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We compute the degree 3 homology of GL(3,Z) with coef-
ficients in the module of homogeneous polynomials in three
variables of degree g over [y, for g < 200 and p < 541. The
homology has a “boundary part” and a “quasicuspidal” part
which we determine.

By conjecture a Hecke eigenclass in the homology has an at-
tached Galois representation into GL(3, [?p). The conjecture is
proved for the boundary part and explored experimentally for
the quasicuspidal part.

1. INTRODUCTION

The aim of this project is to study a conjecture
on the existence of “reciprocity” between n-dimen-
sional mod p Galois representations and the mod
p cohomology of subgroups of finite index in the
linear group GL(n,Z). Before recalling the exact
statement of the conjecture, which appears as con-
jecture B in [Ash 1992], it may be helpful to explain
some of the background and motivation for it.

Let Gy denote the Galois group of an algebraic
closure of Q over Q. If we are given a ring R and
a homomorphism p : Gog — GL(n, R) we call p an
n-dimensional Galois representation over R. We
assume that p is unramified outside a finite set S of
primes. This means that the fixed field of the ker-
nel K of p is unramified outside S . Thus for any [
not in S, a Frobenius element Frob;, € G | K is de-
fined up to conjugacy. We thus obtain a set of char-
acteristic polynomials, {det(I — p(Frob;) *X)}, in-
dexed by the primes [ ¢ S. In the cases we treat
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in the body of the paper, this indexed set of poly-
nomials determines p up to semisimplification.

Understanding the set of Galois representations
that can arise in a given situation, say as the Tate
modules of elliptic curves, can give strong control
over that situation. (Wiles’ proof of Fermat’s Last
Theorem is a case in point.) For this to be useful,
we need to know about the action of Frobenius at
the unramified primes and about the action of the
inertia subgroup of the Galois group at the ramified
primes. The behavior at the ramified primes is of
great interest, but unfortunately it is beyond the
methods of this paper.

Ideally we would like to be able to parametrize
in some way all Galois representations and give the
characteristic polynomials of Frobenius in terms of
the parameters. That seems to be too hard. In-
stead we ask about certain families of Galois repre-
sentations, and whether they and their character-
istic polynomials of Frobenius can be “predicted”
from some other objects, like automorphic forms.
Such a set-up can loosely be called a “reciprocity
law”. That is because the classical law of quadratic
reciprocity can be interpreted as a correspondence
between Galois representations p where the image
has order 2 (i.e., Galois groups of quadratic exten-
sions of Q) and Dirichlet characters y of order 2.
The reciprocity law says that p(Frob;) = x(I).

Suppose we have a set T of mathematical ob-
jects such as Dirichlet characters, or classical mod-
ular newforms, or (in the case of this paper) certain
group cohomology classes. For each element ¢ of T’
suppose that we are given a method to compute a
sequence of polynomials P, of degree n, one for each
prime [ outside a finite set S(¢). Finally, suppose
that for each t there exists an n-dimensional Galois
representation p; unramified outside S(¢) such that
the characteristic polynomial of p;(Frob;) equals
P, for each [ outside S(t). We can call this situa-
tion a reciprocity law, and say that p; is “associated
to” t.

We can think of T" as controlling the Galois rep-
resentations, or the other way around, depending
on which we have more information about.

Now let T'(n) be the set of Hecke eigenclasses in
the (co)homology of a subgroup of finite index in
GL(n,Z) with mod p coefficients. When n = 1,
there is a reciprocity law for T'(1) in the sense
above given by class field theory for Q. When
n = 2, through the intermediary of classical mod-
ular forms and theorems of Eichler—-Shimura and
Deligne, one gets a reciprocity law for 7'(2). These
two cases are dealt with in [Ash 1997].

This paper explores the conjecture that 7'(3) has
a reciprocity law. We wish to emphasize that un-
like the cases mentioned in the previous paragraph,
all of the mod p homology classes computed below
lift to torsion homology in the corresponding in-
tegral homology group and do not correspond in
any immediate fashion to automorphic homology
classes. Compare Proposition 3.5.1 (2) in [Ash
and Stevens 1986a] and its proof, where we ver-
ify this assertion for certain types of symmetric
square lifts. For the classes we compute here, the
assertion follows immediately from the computa-
tions.

