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We consider the rational maps given by z 7! jzj2��2z2 + c,
for z and c complex and� > 12 fixed and real. The case � = 1
corresponds to quadratic polynomials: some of the well-known

results for this conformal case still hold for � near 1, while

others break down. Among the differences between the two

cases are the possibility, for � 6= 1, of periodic attractors that

do not attract the critical point, and the fact that for � < 1 the

Julia set is smooth for an open set of values of c. Numerical

evidence suggests that the analogue of the Mandelbrot set for

this family is connected, but not locally connected if � 6= 1.

INTRODUCTIONWe consider a family of maps that are similar toquadratic maps in being degree-two branched cov-ers of the Riemann sphere, but that are not in gen-eral conformal. Namely, for � > 12 real and �xed,we study maps fc given in polar coordinates byfc(rei�) = r2�e2i� + c:For � = 1, this is the usual quadratic family (z 7!z2 + c), which has been extensively studied and isfairly well understood. For � di�erent from one, fcis only quasiconformal, and very di�erent behaviorcan occur, although there are many strong similar-ities to the conformal case. It is our goal to deter-mine which results for the quadratic family can begeneralized to maps that are topologically similar(and when � is close to 1, close to quadratic), andwhere such results break down.In the quadratic family, the orbit of the criticalpoint completely determines the dynamics. Thisis not the case for the maps fc: for example, wehave found periodic attractors that do not attract
c
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the critical point. For certain parameter values,the dynamics is dominated by two-dimensional realbehavior: periodic saddle points, invariant circles,and so on.Another striking di�erence with the quadraticfamily is the existence of smooth Julia sets. Inthe conformal case, the only smooth Julia sets arethe segment [�2; 2] (for the map z 7! z2 � 2) andthe unit circle (for the map z 7! z2). The cor-responding Julia sets for fc are also smooth, butthere are more: we use structural stability tech-niques to show that for any � < 1, the Julia set isCk-smooth for all c-values su�ciently near 0.We also study the connectedness locus (the ana-logue of the Mandelbrot set), and the bifurcationsthat occur in the c-plane. Numerical evidence sug-gests strongly that the connectedness locus is al-ways connected, and never locally connected for� 6= 1. Furthermore, the bifurcations that occur asthe parameter c varies are considerably more com-plicated than those in the conformal case, althoughthere are many similarities. We discuss these issuesat some length in Sections 4 and 5.
1. DEFINITIONS AND ELEMENTARY RESULTSFor � > 0, consider the map Q� given byQ�(rei�) = r�ei�in polar coordinates, or, equivalently, byQ�(z) = z(�+1)=2�z(��1)=2in (z; �z) coordinates, for appropriate branches ofthe powers. The family fQ�g is a one-parametergroup: Q� � Q� = Q��. Each Q� is a quasicon-formal homeomorphism of the Riemann sphere ofconstant dilatation max(�; ��1). (See [Lehto 1987]for the de�nition of a quasiconformal map.) Theproof is a straightforward computation: the dilata-tion isj@Q�j+ j�@Q�jj@Q�j � j�@Q�j = �+ 1 + j�� 1j�+ 1� j�� 1j = max(�; ��1);where @ = @=@z and �@ = @=@�z.

Denote by Pc the quadratic map on C given byPc(z) = z2 + c, and let f�;c = Pc �Q�. Thus
f�;c(z) = 8<: jzj2��2z2 + c orz�+1�z��1 + c in (z; �z)-coordinates orr2�ei2� + c in polar coordinates.For any � > 0 and any c 2 C , the map f�;c is abranched cover of C with a single branch point, theorigin, where the map is rami�ed of degree two.It extends to the Riemann sphere with a branchpoint at 1 of degree two. Throughout this paperwe always assume that � > 12 . This guaranteesthat the dynamics near in�nity is always the same:the point 1 is attracting. Moreover, when � > 12 ,each f�;c is at least once di�erentiable everywhere.De�ne the �lled-in Julia set K(�; c) of f�;c asthe set of points whose orbits under f�;c do notaccumulate at 1 (see Figure 1 for examples). De-�ne the Julia set J(�; c) as the the set of pointsthat have no neighborhood in which the iterates off�;c form an equicontinuous family in the spheri-cal metric. Because f�;c is an open map, the Juliaset can be split up into two completely invariant(that is, forward and backward invariant) subsets@K(�; c) and �(�; c) = J(�; c) n @K(�; c). When� = 1 the set �(�; c) is empty, but in general itis nonempty. For instance, �(�; c) may containstable manifolds of periodic saddle points.
Proposition 1.1. (a) K(�; c) and J(�; c) are closedand completely invariant .
(b) K(�; c) and J(�; c) are connected if and only if0 2 K(�; c).
(c) If K(�; c) is connected , the restriction of f tothe complement of K(�; c) is conjugate to themap z 7! z2 on the complement of the unit disk .
Proof. The proof is essentially the same as for quad-ratic polynomials. Refer to [Douady and Hubbard1985; Blanchard 1984; Milnor 1990]. �
Proposition 1.2. Every path component of K(�; c) issimply connected .
Proof. If 
 is a Jordan curve contained in K(�; c),its iterates are bounded. Consider the component
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D of C n 
 that does not contain in�nity. Sincef�;c : C ! C is an open map, a point in D cannotmap to a boundary point of fn(D) under fn. Thus@fn(D) � fn(@D) = fn(
), and fn(D) will thenbe bounded. Therefore D is contained in K(�; c).�De�ne for �xed � the connectedness locus C� of thefamily ff�;cgc2C asC� = fc j K(�; c) is connectedg:C1 is known as the Mandelbrot set. An interestingissue is the dependence of C� on the parameter.An isolated saddle-node bifurcation that results inan attractor that attracts the critical point couldruin the continuity in the Hausdor� topology. Wehave not observed such a bifurcation. At this pointwe formulate the following conjecture:
Conjecture 1.3. The connectedness locus C� variescontinuously with � in the Hausdor� topology .
Remark. Another interesting subset of the parame-ter space isD� = fc j K(�; c) is not totally disconnectedg:In the conformal case, K(�; c) is not connected ifand only if it is totally disconnected. In Section 2,we show that for large c the set K(�; c) is totallydisconnected. In the case where � < 1, there are

