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The concept of nilpotency for a topological space is a gener-
alization of simple connectivity. That it is a fruitful generaliza-
tion was shown by Dror, Kan, Bousfield, Hilton, and others. In
1977 Brown and Kahn proved that the dimension of a nilpo-
tent complex can be read from the ordinary homology groups,
just as in the case of a simply connected complex. They also
showed that if a nilpotent complex has finite and nontrivial
fundamental group, its dimension must be at least 3.

In 1985 Lewis showed that for any finite nilpotent group there
is a (not necessarily finite) three-dimensional nilpotent com-
plex with that fundamental group. The smallest finite nilpo-
tent group for which it was unknown whether a finite three-
dimensional nilpotent complex exists was Z, & Z.

The authors, together with a team of undergraduate students
at Fordham University, used computers to search for three-
dimensional finite nilpotent complexes over groups of the form
Z,®Z,. Such complexes were eventually found for Z, & Z,,
Zz D 210, and Z3 D Z(,.

This article describes the strategy for constructing nilpotent
complexes of dimension three, and some of the issues in im-
plementing the computer search. The main computational is-
sues are “normalizing” matrices, especially to the Smith nor-
mal form, and mapping matrices over Z to matrices over Z,
for various primes p. We conclude with a summary of the
complexes discovered and open questions.

1. INTRODUCTION

Algebraic topology seeks to translate difficult topo-
logical questions into less difficult algebraic ones
via functors, such as the homotopy groups m, and
the homology groups H,. The following result is
basic [Rotman 1988]:

Theorem 1.1. If f : X — Y is a homotopy equiv-
alence, the induced homomorphisms f, : H,X —
H,Y and f, : 7, X — w,Y are isomorphisms for
alln>1.
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It is natural to seek a converse to this result. From
now on we restrict our attention to the category of
pointed path connected spaces with the homotopy
type of a simplicial complex (or equivalently, of a
CW complex). Then [Spanier 1966, pp. 405-406]:

Theorem 1.2 (Whitehead). If f : X — Y induces
isomorphisms f, : 7, X — w, Y for alln > 1, then
f is a homotopy equivalence.

As important as this theorem is, we’d rather deal
with the homology groups. They are much more
computable because they satisfy the Excision Ax-
iom [Rotman 1988]. For example, if X is an n-
dimensional complex, the homology groups H;X
vanish for £k > n. Furthermore, the homology
groups reflect the cell structure of the space, in
that group presentations for each homology group
arise directly from the cell attaching maps. Unfor-
tunately, examples show that Theorem 1.2 fails if
7, is replaced by H,. But if the spaces X and Y
are simply connected (whence H; X = H,Y = 0),
we do indeed obtain:

Theorem 1.3 (Whitehead). If X and Y are simply
connected and f : X — Y induces isomorphisms
fe : H, X — H,Y for alln > 2, then f is a homo-
topy equivalence.

Dror [1971] extended Theorem 1.3 to more gen-
eral spaces called nilpotent complexes, which we
will define in the next section. For now, think of
a nilpotent space as more general than a simply-
connected space in the same way that a nilpotent
group is more general than an abelian group. In-
deed, nilpotent CW complexes always have nilpo-
tent fundamental groups.

Theorem 1.4 (Dror). Let X and Y be nilpotent CW
complezes. Then f : X — Y is a homotopy equiva-
lence if f induces isomorphisms f,: H,X — H,Y
for alln > 1.

This result gives us the motivation for produc-
ing some simple nilpotent complexes. In partic-
ular, one may ask: Given a nilpotent fundamen-
tal group m X, construct a nilpotent complex of

least dimension. Brown and Kahn [1977] showed
that if m X is finite and nontrivial, the nilpotent
space X must be at least three-dimensional. A
natural question is: Can this lower bound be at-
tained? Lewis [1985] gave an affirmative answer
and furthermore provided a construction for any
finite nilpotent fundamental group. However, the
construction only guarantees a finite complex (i.e.,
a finite number of cells constituting the complex)
when 7, X is a cyclic or a p-group. Otherwise a gen-
eral construction of a finite six-dimensional nilpo-
tent complex was given for any finite nilpotent fun-
damental group.