It is an open question given one of our torsion
Hecke eigenclasses = in the homology of GL(3,Z)
whether there always exists a nontorsion integral
homology eigenclass y on a proper congruence sub-
group of GL(3,Z) which has almost all its Hecke
eigenvalues congruent mod p to those of z. If that
were so, one could tensor y with C and obtain an
autormorphic cohomology class that would have
the same Galois representation attached as « does.
If this always happens, we could say that all of the
Galois representations predicted by the conjecture
below are reductions mod p of representations over
a ring of characteristic 0. Even so, our methods
give the only way known at present for studying
them computationally. On the other hand, if it
doesn’t always happen, we would have some inter-
esting Galois representations that were somehow
“intrinsically” characteristic p objects.

From the perspective of the preceding paragraph,
one can say that our conjecture is a mod p version
of the corresponding part of the so-called “Lang-
lands’ Program”.
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We now introduce some notation and formulate
explicitly the conjecture we are testing in this pa-
per. Let p be a prime number and F a finite field
of characteristic p. Let n be a positive integer. Let
I’ be the group GL(n,Z) and S the semigroup of
the rational integral matrices in GL(n,Z,).

The Hecke algebra of double cosets I'ST' will be
denoted by H. Note that H depends on p, which
we suppress from the notation. In particular, it
contains all double cosets of the form I'D(l, k)T,
where D(I, k) is the diagonal matrix with & {’s fol-
lowed by (n — k) 1’s, where [ is any prime other
than p. We let T'(I,k) denote the corresponding
double coset. In fact H is generated by the T'(l, k)
forall kK =0,...,n and all [ # p.

Suppose V is a finite dimensional right M, (F)-
module on which we let the elements of S with
positive determinant act via their reductions mod
p. Then, in the terminology of [Ash 1992], V' is an
admissible module. There is an action of H on the
cohomology and homology of I' with coefficients
in V. When we view a double coset as acting on
(co)homology, we call it a Hecke operator. This
action is defined for example in [Ash and Stevens
1986a], where some of its basic functorial proper-
ties are also established. Below we give an explict
formula for this action in Section 9, which deals
with the computation of the Hecke operators.

Conjecture B in [Ash 1992] was stated in terms
of the group cohomology of I'. It is easier for us
to compute homology. When I' possesses torsion
elements of order p, our computational methods
yield not the homology of I' but the ['-invariants
in the homology of a torsion-free subgroup of T
Therefore, we make the following definition:

Definition 1.1. HI([,V) = H,.(T'(p?),V)", where
['(p?) denotes the principal congruence subgroup
of level p? (which is torsion-free) and the super I’
denotes invariants. The right hand side is invariant
under H and we consider the left hand side as a
Hecke module under this action.

If we keep p away from a finite set of primes (those
which can be orders of elements in ') we could

state our results directly in terms of the usual (non-
daggered) homology of I'. In general, if v is the vir-
tual cohomological dimension of I'; then we shall
see that H! (I, V) ~ H,(A, V)" for any torsion-free
normal subgroup A of finite index in I'.

We now state the conjecture we study in this
paper. Since homology is the dual of cohomology
as Hecke modules, the conjecture below is easily
implied by Conjecture B in [Ash 1992].

Conjecture 1.2. Suppose 3 € HI([,V) is an eigen-
class for the action of H, so that T (1, k)5 = a(l, k)3
for some a(l,k) € F for all k =0,...,n and all |
prime to p.

Then there exists a continuous semisimple rep-
resentation p : Go — GL(n,F) unramified outside
p such that

D (=121, k) X = det(T — p(Froby) 1 X)
k

for all | not dividing p.

In [Ash 1992] Conjecture B was stated only for
n > 1. The analogous statement can be made for
n = 1 and in fact can be proved using class field
theory in that case [Ash 1997]. The last cited paper
also proves the conjecture when n = 2, where it
follows from known facts about classical modular
forms and Galois representations.

The computations reported upon in this paper
are designed to test this conjecture.

This project continues the research in [Ash and
McConnell 1992] where numerical evidence for an
analogous conjecture was given in the case where
V' is the trivial module, and T is replaced by a sub-
group of finite index in I'. In this paper, because
I' has level 1, the conjecturally associated Galois
representations are unramified at all but one of the
finite primes.

