Non-Ordinary Primes: A Story

Fernando Q. Gouvéa

CONTENTS

. Niebur’s Formula and Its Generalizations
. Rankin-Cohen Brackets

. How Many Non-Ordinary Primes?

. Computations for k Divisible by 4

. Computations for k = 2 mod 4

S U1 A W N =

. Formulas
Acknowledgements
References

This research was supported in part by grant DMS-9401313
from the National Science Foundation.

A normalized modular eigenform f is said to be ordinary at
a prime p if p does not divide the p-th Fourier coefficient of
f. We take f to be a modular form of level 1 and weight
k € {12,16,18,20,22,26} and search for primes where f is
not ordinary. To do this, we need an efficient way to compute
the reduction modulo p of the p-th Fourier coefficient. A con-
venient formula was known for k = 12; trying to understand
it leads to generalized Rankin—-Cohen brackets and thence to
formulas that we can use to look for non-ordinary primes. We
do this for p < 1000 000.

In the 1980s, H. Hida introduced the notion of
a p-ordinary modular form, and demonstrated in a
series of papers [Hida 1986a; 1986b; 1989] that it
played a fundamental role in the p-adic theory of
modular forms. In this context, one usually starts
with a fixed prime p, and chooses forms that are
ordinary. It seems inevitable to reverse the ques-
tion.

Suppose we start with a normalized eigenform

f=q+0aq +as¢’ + - +ang" + -

of some weight and level 1. (Here, and in the re-
mainder of this paper, we follow the usual conven-
tion of writing

where z is in the complex upper halfplane.) Then
we can ask for which primes f is p-ordinary in
Hida’s sense. Since we are dealing with an eigen-
form, the answer seems simple: f is p-ordinary
if p does not divide a,. For example, consider
the unique normalized eigenform of weight 12 and
level 1, namely
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A=Y r(n)q"

= q—24¢° +252¢° — 1472¢" 4 4830¢°
—6048¢° — 16744q" +844804¢° — 113643¢°
—1159204¢"° +534612¢"" +- - -,

where this equation is taken as the definition of
7(n). Since A is an eigenform, one can see, by
factoring the coefficients, that A is ordinary for p =
11 but not for p = 2,3,5,7. In fact, continuing the
expansion, one finds that A seems to be ordinary
for most primes, and it seems natural to ask for
more information. Is it true that “most” primes
will be ordinary? Can we turn this vague phrase
into precise asymptotics?

These questions seem very hard to answer, so we
can turn to the computer to try to obtain some nu-
merical data. In the case of A, some information
turns out to have been in the literature long before
the importance of ordinary forms was known: a
1975 paper by Niebur described an interesting for-
mula for computing 7(n) and used it to compute
7(n) modulo n for n prime and less than 65064.
(See [Niebur 1975]; the formula and the results of
the computation are described below.) Niebur’s
result is often quoted when people mention Hida’s
theory (for example, [Gouvéa 1992]), but few other
examples are discussed.

What is special about A? The crucial fact seems
to be that A is the unique normalized cuspform of
its weight and level one, i.e., that the space of cusp-
forms of weight 12 and level 1 is one-dimensional.
Since the same is true for weights 16, 18, 20, 22,
and 26, there seems to be some hope of extend-
ing Niebur’s formula and performing the analogous
computation in those cases. This is the starting
point for this paper. We find that Niebur’s identity
is a special case of a generalized “Rankin—Cohen
bracket” construction, and we use this construc-
tion to extend Niebur’s computation.

An alternative method for doing such compu-
tations is to use the Selberg trace formula (again,
because the spaces are one-dimensional). We chose

the method above because it allowed us to use com-
putation modulo n throughout and did not require
storing a large table of precomputed values.

