definition of a quasiconformal map.) The
proof is a straightforward computation: the dilata-
tion is

0Qul +10Qu] _

0Qa| — 0Qu]

where & = 9/9z and 9 = 9/9z.

a+l+|a—1|
a+l—|a—1|

= max(a,a™),

Denote by P, the quadratic map on C given by
P.(z) =2*+¢, and let f,.= P.oQ,. Thus

|2a—2

|z z2+c or

fae(2) =4 222>t + ¢ in (2, Z)-coordinates or
r2@ei? L ¢ in polar coordinates.
For any o« > 0 and any ¢ € C, the map f,. is a
branched cover of C with a single branch point, the
origin, where the map is ramified of degree two.
It extends to the Riemann sphere with a branch
point at co of degree two. Throughout this paper
we always assume that o > % This guarantees
that the dynamics near infinity is always the same:
the point oo is attracting. Moreover, when o > %,
each f, . is at least once differentiable everywhere.

Define the filled-in Julia set K(a,c) of f,. as
the set of points whose orbits under f,. do not
accumulate at oo (see Figure 1 for examples). De-
fine the Julia set J(a,c) as the the set of points
that have no neighborhood in which the iterates of
fa,c form an equicontinuous family in the spheri-
cal metric. Because f, . is an open map, the Julia
set can be split up into two completely invariant
(that is, forward and backward invariant) subsets
0K (a,c) and A(e,¢) = J(a,c) \ 0K (e, c). When
a = 1 the set A(q,c) is empty, but in general it
is nonempty. For instance, A(«,c) may contain
stable manifolds of periodic saddle points.

Proposition 1.1. (@) K(a,c) and J(a,c) are closed
and completely invariant.

b) K(a,c) and J(a,c) are connected if and only if
0€ K(a,c).

(©) If K(a,c) is connected, the restriction of f to
the complement of K(a,c) is conjugate to the
map z — 2% on the complement of the unit disk.

Proof. The proof is essentially the same as for quad-
ratic polynomials. Refer to [Douady and Hubbard
1985; Blanchard 1984; Milnor 1990]. O

Proposition 1.2. Every path component of K («, c) is
simply connected.

Proof. If ~ is a Jordan curve contained in K(a,c),
its iterates are bounded. Consider the component
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D of C \ v that does not contain infinity. Since
fae : € = C is an open map, a point in D cannot
map to a boundary point of f”(D) under f™. Thus
af™"(D) C f(0D) = f*(v), and f*(D) will then
be bounded. Therefore D is contained in K (a,c).

]

Define for fixed « the connectedness locus C,, of the
fa’mlly {fa,c}cEC as

Co = {c| K(,c) is connected}.

C; is known as the Mandelbrot set. An interesting
issue is the dependence of C, on the parameter.
An isolated saddle-node bifurcation that results in
an attractor that attracts the critical point could
ruin the continuity in the Hausdorff topology. We
have not observed such a bifurcation. At this point
we formulate the following conjecture:

Conjecture 1.3. The connectedness locus C, varies
continuously with o in the Hausdorff topology.

Remark. Another interesting subset of the parame-
ter space is

D, ={c| K(a,c) is not totally disconnected}.

In the conformal case, K(a,c) is not connected if
and only if it is totally disconnected. In Section 2,
we show that for large c the set K(a,c) is totally
disconnected. In the case where a < 1, there are

a=075 c¢=-078 ze|-2-1.1i 2+ 1.1i

FIGURE 1.

¢ values for which K(«,c) is not connected and
not totally disconnected (see Section 4). It may
be that €, = D, for @ > 1. This is about all we
know about D,. It would be interesting to find a
computer algorithm to draw this set.

Besides the Mandelbrot set €;, the two extreme
examples can be fairly well understood.

Proposition 1.4. The connectedness locus Ci/, is a
union of half-lines, containing the origin.

Proof. Let f. denote the map fi/2 .. Then

Jre(kz) = kf(2)

for any £ > 0. Consider the orbit of the critical
point. It is easily seen by induction that ;™' (0) =
kfrt1(0). Therefore the property that the orbit of
the critical point be bounded is independent of k.

O

Proposition 1.5. As o — oo, €, converges in the
Hausdorff topology to the unit disk.

Proof. For |c| > 1 and a large enough, f2 (0) is
close to infinity. Consequently, any Hausdorff limit
is contained in the closed unit disk. On the other
hand, when |c¢|] < 1 and ¢ is small, the orbit of
the critical point is contained in the disk of radius
|c| + ¢ for a large enough. Therefore any open disk
contained in the closed unit disk is contained in C,
for a large enough. O

a=15 c=-08 z€|-14—i, 1.4+1]

Examples of filled Julia sets K(«,c). Throughout this paper we use the notation |a,b] to denote

the rectangle in C with a at the lower left corner and b at the upper right.
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2. WHEN DISCONNECTED FILLED-IN JULIA SETS ARE
CANTOR SETS

In the holomorphic case (o = 1), disconnected
filled-in Julia sets are totally disconnected. When
a # 1, this need no longer be true. One can find
values of the parameter for which there are peri-
odic attractors, while the critical point tends to occ.
These examples have only been found when a < 1
(see Section 4). When |c| is large enough for fixed
a, this behavior cannot occur:

Theorem 2.1. If |c| — |2¢|'/?* > 1, then K(a,c) is
totally disconnected, K(a,c) = J(a,c) and fo. is
uniformly expanding on J(a,c).

Proof. The idea of the proof is straightforward.
First, we show in the lemma below that there is
a disk containing the critical point that iterates to
o0o. The next proposition shows that the map on

the filled-in Julia set is uniformly expanding; the
theorem follows immediately. O

Lemma 2.2. If |c| > 21/(22=V)  then
c| — 2¢| 7= 12 <lz| <le
2 1/2

for any z € K(a,c).

Proof. When |c| > 221 we have |c|>** > 2]c|.
Consider a point z with |z| > |¢|. Then

|fae(2)] = 2] = |e] = (|2/c[**) e[ — Ic]

> [2/¢|(2le]) = [e] = 2|z] = [e] > |z].

If the orbit of z remains bounded, the continuity
of f implies the existence of a limit point z., of the
orbit such that |f, .(2e)| = |2c], yielding a con-
tradiction. Therefore the orbit of z goes to infinity,
and so z € K(a,c).

On the other hand, for |z| < (|c| — |2c|1/20‘)1/2a,
we show that the second iterate of z is outside the
disk of radius |c|, and hence by the above argu-
ment, the orbit of z goes to infinity. We have

[fae(2)] = [ farc(2)* = e > [le] = |2]*
> ([2¢]'72)** = Je| = |c]. m

2c
| = el

Corollary 2.3. (a) If |c| > 2/(*~Y then 0 € K(a,c)
and thus ¢ & C,.