More specifically: in this paper we have gathered
evidence to support Conjecture 1.2 when n = 3
and V is the module V, of homogeneous polynomi-
als in three variables (x,y, z) of degree g over F,.
We computed H. (T, V,) for g <200 and p < 541,
except for p = 2, where we only computed g < 100.
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The theory behind the computation of the group
homology is recalled in Section 2. The computer
implementation is described in Section 7. The di-
mensions of HJ(I',V,) are tabulated on pages 381
to 386.

There is a filtration on the homology that takes
into account the contributions from the homology
of the boundary of the Borel-Serre compactifica-
tion of the locally symmetric space we use to com-
pute the group homology. We call this contribution
the “boundary” homology. The rest of the homol-
ogy is called the “interior” or “quasicuspidal” ho-
mology. This filtration and its computational ram-
ifications are discussed in Sections 2, 3, and 7 and
is reflected in the descriptions and tables in Sec-
tion 8. We sketch out a proof that Conjecture 1.2
is true for the boundary homology: see Theorem
3.1.

We computed the action of the Hecke operators
T(l,1) and T'(1,2) for small [ on some of the ho-
mology groups. (It would have taken too long to
do this for all the homology that we found.) These
computations are described in Sections 3 and 9 and
the results appear in Table 11.

The technique we used for studying the bound-
ary homology and the Hecke operators involves
modular symbols with coefficients. These are de-
scribed in Section 3.

All of our computations have built-in consistency
checks described in Sections 7 and 9, making it very
unlikely that there are any errors in them. There
may be scribal errors in the tables, but we have
striven to eliminate them.

In Section 4, we prove that when n = 3 and
p > 5, if Conjecture 1.2 holds for all the modules

vaa f0r9§p2+p—27

then it holds for all V. This enables us to prove
the conjecture for n = 3 and p = 5 or 7. We also
have strong evidence that Conjecture 1.2 is true
for n = 3, p = 11. We discuss these cases of small
p in Section 6.

The mod p betti numbers
dy(g) = dimy, H3(GL(3,Z), V,(F,))
are found to satisfy

dp(9) < dp(g+(p—1))

most of the time. We don’t have a precise under-
standing of this, but it is clearly related to the fact
that if an irreducible GL(3,Z /p)-module is a con-
stituent of V,(IF,,) for some g, then in most cases it
is so forV,,,_1(F,) as well. This is touched upon
further in Section 4.

Since our conjecture is true for the boundary ho-
mology, we concentrated our testing for Galois rep-
resentations on the quasicuspidal homology. For
those classes for which we computed some of the
Hecke operators, we attempted to test Conjecture
1.2 by finding Galois representations that appear
to be predicted by the Hecke data. In most cases,
we showed that if the desired Galois representation
p exists, it must have very large image in GL(3,F ).
In such a case, the fixed field of the kernel of p is so
large that there is no known way of finding it. On
the other hand, in the few cases where the image
of p could be predicted to be small, we were able in
each case to find a Galois representation that sat-
isfies Conjecture 1.2 for as many Hecke-eigenvalues
as we chose to compute.

There is an intermediate sort of case, where one
has the analytic tool of the “symmetric square” lift-
ing from automorphic representations on GL(2) to
automorphic representations on GL(3). Here the
associated Galois representation p into GL(3,F,)
is the composition of a Galois representation ¢ into
GL(2,F,) composed with the adjoint map from
GL(2,F,) to GL(3,F,) (up to a twist). In these
cases, p is generally irreducible, without having
“big” image. Since ¢ is attached to a classical
modular form, we can verify our conjecture in these
cases empirically.

For certain “symmetric squares” cases, in par-
ticular those that appeared in our computations
(when p = 29,37,41), one can actually prove the
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conjecture. The details will appear in a paper by
the second author and P.H. Tiep. We will discuss
this further in Section 5, where we discuss all the
Galois related issues.

2. HOMOLOGY

In this section and the next A is a torsion-free
normal subgroup of finite index in I' = GL(n, Z).
We let X denote the symmetric space of positive-
definite n-by-n symmetric matrices modulo homo-
theties, on which GL(n,R) acts on the right via
y — 'gyg for y € X and g € GL(n,R). Let W
denote the well-rounded retract [Ash 1980] and X
the Borel-Serre bordification of X [Borel and Serre
1973].

