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We study the behavior of invariant sets of a volume-preserving
map that is a quasiperiodic perturbation of a symplectic map,
using approximation by periodic orbits. We present numerical
results for analyticity domains of invariant surfaces, behavior
after breakdown, and a critical function describing breakdown
of invariant surfaces as a function of their rotation vectors. We
discuss implications of our results to the existence of a renor-
malization group operator describing breakdown of invariant
surfaces.

1. INTRODUCTION

The problem of existence and persistence of invari-
ant sets of dynamical systems on which motion is,
up to a smooth change of variables, quasiperiodic,
has attracted considerable attention for at least a
century [Poincaré 1892]. Such sets have many im-
portant, practical, applications as landmarks that
organize the long-term behavior. For Hamiltonian
systems that are close to integrable, the Kolmogo-
rov—Arnol’d-Moser theorem guarantees that most
such invariant sets persist for a small enough per-
turbation [Kolmogorov 1954; Arnol’d 1963; Moser
1962] (or see [Llave 1993] for a self-contained in-
troduction to KAM theory and a proof). Results
similar to the KAM theorem can also be shown in
the case of quasiperiodic perturbations of symplec-
tic maps.

Unfortunately, the available analytical estimates
are very conservative compared to numerical in-
dications, especially for high-dimensional systems.
In this paper we investigate numerically the do-
mains of existence of two-dimensional tori in a par-
ticular two-parameter family of volume-preserving
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maps, and the behavior that occurs at breakdown.
The maps we study are quasiperiodic perturba-
tions of a family of symplectic maps. Our numer-
ical algorithms are based on analytical results de-
scribed in [Falcolini and Llave 1992a] and [Tom-
paidis 1996] (the preceding article in this issue).
The main idea is to use another landmark of long-
term behavior, periodic orbits, to determine the
existence and breakdown of tori.

For symplectic maps in two dimensions, it was
originally observed in [Greene 1979] that existence
of invariant circles has a strong influence on peri-
odic orbits close to the circle. In [Tompaidis 1996]
we prove that in symplectic maps of any dimension,
as well as in quasiperiodic perturbations of them,
existence of an invariant torus implies that the be-
havior of the map in a neighborhood of the torus
is close to that of an integrable map. We will make
use of this result as an indication of breakdown.

The system we will study is a three-dimensional
model of a family of volume-preserving maps. Mo-
tion in one of the coordinates is rigid rotation with
rotation number given by an appropriate diophan-
tine number. The other two coordinates of the map
are described by a perturbation of the standard
map. Properties of the map and existence of tori
have also been investigated in [Artuso et al. 1991].
Our rationale for studying this map (henceforth
called the rotating standard map) is similar to that
used in experimental physics, where one carefully
prepares a sample in order to observe certain phe-
nomena. In our case, the rotating standard map
serves as a paradigm for phenomena that appear
in higher-dimensional maps.

It is an important problem to describe the be-
havior at breakdown of invariant tori. In two di-
mensions, careful numerical experiments and an-
alytical arguments suggest that the breakdown of
invariant circles can be described by a fixed point
(with a stable manifold of codimension one) of a
renormalization-group operator [MacKay 1982].

We investigate whether such an approach gen-
eralizes to the case of the rotating standard map.
To consider such a generalization we use a multidi-

mensional algorithm (called the Jacobi-Perron al-
gorithm) to approximate irrational points by ratio-
nal ones. The algorithm reduces to the continued-
fraction method for the case of one-dimensional in-
variant circles. Although it has not been widely
used in the dynamical systems literature, it has im-
portant measure-theoretic and convergence proper-
ties, useful in introducing a renormalization-group
operator. In [Kosygin 1991] such an operator was
constructed, and it was shown that convergence to
a (trivial) fixed point under repeated application
of the operator implies existence of an invariant
torus. We investigate whether breakdown can be
understood in terms of a different fixed point.

In Section 2 we present the rotating standard
map. In Section 3 we show existence of periodic
orbits with any rotation vector and discuss efficient
ways to compute them. In Section 4 we present the
Jacobi—Perron algorithm and describe its connec-
tion to an extension of modular transformations.
In Section 5 we discuss the computation of domains
of existence for a particular invariant torus. In
Section 6 we present numerical results, and discuss
whether breakdown can be understood in terms of
a fixed point of a renormalization-group operator
in certain regions of parameter space. In Section 7
we generalize the notion of critical function.

2. NOTATION AND PRELIMINARIES

We will study a family of three-dimensional volume-
preserving maps F.; : R x T* — R x T?, with
g,k complex. The F, ; are called rotating standard
maps, and are defined as follows. For fixed ¢, k, set

' , _ 1 £ .
A =A(A0,p)=A 5 (k—i— 5 08 27r<p) sin 276.