c values for which K(�; c) is not connected andnot totally disconnected (see Section 4). It maybe that C� = D� for � � 1. This is about all weknow about D�. It would be interesting to �nd acomputer algorithm to draw this set.Besides the Mandelbrot set C1, the two extremeexamples can be fairly well understood.
Proposition 1.4. The connectedness locus C1=2 is aunion of half-lines, containing the origin.
Proof. Let fc denote the map f1=2; c. Thenfkc(kz) = kfc(z)for any k > 0. Consider the orbit of the criticalpoint. It is easily seen by induction that fn+1kc (0) =kfn+1c (0). Therefore the property that the orbit ofthe critical point be bounded is independent of k.�
Proposition 1.5. As � ! 1, C� converges in theHausdor� topology to the unit disk .
Proof. For jcj > 1 and � large enough, f 2�;c(0) isclose to in�nity. Consequently, any Hausdor� limitis contained in the closed unit disk. On the otherhand, when jcj < 1 and " is small, the orbit ofthe critical point is contained in the disk of radiusjcj+" for � large enough. Therefore any open diskcontained in the closed unit disk is contained in C�for � large enough. �

� = 0:75 c = �0:78 z 2 b�2� 1:1i; 2 + 1:1ie � = 1:5 c = �0:8 z 2 b�1:4� i; 1:4 + ie
FIGURE 1. Examples of �lled Julia sets K(�; c). Throughout this paper we use the notation ba; be to denotethe rectangle in C with a at the lower left corner and b at the upper right.
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2. WHEN DISCONNECTED FILLED-IN JULIA SETS ARE
CANTOR SETSIn the holomorphic case (� = 1), disconnected�lled-in Julia sets are totally disconnected. When� 6= 1, this need no longer be true. One can �ndvalues of the parameter for which there are peri-odic attractors, while the critical point tends to1.These examples have only been found when � < 1(see Section 4). When jcj is large enough for �xed�, this behavior cannot occur:

Theorem 2.1. If jcj � j2cj1=2� � 1, then K(�; c) istotally disconnected , K(�; c) = J(�; c) and f�;c isuniformly expanding on J(�; c).
Proof. The idea of the proof is straightforward.First, we show in the lemma below that there isa disk containing the critical point that iterates to1. The next proposition shows that the map onthe �lled-in Julia set is uniformly expanding; thetheorem follows immediately. �
Lemma 2.2. If jcj � 21=(2��1), then�jcj � j2cj1=2��1=2� � jzj � jcjfor any z 2 K(�; c).
Proof. When jcj � 21=(2��1), we have jcj2� � 2jcj.Consider a point z with jzj > jcj. Thenjf�;c(z)j � jzj2� � jcj = (jz=cj2�)jcj2� � jcj> jz=cj(2jcj)� jcj = 2jzj � jcj > jzj:If the orbit of z remains bounded, the continuityof f implies the existence of a limit point z1 of theorbit such that jf�;c(z1)j = jz1j, yielding a con-tradiction. Therefore the orbit of z goes to in�nity,and so z 62 K(�; c).On the other hand, for jzj < �jcj � j2cj1=2��1=2�,we show that the second iterate of z is outside thedisk of radius jcj, and hence by the above argu-ment, the orbit of z goes to in�nity. We havejf 2�;c(z)j � jf�;c(z)j2� � jcj � ��jcj � jzj2���2� � jcj> (j2cj1=2�)2� � jcj = jcj: �

Corollary 2.3. (a) If jcj > 21=(2��1) then 0 62 K(�; c)and thus c 62 C�.
(b) If c 2 C� and z 2 K(�; c), then jcj � 21=(2��1)and thus jzj � 21=(2��1).
Proposition 2.4. If jcj � j2cj1=2� � 1, then f�; c ex-pands the Euclidean metric on K�;c.
Proof. Let f = f�;c, let z be a point in K�;c, letA = Dzf , and let v be a nonzero tangent vectorin TzC . We must show that hAv;Avi > hv; vi,or equivalently hA�Av; vi > hv; vi. Since A�A hasan orthonormal basis of eigenvectors with positiveeigenvalues, it su�ces to show that the minimumeigenvalue �min of A�A is greater than 1.For general f we have �min = (jfzj � jf�zj)2, andin our case �min = (� + 1 � j� � 1j)2jzj4��2. ByLemma 2.2, we have jzj � (jcj � j2cj1=2�)1=2� � 1,since z 2 K�;c. When � � 1 we have �min =4jzj4��2 � 4, and when 12 < � � 1,�min = 4�2jzj4��2 � 4�2 > 1: �
3. SMOOTH JULIA SETSIn the holomorphic case there are only two smoothJulia sets. When c = 0, the Julia set is the unit cir-cle, and is a hyperbolic set. When the critical valuec is real and is one of the preimages of a repelling�xed point, the Julia set is the closed interval be-tween�jcj and jcj. This value for c is at the \tip" ofthe Mandelbrot set, and in this case the dynamicson the Julia set is subhyperbolic (the is, expandingwith respect to a metric that is smoothly equivalentto the Euclidean metric except at a �nite numberof points.)For �xed values of �, one �nds readily the pa-rameter value for which the critical value is a pre-image of a repelling �xed point. This �xed point isreal and has coordinate �c. The �xed point equa-tion is jcj2�+c = �c, so c = �21=(2��1). We denotethe corresponding Julia set by J�. Numerical ob-servations suggest that when � is between 12 and 2,J� is indeed an interval, and that when � is greaterthan 2, J� is not contained in the real line.
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Theorem 3.1. When � is between 0:5 and 1:7, theJulia set J� = J(�; c), with c = �21=(2��1), is aninterval . The dynamics on J� is subhyperbolic.The idea of the proof is straightforward: to �nd ametric that is contracted by the inverse (branches)of f�;c. Consider the metric��(z) jdzj = jdzjjc2 � z2j(2��1)=2� :The restriction of this metric to the interval [�c; c]was considered by Jiang [1990].
Proposition 3.2. When 0:5 � � � 1:7, f expands themetric �� on the ball of radius 21=(2��1).
Proof. We want to show that f�(��) > ��. Welet p = (2�� 1)=2�. We have 2c = �jcj2� andf(z) = z�+1�z��1 + c. Nowf�(��)(z) = jfz dz + f�z d�zj��c2 � (jzj2��2z2 + c)2��p