(b) If c € C, and z € K(a,c), then |c| < 21/(22~D
and thus |z| < 2Y/(a=1),

Proposition 2.4. If |c| — |2¢|'/?* > 1, then f. . ez-
pands the Euclidean metric on K, .

Proof. Let f = f,., let z be a point in K, ., let
A = D,f, and let v be a nonzero tangent vector
in T,C. We must show that (Av, Av) > (v,v),
or equivalently (A*Av,v) > (v,v). Since A*A has
an orthonormal basis of eigenvectors with positive
eigenvalues, it suffices to show that the minimum
eigenvalue A.;, of A*A is greater than 1.

For general f we have Anin = (|f.] — | f2])?, and
in our case Apin = (@ + 1 — |a — 1|)?|z[**"2. By
Lemma 2.2, we have |z| > (|¢| — |2¢|!/2%)/2> > 1,
since z € K,.. When a > 1 we have A\nin =
4|z**72 > 4, and when 1 < o < 1,

Amin = 402 |2]** 72 > 4a® > 1. O

3. SMOOTH JULIA SETS

In the holomorphic case there are only two smooth
Julia sets. When ¢ = 0, the Julia set is the unit cir-
cle, and is a hyperbolic set. When the critical value
c is real and is one of the preimages of a repelling
fixed point, the Julia set is the closed interval be-
tween —|c| and |¢|. This value for ¢ is at the “tip” of
the Mandelbrot set, and in this case the dynamics
on the Julia set is subhyperbolic (the is, expanding
with respect to a metric that is smoothly equivalent
to the Euclidean metric except at a finite number
of points.)

For fixed values of a, one finds readily the pa-
rameter value for which the critical value is a pre-
image of a repelling fixed point. This fixed point is
real and has coordinate —c. The fixed point equa-
tion is |c[?**+¢ = —¢, so ¢ = —2Y/(2>~1)_ We denote
the corresponding Julia set by J,. Numerical ob-
servations suggest that when « is between % and 2,
J, is indeed an interval, and that when « is greater
than 2, J, is not contained in the real line.
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Theorem 3.1. When « is between 0.5 and 1.7, the
Julia set J, = J(a,c), with ¢ = =222~V s qn

interval. The dynamics on J, is subhyperbolic.

The idea of the proof is straightforward: to find a
metric that is contracted by the inverse (branches)
of f,.. Consider the metric

|dz|

pa(2)|dz| = 2 — z2|(2a71)/2a'

The restriction of this metric to the interval [—c, ]
was considered by Jiang [1990].

Proposition 3.2. When 0.5 < a < 1.7, f expands the
metric p, on the ball of radius 2'/2*=1),

Proof. We want to show that f*(ps) > po. We

let p = (2 —1)/2a. We have 2¢ = —|c|** and
f(z) =221z 4+ ¢. Now
* fz dZ + fi dz

F(p)(e) = 5 |

‘cz _ (|z|2a72z2 + 6)2‘1’

(a4 1)z°722°2dz + (o — 1)2°722%2 dZ]

‘20|Z|2a—222 + Z4|Z|4a—4"’

(e + 1) dz + (o — 1)(2/2) d|

- |Z|1—2a“z|4a—4z4 _ |c|2a|z|2a—2z2|p

_ (@ +1)dz+ (a—1)(2/%) d2|.

20-2,2 _ | a2 |P
||2[22-222 — |c|*]

We now wish to show that the “expansion” ratio
f*(pa)/pa at a point 2 in the disk of radius 2/(22~1)
is bounded from below by one. We have

[ (pa)
Pa

zd?
zdz

" ( |c2 _ Z2| >p
“c|2a _ |Z|2a72z2‘ ’

Now let z = 21/22"Ugei®  Since z is in the closed
disk of radius 2/?*=Y) = |¢|, we have 0 < z < 1.
Denote by €*# the quantity dz/dz. We can express
the expansion ratio as the product of two terms.
The first is

=‘(a+1)+(a—1)

(a4 1) + (o — 1)e’0+9)|,

which is bounded below by 2a when a < 1 and by
2 when « > 1. The second term is

< |22/(2a—1)(1 _62i0$2)| 2
)

|22a/(2a—1) (1 _ 62i9x2a)

B 2(17[1)/0‘ |1 o 62i0$2| P
- |1 _ 62i0m2a| '

1

The term in parentheses on the right exceeds a™
1

when o > 1, and exceeds ; when a < 1. Hence,
for @« > 1, the expansion factor is greater than
o1/ ~(2a=/2a which is a decreasing function of «
and is bigger than 1 for all « € [1,1.7]. For a < 1,
the expansion factor is greater than a272¢)/2e,
which is also a decreasing function of «, and is
greater than 1 when @ = 1. We conclude that when
5 < a < 1.7, the ratio f*(pa)/pa is uniformly
greater than one for all points z within the disk of

radius 21/(e=1), O

Proof of Theorem 3.1. By Corollary 2.3, the filled-in
Julia set is contained in the closed disk D of radius
21/(2e=1) " From the proof of Lemma 2.2, it follows
that the inverses of f map this disk into itself. Let
So and S; be the two components of the inverse
image of the disk:

\
o
o

The two inverse branches 1;: D — S; are home-
omorphisms; by the previous proposition, they are
uniformly contracting. Thus, the diameter of the
sets 9, 0., 0--- 01, (D) go to 0 geometrically.
Hence, there is exactly one point x. with the n-th
iterate of z. in S, , where ¢ = (g1, ¢9,...) (preim-
ages of the critical value have two such represen-
tations €). For each e there is a point on the real
segment with the itinerary ¢, and so there are no
other points in the filled-in Julia set. U
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Conjecture 3.3. For all « in (%, 2), the Julia set J,

is the interval (—2Y/(2e=1 2Y/@a=1) " qnd the dy-
namics on J, is subhyperbolic.

Structural Stability

We now investigate structurally stable properties
for a fixed and c near zero. Consider f. = fa..
Take ¢ to be zero. The unit circle S* is smooth,
fo-invariant and repelling. In fact T5:C splits as
a direct sum T'S' ® N of invariant bundles, where
N corresponds to the radial direction. We have
|D fo(v)| = 2|v| when v € T'S* and

D fo(v)| = 2c|v]

when v € N. If we set m = In(2a)/In2, the dy-
namics near S' is m-normally hyperbolic in the
sense of Hirsch-Pugh-Shub [Hirsch et al. 1977].

On C \ {0}, we have the foliation by concentric
circles and the foliation by radial lines. These fo-
liations are invariant (that is, every component of
fo ! of a leaf is contained in a leaf), smooth, and
intersect transversely. We consider the stability
properties of these foliations.