1. NIEBUR’S FORMULA AND ITS GENERALIZATIONS

Niebur’s computation is based on the formula

7(n) = n'o(n)
—24 nz_:(35k4 — 52kn + 18k*n?)o(k)o(n — k),

k=1

where o(n) is the sum of the divisors of n. This
is very convenient for the computation we need to
do, for two reasons. First, it only involves o(n),
and not the more general op(n) (the sum of the
k-th powers of the divisors of n), which are much
larger and therefore present more of a computa-
tional challenge. Second, and more important, the
formula is easily reduced modulo n, to get

n—1
7(n) = =840 > k'o(k)o(n — k) mod n,
k=1

which is easy to compute (for example, for small
n one can compute this without needing infinite-
precision arithmetic). Using this formula, Niebur
checked that the only primes between 2 and 65064
for which A is not ordinary are 2, 3, 5, 7, and 2411.
(As we will remark below, small primes—here 2, 3,
5, and 7—are often forced to be non-ordinary by
Hida’s theory.)

The best way to understand Niebur’s formula
is to view it as a differential equation relating A
to the Eisenstein series E, of weight 2, which has
Fourier expansion

E,=1- 24Za(n)q”,
n=1

whre, as before, a = €. Recall that FE, is not
a modular form. As a function on the upper half-



plane a modular form f of weight £ (and level 1)
must satisfy

flz+1) = f(2),
f(=1/2) = 2"f(2)

for any z in the upper half-plane. FE, satisfies the
transformation laws
Ey(z +1) = Ey(2),
122
By(-1/2) = 2By(2) + o,
which make it almost, but not quite, a modular
form of weight 2.
Let © be the differential operator

_tda_ d
- 2midz qdq

acting on functions on the upper half-plane. To
make the notation lighter, we denote the action of
© by a prime; thus, given a function on the upper
half-plane, we write

F'(2) =) = 5o

In terms of Fourier expansions,

().

o0 o0
f= Z anq"” implies f'= Z na,q".
n=0 n=1
In particular,
By =) no(n)q",
n=1

and it is easy to see that Niebur’s formula is related
to products of higher derivatives of E,.

If f is a modular form of weight k, then f' is
normally not a modular form. Nevertheless, one
wants to think of f' as being “almost” a modular
form, of weight k£ 4+ 2. This can be made precise in
various different ways. One that is particularly in-
triguing in this context is the fact that the Fourier
expansion of f' is indeed the g-expansion of a p-
adic modular form of weight k£ + 2. (See [Coleman
et al. 1995] for an extended discussion of this idea.)
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A more elementary point is simply to note that if
f is a modular form of weight &, then

.,k
f'= 5B

is a modular form of weight k£ + 2. We can think of
this as saying that the way f' fails to be modular
compensates for the non-modularity of E,. (This
is a special case of the results in the next section;
see below.)

Using this differentiation operator, Niebur’s for-
mula can be rewritten as

A= LEVE, + 2EE, - 3EJE].

(Note that if we give the k-th derivative E® weight
2+ 2k, then each term in this equation is of weight
12.)

As Niebur remarks in his paper, it is easy to
prove such a formula once it is written down. If F'
denotes the right-hand side, it is clear that

F(z+1) = F(z);

using the transformation property of Fs under z —
—1/z, one checks directly that F/(—1/z) = 2" F(z).
This shows that F is a multiple of A, and then
checking the first term of the Fourier expansion
gives the equality. The trick, Niebur says, is to
find the equation in the first place.

Given, however, programs that can do symbolic
algebra, finding such identities (if any identities ex-
ist) is also easy: one finds Fourier expansions for
E, and its derivatives, multiplies the appropriate
ones to create terms of the desired weight, and then
looks for a linear combination which gives the form
we are looking for.

For example, let’s consider weight £ = 16. There
is a unique normalized eigenform A4 of weight 16
(and level 1). If a Niebur-like formula is to exist,
we hope to express Ag as a linear combination of

B, BB, E'E, BB, BB

(these are actually linearly dependent, so that we
can do without any one of them and still be fine;
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we will omit the first one). Solving the linear equa-
tions given by the first few terms of the Fourier
expansion gives

Ay =BV B+ B B~ 2BV B+ SE)EY.
Once again, this is easily checked by working out
how it transforms under z — —1/z. As before,
one can easily translate it into a formula for the
coefficients that is convenient for calculation of the
Fourier coefficients.