Then
A A
F,l0]=|0+Amodl |. (2.1
%) @+ ws mod 1

The value of w, determines whether the standard
map is perturbed periodically (for w, rational) or
quasiperiodically (for w, irrational).
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We say that x is a periodic orbit of type (P/N),
for P € Z* and N a positive integer, if Y, (z) =«
and FN (&) = & + (P,0), where F, ,, & are (fixed)
lifts of F. 4, to the universal cover of R x T?. We
will call NV the period of the orbit. For d-vectors
we will use the norm ||v||; = Zle vy

We define the rotation vector of an orbit of F‘E,k
as the two-dimensional vector

T Wl(ﬁ‘;k(A)e)(p)) - (0730)
w = lim -

i— 00 1

if the limit exists, where 7, the projection on the
angle coordinates: m(A,60,p) = (6,¢). For a pe-
riodic orbit of type (P/N) the rotation vector is
w = P/N.

We are interested in the behavior of invariant
sets with diophantine rotation vector. A diophan-
tine rotation vector of type (K, 7) is a two-dimen-
sional vector w such that

|P - w| > for P € Z*, P#0, K > 0.

K
[

It is well known [Arnol’d 1988] that, for some K,
and fixed K > Ky, 7 > 1 the set of vectors of type
(K, 7) has positive Lebesgue measure in the unit
square. In [Tompaidis 1996] we show that existence
of invariant sets on which motion is conjugate to
rigid rotation with diophantine rotation vector has
certain implications for the properties of periodic
orbits in the neighborhood of the invariant set. As
in that paper we define the residue of a periodic
orbit with period N

R(z) = (3 — Te(DfN(x))). (2.2)

Considering the lift of map (2.1) to the univer-
sal cover of R x T? we write (2.1) in Lagrangian
formulation as

1
0ni1—20,4+0, 1 =—— (k—l—i Cos 27rgon) sin 276,
21w 2w

Son+1_2<pn+<)0n—1 :07 (2.3)

where we set (A1, 0,41, 0ns1) =F: 1 (A, 0., 0,)=
ij(An_l, 0,_1,¢n_1). We will use these equations
to numerically compute periodic orbits for F ;.

3. EXISTENCE AND COMPUTATION OF PERIODIC
ORBITS

John Mather [1991] extended several of the prop-
erties of twist maps of the annulus to finite com-
positions of twist maps. Counsider a periodic per-
turbation of the standard map and the twist maps
of the annulus

f (p> — ( p_sf,k(ﬂoo;wmn)SinQWq )
"\a) 7 \a+p—seilpo,ws,n)sin2rg )
where

1

g
85716(()00,(,02,71) = % (k + %

The corresponding generating function is

cos 27 (o + TLW2)).

, 1
h(0,4') = 5(a = ¢) = —5c1 (00, w3, ) cOs 2.
The finite composition

f=fioofy 3.1)

is the rotating standard map with B,, = wy = M/N
and with generating function

h="hy*x--%hy, (3.2)

where
hl * hz(l‘l,l'z) = miln(hl(a:,f) + h2($’7£)). (33)

The operation * was named conjunction in [Mather
1991] and used to show that many of the results for
twist maps are preserved. In particular, for the ro-
tating standard map as in (3.1) (a finite composi-
tion of twist maps), there exist configurations @ for
any w € R such that « is an orbit of f with rotation
number w [Mather 1991, Proposition 2.4]. More-
over, if I' is a curve invariant under f, on which
motion is conjugate to rigid rotation with an irra-
tional rotation number, then I consists of minimal
configurations of h. (For a discussion about mini-
mal configurations see [Mather 1991]. For a proof
see [Mather 1991, Proposition 2.8]). These results
guarantee the existence of minimal periodic orbits
for our maps, with any period and any (rational)
rotation vector.
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To compute such periodic orbits for the map
(2.1) we use Newton’s method in the space of fi-
nite length sequences. Given a periodic orbit with
rotation vector (P, /N, P,/N) we can eliminate the
dependence on the ¢ variable in (2.3) and trans-
form the equations to

01— 20, + 0,1 = —5. x(0, Po/N,n)sin 270,
(3.4)

Equations (3.4) can be seen as the Euler-Lagrange
equations for a certain Lagrangian [Mather 1991;
Kook and Meiss 1989]. We introduce (formally)
the action W for an orbit {6,}°___ by

W(ayn): Z g(ynayn+lan)7

where y is the lift of 8 and

1

g(l’,y,’b) = %(I - y)z - %Ss,k, (900, NZ,Z> cos 2w,

Even though W is only formally defined, its gradi-
ent is well defined, and a sequence of points is an
orbit of (2.1) if and only if it is a critical point of W
[Kook and Meiss 1989; Golé 1994]. In coordinates,
this condition is

0
Q—(g(yz_l,yz,l—l) + 9y, yi41,1)) =0,
Y1

for all [.