Lewis carried out three National Science Foun-
dation R.E.U. (Research Experience for Undergrad-
uates) programs to search for three-dimensional fi-
nite nilpotent complexes using computers. Besides
coauthor Moore, the undergraduate participants
were (in alphabetical order) D. Clark, A. Drisko,
B. Farb, A. Gottlieb, J. Martone, A. Mayer, B.
Narasimhan, C. Powell, D. Rath, R. Servedio, C.
Snyder, P. Socolow, Y. Sussman, E. Wolfe, and E.
Zaslow.

A beginning step is to assume mX X Z, & Z,,
with n, m’s that make the groups neither cyclic nor
p-groups. (We exclude cyclic groups and p-groups
because such groups were already known to admit
finite three-dimensional nilpotent complexes.) The
smallest such group is Z, @ Zs. The counstruction
has been implemented on Macintosh computers.
Programs have been written in Pascal and Fermat,
a computer algebra system [Lewis 1996]. The first
examples for 7, X = Z,® Z¢ were found by Moore.
Later, examples for Z, @ Z,y and Zs @ Zg were
discovered.

2. NILPOTENT MODULES AND SPACES

Recall that a group G is called nilpotent if there
exists (G, in the lower central series of GG such that
G = {1}. Trivially, abelian groups are nilpotent.
It is well known that p-groups are nilpotent.

Now let m be a group and let Zx the group ring
of m. The ring epimorphism € : Z7 — 7Z given by
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e (D> niz;) = > n; is called the augmentation map.
The kernel of ¢ is the augmentation ideal, denoted
by I.

Suppose M is a (left) Zm-module. Define sub-
modules of M inductively as follows:

IM = M,
I"M =I(I*'M) = (iz:i€l, x€I" M),

for k£ > 1. We have the tower of submodules
M=IM>I'M>--->I"'"MD>I*M>---.

We say that M is w-trivial if IM = 0. We say
that M is nilpotent if I* M = 0 for some k. Finally,
M is perfect if IM = M.

If M is a left Z w-module, there is a natural “triv-
ializing map” M — M/IM.

Recall that if X is a pointed topological space
there is a natural action of its fundamental group
m X on the homology groups of the universal cover
X. Via this action, the homology groups H,X are
modules over the group ring Zm X.

Finally, we have the definition of a nilpotent
space:

Definition 2.1. A topological space X is called nilpo-
tent if 1 = m X 1s a nilpotent group and each H, X
18 a nilpotent Z w-module.

For example, if X is simply connected, 7 = m X =
0, Zm =7 and I =0, so X is trivially nilpotent.

We will be concerned with spaces that have only
finitely many homology groups, each of which is
finitely generated. Such a space is said to be of
finite homological type.

For the rest of this paper, m always means m; X
for some space X. We often abbreviate “M is a
Zm-module” to just “M is a m-module”.

3. CONSTRUCTION OF NILPOTENT COMPLEXES VIA
CELLULAR CHAINS

The homology groups of a CW complex X can be
computed with cellular homology [Rotman 1988].
To do this, one defines a chain complex C', X whose

group of n-chains is the free abelian group on the n-
cells. Specifically, C, X = H(X*, X*~1) (singular
homology) and 0y : C, X — Cj_ X arises from
inclusion maps and singular boundary maps.

To construct a nilpotent cell complex X we need
not only the cellular chain complex of X but also
the Z m-module structure on the cellular chain com-
plex of X. This means that we attach the cells of
X by lifting the attaching map of each cell of X.
Hence, for each cell of X and each element of 7
there is a corresponding lifted cell of X. The re-
sult is an equivariant cellular decomposition of X ,
in which each element of m X acts on the cells that
make up the universal cover X. The chain complex
C.X is a complex of free m-modules and m-module
homomorphism boundary maps. We may imag-
ine the chain complex of X “covering” that of X,
producing the following commutative diagram, in
which each vertical map is induced by the natural
map from X — X and is a trivializing map:

CoX 2% X 2y 0%

+ + +

ComX 2% o x 2y o x 25

We want to construct chain complexes for m; X =
Z.,®Z,, such that all the groups and m-modules are
finitely generated abelian groups, the complexes
vanish above dimension three, and the homology
modules H,X and H;X are nilpotent (the others
being 0).