= j(�+ 1)�z��2z��z dz + (�� 1)�z��2z�z d�zj��2cjzj2��2z2 + z4jzj4��4��p
= j(�+ 1) dz + (�� 1)(z=�z) d�zjjzj1�2���jzj4��4z4 � jcj2�jzj2��2z2��p
= j(�+ 1) dz + (�� 1)(z=�z) d�zj��jzj2��2z2 � jcj2���p :We now wish to show that the \expansion" ratiof�(��)=�� at a point z in the disk of radius 21=(2��1)is bounded from below by one. We havef�(��)�� = ���(�+ 1) + (�� 1)z�z d�zdz ���� � jc2 � z2j��jcj2� � jzj2��2z2���p:Now let z = 21=(2��1)xei�. Since z is in the closeddisk of radius 21=(2��1) = jcj, we have 0 � x � 1.Denote by ei' the quantity d�z=dz. We can expressthe expansion ratio as the product of two terms.The �rst is j(�+ 1) + (�� 1)ei(2�+')j;

which is bounded below by 2� when � � 1 and by2 when � � 1. The second term is� j22=(2��1)(1� e2i�x2)jj22�=(2��1)(1� e2i�x2�)j�p
= 2(1��)=�� j1� e2i�x2jj1� e2i�x2�j�p:

The term in parentheses on the right exceeds ��1when � > 1, and exceeds 12 when � � 1. Hence,for � > 1, the expansion factor is greater than21=���(2��1)=2�, which is a decreasing function of �and is bigger than 1 for all � 2 [1; 1:7]. For � < 1,the expansion factor is greater than � 2(3�2�)=2�,which is also a decreasing function of �, and isgreater than 1 when � = 1. We conclude that when:5 � � � 1:7, the ratio f�(��)=�� is uniformlygreater than one for all points z within the disk ofradius 21=(2��1). �
Proof of Theorem 3.1. By Corollary 2.3, the �lled-inJulia set is contained in the closed disk D of radius21=(2��1). From the proof of Lemma 2.2, it followsthat the inverses of f map this disk into itself. LetS0 and S1 be the two components of the inverseimage of the disk:

0 c�c S0 S1D

The two inverse branches  i : D ! Si are home-omorphisms; by the previous proposition, they areuniformly contracting. Thus, the diameter of thesets  "1 �  "2 � � � � �  "n(D) go to 0 geometrically.Hence, there is exactly one point x" with the n-thiterate of x" in S"n , where " = ("1; "2; : : :) (preim-ages of the critical value have two such represen-tations "). For each " there is a point on the realsegment with the itinerary ", and so there are noother points in the �lled-in Julia set. �
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Conjecture 3.3. For all � in ( 12 ; 2), the Julia set J�is the interval (�21=(2��1); 21=(2��1)), and the dy-namics on J� is subhyperbolic.
Structural StabilityWe now investigate structurally stable propertiesfor � �xed and c near zero. Consider fc = f�;c.Take c to be zero. The unit circle S1 is smooth,f0-invariant and repelling. In fact TS1C splits asa direct sum TS1 �N of invariant bundles, whereN corresponds to the radial direction. We havejDf0(v)j = 2 jvj when v 2 TS1 andjDf0(v)j = 2� jvjwhen v 2 N . If we set m = ln(2�)= ln 2, the dy-namics near S1 is m-normally hyperbolic in thesense of Hirsch{Pugh{Shub [Hirsch et al. 1977].On C n f0g, we have the foliation by concentriccircles and the foliation by radial lines. These fo-liations are invariant (that is, every component off�10 of a leaf is contained in a leaf), smooth, andintersect transversely. We consider the stabilityproperties of these foliations.
Definition. Let A be an annulus. A foliation on Ais circular if each of the boundary components ofA are leaves and if every leaf is homeomorphic toa circle. A foliation on A is transverse if every leafis homeomorphic to a closed interval and intersectseach of the boundary components of A in a singlepoint. We say that a circular or transverse foliationon A is Ck when each leaf is Ck-di�eomorphic toa round circle or interval, respectively, and nearbyleaves are Ck-close.Let A and B be domains in the plane. Let f :B ! A be a smooth nonsingular map. Then anyfoliation on A lifts to a foliation on B. We saythat a (Ck) foliation on A is compatible with thedynamics if it and its lift to B form a (Ck) foliationof A [B.Consider a concentric annulus A containing S1.Then f�10 (A) is strictly contained in A. Choosea circular foliation on A0 = A n f�10 (A) that is Ck-close to the foliation by round circles (in particular,

transverse to the radial foliation). We can obtaina foliation on A n S1 by repeatedly pulling backby f�10 ; adding S1 gives an f0-invariant foliation Awhose leaves are Jordan curves.One easily shows that every leaf of this folia-tion is a graph of a radial function (r(�); �); thesegraphs are uniformly Ck for all k � ln(2�)=ln 2.The leaves on An = A n f�n�10 (A)converge to the round circle in the Ck topology(Figures 2 and 3).Now consider a foliation of Anf�10 (A) by smootharcs running from one boundary component to an-other in each component annulus, transverse tothe foliation by round circles and compatible withthe dynamics. Pull back by the dynamics to ob-tain a foliation of A n S1 by smooth curves thatis transverse to the circular foliation. Since f�10is a contraction, each of these curves limits onS1, and at least two curves land at each point ofS1, one from the inside and one from the outside.Moreover, each of these curves is an angular graph(r; �(r)) and is uniformly of class Ck for all k �(ln 2)= ln(2�). If � < 1, the resulting foliation ex-tends to all of A and all leaves are uniformly Ckfor all k < ln(2�)=ln 2. However, if � > 1 andthe initial foliation is not exactly radial, the curvescannot meet smoothly at S1. See Figure 4.
Theorem 3.4. Fix � 6= 1 and a concentric annulusA containing the unit circle in its interior , and letm = ln(2�)=ln 2.
(a) If � > 1, then for all k < m there exists �k sothat , when jcj < �k, any initial circular Ck folia-tion on Anf�1c (A) that is close to the round foli-ation will pull back and extend to an fc-invariantCk foliation on A.
(b) If � < 1, then for all k < m�1 there exists �k sothat , when jcj < �k, any Ck transverse foliationon Anf�1c (A) that is close to the radial foliationand dynamically compatible will pull back andextend to an fc-invariant Ck foliation on A.
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FIGURE 2. Part of several leaves of a circular foliation on the outer component of A0, and the pullbacks to A1,A3, and A8 when � = 2. These leaves converge to the round circle in the C2 topology.
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FIGURE 3. Leaves of a circular foliation on the outer component of A0, and pullbacks to A1, A3, and A8 when� = 58 . The convergence to the circle is only C0.
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FIGURE 4. The top two graphs show a leaf of a transverse foliation on the outer component of A0, for � = 2(left) and � = 58 (right). The bottom two show the corresponding leaves in the outer component of S1n=3An.For � = 2, although the initial leaf is close to being radial, it becomes less so under iteration; in particular,notice the lack of smoothness near the limit at (1; 0). For � = 58 , on the contrary, we chose an initial foliationthat is far from radial, but the result under iteration has a C3 limit that is exactly radial.
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Corollary 3.5. (a) If � > 1 and jcj < �k, the Julia setJ(�; c) is a Ck curve.
(b) If � < 1 and jcj < �k, the Julia set J(�; c) inter-sects every leaf of the corresponding radial foli-ation in a single point .