Definition. Let A be an annulus. A foliation on A
is circular if each of the boundary components of
A are leaves and if every leaf is homeomorphic to
a circle. A foliation on A is transverse if every leaf
is homeomorphic to a closed interval and intersects
each of the boundary components of A in a single
point. We say that a circular or transverse foliation
on A is C* when each leaf is C*-diffeomorphic to
a round circle or interval, respectively, and nearby
leaves are C*-close.

Let A and B be domains in the plane. Let f :
B — A be a smooth nonsingular map. Then any
foliation on A lifts to a foliation on B. We say
that a (C*) foliation on A is compatible with the
dynamics if it and its lift to B form a (C*) foliation
of AU B.

Consider a concentric annulus A containing S*.
Then f;'(A) is strictly contained in A. Choose
a circular foliation on Ay = A\ f; *(A) that is C*-
close to the foliation by round circles (in particular,

transverse to the radial foliation). We can obtain
a foliation on A \ S! by repeatedly pulling back
by f, !; adding S* gives an f;-invariant foliation A
whose leaves are Jordan curves.

One easily shows that every leaf of this folia-
tion is a graph of a radial function (r(6),#); these
graphs are uniformly C* for all k¥ < In(2a)/In 2.
The leaves on

A =A\fy " (4)

converge to the round circle in the C* topology
(Figures 2 and 3).

Now consider a foliation of A4\ f; '(A) by smooth
arcs running from one boundary component to an-
other in each component annulus, transverse to
the foliation by round circles and compatible with
the dynamics. Pull back by the dynamics to ob-
tain a foliation of A \ S' by smooth curves that
is transverse to the circular foliation. Since f;*
is a contraction, each of these curves limits on
S!, and at least two curves land at each point of
S, one from the inside and one from the outside.
Moreover, each of these curves is an angular graph
(r,0(r)) and is uniformly of class C* for all k <
(In2)/In(2a). If @ < 1, the resulting foliation ex-
tends to all of A and all leaves are uniformly C*
for all £ < In(2a)/In2. However, if & > 1 and
the initial foliation is not exactly radial, the curves
cannot meet smoothly at S'. See Figure 4.

Theorem 3.4. Fiz o # 1 and a concentric annulus
A containing the unit circle in its interior, and let
m = In(2a)/In 2.

@ If a > 1, then for all k < m there exists §;, so
that, when |c| < i, any initial circular C* folia-
tion on A\ f.1(A) that is close to the round foli-
ation will pull back and extend to an f.-invariant
C* foliation on A.

(b) If « < 1, then for all k < m~! there exists 6; so
that, when |c| < 0y, any C* transverse foliation
on A\ f.1(A) that is close to the radial foliation
and dynamically compatible will pull back and
extend to an f.-invariant C* foliation on A.
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k

[0.7,4.2] [1.04,1.44] [1.004, 1.023] [1.000004, 1.000023]

FIGURE 2. Part of several leaves of a circular foliation on the outer component of Ay, and the pullbacks to A,
Az, and Ag when o = 2. These leaves converge to the round circle in the C? topology.

[—3.3,3.3]

[—0.29,0.29]
[—0.012,0.012]
[—0.000011, 0.000011]

~ =N — §
00 0 ™ S
S S =) =)
N~ o — ~
) Vo) ™ <
o o o <
T T T =
[2.9,4.05] [2.37,3.06] [1.73,2.04] [1.2,1.265]

FIGURE 3. Leaves of a circular foliation on the outer component of Ay, and pullbacks to Ay, A3, and Ag when
o= %. The convergence to the circle is only C°.

=)
—
S
N
T [1.3,4.1]
™~
S
— [\'F
[a\] (an]
S A
S
<
(o]
(e
[a=)
S
- g [3,4]
<
[1,1.0055] < [1,1.77]

FIGURE 4. The top two graphs show a leaf of a transverse foliation on the outer component of Ag, for o = 2
(left) and a = § (right). The bottom two show the corresponding leaves in the outer component of | J;— 5 An.
For a = 2, although the initial leaf is close to being radial, it becomes less so under iteration; in particular,
notice the lack of smoothness near the limit at (1,0). For oo = %, on the contrary, we chose an initial foliation
that is far from radial, but the result under iteration has a C® limit that is exactly radial.
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Corollary 3.5. (@) If @ > 1 and |c| < 6, the Julia set
J(a,¢) is a C* curve.

b) If a < 1 and |c| < dy, the Julia set J(c, c) inter-
sects every leaf of the corresponding radial foli-
ation in a single point.

|—1.1— 1.2, 1.1+ 1.2] |.48 + .62i, .79 + .958i]

FIGURE 5. The Julia set J(0.75, 0.1 + 0.17) and
a blowup of it. This illustrates Corollary 3.5: al-
though the Julia set is not at all smooth, it looks
like the graph of a polar function r = f(9).

Proof of Theorem 3.4. Most of the technical details
can be found in [Hirsch et al. 1977] (diffeomor-
phisms). Since the maps we discuss here have de-
gree two, the initial setup is a little bit different.
Consider the following cone fields on C \ {0}:

0 0
+ — . . <
C*(r,6) {R8T+®69‘|R|_|@|},
0 0
_ _ o o > .
C(r,0) {R8T+®ae‘|R|_|®|}

When o > 1, f,' maps C* strictly into itself.
Consider the annulus A. For |c| small enough,
f. ! maps the cone field C* on A strictly into it-
self. Choose an initial circular foliation on Ay =
A\ f71(A) where the tangent vectors at each point
are in the cone C*, and extend this to a foliation
Fo on all of A which has the same property. Define
a new foliations F; as follows: pull back Fy on Ay
by f. ! to obtain a foliation on A; = A\ f.%(A).
Extend this to all of A as before to obtain &F;. Iter-
ate this procedure to obtain a sequence of circular
foliations &F,, on A.

Now choose k£ < m, and assume that the leaves
of F are C*. The techniques in [Hirsch et al. 1977]
show that when |c| is small enough, the sequence
F, is C*-compact and therefore has a limit point
F . that only depends on the choice in A\ f!(A).
Since the foliations F,, agree on larger and larger
domains, F, is the only limit point. In particular,
the Julia set J(a,c) is C*.