It is useful to look first at a three-dimensional
nilpotent complex for cyclic fundamental group 7=
Z.,. Write 7 as the multiplicative group generated
by z with 2" = 1, so Zn = Z[z]/(z" — 1). Set
T,=2—1, N, =1+z+---+z" L. Thereis a well
known free Zm resolution of the w-trivial module
Z:

e I 22 2 T 7 — 0. (3.1)

Here 0; for odd ¢ is multiplication by T, and for
even ¢ is multiplication by N,. The sequence is
exact. There is an Eilenberg-MacLane space X =
K(m,1) having one cell in each dimension whose
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universal cover X has exactly the above cellular
chain complex. If we simply cut this off at dimen-
sion 3, we get HyX® =0 and H;X?® = Z, n-trivial,
so X? is nilpotent.

Now suppose 7 = Z,, ® Z,,. Again think of Z,
as the group (z : 2" = 1), and Z,, as (y : y™ = 1).
Then Znm = Z[z,y]/(z" — 1, y™ — 1). As before,
we have N,, N,, T,, and T,. We may obtain
X = K(n,1) by taking the product of the spaces
K(Zy,1) and K(Z,,1). The chain complex of the
universal cover is a free Z 7 resolution of Z, namely
the tensor product of each of the resolutions (3.1)
for n and m. The sequence ends

e LTI O LT 2 Lr L ®Ln
O rretn 2 I =57 — 0.

A little computation shows that 9, and 0, are the
matrices

5 — N, 0 -T,
*“\0o N, T, )
As in the cyclic case, we may ask whether the
three-skeleton X 3 is nilpotent. This is true if and
only if H;X? is a nilpotent m-module. Rather than

compute this module, we may obtain the negative
answer using the following result:

Theorem 3.1. Let 7w be a nontrivial finitely generated
nilpotent group. Let X be a nilpotent complex of
finite homological type with fundamental group .
Then x(X) = 0, where x(X) is the Euler charac-
teristic of X. If m is finite, x(X) = 0.

This result follows from [Lewis 1985, p. 753] and
the fact that, for nilpotent complexes, finite ho-
mological type is equivalent to the complex being
finitely dominated.

Direct calculation reveals that

x(X?) = —rky, C5 X% + 1ky, C, X
—r1ky, O, X? + 1ky, Co X

= —4dmn + 3mn — 2mn + mn = —2mn,

where rk; denotes the Z-rank. Therefore X? is not
nilpotent. Evidently, not only are the three-cells
attached incorrectly, there are too many of them.
The Euler characteristic decrees that C’gX 3 should
be Zm @ Zw. On the other hand,

X(X?) =
—rky Hy X® +1ky Hy X?—1ky H, X% +1ky Hy X°.

Therefore rky, H; X® = rk; H,X? +1 in a nilpotent
X3,

Another conceivable way to create a three-dimen-
sional nilpotent complex is to use the iterated join
construction for the classifying space of a group,
defined in [Milnor 1956]. The four-fold join of =
modulo the action of 7 is a three-dimensional com-
plex with the right fundamental group. But its Eu-
ler characteristic is not zero, so this too is rejected
by Theorem 3.1.

4. COMPUTER REPRESENTATION OF CHAIN
COMPLEXES AND HOMOLOGY MODULES

We are now ready to describe our basic strategy to
construct a three-dimensional nilpotent complex of
fundamental group # = Z,, ® Z,:

1. Start with the two-skeleton of the K (m,1) con-
structed in section 3, X?, with the equivariant
chain complex of the universal cover through
dimension two. This space has the right funda-
mental group. Find a way to attach three-cells
equivariantly to X2, forming X3 so that both
H,X? and H,X? are nilpotent m-modules.

2. Represent all maps with integers.

Computer implementation of this strategy requires
that

e m-modules can be represented efficiently;

e equivariant chain complexes can be represented
efficiently; and

e homology m-modules can be computed and rec-
ognized as nilpotent.

There is also a more mathematical issue. Assum-
ing that we succeed in constructing an equivariant
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chain complex with the required homology, is there
necessarily a topological space (CW complex) real-
izing that chain complex? Can we “go backwards”
from the algebra to the topology? Because the di-
mension is only three, the answer is yes; see [Lewis
1985].

We now address each of the above three points.
The basic approach is to represent everything as
integers, rather than as elements of the more ab-
stract rings Z, or Z[z,y]. However, at the end of
the paper we will reconsider that part of our strat-

egy.