b�1:1� 1:2i; 1:1 + 1:2ie b:48 + :62i; :79 + :958ie
FIGURE 5. The Julia set J(0:75; 0:1 + 0:1i) anda blowup of it. This illustrates Corollary 3.5: al-though the Julia set is not at all smooth, it lookslike the graph of a polar function r = f(�).

Proof of Theorem 3.4. Most of the technical detailscan be found in [Hirsch et al. 1977] (di�eomor-phisms). Since the maps we discuss here have de-gree two, the initial setup is a little bit di�erent.Consider the following cone �elds on C n f0g:
C+(r; �) = �R @@r +� @@� ���� jRj � j�j�;
C�(r; �) = �R @@r +� @@� ���� jRj � j�j�:When � > 1, f�10 maps C+ strictly into itself.Consider the annulus A. For jcj small enough,f�1c maps the cone �eld C+ on A strictly into it-self. Choose an initial circular foliation on A0 =Anf�1c (A) where the tangent vectors at each pointare in the cone C+, and extend this to a foliationF0 on all of A which has the same property. De�nea new foliations F1 as follows: pull back F0 on A0by f�1c to obtain a foliation on A1 = A n f�2c (A).Extend this to all of A as before to obtain F1. Iter-ate this procedure to obtain a sequence of circularfoliations Fn on A.

Now choose k < m, and assume that the leavesof F are Ck. The techniques in [Hirsch et al. 1977]show that when jcj is small enough, the sequenceFn is Ck-compact and therefore has a limit pointF1 that only depends on the choice in A n f�1c (A).Since the foliations Fn agree on larger and largerdomains, F1 is the only limit point. In particular,the Julia set J(�; c) is Ck.When � < 1, the situation is reversed: the cone�eld C� is mapped into itself by f�10 . When jcjis su�ciently small, f�1c restricted to A maps C�into itself. Now consider a transverse foliation onA � f�1c (A) that is dynamically compatible andwhose tangent-line �eld is in the cone �eld C�.Extend this foliation to all of A so that the tangent-line �eld is in the cone �eld everywhere. Repeat thepull-back construction. When k < m�1 this givesa Ck-compact sequence of transverse foliations onA, for jcj su�ciently small. Again, there is a singlelimit point which only depends on the initial choicein A n f�1c (A).We �nally argue that the Julia set intersects ev-ery leaf in exactly one point. The Julia set J(�; c)certainly intersects every leaf in at least one point.If it intersects in say two points, we can iterateforward and conclude that there are points of theJulia set in A n f�1c (A). This is a contradiction. �Since the construction of the foliations in Theo-rem 3.4 involves choices, one may ask if it is pos-sible to make canonical choices. This is indeed thecase on the unbounded component of the comple-ment of the Julia set. Construct an invariant foli-ation near in�nity and pull back by the dynamics.For � > 1 one can then make a canonical choiceof Ck circular foliation on the closure of the un-bounded component, and for � < 1 one can makea canonical choice of Ck transverse foliation. It isinteresting that this construction is also possiblewhen � = 1, the conformal case. Though Theo-rem 3.4 no longer holds in this case, one still ob-tains foliations, but by quasicircles and quasiarcs(radial lines and equipotential lines), rather thanby Ck curves [Douady and Hubbard 1985].
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Remark. Jiang [1990] has shown that for all c 6= 0with jcj su�ciently small, there is a �c > 0 suchthat for � with 1 � �c � � � 1 + �c, the Juliaset J(�; c) has Hausdor� dimension greater than 1(Figure 6).

Hausdor� dimensionof J(�; c) > 1 out here
J(�; c) smooth in here

J(�; c) a radial graph in here
Im c

Re c

�� 1

FIGURE 6. Schematic classi�cation of the smooth-ness of the Julia sets near the map z 7! z2 in �-cparameter space.
4. FIXED POINTSIn the holomorphic case (� = 1) there is one com-ponent of the interior of the connectedness locusthat one can understand in all detail, namely, theperiod-one component. For each parameter valuethere, the corresponding map has a single attract-ing �xed point, which moreover attracts the criticalpoint. This component is a disk and its bound-ary is a cardioid. For every parameter value inthis boundary the corresponding map has a neu-tral �xed point. When the eigenvalue of this �xedpoint is a root of unity e2�ip=q (with p and q rel-atively prime), the corresponding parameter valueoccurs at the intersection of the closures of twoconnected components of the interior of the Man-delbrot set, namely the period-one component anda component where there is a periodic attractor ofperiod q.In part, the key to this picture is the study of theLeau bifurcation [Milnor 1990]. Here one considers