A minimal configuration for the generating func-
tion (3.2) corresponds to a critical point for W, but
not necessarily vice versa, since minimax configu-
rations may exist for certain values of the param-
eters.

For a periodic orbit of type (P/N,P,/N) we
have yyi11 = y1 + Pi/N, yo = yn — Pi/N. For this
case we redefine the action W as

N

7yN) = Zg(yn7yn+l7n)7

n=1

WN(ZI/]_, e

which leads to the system

B
Q—(g(yz_l,yz,l—l) + 9y, yi41,1)) =0,
Y1

forl =1,...,N. To solve this system, consider the
operator T : RY — RY given by
0
Tyl = — W,
[y] Oy, N
Given an initial guess for the coordinates of the
periodic orbit y = (y1,...,ynx), we can improve it
by setting y' = y + éy. Ignoring terms of order
oy - 6y we have

DT yléy = —Ty],

fori=1,...,N.

or
2-a, -1 ... 0 -1 S,
~1 2—as... 0 0 5ys
Aby = : Do : :
0 0 ---2_aN—1 -1 6yN_1
-1 0 ... -1 Q—QN 6yN
=—Tly], (3.5)
where

P
a; = 2ms, (<p0, NZ’ z) cos 2my;.

This method of finding periodic orbits is very
similar to the one used in [Kook and Meiss 1989]
for the case of high-dimensional symplectic maps.
The only difference is that the coefficients a; in
our case depend not only on the coordinates of the
periodic orbit, but on the iteration number itself.
Another possible method for numerically comput-
ing certain periodic orbits of maps with symme-
tries uses properties of periodic orbits with respect
to symmetry lines of the map. We have not made
use of symmetry lines in our numerical algorithm.

Our numerical implementation of the method for
a particular (P,/N, P,/N) periodic orbit used the
following continuation algorithm:

e Choose a precision cutoff value ¢. (In our com-
putations we chose § =1077".)

e Choose a family of paths passing through k£ =
e=0.

e For a point along a path iterate Newton’s algo-
rithm, using as initial guess the periodic orbit
computed at the previous point on the path.
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e Proceed to the next point when the error be-
tween the computed periodic orbit and its first
iterate is less than o.

Iterative Methods

The problem of solving the linear system (3.5) is
greatly simplified by the fact that the matrix A is
sparse, with only 3N nonzero entries. To solve sys-
tems of linear equations involving large, sparse ma-
trices, iterative methods have been developed (sim-
ilar problems appear frequently in finite-element
and finite-difference discretizations of partial dif-
ferential equations). Iterative methods have the
advantage that, for sparse matrices, only O(N)
computation steps and storage space are required.

Given the linear system Au = b to be solved,
an iterative method successively approximates the
true solution @ from an initial guess u(?). The it-
eration scheme is

u" ™ = Gu™ + k,

where G =1 —Q7'A and k = Q~'b, for a suitable
matrix ). This matrix is chosen so as to be invert-
ible in O(V) steps (this is the case for diagonal,
tridiagonal, and triangular matrices).

An iterative method can be further speeded up
by the use of an acceleration procedure. Such pro-
cedures are based on properties of the matrix A.
For example, Chebyshev acceleration uses informa-
tion about the estimated range of the eigenvalues
of A, whereas the conjugate gradient method mini-
mizes a certain function of A. For a more complete
description, with many examples, see [Young and
Gregory 1988; Young and Hageman 1981]. Conver-
gence of an iterative method is checked by moni-
toring the norm of the error.

Convergence of some iterative methods to the
true solution has been rigorously demonstrated for
the case where A is a symmetric, positive definite
matrix. Unfortunately we are not aware of any
general convergence result for matrices that are not
symmetric.

In our computations we have used the package
ITPACK 2C [Kincaid et al. 1982], developed at

the Center for Numerical Analysis of the Univer-
sity of Texas at Austin. We used the Jacobi iter-
ative method with either Chebyshev acceleration
or conjugate gradient acceleration; for () we used
the diagonal part of A. We verified that the time
to converge to a solution, within a specified preci-
sion, increased linearly with IV for a periodic orbit
of type (P,/N, P,/N).

Direct Methods

In [Kook and Meiss 1989] a direct algorithm was
proposed to solve an equation similar to (3.5) in the
case of high-dimensional symplectic maps. The al-
gorithm had the advantages of an iterative method
in that it required only O(IN) steps and O(NN) stor-
age space. We implemented a similar method, tak-
ing advantage of the structure of the matrix A.

The method is based on the fact that A is very
close to a tridiagonal matrix, namely it is cyclic
tridiagonal (tridiagonal with two additional entries
at the corners). We first solve the tridiagonal linear
system in O(NN) steps using the Thomas algorithm
(see [Young and Gregory 1988, vol. 2, p. 587]). The
algorithm takes O(NN') computational steps to per-
form Gaussian elimination, due to the special form
of a tridiagonal matrix. After finding the solution
to the tridiagonal problem we can add corrections,
due to the terms at the two corners, either using
the Sherman—Morrison method or the Woodbury
method [Press et al. 1992, p. 73-77].