When a < 1, the situation is reversed: the cone
field C~ is mapped into itself by f,'. When |c|
is sufficiently small, f ! restricted to A maps C~
into itself. Now consider a transverse foliation on
A — f71(A) that is dynamically compatible and
whose tangent-line field is in the cone field C.
Extend this foliation to all of A so that the tangent-
line field is in the cone field everywhere. Repeat the
pull-back construction. When k < m~! this gives
a C*-compact sequence of transverse foliations on
A, for |c| sufficiently small. Again, there is a single
limit point which only depends on the initial choice
in A\ £.(A),

We finally argue that the Julia set intersects ev-
ery leaf in exactly one point. The Julia set J(«,c)
certainly intersects every leaf in at least one point.
If it intersects in say two points, we can iterate
forward and conclude that there are points of the
Julia set in A\ f7'(A). This is a contradiction. [

Since the construction of the foliations in Theo-
rem 3.4 involves choices, one may ask if it is pos-
sible to make canonical choices. This is indeed the
case on the unbounded component of the comple-
ment of the Julia set. Construct an invariant foli-
ation near infinity and pull back by the dynamics.
For @ > 1 one can then make a canonical choice
of C* circular foliation on the closure of the un-
bounded component, and for a < 1 one can make
a canonical choice of C* transverse foliation. It is
interesting that this construction is also possible
when a = 1, the conformal case. Though Theo-
rem 3.4 no longer holds in this case, one still ob-
tains foliations, but by quasicircles and quasiarcs
(radial lines and equipotential lines), rather than
by C* curves [Douady and Hubbard 1985].
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Remark. Jiang [1990] has shown that for all ¢ # 0
with |c| sufficiently small, there is a 7. > 0 such
that for o with 1 — 7, < a < 1 + 7., the Julia
set J(a, c) has Hausdorff dimension greater than 1
(Figure 6).

J(a, ¢) smooth in here

of J(a, ¢) > 1 out here
Imec

Rec

FIGURE6. Schematic classification of the smooth-
ness of the Julia sets near the map z — 22 in a-c
parameter space.

4. FIXED POINTS

In the holomorphic case (a = 1) there is one com-
ponent of the interior of the connectedness locus
that one can understand in all detail, namely, the
period-one component. For each parameter value
there, the corresponding map has a single attract-
ing fixed point, which moreover attracts the critical
point. This component is a disk and its bound-
ary is a cardioid. For every parameter value in
this boundary the corresponding map has a neu-
tral fixed point. When the eigenvalue of this fixed
point is a root of unity >/ (with p and ¢ rel-
atively prime), the corresponding parameter value
occurs at the intersection of the closures of two
connected components of the interior of the Man-
delbrot set, namely the period-one component and
a component where there is a periodic attractor of
period gq.

In part, the key to this picture is the study of the
Leau bifurcation [Milnor 1990]. Here one considers

J(a,c) aradial graph in here

the holomorphic one-parameter family of holomor-
phic germs defined near the origin:

Py(2) = Az + 2°h(z), PA(0) =0,

when A is in the neighborhood of a root of unity.
This study of the period-one component applies to
other hyperbolic components as well. If one con-
siders a component for which one has a periodic
attractor of period ¢, at each point of the bound-
ary of this component one has a neutral periodic
cycle, and taking the g-th iterate reduces the study
of the bifurcation to that of the Leau bifurcation.
In particular, the boundary of such a component
is an algebraic curve.

When a # 1 our understanding is already in-
complete for the period-one component, which we
define as the set of parameters ¢ in the connect-
edness locus for which f, . has an attracting fixed
point. Moreover, the analysis we carry out in the
period-one component does not automatically ex-
tend to the components corresponding to periodic
attractors of higher period. We show below that
when a # 1 and an attractor is present, the critical
point is not necessarily attracted to it.

Fix a. We first analyze the fixed-point picture.
For every zg, there is a ¢ such that z; is a fixed
point of f, ., namely,

c=2zy— zé"“z‘oo‘_l.
If 2y is a fixed point of f, ., the derivative D(zg) of
foc at 2o is

(a+1)2528 tdz + (o — 1)25 128 2dz.

The point zp is an attracting fixed point if the
eigenvalues of D(z) are both in the unit disk. In
the closure of the set of such attracting fixed points,
there are three important curves:

0  where det D(z) = 1;
v+ where D(z) has an eigenvalue +1,;

v— where D(z) has an eigenvalue —1.

Figure 7 shows these curves for several values of .
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FIGURE 7.

A point zy = ree’ is on § if and only if

det D(z) = 4ary® % =1,

and therefore § is a circle of radius (4da)t/(3=4).

A point z; is on v, if and only if
1 —tr D(zo) + det D(2) =0,
or, equivalently,
1—2(a+ 1)rg* " cos by + darg® ™ = 0.

We claim that v, is a smooth simple closed curve.
There are at most two values of 72> ! satisfying the
preceding equation. Because we want to consider
only the solutions for ry positive, we must have
cos fy > 0. Moreover, the discriminant of the equa-
tion is nonnegative when cos®6, > 4a/(a + 1)?,
that is, in an angular sector about the real axis
(when a = 1, this sector reduces to a single point).
The discriminant vanishes at the ends of that angu-
lar sector. Consequently, v, is a topological circle.
One can check that the curve is C*.

The curves 7, and ¢ intersect in two points (only
one when o = 1). Notice that v = —v,, because
2o is on y_ if and only if 1+tr D(zy)+det D(z) = 0.

Define P;(a) as the locus of ¢ such that f, . has
an attracting fixed point. The previous analysis
immediately provides us with insight about P, ().
Consider the map p : C — C that assigns to each
z the parameter value that makes z a fixed point:
fo(»(2) = z. Explicitly, we have

p(z) =z — 2oz L

r = 0.37935

a=20 r=0.70711 a=6.0 r=0.86549

The curves v_, 0 (a circle of radius r) and 7, for various values of a.

When z is real, p(z) is real and p commutes with
conjugation. One checks that p is injective on 4,
injective on § when o > 1, and has a single point
of multiplicity two on § when a < 1.

We will now discuss the dynamics of the fixed
points zg € p~'(c) for ¢ in C. We present the
outcome first, followed by a partial analysis. The
bifurcations occur along the curves p(v+) and p(d)
(Figure 8). One can show that, for a # 1, p(¢) is
a limacon, p(_) is diffeomorphic to a circle, and
p(v+) is a simple closed curve with three cusps.
Three qualitatively different partitionings of the c-
plane are possible, depending on whether « is less
than, equal to, or greater than 1 (Figures 9-11).

Thecase%<a<1

Here the limacon p(d) has an inner loop. We de-
scribe the fixed points occurring in each region of
Figure 9 (see the caption of that figure for the
meaning of +, e and o). We draw attention to
the possibility of attracting fixed points that fail
to attract the critical point (regions ¢ and o+).