Recall that W is a subspace of X of dimen-
sion n(n — 1)/2. It is a I-invariant deformation
retract of X (hence contractible) of minimal possi-
ble dimension, since the virtual cohomological di-
mension of I' is n(n — 1)/2. It comes equipped
with the structure of cell complex, with a finite
number of I'-orbits of cells. Thus the following
are naturally isomorphic (with any coefficient mod-
ule): the group (co)homology H(A), the topolog-
ical (co)homology H(X/A) and the cell-complex
(co)homology H (W /A). We use the latter for our
computations.

Here is a description of X: For each parabolic
subgroup P of GL(n) defined over Q, there is a
“face” e(P) which is a contractible space on which
P(R) acts. For the improper parabolic subgroup
GL(n), the face is X. Then X is the disjoint
union of the faces. The action of I' on X ex-
tends naturally to X. For any subgroup I of T,
the quotient X/I" is the disjoint union of faces
e'(P) = e(P)/P NT. More information on the
structure of ¢/(P) will be recalled in Section 3.

Since A is assumed to be torsion-free, X/A is a
manifold, the interior of the manifold with bound-
ary M = X/A. We will later be using Lefschetz
duality for M. These manifolds have dimension
in(n+1)—1. Also, OM is a manifold satisfying
Poincaré duality.

As stated above, X/A, W/A, and M are all ho-
motopy equivalent. If V' is any F,[I']-module and
Y is any one of these spaces with local coefficients
induced by V, then H,(A,V) is naturally isomor-
phic to H,.(Y, V).

For the following theorem, we specialize to n = 3.

Theorem 2.1. Let p be prime and let p be an ar-
bitrary right representation of I' = GL(3,Z) on a
finite dimensional vector space V' over F,. Then
HI(D,V) is isomorphic to the subspace consisting
of all v € V' such that the following conditions are
satisfied:

(i) v-(1—=p(d)) =0 for all diagonal matrices d in L.
(i) v+ (14 p(=)) = - (1 + p(w)) = 0.
(iii) v - (1 + p(h) + p(h?)) = 0.

Here the diagonal matrices are matrices of the form

+1 0 0
d=1 0 £1 0
0 0 =1

The matrices z, w, and h are matrices of order
2, 2 and 3, respectively, given by

010 1 0 0
c=[100], w=([00 1],
00 1 010
0 -1 0
h=[1 -1 0
0 0 1

Proof. We use the explicit description of W as I'-
cell-complex in [Ash 1980]. The theorem easily fol-
lows from this and the following lemma:

Lemma 2.2. Let A be a contractible cell complex
of dimension d on which a group G acts on the
right with finite stabilizers. Let W be a right F[G]-
module. Write (C.,0) for the chain complex of ori-
ented chains on A with coefficients in W. Assume
that G possesses a torsion-free normal subgroup H
of finite index. Then Hy(H, W)Y is equal to the
kernel of 0 on CS. In particular, it is independent
of H.
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Proof. For each cell s of A, let G, = stabg(s) and let
Xs(g) denote the orientation character of G. Then
C, is the induced module Ind(G,, G, W ® x,) and
Ci = @By s Cs- We have the boundary maps in
A inducing 0 : C; — C;_;.

We recall the definition of the induced module:
an element of Cy is a function f : G — W such
that f(bg) = xs(b)f(g)b~" for b € G, and g € G.
An element k € G acts on f by (fk)(g9) = f(gk™?).

Now the invariants C# ~ Ind(G,, G/H,W ® x;)
and C# can be identified with C;(A) @ g W = the
W-valued i-chains on A/H by

0 Doy ¥

dim s=14 s g€G\G/H

59 @ f(g)g.

® is well-defined, compatible with the G-action
and with 0.

Since H is torsion-free, it acts freely on A, so
the homology of C# is naturally isomorphic to
H.(H,W). One easily checks that the G-action
on CH commutes with 9 and induces the usual G-
action on H,.(H,W).

It follows that H,(H,W)Y ~ (H,.(CH))%. Of
course taking the invariants by G will not yield
an exact functor if p divides [G : H]. But it is
left exact, so in the top dimension d we obtain the
statement of the lemma, since (CH)¢ = C¢. This
proves the lemma and the theorem. O

For later use, we also quote here the GL(2) ver-
sion of Theorem 2.1. See again [Ash 1980] for
the description of W in this case. Of course, for
GL(2) this construction has been known for a long
time, and is closely related to the theory of Eichler—
Shimura cohomology for classical congruence sub-
groups.