4A. Representation of m-modules
First consider free m-modules. As a w-module, let
us select for Z, the following ordered Z-basis:

{17x7"'7xn_17y7xy7"'7 y?"'7ym_17

zy™ oy @)

xn—l

An element of the m-module Z, is therefore a vec-
tor of mn integers. As elements of the ring Z, the
generators x and y become mn X mn permutation
matrices, which act on the vector on the left.

Next consider m-modules that are finitely gener-
ated abelian groups. Such a group M is isomorphic
to a direct sum of cyclic groups. A typical element
of M is therefore a vector of, say, k integers. If we
keep a record of which components are finite cyclic
groups of what order, it is obvious how to add such
vectors on the computer. To specify the m-module

structure of M, it is sufficient to represent the x
and y actions by commuting k£ X k matrices, also
called z and y, such that " =1 and y™ = 1.

4B. Representation of Equivariant Chain Complexes

From previous sections we have the equivariant
chain complex of the two-skeleton X?2:

Zr®Lrn®Lr 22 ZrdZr 2 Zr — Z — 0,

where

But we now represent maps with integers, rather
than elements of the group ring. An arbitrary ele-
ment in C,X? is no longer a vector with three Z
entries, but with 3mn Z-entries. Thus, J, maps
3mn copies of Z to 2mn copies of Z, so 0, is a
2mmn X 3mmn matrix with entries 0, 1, or —1.

Attaching two three-cells equivariantly to X2 is
the same as producing a m-module map J; from
Zw @& Zm to Ker(dy). (The image of 03 must be
in Ker(dy) to produce a chain complex.) Since
Zrw®Zm is a free m-module, to produce 05 it is suffi-
cient to “know” Ker(d,) in the sense of Section 4A,
because one then simply assigns each of the two 7-
module generators to any two arbitrarily selected
elements of Ker(d,). The method for computing
the kernel of a map between free abelian groups
given by a matrix of integers is well known; one
simply performs column manipulations until the
kernel is transparent. Here, as we do these column
manipulations we also correspondingly manipulate
the matrices defining the x and y actions. In the
end we have Ker(0,) as a free abelian group of rank
2mn — 1 with the new = and y matrices.

4C. Computation of Homology 7m-modules

Assume now that a 05 has been created. The re-
sulting three-complex X3 is nilpotent if and only
if H,X?3 and H;X? are nilpotent m-modules. The
latter is easy to check because of this proposition
[Lewis 1985]:

Theorem 4.1. A nilpotent Z-free m-module must be
w-trivial if T is finite.

H, X3 = Ker(0;) is obviously Z-free, so we need
only compute it (as a kernel) and then check that
r=1and y =1.

The computation of H,X? is the crux of the
problem. However, it is important to distinguish
the actual computation of this w-module in the
sense of Section 4A from merely determining that
H,X? is nilpotent. In either case, one begins the
same way. We have H,X?® = Ker(d,)/Im(d,), the
cokernel of 0;3. The kernel of J; has already been
computed. We must “normalize” 03, that is, put
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0s into a form that reveals Im(0;). The algorithm
is similar to the one that computes the kernel of
a map by operating on the row space of a ma-
trix via column reductions. This time we operate
on the column space of the matrix via row reduc-
tions. Each row operation is also performed on the
z and y matrices that define the w-action. The
result is an upper-triangular matrix in which each
entry is an integer, any zeros on the diagonal are
together at the lower end, and each entry in the col-
umn above such a zero is zero. R zeros mean that
the cokernel H,X? contains a free abelian group
of rank R. Experimentally, we find that almost
always R = 0, so we shall assume that here to
simplify the exposition. (We found experimentally
that, when nilpotent, H;X? is almost always sim-
ply Z with trivial m-action. Then the Euler char-
acteristic results force R = 0 for nilpotency.) We
could continue manipulating the matrix until it is
in Smith normal form, diagonal with each integer
entry dividing the next. We do not have to do
that to determine nilpotency. We must check that
(z — 1)¥ = 0 for some k. This condition holds
if and only if every column vector of (z — 1)* is in
the image of the map defined by the normalized 0.
This amounts to solving a system of linear equa-
tions that is upper triangular and therefore easy to
program. Similarly for (y — 1)*. Tt is not hard to
get an upper bound for k, based on the product of
the entries on the diagonal of the normalized 0s.