8 Outside the limagon p(é) and outside p(y_),
there are always two repelling fixed points.

o+s Inside p(yy) there are four components cut
out by the limacon. Region o+¢ is given by the
two pieces that intersect the real line. There are
two attracting points, one repelling point, and one
saddle. Part of the curve p(d) crosses this region,
but crossing this curve only changes the product
of the eigenvalues of the saddle from less than one
to greater than one; no bifurcation occurs.
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0.5
0.5

0.22

—0.5 0
—0.2
a=0.6
0.03
0.01
—0.01
—0.03 0.16
0 0.1
FIGURE 8.

bottom diagram), for various values of «.

s+e This region consists of the two components
inside p(7y;) that do not intersect the real line; here
there is one attracting fixed point, a saddle, and
two repelling fixed points. Crossing the curve p(J)
into region o+g causes one of the repelling points to

1

FIGURE 9. Fixed-point behavior for 5 < o < 1.
For each region in the c-plane delimited by the
curves p(d), p(v+) and p(y_) we indicate the num-
ber and types of fixed points that exist there: e
represents an attracting fixed point, o a repelling
fixed point, and + a saddle. The top and bottom of
the limacon p(d) have been clipped, and the region
on the right has been magnified.

—=1(

A?A

0.05 0.2
—0.05 —0.2
0.40 0.48 0.5 0.8

The curves p(vy_) (leftmost in each top diagram), p(d) and p(vy4) (three-cusped, and magnified in

undergo a Hopf bifurcation (see below) and become
attracting. As one crosses the curve p(y,) into the
oe region, a saddle and repelling fixed point collide
and cancel.

: Outside p(y.) but inside the inner loop of the
limagon we have two attracting fixed points. When
one crosses p(J) into region oe, one of the attract-
ing points becomes repelling, generally with a Hopf
bifurcation. Entering this region from o+ causes
the repelling point and the saddle to cancel. Since
there are two attracting fixed points, there must be
at least one that doesn’t attract the critical point.
In fact, when c is real the critical point iterates to
infinity.

o+ Inside p(y_) there is always one repelling fixed
point and one saddle. As above, the part of the
p(9) inside this region doesn’t cause a bifurcation.
For ¢ real near p(y_), there is a period-two at-
tractor that fails to attract the critical point; it
is attracted to the saddle instead. As one leaves
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this region into region g, the saddle splits into a
repelling fixed point and a period-two saddle.

oe In this region, which is inside the main loop
of the limacon, we have one attractive and one re-
pelling fixed point. When one enters this region
from region o+s, one of the attracting points and
the saddle collide and cancel. When one enters
from region o+, the saddle merges with a period-
two attractor and an attracting fixed point is cre-
ated. When one crosses into g, the attracting fixed
point becomes repelling and typically a Hopf bifur-
cation occurs. We will discuss the direction of the
Hopf bifurcation at the end of this section.

The case v = 1

In the conformal case, p(d) is a cardioid and p(~;)
and p(y_) are points on the real axis (Figure 10).

oe Inside the cardioid there is one attracting and
one repelling fixed point. The system being con-
formal, the critical point is in the attractor’s basin.

8 Outside the cardioid there are two repelling
fixed points. In this case no Hopf bifurcation can
occur; when going through a point on the cardioid
for which the derivative at the fixed point is of
the form e>*/4 a Leau Fatou flower bifurcation
occurs [Milnor 1990].

The case o > 1

Here the limacon is convex or has a dimple. We
conjecture, based on numerical evidence, that the
critical point is attracted to the attractive point
when it exists.

O O
O O

FIGURE 10. Fixed-point behavior when the map
is conformal (o = 1). The labeling conventions are
as in Figure 9.

8 Outside the limacon and outside p(+y.) there
are two repelling fixed points.

g+e The limagon cuts p(7y; ) into four pieces. The
two pieces intersecting the real line form region g+,
which has two repelling fixed points, one attracting
fixed point, and one saddle point. As for a < 1,
crossing p(d) inside this region doesn’t cause a bi-
furcation. When crossing p(7,) into region g, the
attracting fixed point and the saddle collide; cross-
ing into region oe causes one of the repelling fixed
points and the saddle to collide.

o+s This tiny region consists of the two compo-
nents inside both p(7;) and p(d) that do not in-
tersect the real line. Here there are two attracting
fixed points, one repelling, and one saddle point.
When moving from here to region oe an attract-
ing fixed point and a saddle cancel. When moving
from here to region g+e, one of the attracting fixed
points loses stability and becomes repelling, gener-
ally via a Hopf bifurcation.

o+ Inside p(y-) we have one saddle point and
one repeller. As before, crossing p(d) inside this
region causes no bifurcation. When crossing into
g, the saddle splits into a period two saddle and a
repelling fixed point.

oe Inside the limagon and outside p(7y4) there is
one attracting and one repelling fixed point. When
one crosses p(y;) from region g+e, one of the re-
pelling fixed points and the saddle collide. When
one crosses from region o+ to here an attracting
period-two orbit merges with the saddle to form
an attracting fixed point.

FIGURE 11. Fixed-point behavior for & > 1. The
conventions (labeling, clipping, different scales) are
as in Figure 9.
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Justification

We now give the analysis that leads to the bifur-
cation pictures above. We first consider the case
where c is real.

Proposition 4.1. If ¢ is real, f.. has at most four
fized points.

Proof. The point re? is a fixed point if and only if

0 _ o 2a,2i0 _

re- —r e C.

Looking at the imaginary part, we see that
rsin@ — 2r?*sin@ cos = 0,

so either sinf = 0 or r = 2r?*cosf. In the first
case there are two real solutions if c is less than cy,
where f, ., (z) is tangent to y = . In the second
case we obtain 2% = c after substituting into the
real part of the original equation, and thus we get
at most one value for r. Substituting this value for
r into the original equation gives a quadratic equa-
tion in e that has a solution for every c greater
than a certain ¢; < cy. O

We can explicitly calculate the types of the fixed
points on the real line: the only way the types or
total number of such fixed points can change is
when we cross one of the curves p(d) or p(y+). As-
suming these curves intersect as discussed earlier,
the types occurring in each region can be calcu-
lated by considering all possible bifurcations. We
know that p(d) is a limagon. The difficult part of
the analysis is then to figure out how the curves
p(7+) cross the limagon. First we show that p(vy_)
intersects the limacon as shown in the figures, by
showing that p is injective on the left half plane.

Proposition 4.2. The function p is injective on the
left half plane.

Proof. Observe that p : C — C is proper and sur-
jective. Consequently, p maps closed sets to closed
sets. Let L = {z | Rez < 0} denote the closed left
half-plane. Note that p maps the negative real axis

onto itself and the imaginary axis onto a parabola-
shaped curve that intersects only at the origin:

p(iy) = |y** +iy.
Since p has no singularities on L, it is an open,
orientation-preserving map on L. In particular,
p(L) is open. Since p(L) is closed, we conclude that
p(L) is contained in the component of the com-
plement of the image of the imaginary axis that
contains the negative real axis. Thus p(L) is the
closure of this component, since p(£) is closed. The
map p is proper on L, and maps £ onto this com-
ponent, so the degree of p is well defined. Since
p~*(0) = {0}, this degree is one. We conclude that

p maps the left half plane diffeomorphically onto
the component described before. [l

Next we must show that p(v,) intersects the lima-
con p(d) as indicated in the pictures. This follows
from the examination of three types of point:

The images of the two intersections of v, and
6: here Dp has 0 as a double eigenvalue, and the
rank is one, as can be seen by explicit computation.
This explains the two tangencies between p(é) and
p(7+)-

The points where the tangent to v, is in the ker-
nel of Dp: one checks that there are exactly three
such points, one real (¢; in the proof of Proposi-
tion 4.1) and the other two complex conjugates.
This explains the three cusps.