the holomorphic one-parameter family of holomor-phic germs de�ned near the origin:P�(z) = �z + z2h(z); P�(0) = 0;when � is in the neighborhood of a root of unity.This study of the period-one component applies toother hyperbolic components as well. If one con-siders a component for which one has a periodicattractor of period q, at each point of the bound-ary of this component one has a neutral periodiccycle, and taking the q-th iterate reduces the studyof the bifurcation to that of the Leau bifurcation.In particular, the boundary of such a componentis an algebraic curve.When � 6= 1 our understanding is already in-complete for the period-one component, which wede�ne as the set of parameters c in the connect-edness locus for which f�;c has an attracting �xedpoint. Moreover, the analysis we carry out in theperiod-one component does not automatically ex-tend to the components corresponding to periodicattractors of higher period. We show below thatwhen � 6= 1 and an attractor is present, the criticalpoint is not necessarily attracted to it.Fix �. We �rst analyze the �xed-point picture.For every z0, there is a c such that z0 is a �xedpoint of f�;c, namely,c = z0 � z�+10 �z0��1:If z0 is a �xed point of f�;c, the derivative D(z0) off�;c at z0 is(�+ 1)z�0 �z��10 dz + (�� 1)z�+10 �z��20 d�z:The point z0 is an attracting �xed point if theeigenvalues of D(z0) are both in the unit disk. Inthe closure of the set of such attracting �xed points,there are three important curves:� where detD(z0) = 1;
+ where D(z0) has an eigenvalue +1;
� where D(z0) has an eigenvalue �1.Figure 7 shows these curves for several values of �.
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� = 0:6 r = 0:11206 � = 0:8 r = 0:37935 � = 2:0 r = 0:70711 � = 6:0 r = 0:86549
FIGURE 7. The curves 
�, � (a circle of radius r) and 
+, for various values of �.A point z0 = r0ei�0 is on � if and only ifdetD(z0) = 4�r4��20 = 1;and therefore � is a circle of radius (4�)1=(2�4�).A point z0 is on 
+ if and only if1� trD(z0) + detD(z0) = 0;or, equivalently,1� 2(�+ 1)r2��10 cos �0 + 4�r4��20 = 0:We claim that 
+ is a smooth simple closed curve.There are at most two values of r2��10 satisfying thepreceding equation. Because we want to consideronly the solutions for r0 positive, we must havecos �0 � 0. Moreover, the discriminant of the equa-tion is nonnegative when cos2 �0 > 4�=(� + 1)2,that is, in an angular sector about the real axis(when � = 1, this sector reduces to a single point).The discriminant vanishes at the ends of that angu-lar sector. Consequently, 
+ is a topological circle.One can check that the curve is C1.The curves 
+ and � intersect in two points (onlyone when � = 1). Notice that 
� = �
+, becausez0 is on 
� if and only if 1+trD(z0)+detD(z0) = 0.De�ne P1(�) as the locus of c such that f�;c hasan attracting �xed point. The previous analysisimmediately provides us with insight about P1(�).Consider the map p : C ! C that assigns to eachz the parameter value that makes z a �xed point:fp(z)(z) = z. Explicitly, we havep(z) = z � z�+1�z��1:

When z is real, p(z) is real and p commutes withconjugation. One checks that p is injective on 
�,injective on � when � � 1, and has a single pointof multiplicity two on � when � < 1.We will now discuss the dynamics of the �xedpoints z0 2 p�1(c) for c in C . We present theoutcome �rst, followed by a partial analysis. Thebifurcations occur along the curves p(
�) and p(�)(Figure 8). One can show that, for � 6= 1, p(�) isa lima�con, p(
�) is di�eomorphic to a circle, andp(
+) is a simple closed curve with three cusps.Three qualitatively di�erent partitionings of the c-plane are possible, depending on whether � is lessthan, equal to, or greater than 1 (Figures 9{11).
The case 12 < � < 1Here the lima�con p(�) has an inner loop. We de-scribe the �xed points occurring in each region ofFigure 9 (see the caption of that �gure for themeaning of , and ). We draw attention tothe possibility of attracting �xed points that failto attract the critical point (regions and ).Outside the lima�con p(�) and outside p(
�),there are always two repelling �xed points.Inside p(
+) there are four components cutout by the lima�con. Region is given by thetwo pieces that intersect the real line. There aretwo attracting points, one repelling point, and onesaddle. Part of the curve p(�) crosses this region,but crossing this curve only changes the productof the eigenvalues of the saddle from less than oneto greater than one; no bifurcation occurs.
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FIGURE 8. The curves p(
�) (leftmost in each top diagram), p(�) and p(
+) (three-cusped, and magni�ed inbottom diagram), for various values of �.This region consists of the two componentsinside p(
+) that do not intersect the real line; herethere is one attracting �xed point, a saddle, andtwo repelling �xed points. Crossing the curve p(�)into region causes one of the repelling points to

FIGURE 9. Fixed-point behavior for 12 < � < 1.For each region in the c-plane delimited by thecurves p(�), p(
+) and p(
�) we indicate the num-ber and types of �xed points that exist there:represents an attracting �xed point, a repelling�xed point, and a saddle. The top and bottom ofthe lima�con p(�) have been clipped, and the regionon the right has been magni�ed.

undergo a Hopf bifurcation (see below) and becomeattracting. As one crosses the curve p(
+) into theregion, a saddle and repelling �xed point collideand cancel.Outside p(
+) but inside the inner loop of thelima�con we have two attracting �xed points. Whenone crosses p(�) into region , one of the attract-ing points becomes repelling, generally with a Hopfbifurcation. Entering this region from causesthe repelling point and the saddle to cancel. Sincethere are two attracting �xed points, there must beat least one that doesn't attract the critical point.In fact, when c is real the critical point iterates toin�nity.Inside p(
�) there is always one repelling �xedpoint and one saddle. As above, the part of thep(�) inside this region doesn't cause a bifurcation.For c real near p(
�), there is a period-two at-tractor that fails to attract the critical point; itis attracted to the saddle instead. As one leaves
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this region into region , the saddle splits into arepelling �xed point and a period-two saddle.In this region, which is inside the main loopof the lima�con, we have one attractive and one re-pelling �xed point. When one enters this regionfrom region , one of the attracting points andthe saddle collide and cancel. When one entersfrom region , the saddle merges with a period-two attractor and an attracting �xed point is cre-ated. When one crosses into , the attracting �xedpoint becomes repelling and typically a Hopf bifur-cation occurs. We will discuss the direction of theHopf bifurcation at the end of this section.
The case � = 1In the conformal case, p(�) is a cardioid and p(
+)and p(
�) are points on the real axis (Figure 10).Inside the cardioid there is one attracting andone repelling �xed point. The system being con-formal, the critical point is in the attractor's basin.Outside the cardioid there are two repelling�xed points. In this case no Hopf bifurcation canoccur; when going through a point on the cardioidfor which the derivative at the �xed point is ofthe form e2�ip=q, a Leau{Fatou 
ower bifurcationoccurs [Milnor 1990].
The case � > 1Here the lima�con is convex or has a dimple. Weconjecture, based on numerical evidence, that thecritical point is attracted to the attractive pointwhen it exists.