Being successful for £ = 16, we may want to try
the other weights for which the space of cusp forms
is one-dimensional. For k£ = 18, 22, and 26, we find
that there is no formula of this kind. For k& = 20,
we do find a formula:

Doy = —LEYE, + TESEY — T B BY
+%E§5>E;" ~ SEVEY.

Finding such formulas raises more questions than
it answers. Why do such formulas exist when the
weight is divisible by 47 Why do they fail to ex-
ist for other weights? It is also natural to want to
place the formulas in a wider context. (For exam-
ple, could we predict the coefficients in the formu-
las a priori?) Finally, we would like formulas for
the modular forms of weights 18, 22, and 26.

2. RANKIN-COHEN BRACKETS

The best way to understand the formulas in the
previous section is via the theory of Rankin—Cohen
brackets, which gives a family of differential oper-
ators which map modular forms to modular forms.
We follow the exposition in [Zagier 1994].

Let f be a modular form of weight £ and level 1.
Form the power series

> (n) (4
D(2,X) = ; mf+—M(2wiX)".

Since we have f(z + 1) = f(z), the same is true
for all higher derivatives of f, and hence we have

®s(z+1,X) = ®4(2,X). The behavior under z —
—1/z is more complicated: we have

1 X

o ( 2) = zkeX/Zq)f(z,X). (2.1
'z

Proving this boils down to proving a sequence of

identities describing how the n-th derivative of f

transforms:

F0(-1/2)
n!(n+k—1)!
n Sk+nt+m

_ f™(2)
B Z (2mi)"=m(n — m)! m!(m + k — 1)1

(2.2)

These identities aren’t hard to prove by induction,
starting with the modular property of f. (See [Za-
gier 1994] for a different proof of the functional
equation for @;.)

Now suppose we are given two modular forms
f and ¢ of weights k and [, and we consider the
power series

Os(2, X)®y(2, —X)

.- [/, 9ln(2) 5\
Z (n+k—1n+1-1)! j(2miX)"

n:O

We take this equation as the definition of the func-
tions [f, g, so that

.1 (2)
= o (TR (MY g ).
r+s=n

The transformation law for ®; and ®, gives

Os(=1/2, X/2°)8y(=1/2, = X/2%)
= Zqu)f(ZvX)q)g(zv _X)a

since the exponential factors cancel. It follows that
[f,g]n is a modular form of weight k + [ + 2n; it
is called the n-th Rankin—Cohen bracket of f and
g. (See [Zagier 1994] for a lot more information on
Rankin-Cohen brackets.)

Consider the case f = g. Then [f, f], will be a
linear combinations of terms of the form f() f()



which is exactly the sort of thing we see in the for-
mulas in section 1. Of course, in those formulas
f = E,, which is not modular. As Henri Cohen
has pointed out to me, it turns out that one only
needs a very slight modification of the Rankin-
Cohen construction to handle this case.

Let’s start with the “almost modular” property
of Esy:

By(-1/2) = 1+

Differentiating this—that is, applying our differen-
tial operator (1/2mi)d/dz—gives

2By (2).

1222 223

E\(-1/z) = W—F%Ez(z)—kz‘lE;(z).

By induction, we get a formula for the n-th deriva-

tive:

ES(=1/z) 1227+
nn+1)!  (2m) L (n +1)!

Z2+n+m

B ()
+Z (2mi)=m(n — m)! m!(m + 1)

This is very similar to formula (2.2) above; in fact,
we can fit the two formulas together with a bit of
notational magic:

1. We define (—1)! =1/12.
2. If f is a modular form, we define its minus-first

derivative to be zero: f(=V(z) = 0.

3. On the other hand, we set ES " (z) = 1.

Then the transformation law
f(=1/2)
nl(n+k—1)!
Shtntm f(m)(z)
'_E: (2mi)" " (n —m)l ml(m + k — 1)!