Theorem 2.3. Let p be prime and let p be an arbi-
trary right representation of I's = GL(2,Z) on a
finite dimensional vector space U over F,. Then
H(D,,U) is isomorphic to the subspace consisting
of all u € U satisfying these conditions:

(iYv- (1 —p(d) =0 for all diagonal matrices d.
(i) v- (L4 p(z2)) = 0.

(i) - (14 p(ha) + p(h3)) = 0.

Here the diagonal matrices are matrices of the form

£1 0
d_(o il)'

The matrices 25 and hy are given by

0 1 0 -1
= (Vo) me (0 3)

3. MODULAR SYMBOLS WITH COEFFICIENTS AND
BOUNDARY HOMOLOGY

In this section we let M be the compactification of
the locally symmetric space for A C I' = GL(n, Z),
as in the previous section. Let N = in(n — 1)
denote the cohomological dimension of A. Dual to
the cycles in Hy(M,V) we have minimal modular
symbols with coefficients in V*, where V* is the
dual vector space of V' given an S-module structure
by (v*s)(v) = v*(vs™h).

Recall that a minimal modular symbol is the im-
age in M of a GL(n,Q)-translate of the diagonal
matrices. More precisely, take the set of diago-
nal matrices D in the space X of positive definite
symmetric n-by-n matrices modulo homotheties,
and consider Dg for any g € GL(n,Q). We denote
projection to M of the closure in X of Dg by the
symbol [g]. We fix once for all an orientation on
[I] (where I is the n-by-n identity matrix) and give
[g] the orientation induced from the fixed one by
translation by g.

Since [g] is contractible, a section of the local
coefficient system coming from V* over it is just
given by an element v* of V*. We shall use the
symbol [g,v*] to stand for the fundamental class
of this relative cycle with coefficient v* attached.
Thus [g,v*] is an element in H,_,(M,0M,V*).

The boundary of [g,v*] is an (n — 1)-sphere with
a simplicial structure each of whose n—1 simplices
has the coefficient v* attached. Each simplex lies
in one of the faces of M.

In [Ash and Rudolph 1979] it was proved that
H,_(M,0M,Z) is spanned by modular symbols
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with trivial integer coefficients. The argument is
easily adapted to show that

{lg,v*] : g € GL(n,Z) and v* € V*}

spans H,, (M,0M,V*). Since M is the quotient
of X by A, we see that we can take as a spanning
set {[v,v*] : v € B,v* € V*}, where B is a set of
representatives for the cosets of A in I'.

From now on we set n = 3. Then the boundary
of a modular symbol is a hexagon, and the edges lie
alternately in faces conjugate to ¢/(P) and €'(Q),
where P and ) are the stabilizers of a line and
plane respectively.

Moreover Lefschetz duality gives a perfect pair-
ing

H3(M, V) x Hy(M,0M,V*) — F.

If an element of H3(M,V) = H3(A,V) is invari-
ant under I', it is uniquely determined by its images
under the pairing with modular symbols in the set
{[I,v*] : v* € V*}, where I denotes the identity
matrix.

The formula for this pairing is easily found by
adapting the proof of Proposition 3.24 of [Ash et al.
1984] to the case of twisted coefficients. If v € V/
represents a ['-invariant 3-cycle as in Theorem 2.1,
we have

(v, [I,v"]) = v (v). (3-1)

Let there be given g € GL(3,Q) and a row vector
w € Q°. Denote by g; the matrix obtained from ¢
by replacing its i-th row with w. Then from [Ash
and Rudolph 1979] we know that [g] is homologous
to Y _[g:], by a homology given by a contractible
simplex. It follows that for any coefficient v* we
have that [g,v*] = > [g;,v*]. We also record the
following formula for future use:

lg,v" ]y = [g7,v™y]  if g€ GL(3,Q) and y €.

Next we want to discuss the image of H,.(OM, V)"
in H,(M,V)' ~ HI(I,V). We will call the im-
age the “boundary homology” and the quotient the
“quasicuspidal homology”, in conformity with our

usage in [Ash and McConnell 1992]. The bound-
ary homology is a Hecke equivariant subspace of
the whole homology, so that the quasicuspidal ho-
mology is itself a Hecke module.

Theorem 3.1. Let « be a Hecke-eigenclass in the
boundary homology. Then Conjecture 1.2 holds for
a and the corresponding Galois representation is
reducible.