FIGURE 10. Fixed-point behavior when the mapis conformal (� = 1). The labeling conventions areas in Figure 9.

Outside the lima�con and outside p(
�) thereare two repelling �xed points.The lima�con cuts p(
+) into four pieces. Thetwo pieces intersecting the real line form region ,which has two repelling �xed points, one attracting�xed point, and one saddle point. As for � < 1,crossing p(�) inside this region doesn't cause a bi-furcation. When crossing p(
+) into region , theattracting �xed point and the saddle collide; cross-ing into region causes one of the repelling �xedpoints and the saddle to collide.This tiny region consists of the two compo-nents inside both p(
+) and p(�) that do not in-tersect the real line. Here there are two attracting�xed points, one repelling, and one saddle point.When moving from here to region an attract-ing �xed point and a saddle cancel. When movingfrom here to region , one of the attracting �xedpoints loses stability and becomes repelling, gener-ally via a Hopf bifurcation.Inside p(
�) we have one saddle point andone repeller. As before, crossing p(�) inside thisregion causes no bifurcation. When crossing into, the saddle splits into a period two saddle and arepelling �xed point.Inside the lima�con and outside p(
�) there isone attracting and one repelling �xed point. Whenone crosses p(
+) from region , one of the re-pelling �xed points and the saddle collide. Whenone crosses from region to here an attractingperiod-two orbit merges with the saddle to forman attracting �xed point.

FIGURE 11. Fixed-point behavior for � > 1. Theconventions (labeling, clipping, di�erent scales) areas in Figure 9.
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JustificationWe now give the analysis that leads to the bifur-cation pictures above. We �rst consider the casewhere c is real.
Proposition 4.1. If c is real , f�;c has at most four�xed points.
Proof. The point rei� is a �xed point if and only ifrei� � r2�e2i� = c:Looking at the imaginary part, we see thatr sin � � 2r2� sin � cos � = 0;so either sin � = 0 or r = 2r2� cos �. In the �rstcase there are two real solutions if c is less than c0,where f�;c0(x) is tangent to y = x. In the secondcase we obtain r2� = c after substituting into thereal part of the original equation, and thus we getat most one value for r. Substituting this value forr into the original equation gives a quadratic equa-tion in ei� that has a solution for every c greaterthan a certain c1 < c0. �We can explicitly calculate the types of the �xedpoints on the real line: the only way the types ortotal number of such �xed points can change iswhen we cross one of the curves p(�) or p(
�). As-suming these curves intersect as discussed earlier,the types occurring in each region can be calcu-lated by considering all possible bifurcations. Weknow that p(�) is a lima�con. The di�cult part ofthe analysis is then to �gure out how the curvesp(
�) cross the lima�con. First we show that p(
�)intersects the lima�con as shown in the �gures, byshowing that p is injective on the left half plane.
Proposition 4.2. The function p is injective on theleft half plane.
Proof. Observe that p : C ! C is proper and sur-jective. Consequently, p maps closed sets to closedsets. Let L = fz j Re z � 0g denote the closed lefthalf-plane. Note that p maps the negative real axis

onto itself and the imaginary axis onto a parabola-shaped curve that intersects only at the origin:p(iy) = jyj2� + iy:Since p has no singularities on L, it is an open,orientation-preserving map on L. In particular,p(�L) is open. Since p(L) is closed, we conclude thatp(�L) is contained in the component of the com-plement of the image of the imaginary axis thatcontains the negative real axis. Thus p(L) is theclosure of this component, since p(L) is closed. Themap p is proper on L, and maps L onto this com-ponent, so the degree of p is well de�ned. Sincep�1(0) = f0g, this degree is one. We conclude thatp maps the left half plane di�eomorphically ontothe component described before. �Next we must show that p(
+) intersects the lima-�con p(�) as indicated in the pictures. This followsfrom the examination of three types of point:The images of the two intersections of 
+ and�: here Dp has 0 as a double eigenvalue, and therank is one, as can be seen by explicit computation.This explains the two tangencies between p(�) andp(
+).The points where the tangent to 
+ is in the ker-nel of Dp: one checks that there are exactly threesuch points, one real (c1 in the proof of Proposi-tion 4.1) and the other two complex conjugates.This explains the three cusps.The points where the tangent to 
+ is horizontalor vertical: one calculates that there is only onepoint, c1, where the tangent is horizontal. When� < 2 there is only one point (c0 in the proof ofProposition 4.1) where the tangent is vertical.It is not hard to show that p(
+) and p(
�) do notintersect.
Hopf BifurcationConsider a small disc D with center c0 2 � withDfc0 having complex conjugate eigenvalues of ab-solute value 1 at one �xed point. We wish to dis-cuss the bifurcation picture in this disc. For c in
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this disc, we can smoothly parametrize the cor-responding �xed point z(c) in such a way thatz(c0) = z0. When D is small enough this mapz : D ! C is a di�eomorphism. In particular, z(D)intersects �, and D n � consists of two regions, onewhere the �xed point is attracting and one where itis repelling. On the boundary of these regions the�xed point is neutrally stable. One should in gen-eral expect a Hopf bifurcation, that is, as c passesthrough the curve �, the �xed point z0 will changestability and an invariant circle will be created ordestroyed [Marsden and McCracken 1976; Devaney1989]. This behavior is more precisely described interms of normal forms, as follows:Assume that we have chosen z0 so that its eigen-values are nonresonant: not �rst, second, third, orfourth roots of unity. Then one can �nd new coor-dinates with respect to which f�;c has the formFc(z) = �cz(1 + vcjzj2) +O(z5)around z0, and whose relationship to the old coor-dinates depends smoothly on the parameter c 2 D[Marsden and McCracken 1976]. (The eigenvalue�c and the coe�cient vc depend also on �.) The