(2.3)

holds both when f is a modular form of weight &
and when f = F, and k£ = 2. We then modify the
definition of ®; accordingly:

o0 (n) (4
Py(z, X) = ;1 Wer—lizl)!(sz)”.
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As before, it follows from (2.3) that
1 X .
o ( z2> = ZheX/ Q4(z, X); (2.4)

this leads to an extended definition of the Rankin—
Cohen brackets:

[/, 91n(2)
= z (_1)s<n+f—1> (n—i_i_l)f(r)(z)g(s)(z),

where now n > -2, —1 < r,s <n+1, fand g
are either modular forms of weights k£ and [ or are
equal to E, (whose weight we take to be 2), and
we define

(m—+1)!

my m! _12m! 12
(—1>_( Ditm+1)! m+1

As before, [f,g],, is a modular form of weight &k +
I+ 2n. (One thing we do lose is the fact that the
original Rankin—Cohen brackets have integral coet-
ficients; when E, is involved, we get brackets with
rational coefficients. Thus, if f has integral Fourier
coefficients, [f, Es], may only have rational Fourier
coefficients.)

It’s a bit surprising that our formalism leads us
to define a (—2)-nd and a (—1)-st bracket, but note
that [f,g]_2 = 0 unless f = g = Es, in which case
it is a constant (which yes, is a modular form of
weight 2 4+2 —2-2 = 0), and that

0 if neither f nor g is Fs,
[fglo1 = —12f if f # B and g = B,
0 lff = g = E27

all of which are forms of the correct weight. It’s
also interesting to note that if f is of weight k& we
get that

12
[faE2]0:fE2—?f

is a modular form of weight k + 2, so that we re-
cover the fact mentioned above. (While it is well
known that f — f' — % fE> maps modular forms
of weight k£ to modular forms of weight k42, its in-
terpretation as a bracket of weight 0 shows it in an
unusual light. When f and g are modular forms,
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[f,9lo = fg is just multiplication. Thus, the op-
eration f — f' — % fE, is seen here as a sort of
“multiplication by E,,” and the appearance of f'
is seen as a correction factor.)

Let’s counsider the case f = g = E,. Since in

general we have [g, f], = (—=1)"[f,¢]., it’s clear
that [f, f], = 0 if n is odd, so we need only look at
even values of n. The case n = —2 was discussed
above.

1. n = 0: We get [Ey, Ey)g = E3 — 12E}; this
must be a form of weight 4; in fact, we have
E? — 12E) = E,.

2. n = 2: We get [Es, Es]s = —6E})" + 6E,E] —
9ELEY. This is visibly a cusp form, and should
be of weight 8, and hence we conclude that

—EY' + E,E) — EyE, = 0,

which is well-known to be true (see, for example,
[van der Pol 1951]). Differentiating this iden-
tity shows that for each k£ > 2, the products
EEY with —1 < r < s and r 4+ s = k, are
linearly dependent, as we mentioned above.

3. n = 4: We expect a form of weight 12, and
therefore a multiple of A;,. We get

—4EY + 10E,ESY — 100E, EY' + 100EY B2
- — 144A12 .

This looks different from Niebur’s formula in
section 1, but recall that the terms are linearly
dependent. In fact, differentiating the equation
we get from n = 2 twice gives

~EY) + BB — By By — 2By B =0,

and subtracting 4 times this equation from the
original, then dividing by —144, yields Niebur’s
formula for A;,.

4. Similarly, taking n = 6 and n = 8 yields (for-
mulas equivalent to) the formulas for A4 and
Ay in section 1.

5. What if we take n = 107 Then [Es, Es]i is a
form of weight 24, which is clearly a cusp form

with rational coeflicients. Of course, the eigen-
forms of weight 24 do not have rational coeffi-
cients, so that this is not an eigenform.

Thus we see that all the formulas in section 1 are
examples of (extended) Rankin-Cohen brackets.
We can also see the reason for the restriction to
weights that are divisible by 4: the bracket [Es, Es],
is of weight 4 4+ 2n, and it is non-zero only when n
is even.