The algorithm can be easily extended to higher-
dimensional cases. Our implementation is designed
to be flexible, so that periodic orbits in different
maps (either volume-preserving or symplectic) and
even higher-dimensional systems can be computed
by simply changing some map-dependent defini-
tions in a file.

4. JACOBI-PERRON APPROXIMATION SCHEMES

Approximation of irrational numbers by rationals
has been important in the study of breakdown of
invariant curves in twist maps of the annulus since
the work of Greene [1979]. Greene conjectured that
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the behavior of periodic orbits with rotation num-
bers that are continued-fraction convergents of a
diophantine irrational number determines the ex-
istence of an invariant curve with rotation number
equal to the irrational. MacKay [1982] constructed
a renormalization-group operator on spaces of an-
alytic maps, which changes the rotation number of
an invariant curve by eliminating the first contin-
ued fraction coefficient. For irrationals with pe-
riodic continued fraction expansions—and in par-
ticular for the golden mean v = 1(v/5 — 1)—he
found evidence, based on careful numerical work
and analytical arguments, that the breakdown of
invariant curves is described by a fixed point of the
renormalization operator with a stable manifold of
codimension one.

Description of the Algorithm

The Jacobi—Perron algorithm is one of many gen-
eralizations of the continued fraction algorithm in
higher dimensions. Detailed description of the al-
gorithm and proofs of the results we present here
can be found in [Bernstein 1971; Schweiger 1973;
Kosygin 1991; Lagarias 1993].

Given a point (wy,ws) € (0,1) x (0,1), the algo-
rithm recursively defines convergents P, /N,,, with
P,=(P,,P,,) € N and N,, € N. Their definition
is

Pn+1 - kn+1Pn + ln+1Pnfl + Pn727

(4.1)
Nn+l — kn+1Nn + ln+1Nn—1 + Nn—?)

where the integer coefficients k,,1,0,41 are deter-
mined by the Jacobi—Perron map

n

1 w
(Wpth wytt) = (—n mod 1, — mod 1),
Wy Wy

(Kng1ylng1) = (LUL;J’ LZ_:ZJ)’

with initial values (w?,w) = (wi,ws), Py = (0,0),
P,=(,0), P,=(0,1), Ng=1,N_; =N_,=0.

The Jacobi—Perron algorithm is a linear simplex-
splitting algorithm [Lagarias 1993]. For the case of
points in the unit square a consequence is that if

(4.2)

three successive Jacobi-Perron approximants de-
fine a triangle, all approximants of higher order
(and the point being approximated) will lie in-
side that triangle. This property is shared with
another commonly used algorithm, the Farey-tree
approximation scheme [Kim and Ostlund 1986].
Lagarias studied the rate of convergence of the
Jacobi—Perron algorithm for a set of points of Le-
besgue measure one in the unit square. Consider
a point in the unit square w and a close-by point
with rational coordinates r = (p;/q,p2/q). The
Roth exponent of r is defined as

log |lw — 7|,
logg

Let r; be the i-th Jacobi-Perron approximant to a
point w. The best approzimation exponent for w
using the Jacobi-Perron scheme is defined as

77(7"; w) =

ny = lim sup{n(r;(w))}

i— 00

and the uniform approximation exponent as
1 = lim inf{min(y(r;(w)), (7 (w)), 1(ri2))}-

The exponent 7, gives the rate of convergence
for the best possible approximant towards a point,
while the exponent 7, is an (asymptotic) estimate
for the rate at which all the vertices of the triangle
enclosing w approach w.

Lagarias showed, using methods from ergodic
theory (see [Lagarias 1993|, also [Kosygin 1991])
that for the Jacobi—Perron algorithm 7, and 7,
are constant in a set of measure one in the unit
square. He conjectured that the constant values
are in fact equal. In [Baldwin 1992] (see also [Kosy-
gin 1991]) numerical methods were used to esti-
mate 1, = 1.374£0.002, an estimate that, coupled
with Lagarias’ conjecture, suggests that the trian-
gles formed from successive Jacobi—Perron approx-
imants become, in the limit, needle-shaped.

The Jacobi-Perron algorithm has other proper-
ties of interest, apart from its measure-theoretic
ones. For all points in the unit square, we have
k, > 1 and k, > [, > 0. Also, the triangle
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formed by three successive Jacobi—Perron approxi-
mants contains no rational point with denominator
smaller than the largest denominator of the ver-
tices.