map c 7! �c is a di�eomorphism on D and inter-sects the unit circle. The bifurcation theory for cnear c0 depends on Re vc0 , provided Re vc0 6= 0.
Claim 4.3. Assume that the eigenvalue �c0 is non-resonant . Then Re vc0 > 0 for 12 < � < 1 andRe vc0 < 0 for � > 1. In the conformal case(� = 1), vc0 vanishes.
Justification. When � = 1 this is obvious. For othervalues of � we have found no easy proof. Theonly more or less straightforward case is an in-�nitesimal computation near the holomorphic case� = 1. Conceivably, a computer-assisted proof ofthis could be done using interval arithmetic. How-ever, we feel this claim does not merit the e�ort ofa di�cult and tedious proof, and have used Math-ematica [Wolfram 1988] to perform the coordinatechanges and compute vc0 on a large grid of param-eter values (see Figure 12). For � < 1 we obtained(numerically) Re vc0 > 41:487, and for � > 1 weobtained Re vc0 < �8:594. �By Claim 4.3, the sign of Re vc0 depends only on �,so we know in which direction the Hopf bifurcation
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FIGURE 12. Graphs of Re vc0 as a function of � and � = arg �c0 . We have modi�ed the � scale so that theintervals ( 12 ; 1) and (1;1) have the same length. On the right is a closeup near the �-� plane, which we haveshaded to emphasize the plausibility of the claim.
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occurs. Assuming that the disc D is small enough,we have the following dichotomy:When � < 1 and j�cj < 1, there exists an invari-ant circle near z(c) that is repelling in the normaldirection. For �c outside the closed unit disc, thereis no invariant circle near the point z(c).When � > 1, we have the opposite situation: forj�cj < 1, there is no invariant circle close to z(c),and for �c outside the closed unit disc, there existsan invariant circle that is attracting in the normaldirection. We conjecture that the critical point isstill attracted to this circle.
5. Remarks on the Topology of the Connectedness LocusIn the holomorphic case (� = 1), the connectednesslocus is called the Mandelbrot set, and is connected[Douady and Hubbard 1985]; its complement in theRiemann sphere is conformally equivalent to theopen disk. Every connected component of its inte-rior is a topological disk, and is either a hyperboliccomponent or a queer component. For any maplying in a hyperbolic component, there is a peri-odic attractor that necessarily attracts the criticalpoint. Each hyperbolic component has a center|the parameter value for which the critical orbit isperiodic. Within any component, hyperbolic ornot, all maps except possibly one are topologically

(and even quasiconformally) conjugate; the excep-tion is the center of a hyperbolic component.A long-standing conjecture is that there are noqueer components in the Mandelbrot set|in otherwords, all components of the interior are hyper-bolic. This conjecture is equivalent to the localconnectivity of the Mandelbrot set [Douady andHubbard 1985]. Yoccoz has shown that local con-nectivity holds for a \substantial" part of Mandel-brot set [Hubbard 1993]. The hyperbolicity conjec-ture has also been established along the real lineby rather di�erent techniques [�Swi�atek 1992; Mc-Mullen 1994; Lyubich 1993].The situation when � 6= 1 is quite di�erent, asone should expect, because the iterates of the mapsare not uniformly quasiconformal. Douady andHubbard's proof that the Mandelbrot set is con-nected relies on the conformal structure; we see noway to adapt it to the nonconformal case. Fur-thermore, there is no mathematical relationshipbetween the hyperbolicity conjecture and the localconnectivity in this case. However, numerical evi-dence strongly suggests the following conjecture:
Conjecture 5.1. For all � > 12 , the connectednesslocus C� is connected . However , C� is not locallyconnected for � 6= 1.The apparent lack of local connectivity of C� in thenonconformal case is at least partially related to

FIGURE 13. The connectedness locus for � = 0:75 (c 2 b�4�1:6i; 0:56+1:6ie), � = 1 (c 2 b�2�1:2i; 0:6+1:2ie),and � = 1:5 (c 2 b�1:45� i; 0:5 + ie).
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the presence of saddle points and their stable andunstable manifolds. Such invariant saddles make aqualitative understanding of the dynamics di�cultand a quantitative understanding nearly impossi-ble. In particular, when � < 1, one can readily seethe di�culty caused by the saddles.Speci�cally, consider the interval of real param-eters for which the restriction of f�;c to the realline has an attracting (in R ) �xed point that at-tracts the critical point. For some interval of pa-rameters, this �xed point is not an attracting �xedpoint on C , but is repelling in the imaginary di-rection (for example, in the region discussedin Section 4). Denote this �xed point by zc andconsider its global stable manifold W s(zc). Be-cause the dynamics is noninvertible, this globalstable manifold is topologically more complicatedthan for a di�eomorphism. The critical point is inthis stable manifold and one might hope that the�lled-in Julia set is the closure of this stable man-ifold. Now consider a parameter value c0 which isnearby, but not real. Consider the corresponding�xed point zc0 and the corresponding global stablemanifold. The critical point is not necessarily con-tained in this global stable manifold. In fact, the

global stable manifold changes with the parameter;sometimes the critical point escapes to in�nity andsometimes it is in W s(z0c). The detailed structureof the connectedness locus is unclear, but it has thetopological appearance of a stable manifold. Therough structure of the C� for these parameters isthat the main lobe (which contains those values ofthe c for which there is an attracting �xed point)is connected to the period two lobe, (containingthose values for which there is an attracting cycleof period two) are connected only by a segment inthe real line. A very complicated comb-like struc-ture limits on part of this segment. See Figure 14(left).When � > 1, there is also an apparent lack of lo-cal connectivity near the real line, but in a dynam-ically di�erent part of C�|for example, betweenthe limit of period doubling and the creation ofan orbit of period 5: see Figure 14 (right). At thistime, we have no real understanding of what causesthis.Some insight into the topology of the boundaryof the main lobe of C� can be gained by lookingagain at the Hopf bifurcation near the conformalcase. We shall analyze the type of bifurcations that