If we want to get similar formulas for weight
k =18, 22, and 26, we can use brackets [Es, E4],,
which will be modular forms of weight 6 + 2n. We
are most interested in what happens for n even,
0 < n < 10, which will give forms of the weights
we need. (In this case we are not restricted to even
n, but odd n will give us formulas for weights 12,
16 and 20 that, because they will involve the o3(n)
function, are significantly less useful computation-
ally that those obtained from the [E,, E,],.)

Let’s consider what happens for several values of
n:

1. n=0: We get
[E27 E4]0 = EE, — 3E:; = E67

as discussed above.

2. n = 2,4: We should get cusp forms of weight
10 and 14, which must be zero. This gives two
identities involving derivatives of E, and Ej:

[Es,E,]> = 3EYE,—15E,E,+10E,E{ —2E. =0
and
[Es, By]s = 35B\" B, — 17T5E) E,, + 210E/E!
— T0ESE)" + 5B, EY — 2B
=0.
3. n =3: We should get another formula for A,,
and we do:
[Ey, Ey]s = 4B E, — 36 EY E!, + 60ELE"
— 20E,E]' + 2E{"

_ _ 7002



4. n = 6: We get a multiple of the cuspform of
weight 18. Indeed:
[Es, Ey)e = 84\ B, — 882EVE, + 2646 E\VEY
— 2940E)"E" +1260E% E\Y
—189EEY) + TE,EY — S B
== —624A18

5. Similarly for n = 8 and n = 10:

[Es, E4]s = 165EVE, — 2970 E) + 16632E" EY
— 38808 ESVEY" + 41580V ELY
— 20790E)'E” + 4620E)E\"
—396E5E") + 9E,E® — E”)
= —2040A,,
and

(B, Eq]1o = 286 ES'VE,—7865E\" E| + 70785 E\® B!
— 2831407 E" + 566280 £V E(Y
— 594594 E"E®) + 330330EVE®
— 94380EY'E" + 12870E)EY
—TI5ESEY) + 1B, B — SE(

— 31008
= =7 Ao

We can use these formulas to compute the Fourier
coefficients of Ajg, Asy and Ay in terms of the
divisor functions o(n) and o3(n).

3. HOW MANY NON-ORDINARY PRIMES?

Given an eigenform f of weight k, what is the
distribution of the primes p such that f is not
ordinary at p? Very little is known about this,
but heuristic arguments suggest that non-ordinary
primes should be rare.

What is known? First of all, if we relax our
assumption that we are dealing with forms of level
1 and consider more general levels, we can look at
the case of weight 2. If f is a cuspidal eigenform of
weight 2, level NV, and integral coeflicients, then f
corresponds to an elliptic curve defined over QQ, and
f is ordinary at p if and only if F has either good
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ordinary reduction or multiplicative reduction at
p. Thus, (except for finitely many primes) non-
ordinary primes for f are simply primes where E
has good supersingular reduction. The distribution
of such primes has been studied, and partial results
are known. For more information on this case, see
[Elkies 1992], for example.

Going back to level N = 1, we note that the case
of Eisenstein series is trivial: if we normalize G}
by requiring a; = 1, then a, = o4_;(p) = 1 +p* 1,
which is never divisible by p, so that there are no
non-ordinary primes.

In the case of cuspforms of level N = 1, we have
weight & > 12. There is very little that one can say
in general. For p = 2 and p = 3, it is known, by
[Hatada 1979], that there are no p-ordinary forms
of level 1. For p > 5, one can use Hida’s theory
to show that any form of level 1 will often fail to
be ordinary at small enough primes. Let S; be the
vector space of cuspforms of weight &, and let S? be
the subspace spanned by the ordinary eigenforms.
Let d°(k) be the dimension of this subspace. Then
Hida proves that if k&, = k» mod p — 1 and k; >
ky > 3, then d°(k,) = d°(k,). Now, one knows
that S; is of dimension zero for k£ < 12 and for
k = 14; a fortiori we have d°(k) = 0 for such k.
Now supppose we start with a form f of weight
k > p + 2, and suppose f is ordinary at p. Then
d’(k) > 0. Since k—(p—1) > 3, it follows by Hida’s
theory that d°(k — (p—1)) > 0 also. If K — (p — 1)
is small enough (specifically, less than 12 or equal
to 14), this is a contradiction. Thus:

Proposition 3.1. Let k > 0 be an integer, let p > 5 be
a prime, and let ko be the unique integer defined by
the conditions 3 < kg < p+1 and k = ky mod p—1.
If kg < 10 or kg = 14, then there are no p-ordinary
modular forms of weight k.