Proof. A theorem analogous to this one for coho-
mology with coefficients in a finite dimensional vec-
tor space over the complex numbers is proved as
Proposition 3.2.1 of [Ash and Stevens 1986a]. We
shall sketch here a modification of that argument
that works for homology with an admissible mod
p coefficient module. Since homology is dual to
cohomology, it suffices, and is more convenient, to
prove that any Hecke eigenclass in the cohomology
of the boundary satisfies Conjecture 1.2.

First we invoke Theorem 3.1 of [Ash 1992] which
states that any system of Hecke eigenvalues occur-
ring in cohomology of a congruence subgroup A of
I' of level N and with coefficients in an admissi-
ble module V' also occurs in the cohomology of the
principal congruence subgroup of I' of level N with
coefficients in F()). Here ¢ : (Z/N)* — F* is a
character, and F(1) denotes the one dimensional
F-module on which S acts via det o ). In Section 4
we show that Conjecture 1.2 is stable under twist-
ing. That is, using the notation of the conjecture,
if p is attached to § € H.(A,V) then p ® ¢ is at-
tached to f € H.(A,V ® F(¢)). Here we use 1
also to denote the corresponding character of the
Galois group via class field theory for Q.

In this way we reduce to the case of trivial coeffi-
cients. It is now convenient to use adelic methods.
Let A denote the adeles of Q, A the finite adeles.
We will replace M by a larger space which is a fi-
nite disjoint union of spaces like M, and then take
a limit as A shrinks. If the conjecture holds for
the boundary homology of this limit, it certainly
holds for the boundary homology of the original M,
which injects Hecke equivariantly into the limit.
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We imitate the notation of [Ash 1988]. Let G =
GL(3), Z = the center of G, K., = SO(3). For
any compact open subgroup K of G(A;) let K =
ZR)K K. Set X(K) = G(Q)\G(A)/K. We
assume that K is chosen “deep” enough so that
X(K) is an orientable manifold with boundary.
Denote by Y (K) the Borel-Serre compactification
of X(K).

As we vary K we get directed systems of coho-
mology groups H*(Y(K),F) and H*(0Y (K),F).
We write their limits symbolically as H*(Y) and
H*(0Y'), respectively. These are G(A;)-modules,
and their K-invariants give back H*(Y (K),F) and
H*(0Y (K),F). Moreover, one can compute the
Hecke operator T'(I,k) on H*(Y) and H*(9Y) by
averaging the action of the double coset K D(l, k) K.
These operators restricted to the K-invariants give
back the usual Hecke operators as defined on coho-
mology. See Section 3.1 of [Ash and Stevens 1986a]
for more details.

The topological structure of the boundary 0Y (K)
is recalled in Section 3.2 of [Ash and Stevens 1986a].
It is shown there that there exists a Mayer—Vietoris
sequence for H*(0Y (K),F) each term of which has
the form of a direct sum of H" (e, F)’s, where e runs
over the Borel-Serre faces of Y (K) and r is 0, 1, 2,
or 3. Each face e = ¢/(P) is a fibration whose base
is a locally symmetric space Y7 (K) correspond-
ing to the Levi-component L of the parabolic sub-
group P of GL(3), and whose fiber is a nilmanifold
Ny(Ky) coming from the unipotent radical U of
P. Here we denote Ky, = KNAfor A=LorU.
We can take the limit of the cohomology of Y7, (K)
and Ny (Ky) as K varies and denote it by H*(Y7)
and H*(Ny) resepectively.

The Mayer—Vietoris sequence and the Serre spec-
tral sequences of the fibrations all have natural
Hecke actions making the various homomorphisms
and differentials Hecke equivariant. We then re-
fer (twice) to the proof of Lemma 2.1 of [Ash and
Stevens 1986a], which shows that any system of
Hecke eigenvalues occurring in the middle term of
an exact sequence of Hecke modules A - B — C
also occurs in one of the other two terms. It follows

that any system of Hecke eigenvalues occurring in
the cohomology of the boundary occurs first in one
of the H" (e, F)’s, and then in one of the terms £}
of the F, page of the corresponding Serre spectral
sequence.

In this way, we are reduced to showing the fol-
lowing: for any QQ-parabolic subgroup P of G, for
any integers p and ¢, and for any K-invariant Hecke
eigenclass in the induced module

Ind(P(A;), G(Ay), H? (Y1, HY(Ny)))

there is an attached Galois representation as in
Conjecture 1.2.