FIGURE 14. Blowups of the connectedness locus for � = 0:75 (c 2 b�0:735�0:09i; �0:428+0:09ie) and � = 1:5(c 2 b�1:32� 0:055i;�1:246 + 0:055ie), showing the apparent lack of local connectivity.
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occur near parameters for which there is a �xedpoint of multiplier �, where � is a q-th root ofunity, for q � 5. We shall omit most of the tediouscalculations here; the interested reader should referto [Bielefeld et al. 1991, x 5].In this situation, one can change coordinates[Marsden and McCracken 1976] so that we havea two complex-parameter family of maps de�nednear the origin in the complex plane:F�;a(z) = �z(e� + ajzj2 + zq)+O(jaz4j; ja�z3j; j�zq+1j; jzq+2j):(Here a � (1 � �)=�.) We are interested in theq-periodic points of F�;a; one easily sees that forsuch a point we havez = z(eq� + qajzj2 + qzq)+O(jaz4j; ja�z3j; j�zq+1j; jzq+2j):We �rst consider the parameter a to be real,negative, small and �xed. (This corresponds to� > 1.) When Re� � 0, the �xed point z = 0is an attractor; the product of its eigenvalues isless than 1. When Re� > 0, the �xed point is re-pelling, but for Re� su�ciently small, there existsan attracting, invariant (Hopf) circle whose diame-ter is of orderpRe�=jaj. One can show that thereis also a q-periodic orbit located approximately onthe circle of radius jaj1=q�2. When j�j is small, itis easily seen that this orbit is repelling.In a horn-shaped domain in the �-plane, the ro-tation number on the invariant circle is p=q (re-call that � = e2�ip=q); this horn is in fact the p=q-resonance horn or Arnol'd tongue [Arnol'd 1965;Aronson et al. 1982; Hall 1984]. Within this horn,there are two additional q-periodic orbits: one is asaddle and the other is an attractor; the invariantcircle around the repelling �xed point is the closureof the unstable manifold of the p=q-saddle, whichcontains the attracting orbit. If � leaves the horn\through the side", i.e., if we �x Re� and varyIm�, the saddle and the attractor collide, and al-though there is still an invariant circle, the rotationnumber is no longer arg �. If instead we allow Re�

to increase su�ciently, the saddle and the repellercollide, leaving a single attracting orbit of period q.However, before this collision occurs, the invariantcircle looses smoothness and becomes only a topo-logical circle. This loss of smoothness occurs whenthe eigenvalues of the p=q-sink become complex.See [Aronson et al. 1982, x 8].Experimental evidence indicates that the criti-cal orbit remains bounded for all parameter valuesdiscussed above: it is attracted to either the at-tracting �xed point (Re� < 0), the invariant cir-cle, or the p=q-periodic attractor. This gives someexplanation for the appearance of the connected-ness locus near the main lobe: the p=q-lobe sits atthe end of a resonance horn, and is hence attachedalong an arc of values. See Figure 15.When a is positive (corresponding to � < 1),the picture is the other way around. As above, the

FIGURE 15. The 25 limb for � = 1:5, in the rect-angle b�0:6472+0:5856i; �0:5031+0:7485ie. Theregions in gray indicate that the critical point con-verged to a periodic attractor of moderate period(less than 100) within a few hundred iterations.Note the gray horn-like region at the base. Theboundary of the �gure appears disconnected dueto the algorithm used to produce the picture; adi�erent algorithm gives a much thicker boundary.
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FIGURE 16. A Julia set for c in the 25 resonancehorn for � = 1:5, z 2 b�1:25 � 0:9i; 1:25 + 0:9ie.The large gray areas form the basin of the 25 at-tracting periodic orbit. This attracting orbit hascomplex eigenvalues, so the unstable manifold ofthe 25 periodic saddle does not form a smooth in-variant circle. This saddle orbit lies on the �vesmooth curves that divide the gray regions, andthat form the stable manifold of the saddle.

�xed point is attracting for Re� < 0 and repellingfor Re� > 0, but the invariant circle is repellingand exists only when Re� < 0. Within a horn of� values, the invariant circle contains a p=q-saddleand a p=q repeller, and is the closure of the stablemanifold of the saddle. For all Re� negative and �su�ciently small, there is another q-periodic orbitnearby, which is attracting.However, in this case the relationship betweenthe Arnol'd tongue and the connectedness locusis quite di�erent. Since the circle is repelling, formany parameter values in the horn, the criticalorbit does not limit on the attracting �xed point;it can escape to 1, and hence the �lled-in Juliaset will be disconnected. Thus, one cannot readilydetect the presence of the Arnol'd tongues fromthe connectedness locus alone, as in the case of� > 1.There is, however, a horn-like structure which isreadily apparent along the boundary of C�. SeeFigure 17. This is related to the presence of q-

FIGURE 17. Left: the 25 limb for � = 0:75, c 2 b�0:707 + 0:309i; �0:265 + 0:721ie. Right: a blowup withc 2 b0:351 + 0:36i; �0:324 + 0:386ie. The two �gures were produced with di�erent algorithms; on the left,gray denotes parameters for which the critical point failed to escape within 256 iterations, while on the rightsuch parameter values are colored black, and gray is used to indicate convergence of 0 to an attracting orbit ofmoderate period.
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FIGURE 18. Close-ups of the �lled Julia set for � = 0:75 and c = �0:333 + 0:372i, which is within thehorn of Figure 17, and for c = �0:336755 + 0:368516i, which is just outside the horn. In both cases,z 2 b�0:7 � 0:2i; 0:1 + 0:6ie and there is an attracting �xed point at the center of the picture, with a pair ofperiod-�ve repellers surrounding it (at the ends of the black and white spirals nearest the center on the left�gure), and a period-�ve saddle at the edge of the large black region. On the left, the critical point, 0, lies inthe large black cross-shaped region near the lower right. On the right, however, 0 does not lie in the basin ofthe attractor; it iterates to in�nity, and the �lled Julia set is disconnected, although not totally disconnected.Notice also that one of the period-�ve repellers lies in the interior of the �lled Julia set.periodic saddles. Near this horn, there are threeperiod-q orbits, as well as the attracting �xed point.Two of the periodic orbits are repelling, and thethe other is a saddle. The horn corresponds tothe parameter values for which the critical pointlies between the one side of the stable manifold ofa saddle point z and the other side of the stablemanifold for its image fc(z). See Figure 18 (left).At the point of the horn, a saddle connection oc-curs: one side of the local stable manifold of theperiodic saddle z is the local unstable manifold forits image fc(z).Attached to the top of the horn is a curve forwhich the critical orbit remains bounded, althoughit is not attracted to an attractor. For these param-eters, the critical point lies on the stable manifoldof one of the points of the period-q saddle orbitdiscussed above. This orbit appears to persist longenough to attach the period-q lobe (within whichthere is an attracting orbit of period q) to the mainlobe. Thus, C� is not disconnected as it appears inFigure 17.
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