Of course, this proposition is only interesting when
k>p+1,ie,whenp<k—1.

Given a cuspidal eigenform f of weight k > 2, let
mi(x, f) denote the number of primes p < x such
that f is not ordinary at p. It would be interesting
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to know something about the asymptotic behavior
of m(z, f) as z — oo.

It seems that nothing is known about this. For a
very rough guess, we might assume that the value
of a, modulo p is random for p > k—1, i.e., that the
probability that a, = 0 mod p is 1/p. If so, one
would expect that m(x, f) = O(loglogz). This
gives a more precise form to the expectation that
non-ordinary primes are very rare (once one has
p > k —1). Unfortunately, it is hard to test this
guess numerically, since loglogx grows so slowly;
there is no easy way to distinguish O(loglogx)
from O(1) computationally.

4. COMPUTATIONS FOR k DIVISIBLE BY 4

The formulas in section 1 are easily used to com-
pute Fourier coefficients of the cuspforms of weight
12, 16, and 20, particularly when we want to re-
duce modulo n. To uniformize the notation, we
write A, where k € {12,16,18,20,22,26}, for the
unique normalized eigenform of weight £ and level
1, and we set Ay = > 7(n)g". The results in sec-
tion 1 give us formulas for 74(n) modulo n when

k = 12, 16, or 20

n—1
T12(n) = —840 Z k'*o(k)o(n — k) mod n
k=1

n—1
T16(n) = —6552 Z k%o (k)o(n — k) mod n
k=1

n—1
Tao(n) = —67320 Y kKo (k)o(n — k) mod n

k=1

As long as n is not too large, we can compute mod-
ulo n without needing to use packages for infinite-
precision arithmetic. (This is probably the reason
for the limit in Niebur’s original computation.) If
we want to handle large values of n we need to use
infinite-precision arithmetic; we used the GNU MP
package to do this. One first computes and stores
a table of o(m) for m < 1000000, then computes
7r(n) modulo n. The first three tables on page 203
give the results for prime n < 1000000. Once we

know which n to look at, it is not too costly to com-
pute the actual value of 7;,(n) using the PARI sys-
tem, and to compute the precise power of n which
divides 74 (n). These are included in the tables.

For the case of A5, one can in fact do much
better: there are formulas (for example, due to
Ramanujan) that allow very fast recursive compu-
tation of 7(n). According to Blair Kelly (email
communication, May 10, 1996), who has used such
formulas to perform the computations, there are in
fact no non-ordinary primes p < 7,196,993 except
for those listed in our table for k = 12.

5. COMPUTATIONS FOR k = 2 mod 4

The formulas in section 2 yield formulas for 75, in
terms of o and o3, which we can once again reduce
modulo n without problems. We get:

n—1
Tis(n) = 73920 Y k%0 (k)os(n — k) mod n
k=1
n—1
Ton(n) = 355680 Y ko (k)os(n — k) mod n
k=1
n—1
To(n) = 2550240 Y k0 (k)os(n — k) mod n

k=1

These are harder to work with, since o3(n) grows
roughly like n®. Once again we used the GNU
MP package to handle infinite-precision arithmetic.
This time, we need to compute and store the val-
ues of o(m) and o3(m), and then proceed as be-
fore. The results are interesting: for k = 18, 22,
and 26, the only non-ordinary primes are the ones
predicted by Proposition 3.1. The proposition pre-

dicts that
e A is not ordinary for p =2, 3, 5, 7, 11, 13,

e A, is not ordinary for p = 2, 3, 5, 7, 13, 19
(notice that for p = 11 we have, with notations
as in Proposition 3.1, ky = 12), and

e Ay is not ordinary for p =2, 3,5, 7, 11, 13, 17,
19, 23.