In analogy with periodic continued fractions of
period 1, we introduce golden means of the Jacobi-
Perron algorithm w for which &, =k, [,, = 1. The
polynomial P, (t) = t* — kt* — [t — 1 is called the
characteristic polynomial of w. Golden means have
the following properties:

o k<7T<k+1,0<|r|, and |a] <1, where 7 is the
root of P, of maximal absolute value and 7,7,
are the remaining roots (so that |r|, |m| < 1).

o (wy,wy) = (1—k,1/7).

o [lgnw = (pr,,p2,)ll2 < C(w) max(|ml, [7])".

Kosygin [1991] has constructed a renormalization-
group operator on the space of symplectic maps of
R? x T2. The action of the operator on a map that
has an invariant surface with rotation vector

(wi,wa2) = ((k1,11), (k2,12),...)

produces a new map with an invariant surface with
rotation vector (w],w}) = ((k2,l3),...). For golden
means of the Jacobi-Perron algorithm he showed
that if the original map, under repeated action
of the renormalization-group operation, converges
to a (trivial) map (which is a fixed point of the
renormalization-group operator), then the original
map admits an invariant surface, on which motion
is conjugate to rigid rotation with rotation vector
(w1, ws). Moreover, the trivial fixed point is attrac-
tive, that is, maps in its neighborhood admit an
invariant surface. (This result can also be viewed
as a renormalization-group proof of the KAM the-
orem for invariant surfaces with rotation vectors
golden means of the Jacobi—Perron algorithm.)

Connection Between the Jacobi-Perron Algorithm and
PSL;(Z)

The Jacobi—Perron algorithm has a natural con-
nection with 3 x 3 matrix transformations. We in-
troduce an extension of modular transformations

of one complex variable to two complex variables:

(az1+bz2—l—c dz; +ezs + f

-y - ). (4.3)
gz1 + hzs +1 gz1+hz2+z)

(21, 22) —

Successive transformations obey the rules of matrix
multiplication of 3 x 3 matrices

a b c
M=1|d e f
g h 1

Because of invariance of the transformation under
scaling, we can assume |det M| =1, where M and
—M are identified. Thus the group of transforma-
tions defined by (4.3) is isomorphic to the projec-
tive group PSL3(Z).

PSL;(Z) is generated by the elementary matrices
T,; = I + ey, for distinct ¢,5 = 1,2,3, where e;;
is the 3 x 3 matrix whose only nonzero entry is
the element ¢, 7, which is equal to 1. On the other
hand, the Jacobi-Perron operator can be viewed as
a subgroup of PSL3(Z) generated by the matrices

101 100 010
n=|010|, m=|011),U=(001
001 001 100
T, represents translation in the first coordinate, T,
translation in the second coordinate, and U gener-
alized inversion.
Given a point (w;,w,) in the unit square, the
Jacobi-Perron operator can be written as

(wg)); W;O)) = (w17 w2)7

(Al ) ST T (o ) for m 21,

where k,,[, are the unique nonnegative integers
such that (w{™™),w{"™)) is inside the unit square.
The coefficients k,,,[,, form the Jacobi—Perron ex-
pansion of (wy,wy).

We can use the Jacobi-Perron operator to move
between points with the same tail coefficients, since
w® = ((ko, 1), (k1,1y),...) implies

w(n) = ((kna ln)7 (kn-l-l) ln+1)7 o )

The difference between this case and the lower-
dimensional case studied in [Buric et al. 1990] is
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that the Jacobi—Perron transformation corresponds
to a subgroup of PSL;(Z), whereas the continued
fraction algorithm corresponds to PSLy(Z).

5. DOMAINS OF EXISTENCE OF INVARIANT
SURFACES

Existence of invariant surfaces on which motion is,
up to a change of variables, rigid rotation, plays
a significant role in determining long-term dynam-
ics in many physical applications. In the case of
the rotating standard map the existence of two-
dimensional invariant tori presents a complete bar-
rier to phase-space diffusion. Perry and Wiggins
[1994] showed that invariant tori in high-dimen-
sional Hamiltonian systems also guarantee long-
term stability for orbits in their neighborhood.

Several methods, both analytical and numerical,
have been used in two-dimensional systems to de-
termine the domain of existence of invariant curves
[Celletti and Chierchia 1988; Rana 1987; Llave and
Rana 1991; Berretti and Chierchia 1990; Falcolini
and Llave 1992b]. Unfortunately, estimates based
on analytical methods are very conservative in the
case of higher-dimensional systems. Among the
numerical methods for two-dimensional systems,
the one widely believed to be the most accurate is
based on a conjecture of Greene concerning the be-
havior of periodic orbits approaching the invariant
curve (see [Greene 1979], and also [Falcolini and
Llave 1992a; MacKay 1992] for a rigorous, partial
justification).