We will sketch how to do this when P is the
stabilizer of a line, and leave the remaining cases
to the reader. The Levi subgroup L of P can be
written as L' x T" where L' ~ GL(2) and T =~
GL(1). Then H?(Ny) as T'(Ay)-module decom-
poses into a sum of character spaces W, , where x
runs through F”-valued characters of T'(A;) of fi-
nite order. Thus our system of Hecke eigenvalues
occurs on a K-invariant element in a Hecke module
of the form Ind(P(A;),G(A;), H? (Y], W,)). Here
HP(Y[,W,) denotes the limit as K varies of coho-
mology groups for the symmetric space of L'.

We can finish the argument exactly as on pages
213-214 of [Ash and Stevens 1986a] if we know that
every Hecke eigenclass (with respect to the Hecke
algebra for L") in H?(Y/(K'), W, ) has an attached
Galois representation, where K’ runs over compact
open subgroups of L'(A;). Now the main result of
[Ash 1997] is that Conjecture 1.2 holds for GL(1)
and GL(2). We apply this to L' ~ GL(2), noting
that W, is an admissible module.

When doing the case of a minimal parabolic sub-

group, we need to use the fact that Conjecture 1.2
holds for GL(1). O

It follows from this theorem that (when n = 3)
Conjecture 1.2 will hold for all Hecke eigenclasses
in HI(T',V) for a given r and V if it can be shown
to hold for any part of the homology big enough to
map onto the quasicuspidal homology. Therefore,
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our experimental testing of Hecke eigenclasses was
mostly concerned with quasicuspidal classes.

We shall now derive formulas for some boundary
homology classes when n = 3 and » = 3. We be-
lieve they span the boundary homology in this di-
mension, but have not proved this. A proof along
the lines of [Lee and Schwermer 1982] should be
possible.

We note that all the morphisms of (co)homology
and all the dualities used below are equivariant for
the actions of the relevant Hecke algebras.

We have the long exact cohomology sequence
of the pair (M,0M) which gives us a connecting
morphism § : H*(OM,V) — H*(M,0M,V). If §
is followed by the Lefschetz duality isomorphism
L : H*(M,0M,V) — H3(M,V) then the image
is the boundary homology. (Apply Poincaré du-
ality to dM which has dimension 4.) Moreover,
it’s not hard to see that the image of a given class
w in H'(OM,V)' can be determined by evaluat-
ing w on the boundaries of the standard identity
modular symbols [/,v*] with coefficients running
through the dual module V*.

So we need to compute H*(9M,V)". Following
[Lee and Schwermer 1982] and using the notation
of [Borel and Serre 1973], one sees that dM/I" is
the union of ¢'(P) and €'(Q) over their intersection
¢/(B) . Here P denotes the stabilizer of the line
(0,0, *) in GL(3), @ denotes the stabilizer of the
line (*,0,0), and B = P N Q is the stabilizer of
a flag. For a parabolic subgroup R, ¢/(R) denotes
the corresponding face of OM. Taking ['-invariants
in the Meyer—Vietoris sequence gives maps

H°(e(B),V) — H*(OM, V)"
— H' (' (P),V)® H'((Q), V).

If p is prime to the index of A in I, this sequence
is exact.

We can classify the boundary homology into three
types, depending on whether a given class comes
from H°(e/(B),V) or from H'(e'(P),V) or from
H'Y(€'(Q),V). Set

Lp=PN ‘P,  Ly=Qn 'Q,

and let Up and Ug be the unipotent radicals of P
of @, s0 P = LpUp, Q = LoUg. Let W be the
permutation group of order 6 in I' and

A= Z sgn(o)o.

oceW

To state the next theorem, we need one ad hoc
definition: Let L denote either Lp or L. Then L
is isomorphic in an obvious way to GL(2) x GL(1).
Let ¢ denote the obvious embedding of GL(2) into
L. We shall say that an element v of an L-module
satisfies equations (i)—(iii) of Theorem 2.3 under L
if they hold true when the matrices d, 2o and hs
are replaced by their images under . We omit the
proof of the following theorem.