Non-ordinary primes p <
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k=12 k=16
p T12(P) ordy(712(p)) p 716(P) ordy(716(p))
2 —24 3 2 216 3
3 252 2 3 —3348 3
5 4830 1 5 52110 1
7 —16744 1 7 2822456 1
2411 4542041100095889012 1 11 20586852 1
13 —190073338 1
59 9858856815540 1
15271 —8993438621168072057711693894248 1
187441  72366564118086321196551211656933454802 1
k=18 k=20
p T1s(p) ordy(ris(p)) p T20(p) ordy(720(p))
2 —528 4 2 456 3
3 —4284 2 3 50652 3
5 —1025850 2 5 —2377410 1
7 3225992 1 7 —16917544 2
11 —-753618228 1 11 —16212108 1
13 2541064526 1 13 50421615062 1
17 225070099506 1
3371 —1247220165833479125222462786471468 1
64709 487561492441266310170136412780007334338572670 1
k=22 k=26
p T22(p) ordy(722(p)) p 726(P) ord (726 (p))
2 —288 5 2 —48 4
3 —128844 3 3 —195804 3
5 21640950 2 5 —741989850 2
7 —768078808 1 7 39080597192 2
13 —80621789794 1 11 8419515299052 1
17 3052282930002 1 13 —81651045335314 1
19 —7920788351740 1 17 —2519900028948078 1
19 —6082056370308940 1
23 —94995280296320424 1

106 for Ak.
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The last three tables on page 203 give the results
of the computation. In each case, we tested primes
p <1000 000.

It is unclear whether one should ascribe any im-
portance to the fact that in this case we find no
“unexpected” non-ordinary primes, since this is
certainly consistent with the heuristic estimate

m(f,x) = O(loglog 7).

Since the division into the two cases k£ = 0 mod 4
and k¥ = 2 mod 4 is an artifact of our method of

Case k = 0 mod 4. Let m € {3,4,5}. Then

computation, it seems likely that the overall be-
havior is the same in both cases.

6. FORMULAS

We have given, above, the formulas for 7;(n) mod
n that can be deduced from our identities. It may
be of interest to record the full formulas for 7 (n);
this is done below. For k divisible by 4, the formu-
las involve only the o function, and are relatively
simple. For k£ = 2 mod 4, the formulas involve both
o and o3, and are considerably more complicated.

Tim(n) = n*" %0 +me n, k)o(k)o(n — k),
where
fa(n, k) = —840k* + 1248k*n — 432k°n?,
fa(n, k) = 2640k>n® — 11160k n* + 15048k°n — 6552k°,
fs(n, k) = —24480k"n* + 130416k°n> — 253680k°n? + 215040k n — 67320k°.
Case k = 2 mod 4.
13715(n) = 42nSa(n) — (35n° — 6n7) )+ Zglg n,k)o(k)os(n — k),
—20407y,(n) = —3960n°0(n) + (—240n° + 2160n°) )+ Zgzz n,k)o(k)os(n — k),
—3100876(n) = —48048n'°c(n) + (18480n'° — 1440n'")os(n) + Z g26(n, k)o(k)os(n — k),
where
g1s(n, k) = 840n° — 27720kn® + 277200k*n"* — 1201200k>n®
+ 2522520k*n? — 2522520k n + 960960°,
Ga2(n, k) = —51840n® + 2695680kn" — 44029440k*n® + 330220800k%n° — 1320883200k* n*

+ 2994001920k° n® —
926(”7 k) =

3849431040k n? + 2612113920k n — 725587200%%,
—443520n° + 33264000kn" — 798336000k%*n® + 9047808000k n"

— 57001190400k*n® + 216604523520k°n° — 515725056000k n*

+ 773587584000k n* —

709121952000k° n* + 362440108800k"n — 79077841920%™.

Formulas for 74 (n).
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