Results in [Falcolini and Llave 1992a; Tompaidis
1996] provide justification for a similar criterion
in higher-dimensional models. Following the latter
paper (which can be found in this issue), we will
consider volume-preserving maps that are quasi-
periodic skew products of symplectic maps over T¢,
that is, maps of the form

f(07907A) = (f1(07907A)7 12 +w27 f2(07907A))7

for fi : Tt x R — T4, fy : T4 x R — R¢,
0 € T, ¢ € T, and w, € T¢ an irrational vector.

We introduce the extension f* : Tdte x Rite —
'Ed-ﬁ-e X Rd-l—e by

f*(97<)07A17A2)
= (fl(G,QO,Al), @+A27 f2(97<)07A1)7A2)7

which at Ay = wy reduces to f. If f admits an
invariant surface I' then f* admits an invariant
surface I'* at Ay, = w,. Moreover we introduce
the restriction f} : T¢"¢ x R* — Té*te x R%, where
w € T°, by setting

fo0,0,4) = (0,0, A,w).

If f* admits a periodic orbit = of type ((Py, P,)/N)
then f;,  admits a periodic orbit  of the same
type.

Theorem 5.1 [Tompaidis 1996, Theorem 2.4]. Let
f:THe xR — Tite x R? be a quasiperiodic skew-
product of a 2d-dimensional nonsingular symplec-
tic map over T¢ such that f|re is rigid rotation with
a diophantine rotation vector. Assume that f is of
class C", where v > 1, and that it admits a C”7
invariant surface I, homotopic to T x {0}, on
which the motion is C™ conjugate to rigid rotation
with rotation vector w of type (K, 7). Moreover,
assume that in the extension f* of f there is a
netghborhood of I'* where there are periodic orbits
zp/ny (P = (P, Py) € 29%¢) of type (P/N) for
INw — P|lgre small enough. Then, for any non-
negative integer k < (r —1)/7, we can find D), > 0
such that 2d of the eigenvalues A1, ..., Ay of the
derivative D((f;z/N)N)(i‘(p/N)) satisfy

A —1| < Dy|Nw = P|IY2N  fori=1,...,2d,

the remaining e eigenvalues being identically 1.
If 1, T, and the conjugacy to rigid rotation are
analytic, we can find Cy,Cy > 0 such that

|Ai = 1| < DN exp(—Dy||[Nw — Pl ;[*+7).

Remark. For the rotating standard map the eigen-
values of the derivative are completely determined
by the trace (since one eigenvalue is identically 1
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and the map is volume-preserving). Therefore, in-
stead of monitoring the eigenvalues, we will study
the behavior of the residue

R(z) = (3 - Te(Df"(x)))
along a periodic orbit & with period N.

Remark. In the case of hyperbolic invariant sets
that are semi-conjugate to rigid rotation, it was
shown in [Falcolini and Llave 1992a] that the deriv-
ative along periodic orbits approaching the invari-
ant set has eigenvalues that increase exponentially
with the period of the orbit. Although the invari-
ant sets of the rotating standard map are not hy-
perbolic, due to rigid rotation in the second angle
coordinate, we have observed that in the absence
of an invariant surface the eigenvalues of periodic
orbits approaching a limit set are exponentially in-
creasing.

Theorem 5.1 (which also holds for complex maps
and complex invariant sets) suggests the following
algorithm:

e Fix a value @ > 0, to be used as the cutoff
criterion for determining breakdown.

e Choose a family of paths in the parameter space.

e Compute periodic orbits with rotation vectors
close to the rotation vector of an invariant set
of interest, along the paths, and determine the
point along the path when the residue of the
periodic orbit satisfies |R(x)| > a.

Remark. The value of « plays only a minor role if
the period is large. The reason is that if an invari-
ant curve exists, the eigenvalues of the derivative
of the map approach 1 exponentially as the period
increases, whereas if the invariant surface has “dis-
integrated” then at least one eigenvalue is expected
to be exponentially large. The reasoning is valid
as long as the breakdown of an invariant surface is
well-defined.

Remark. The algorithm is based on continuation of
periodic orbits using Newton’s method in a space of
finite sequences, as presented in Section 3. Using
numerically computed condition numbers we can

determine the validity of the continuation scheme.
As long as no eigenvalue of the derivative of the
map along the periodic orbit is 1, the implicit func-
tion theorem guarantees the success of the contin-
uation method for small enough steps along the
path. Notice that one eigenvalue in the case of
the rotating standard map is identically 1, due to
rigid rotation in the second angle coordinate, but
does not influence Newton’s method, as described
by (3.5).