Now, should it be desired to actually compute
H,X? in the sense of Section 4A, the normalizing
process must be continued until the Smith Normal
Form is attained. If the result is a diagonal matrix
of, say, k integers n,ns,...,n;, each dividing the
next, then

Hy X =20 2y, @+ DL,

as an abelian group, and the new z and y matrices
provide the m-module structure.

5. THE PROGRAMS

Programs implementing the ideas of the previous
section were written by the student participants
(except for the Smith normal form routine, which
is a built-in part of Fermat [Lewis 1996]). The pro-
grams were initially written in Pascal, following
the algorithms described above. Ouly one point
has not been discussed: where do we get the cell
attaching map 03?7 The answer is that we simply
create 0; at random, then check to see that the
resulting complex is nilpotent. Recall that to pro-
duce 05 it is sufficient to assign each of the two =-
module generators to any two arbitrarily selected
elements of Ker(d,). The rest of the 2mn—1x2mn
matrix 05 is filled in by the x and y actions on the
two random columns.

In running the program, we found that normal-
izing this randomly produced matrix d; inevitably
produced very large integers, beyond the reach of
Pascal or any compiled programming language. We
tried using well-known computer algebra systems,
but were disappointed by the speed. Fermat was
found to be enormously faster and more space effi-
cient. However, we needed even more speed, since
all complexes for m = Z,®Zg¢ failed to be nilpotent
at the H,X? stage.

The problem was solved by reducing 0; modulo
p for primes p, or, put another way, tensoring all
of the chain complexes with Z,. If the complex
is nilpotent, the tensored homology modules will
be nilpotent for any p. By tensoring with the first
42 primes, the program (in Pascal) quickly rejects
almost all candidates. The remaining candidates
were checked completely by the program written in
Fermat. We found many new examples this way of
nilpotent complexes with fundamental group © =
Lio® Lo, Lo ® Lz, oo ® 74 and Z 3 ® Z3. However,
these groups are all cyclic or p-groups! Our main
motivating case, Z,@®Zg, remained elusive: despite
hundreds of hours of computer time and several
R.E.U. projects, all candidates found by the Pascal
phase were rejected by the second Fermat phase:
each H,X? contained a perfect submodule whose
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order was a product of primes larger than those on
the list of 42.

Moore provided the idea that finally produced
examples over Zy @ L, L3 D L, and Z, ® Z,y: be
less random in the assignment of the two random
columns of 0. By placing only 0 and +1 in a sparse
enough fashion, success was attained. Some of the
nilpotent spaces discovered are listed in Table 1.

H, X3

Zo®ZLg
Ziy® 7
Ziy® Zsg
L4® ZLig
Lio® Zio® Lo
Lio®Zys® Ly
L4 D Z 4882576 (=16-401-761)
L3®Ls®Ls®Lis
lis®Dlg®DLiogD Ly
LydZLyDZLo® Lis
LzdZz®Ls® Loy

Zio® Zis

7T1X dim 63
Ly® L 23 x 24

Z3® Lg 35 x 36

39 x 40

Zio® Zno

TABLE 1. Examples of nilpotent spaces discovered.
In every case, H3 X2 is Z with trivial m-action.

The programs are explained in greater detail in
[Snyder 1989] and [Xu 1992].

6. AN ALTERNATE APPROACH AND FUTURE WORK

Recall that the second part of our strategy has
been to represent everything as integers. Accord-
ingly, 05 is a 2mn x 3mn matrix of integers. It
might be faster computationally and more illumi-
nating theoretically to retain 0, as a 2 X 3 matrix
of elements of Z[z,y]/(z"—1,y™—1), or perhaps
just Z[z,y]. A graduate student at Fordham tried
this approach but found algorithms difficult to for-
mulate, although some theoretical results were ob-
tained [Xu 1992].
Some future research topics are:

e Compile and catalog the hundreds of new ex-
amples of nilpotent spaces.

e Search for homotopy equivalences among the
examples.

e Continue the strategy of working over Znm =
Z[:U,y]/(.’ﬂn—l,ym—l).

e Extend to more general nilpotent fundamental
groups.

ELECTRONIC AVAILABILITY

The programs described in this article are avail-
able by request from Lewis. Fermat is available at
http://www.bway.net/~lewis.
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