The points where the tangent to 7, is horizontal
or vertical: one calculates that there is only one
point, ¢;, where the tangent is horizontal. When
a < 2 there is only one point (¢y in the proof of
Proposition 4.1) where the tangent is vertical.

It is not hard to show that p(vy,) and p(y_) do not
intersect.

Hopf Bifurcation

Consider a small disc D with center ¢, € § with
Df., having complex conjugate eigenvalues of ab-
solute value 1 at one fixed point. We wish to dis-
cuss the bifurcation picture in this disc. For ¢ in
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this disc, we can smoothly parametrize the cor-
responding fixed point z(c) in such a way that
z(co) = zo. When D is small enough this map
z: D — C is a diffeomorphism. In particular, z(D)
intersects §, and D \ ¢ consists of two regions, one
where the fixed point is attracting and one where it
is repelling. On the boundary of these regions the
fixed point is neutrally stable. One should in gen-
eral expect a Hopf bifurcation, that is, as ¢ passes
through the curve 9§, the fixed point z, will change
stability and an invariant circle will be created or
destroyed [Marsden and McCracken 1976; Devaney
1989]. This behavior is more precisely described in
terms of normal forms, as follows:

Assume that we have chosen 2, so that its eigen-
values are nonresonant: not first, second, third, or
fourth roots of unity. Then one can find new coor-
dinates with respect to which f, . has the form

F.(2) = Mz(1 + v |2]?) + O(2)

around z,, and whose relationship to the old coor-
dinates depends smoothly on the parameter ¢ € D
[Marsden and McCracken 1976]. (The eigenvalue
Ac and the coefficient v. depend also on «.) The

FIGURE 12.

1

map ¢ — . is a diffeomorphism on D and inter-
sects the unit circle. The bifurcation theory for ¢
near ¢y depends on Rew,,, provided Rev,, # 0.

Claim 4.3. Assume that the eigenvalue A, is non-
resonant. Then Rev,, > 0 for £ < a < 1 and

2
Rev.,, < 0 for a« > 1. In the conformal case
(a =1), v, vanishes.

Justification. When o = 1 this is obvious. For other
values of o we have found no easy proof. The
only more or less straightforward case is an in-
finitesimal computation near the holomorphic case
a = 1. Conceivably, a computer-assisted proof of
this could be done using interval arithmetic. How-
ever, we feel this claim does not merit the effort of
a difficult and tedious proof, and have used Math-
ematica [Wolfram 1988] to perform the coordinate
changes and compute v,, on a large grid of param-
eter values (see Figure 12). For o < 1 we obtained
(numerically) Rewv,., > 41.487, and for o« > 1 we
obtained Rewv., < —8.594. 0

By Claim 4.3, the sign of Re v., depends only on «,
so we know in which direction the Hopf bifurcation

0 )
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Graphs of Rev, as a function of o and 6§ = arg A,,. We have modified the a scale so that the

intervals (5,1) and (1,00) have the same length. On the right is a closeup near the a-f plane, which we have

shaded to emphasize the plausibility of the claim.
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occurs. Assuming that the disc D is small enough,
we have the following dichotomy:

When o < 1 and |A.| < 1, there exists an invari-
ant circle near z(c) that is repelling in the normal
direction. For A, outside the closed unit disc, there
is no invariant circle near the point z(c).

When a > 1, we have the opposite situation: for
|Ac] < 1, there is no invariant circle close to z(c),
and for A, outside the closed unit disc, there exists
an invariant circle that is attracting in the normal
direction. We conjecture that the critical point is
still attracted to this circle.

5. Remarks on the Topology of the Connectedness Locus

In the holomorphic case (a = 1), the connectedness
locus is called the Mandelbrot set, and is connected
[Douady and Hubbard 1985]; its complement in the
Riemann sphere is conformally equivalent to the
open disk. Every connected component of its inte-
rior is a topological disk, and is either a hyperbolic
component or a queer component. For any map
lying in a hyperbolic component, there is a peri-
odic attractor that necessarily attracts the critical
point. Each hyperbolic component has a center—
the parameter value for which the critical orbit is
periodic. Within any component, hyperbolic or
not, all maps except possibly one are topologically

)

4
7z

+
P

¥
Foe

),

(and even quasiconformally) conjugate; the excep-
tion is the center of a hyperbolic component.

A long-standing conjecture is that there are no
queer components in the Mandelbrot set—in other
words, all components of the interior are hyper-
bolic. This conjecture is equivalent to the local
connectivity of the Mandelbrot set [Douady and
Hubbard 1985]. Yoccoz has shown that local con-
nectivity holds for a “substantial” part of Mandel-
brot set [Hubbard 1993]. The hyperbolicity conjec-
ture has also been established along the real line
by rather different techniques [Swigmtek 1992; Mc-
Mullen 1994; Lyubich 1993].

The situation when o # 1 is quite different, as
one should expect, because the iterates of the maps
are not uniformly quasiconformal. Douady and
Hubbard’s proof that the Mandelbrot set is con-
nected relies on the conformal structure; we see no
way to adapt it to the nonconformal case. Fur-
thermore, there is no mathematical relationship
between the hyperbolicity conjecture and the local
connectivity in this case. However, numerical evi-
dence strongly suggests the following conjecture:

Conjecture 5.1. For all o > %, the connectedness

locus C, is connected. However, C, is not locally
connected for o # 1.

The apparent lack of local connectivity of €, in the
nonconformal case is at least partially related to

FIGURE13. The connectednesslocus for o = 0.75 (¢ € | —4—1.6¢, 0.56+1.6i]), « = 1 (c € |—2—1.23, 0.6+1.27]),

and a =15 (ce |[-1.45 -4, 0.5+ i]).
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the presence of saddle points and their stable and
unstable manifolds. Such invariant saddles make a
qualitative understanding of the dynamics difficult
and a quantitative understanding nearly impossi-
ble. In particular, when a < 1, one can readily see
the difficulty caused by the saddles.