6. NUMERICAL RESULTS

In Figures 1-3 we follow periodic orbits along paths
in the parameter plane. We start the paths at
¢ = k = 0, where we know the coordinates of the
periodic orbits. The initial value of ¢, is taken to
be % In Figure 1 we investigate the domain of exis-
tence of the invariant curve with rotation vector w
with Jacobi-Perron expansion (1,1)> for real val-
ues of k, . We observe that the boundaries for suc-
cessive approximants cross each other for several
sets of parameter values (a similar phenomenon
was observed in [Falcolini and Llave 1992b] for
standard-like maps in the complex domain). The
phenomenon is more pronounced for large values of
k (Figure 2). In [Artuso et al. 1991] something sim-
ilar was observed for a different invariant surface
(with rotation vector the spiral mean) using a dif-
ferent approximation scheme (an extension of the
Farey-tree expansion). We observed, however, that
for certain paths in the parameter plane the bound-
aries for successive approximants are well-ordered
and their successive positions follow a power law.
Such paths are the ¢ = 0 path (corresponding
to the well-understood case of the standard map,
albeit for the two-dimensional Jacobi—Perron and
not the continued fraction approximation scheme)
and the k = 0 path; see Figure 4.

Figure 3 shows the domain of analyticity of the
same invariant surface for a small, fixed value of &
and for complex values of e. The absence of cross-
ings and the scaling observed in the figure suggests
that behavior at breakdown could be understood
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FIGURE 1. Domain of existence for the invariant surface with golden rotation vector (1,1)>, for real values of
the parameters. Plots 1-7 represent the boundary where the residue of periodic orbits is 1, for the given values
of the rotation vector, which were chosen as Jacobi—Perron convergents to (1,1)*. Plot 8 is a superimposition
of 1 and 7, and 9 is a superimposition of 4 and 7. The ranges of k and ¢ are the same in all plots.
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Detail of Figure 1.
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FIGURE 3. Domain of existence for the invariant surface with golden rotation vector (1,1)> for k = 0.2 fixed
and ¢ complex. Plot 8 is a superimposition of 1 and 7, and 9 is a superimposition of 4 and 7.
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Scaling of the points where the residue becomes 1 for k£ = 0, for successive Jacobi—Perron approxi-

8904

16606 * 10609). The value of e.,4; and the ap-

proximating straight line are determined from a least squares Levenberg—Marquardt scheme [Press et al. 1992];

the line has equation y = 2.2e 793752,

in terms of a fixed point of a renormalization op-
erator in a space of maps with complex variables.

For invariant surfaces that break down to invari-
ant sets semi-conjugate to rotation, we can study
the transition by monitoring the behavior of close-
by periodic orbits. It is natural to ask whether an
analog of Aubry—Mather theory applies to higher-
dimensional systems and what are the invariant
sets that an invariant surface breaks down to. The
continuation algorithm allows to compute periodic
orbits of high period close to breakdown. Based on
Figure 1 we identified breakdown of the invariant
surface with rotation vector (1,1)> at ¢ = 1.75,
k= 0.2 and at ¢ = 3.55, £ = 0. We remark that
although crossings between boundaries where dif-
ferent periodic orbits had residue 1 were common,
the residue of each periodic orbit along a path ap-
peared to behave regularly.

The transition occurring at breakdown was in-
vestigated in Figure 5. We observe that the in-
variant set develops gaps, analogous to the ones
that appear as an invariant curve breaks down to
an Aubry—-Mather set in two-dimensional systems.
Such gaps have been used to show rigorously, by

means of a computer-assisted proof, that break-
down has occurred (see [Muldoon 1989] for the case
of a four-dimensional symplectic map). Notice that
the largest gap occurs at § = ¢ = 0 where the po-
tential attains its maximum.

Remark. For the case of the rotating standard map
we have shown in Section 3 that periodic orbits
for all rational rotation vectors exist. However we
have not been able to rigorously determine whether
they converge to an invariant set as their rotation
vector tends to a diophantine rotation vector.

Figure 6 shows the behavior of the residue along
a path in parameter space. In Figures 7 and 8 we
investigate the behavior, along two paths in pa-
rameter space, of the stability of periodic orbits,
quantified by the stability exponent A. This expo-
nent is defined, for an orbit = of period IV, as

1
A= < log [DF¥(2),

where |Df"(z)| means the biggest eigenvalue of
the matrix. The stability exponent tends, in the
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FIGURE 5. Comparison of periodic orbits close to
the invariant surface with rotation vector (1,1)%,
before and after breakdown. The periodic orbit
rotation vector is (13598 18377)  On the top and
middle rows, the orbit on the left, calculated us-
ing the indicated values of k and ¢, is approaching
breakdown; for the one on the right, breakdown
has already occurred. The orbit on the bottom
row is a continuation along the path & = 0 of the
one on the middle row, right. Notice the abrupt
increase in the value of the residue R.
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limit N — oo, to the Lyapunov exponent of the
invariant set, as long as the orbit tends to the in-
variant set and motion on the invariant set is semi-
conjugate to rigid rotation with diophantine rota-
tion vector (in which case there is only one invari-
ant measure and it makes sense to talk of Lyapunov
exponents without specifying the measure). Notice
that, due to nature of the map, one eigenvalue of
the derivative is always 1 and the other two are
reciprocal.

Remark. It is important to monitor the algorithm
that computes the periodic orbits to guarantee that
the type of periodic orbit we are following is the
same. As was remarked in [Olvera and Vargas
1992], periodic orbits of higher-dimensional sym-
plectic maps may undergo bifurcations and follow
a different (low-dimensional) torus from the one we
are interested in.

To avoid this problem we have monitored the
size of the condition numbers for the solution of
the linear system (3.5). When the condition num-
bers were large we decreased the step size of the
algorithm. Moreover we have tried to choose pe-
riodic orbits with rotation vectors whose compo-
nents are irreducible, to avoid bifurcations similar
to the ones observed in [Olvera and Vargas 1992].
The behavior of the stability exponent indicates
that there were indeed bifurcations for some of the
periodic orbits with reducible components, repre-
sented by the jumps in Figures 7 and 8.

7. CRITICAL FUNCTION

Percival [1982] introduced a critical function for
two-dimensional twist maps. It is a function of
the rotation number and its value corresponds to
the perturbation strength at which the invariant
curve breaks down (in the case of the standard
map there are indications from renormalization-
group theory that breakdown occurs at a specific
value for each rotation number). Based on the
renormalization-group description, Buric, Percival,
and Vivaldi [Buric et al. 1990] have observed that
the critical function for the semistandard map has

certain transformation properties under the modu-
lar group that allow its rapid computation. These
transformation properties have been considered as
additional evidence of an underlying renormaliza-
tion-group transformation.

In analogy with [Percival 1982], we introduce a
critical function K(w) for the rotating standard
map, from the space of rotation vectors w to the
parameter space (g, k). Given a rotation vector w,
the values of the critical function are the values of
the parameters at which breakdown occurs. As in
the two-dimensional case, this function is discon-
tinuous in a set of large measure (since it vanishes
at all rationally dependent rotation vectors but is
nonzero at a set of large measure).

We will use the value of the residue of a nearby
periodic orbit as an indication of breakdown of an
invariant surface.

In Figure 9 we present the logarithm of a slice
of the critical function for the rotating standard
map, at a fixed value of k¥ = 0.2. The figure was
generated using periodic orbits and taking into ac-
count the symmetries of the critical function w;, —
1 —w, wy — 1 — w,. We chose the points at
which to evaluate the critical function randomly,
and then approximated the chosen points with a
nearby (eventually) golden mean of the Jacobi-
Perron algorithm (that is, with Jacobi-Perron ex-
pansion (...,(1,1)>)). We truncated the Jacobi-
Perron expansion to obtain rational points close to
the (eventual) golden means. All the periods used
were between 300 and 800. We used a continuation
method to follow the periodic orbits up to the per-
turbation value of ¢ at which the residue becomes
1. We made that perturbation strength the value
of the critical function. (Cases when breakdown
has already occurred for € = 0 are treated as if
breakdown occurred at ¢ = 0.) Our procedure is
similar to the one used in [Buric et al. 1990] for the
computation of the critical function for the semis-
tandard map.

The computation of the data for Figure 9 re-
quired 30 hours of CPU time on an IBM RS/6000
370. The rendering was done using gnuplot, by
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FIGURE 6. Residue of periodic orbits approximating an invariant set with rotation vector (1,1)° along the
path k£ = 0. The different sets correspond to different periodic orbits, with the ratios shown.
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FIGURE 8. Stability index A of periodic orbits approximating an invariant set with rotation vector (1,1)*
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residue of 6576 periodic orbits and interpolating on a 150 x 150 grid. Some level sets are also drawn.



228 Experimental Mathematics, Vol. 5 (1996), No. 3

computing values at the grid points using weighted
interpolation. (This process has the undesirable
effect of “smoothing” the function in certain re-
gions.)

We have not been able to identify transforma-
tion properties of the critical function under the
action of the Jacobi—Perron operator for the rotat-
ing standard map. We face two problems, the first
being a possible problem for any multi-dimensional
approximation algorithm, while the second per-
taining to the Jacobi-Perron algorithm in particu-
lar:

(@) We do not know how many parameters are nec-
essary to describe the critical fixed point of a
renormalization-group algorithm. In hopes of
simple behavior (similar to the one uncovered
by MacKay in the case of the twist maps of the
annulus) we have used one-dimensional param-
eter paths in the parameter space. However,
notice that, as indicated in Figure 1, there are
regions in parameter space where the renormal-
ization group behavior is more complicated.

(b) The Jacobi-Perron algorithm is not symmetric
with respect to the two coordinates. In the case
of twist maps (when the rotation vector is a
real number) it is possible to produce a linear
combination of log K (w) and log K (Uw) to can-
cel the leading-order logarithmic singularities of
the critical function. It would be interesting to
determine whether such cancelations are possi-
ble in the case of the rotating standard map or
high-dimensional symplectic maps.
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