Specifically, consider the interval of real param-
eters for which the restriction of f,. to the real
line has an attracting (in R) fixed point that at-
tracts the critical point. For some interval of pa-
rameters, this fixed point is not an attracting fixed
point on C, but is repelling in the imaginary di-
rection (for example, in the region o+ discussed
in Section 4). Denote this fixed point by z. and
consider its global stable manifold W*(z.). Be-
cause the dynamics is noninvertible, this global
stable manifold is topologically more complicated
than for a diffeomorphism. The critical point is in
this stable manifold and one might hope that the
filled-in Julia set is the closure of this stable man-
ifold. Now consider a parameter value ¢’ which is
nearby, but not real. Consider the corresponding
fixed point z. and the corresponding global stable
manifold. The critical point is not necessarily con-
tained in this global stable manifold. In fact, the

global stable manifold changes with the parameter;
sometimes the critical point escapes to infinity and
sometimes it is in W*(z.). The detailed structure
of the connectedness locus is unclear, but it has the
topological appearance of a stable manifold. The
rough structure of the €, for these parameters is
that the main lobe (which contains those values of
the ¢ for which there is an attracting fixed point)
is connected to the period two lobe, (containing
those values for which there is an attracting cycle
of period two) are connected only by a segment in
the real line. A very complicated comb-like struc-
ture limits on part of this segment. See Figure 14
(left).

When « > 1, there is also an apparent lack of lo-
cal connectivity near the real line, but in a dynam-
ically different part of C,—for example, between
the limit of period doubling and the creation of
an orbit of period 5: see Figure 14 (right). At this
time, we have no real understanding of what causes
this.

Some insight into the topology of the boundary
of the main lobe of C, can be gained by looking
again at the Hopf bifurcation near the conformal
case. We shall analyze the type of bifurcations that

¥

FIGURE 14. Blowups of the connectedness locus for « = 0.75 (¢ € |—0.735—0.09¢, —0.428+-0.09i]) and a« = 1.5
(c € [—1.32 — 0.055¢, —1.246 + 0.0557] ), showing the apparent lack of local connectivity.
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occur near parameters for which there is a fixed
point of multiplier A, where X is a g¢-th root of
unity, for ¢ > 5. We shall omit most of the tedious
calculations here; the interested reader should refer
to [Bielefeld et al. 1991, §5].

In this situation, one can change coordinates
[Marsden and McCracken 1976] so that we have
a two complex-parameter family of maps defined
near the origin in the complex plane:

F

Bsa

(2) = Az(e* + alz|* + 29)

+O(laz"|, |apnz®, |z, |274%)).

(Here a ~ (1 — a)/A.) We are interested in the
g-periodic points of F), ,; one easily sees that for
such a point we have

z = z(e™ 4 galz|* + ¢z7)

+O(laz"|, |apuz®, |ua™], |274%)).

We first consider the parameter a to be real,
negative, small and fixed. (This corresponds to
a > 1.) When Rep < 0, the fixed point z = 0
is an attractor; the product of its eigenvalues is
less than 1. When Rep > 0, the fixed point is re-
pelling, but for Re p sufficiently small, there exists
an attracting, invariant (Hopf) circle whose diame-
ter is of order y/Re 11/]a|. One can show that there
is also a g-periodic orbit located approximately on
the circle of radius |a|'/972. When |u| is small, it
is easily seen that this orbit is repelling.

In a horn-shaped domain in the p-plane, the ro-
tation number on the invariant circle is p/q (re-
call that X\ = €2™/9); this horn is in fact the p/q-
resonance horn or Arnol’d tongue [Arnol’d 1965;
Aronson et al. 1982; Hall 1984]. Within this horn,
there are two additional g-periodic orbits: one is a
saddle and the other is an attractor; the invariant
circle around the repelling fixed point is the closure
of the unstable manifold of the p/g-saddle, which
contains the attracting orbit. If y leaves the horn
“through the side”, i.e., if we fix Rep and vary
Im p, the saddle and the attractor collide, and al-
though there is still an invariant circle, the rotation
number is no longer arg A. If instead we allow Re p

to increase sufficiently, the saddle and the repeller
collide, leaving a single attracting orbit of period gq.
However, before this collision occurs, the invariant
circle looses smoothness and becomes only a topo-
logical circle. This loss of smoothness occurs when
the eigenvalues of the p/g-sink become complex.
See [Aronson et al. 1982, § 8|.

Experimental evidence indicates that the criti-
cal orbit remains bounded for all parameter values
discussed above: it is attracted to either the at-
tracting fixed point (Rep < 0), the invariant cir-
cle, or the p/g-periodic attractor. This gives some
explanation for the appearance of the connected-
ness locus near the main lobe: the p/g-lobe sits at
the end of a resonance horn, and is hence attached
along an arc of values. See Figure 15.

When a is positive (corresponding to o < 1),
the picture is the other way around. As above, the

FIGURE 15. The % limb for a = 1.5, in the rect-
angle | —0.6472+0.58567, —0.5031+0.7485¢]. The
regions in gray indicate that the critical point con-
verged to a periodic attractor of moderate period
(less than 100) within a few hundred iterations.
Note the gray horn-like region at the base. The
boundary of the figure appears disconnected due
to the algorithm used to produce the picture; a
different algorithm gives a much thicker boundary.
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FIGURE 16. A Julia set for ¢ in the % resonance
horn for @ = 1.5, z € |—1.25 — 0.94, 1.25 + 0.97].
The large gray areas form the basin of the % at-
tracting periodic orbit. This attracting orbit has
complex eigenvalues, so the unstable manifold of
the % periodic saddle does not form a smooth in-
variant circle. This saddle orbit lies on the five
smooth curves that divide the gray regions, and
that form the stable manifold of the saddle.

A ¥ L

fixed point is attracting for Re u < 0 and repelling
for Rep > 0, but the invariant circle is repelling
and exists only when Re p < 0. Within a horn of
p values, the invariant circle contains a p/g-saddle
and a p/q repeller, and is the closure of the stable
manifold of the saddle. For all Re  negative and u
sufficiently small, there is another g-periodic orbit
nearby, which is attracting.

However, in this case the relationship between
the Arnol’d tongue and the connectedness locus
is quite different. Since the circle is repelling, for
many parameter values in the horn, the critical
orbit does not limit on the attracting fixed point;
it can escape to oo, and hence the filled-in Julia
set will be disconnected. Thus, one cannot readily
detect the presence of the Arnol’d tongues from
the connectedness locus alone, as in the case of
a>1.

There is, however, a horn-like structure which is
readily apparent along the boundary of C,. See
Figure 17. This is related to the presence of g-

%

FIGURE 17. Left: the % limb for @ = 0.75, ¢ € [—0.707 + 0.309¢, —0.265 + 0.7217]. Right: a blowup with
¢ € |0.351 4+ 0.36¢, —0.324 + 0.3867]. The two figures were produced with different algorithms; on the left,
gray denotes parameters for which the critical point failed to escape within 256 iterations, while on the right
such parameter values are colored black, and gray is used to indicate convergence of 0 to an attracting orbit of

moderate period.
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FIGURE 18. Close-ups of the filled Julia set for « = 0.75 and ¢ = —0.333 + 0.372¢, which is within the
horn of Figure 17, and for ¢ = —0.336755 + 0.368516%, which is just outside the horn. In both cases,
z € [=0.7—0.27, 0.1 + 0.6¢] and there is an attracting fixed point at the center of the picture, with a pair of
period-five repellers surrounding it (at the ends of the black and white spirals nearest the center on the left
figure), and a period-five saddle at the edge of the large black region. On the left, the critical point, 0, lies in
the large black cross-shaped region near the lower right. On the right, however, 0 does not lie in the basin of
the attractor; it iterates to infinity, and the filled Julia set is disconnected, although not totally disconnected.
Notice also that one of the period-five repellers lies in the interior of the filled Julia set.

periodic saddles. Near this horn, there are three
period-q orbits, as well as the attracting fixed point.
Two of the periodic orbits are repelling, and the
the other is a saddle. The horn corresponds to
the parameter values for which the critical point
lies between the one side of the stable manifold of
a saddle point z and the other side of the stable
manifold for its image f.(z). See Figure 18 (left).
At the point of the horn, a saddle connection oc-
curs: one side of the local stable manifold of the
periodic saddle z is the local unstable manifold for
its image f.(2).

Attached to the top of the horn is a curve for
which the critical orbit remains bounded, although
it is not attracted to an attractor. For these param-
eters, the critical point lies on the stable manifold
of one of the points of the period-¢ saddle orbit
discussed above. This orbit appears to persist long
enough to attach the period-q lobe (within which
there is an attracting orbit of period ¢) to the main
lobe. Thus, €, is not disconnected as it appears in
Figure 17.

ACKNOWLEDGEMENTS

Most of the research for this paper was performed
while we were at the Institute for Mathematical
Sciences, State University of New York at Stony
Brook. We are grateful to the IMS for its support.

REFERENCES

[Ahlfors 1966] L. Ahlfors, Lectures on Quasiconfor-
mal Mappings, Van Nostrand, Princeton, NJ, 1966
(reprinted by Wadsworth, Monterey, CA, 1987).

[Aronson et al. 1982] D. Aronson, M. Chory, G. R. Hall,
R. McGehee, “Bifurcations from an invariant circle
for two-parameter families of maps of the plane, a
computer-assisted study”, Comm. Math. Phys. 83
(1982), 303-354.

[Arnol’d 1965] V. I. Arnol’d, “Small denominators I.
On the mappings of the circumference of the circle
onto itself”, Translations Am. Math. Soc., 46 (1965),
213-284.

[Bielefeld et al. 1991] B. Bielefeld, S. Sutherland, F.
Tangerman, and J. J. P. Veerman, “Dynamics of



300 Experimental Mathematics, Vol. 2 (1993), No. 4

certain non-conformal degree two maps of the plane”,
SUNY Stony Brook IMS preprint 1991/18.

[Blanchard 1984] P. Blanchard, “Complex analytic
dynamics on the Riemann sphere”, Bull. Amer.
Math. Soc. 11 (1984), 85-141.

[Devaney 1989] R. Devaney, An Introduction to Chaotic
Dynamical Systems, 2nd ed., Addison-Wesley, Read-
ing, MA, 1089.

[Douady and Hubbard 1985] A. Douady, and J. Hub-
bard, “Etude dynamique des polynémes complexes
I, II?, Publ. Math. d’Orsay 84-02 (1984) and 85-04
(1985).

[Hall 1984] G. R. Hall, “Resonance zones in two-
parameter families of circle homeomorphisms”, SIA M
J. Math. Anal. 15 (1984), 1075-1081.

[Hirsch et al. 1977] M. Hirsch, C. Pugh, and M. Shub,
Invariant Manifolds, Lecture Notes in Mathematics
583, Springer, New York, 1977.

[Hubbard 1993] J. H. Hubbard, “Local connectivity
of Julia sets and bifurcation loci: Three theorems of
J.-C. Yoccoz”, pp. 467-511 in Topological Methods
in Modern Mathematics, A Symposium in Honor of
John Milnor’s Siztieth Birthday, Publish or Perish,
1993.

[Jiang 1990] Y. Jiang, “Generalized Ulam-von Neu-
mann Transformations”, Thesis, City University,
New York, 1990.

[Jiang 1993] Y. Jiang, “Dynamics of certain noncon-
formal semigroups”, Complex Variables 22 (1993),
27-34.

[Lehto 1987] O. Lehto, Univalent Functions and
Teichmdller Spaces, Springer, New York, 1987.

[Lyubich 1993] M. Lyubich, “Geometry of quadratic
polynomials, moduli, rigidity and local connectiv-
ity”, SUNY Stony Brook IMS preprint 1993/9.

[McMullen 1994] C. McMullen, Complex Dynamics
and Renormalization, Princeton University Press,
Princeton, NJ, 1994.

[Mané et al. 1983] R. Maiié, P. Sad, and D. Sullivan,
“On the dynamics of rational maps”, Ann. Sci. Ec.
Norm. Sup. (Paris) 16 (1983), 193-217.

[Marsden and McCracken 1976] J. Marsden and M. Mc-
Cracken, The Hopf Bifurcation and Its Applications.
Springer, New York, 1976.

[Milnor 1990] J. Milnor, “Dynamics in one complex
variable: introductory lectures”, SUNY Stony Brook
IMS preprint 1990/5.

[Swiatek 1992] G. Swiatek, “Hyperbolicity is dense in
the real quadratic family”, SUNY Stony Brook IMS
preprint 1992/10.

[Wolfram 1988] S. Wolfram, Mathematica: A Sys-
tem for Doing Mathematics by Computer, 2nd ed.,
Addison-Wesley, Reading, MA, 1991.

Ben Bielefeld, Mathematics Department, National Security Agency, Ft. George G. Meade, MD 20755

Scott Sutherland, Institute for Mathematical Sciences, State University of New York at Stony Brook, Stony Brook,

NY 11794-3660 (scott@math.sunysb.edu)

Folkert Tangerman, Center for Advanced Manufacturing, Department of Applied Mathematics and Statistics,
State University of New York at Stony Brook, Stony Brook, NY 11794 (tangerma@ams.sunysb.edu)

J. J. P. Veerman, Departamento de Matematica, Universidade Federal de Pernambuco, Cidade Universitdria, Rua
Prof. Luis Freire, Recife, PE 50740-540, Brazil (veerman@dmat.ufpe.br)

Received January 8, 1992; accepted in revised form March 1, 1994