Theorem 3.2. The boundary homology in Hs(T',V)
contains the following subsets of V', after identify-
wng the homology with a subspace of V' in accor-
dance with Theorem 2.1:

Type B: {A(v) | v e VBTN,

Type P: {A(v) | v € VU™ and satisfies equations
(i), (ii), (ili) of Theorem 2.3 under Lp};

Type Q: {A(v) | v e VUe and satisfies equations
(i), (ii), (ili) of Theorem 2.3 under Lg};

We now apply these results when V = V,. We
need the invariants for the action of the unipotent
radicals of P, @, and B in V.

Theorem 3.3. Let B, P, and () denote the parabolic
subgroups of GL(3) defined above, and set I' =
GL(3,Z). Let P denote the polynomial ring

]Fp[xu Y, Z] - @ th
920
Define B(s,t) = [lez,,(bs +t) and C(r,s,t) =
Ha,beZ/p(W + bs +t). Then:

(i) The elements z, B(x,y) and B(x,z) generate
the (Ug NT')-invariants of P.

(ii) The elements x, y, and C(z,y,z) generate the
(Up NT)-invariants of P.

(iii) The elements x*, B(x,y)? and C(z,y,2)? gen-
erate the (B NT)-invariants of P.
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Moreover, the LoNL action on the invariants in (i)
can be described by saying that the map that sends y
to B(x,y) and z to B(x, z) gives an isomorphism of
LNI'-modules. The LpNI" action on the invariants
in (ii) is the obvious one.

Proof. We shall prove statement (i) and leave the
others to the reader. First we show that if k(z,y)
is a polynomial invariant under y — ax + y for all
a € Z/p, then k is a polynomial in = and B(z,y).

It suffices to prove this when k is homogeneous,
say of degree d. Subtracting off the z? term if
any, we may assume y divides k. Hence (azx + y)
divides k for all a. Since the polynomial ring is
a unique factorization domain, we conclude that
B(z,y) divides k. Now proceed by induction on d,
applying the induction hypothesis to k/B(z,y).

Now we make a similar argument for f(z,y, 2)
invariant under y — ax +y and z — bx + z for all
a,b € Z/p. We may assume f is homogeneous of
degree d. Write f(z,y,2) = fi(z,y) + 2f2(z,y, 2).
Under y — ax +y, any term divisible by z remains
so. Hence fi(z,y) is invariant under y — azx + y
for all @ and so f; is a polynomial in = and B(x, y).
Hence we can subtract it off and assume z divides
f. Since f is invariant under z — bx + z for all b
we get that B(z, z) divides f and then we finish by
induction as before.

Note that the reason the squares appear in state-
ment iii of Theorem 3.3 is because B N I" includes
the diagonal matrices with +1’s down the diago-
nal. O

Corresponding to our algorithms for computing ho-
mology, we will call type B boundary homology
“type 17, the part of type P boundary homology
generated by z and y alone “type 0”, and the rest
of type P and all of type @ boundary homology
“type 277.

4. SOME REPRESENTATION THEORY

In this section we recall some facts about repre-
sentations of GL(3,F,) over F,. Otherwise unref-

erenced assertions may be found in [Carlisle and
Walker 1989] or [Doty and Walker 1992].

The simple F,[GL(3,F,)]-modules are classified
by triples of integers (a, b, c) where

0<a—bb—c<p—1 and 0<c<p-1.

This triple is the highest weight of the Weyl mod-
ule whose unique simple submodule is the simple
module in question. Twisting (i.e., tensoring) with
det adds 1 to a, b, and c.

For example, the module of homogeneous poly-
nomials in 3 variables of degree g (which we have
denoted V, and which Doty and Sullivan call S,)
is irreducible if and only if ¢ < p — 1 and the clas-
sifying triple is (g,0,0).

Every simple F,[GL(3,F,)]-module W occurs as
a composition factor of V, for some g > 0.

From tables in [Doty and Walker 1992] we can
compute the multiplicity m (W, g) with which any
given W appears as a composition factor in V, for
any given g.

Consider the series Y m(W, g)t?. It always equals
a rational function of the form

ta+b+c E di (tpfl )i

T na—en

where W corresponds to the triple (a, b, ¢) and the
coefficients d; are all 0, 1, or —1. In practice,
the vast majority of the nonzero coefficients are
+1, and the denominator causes a tendency for
m(W, g) to exhibit periodic behavior with periods
p—1, p>—1 and p3—1. This periodicity should be
compared to the p-adic deformations of the coho-
mology of congruence subgroups of level p as Hecke
modules constructed in [Ash and Stevens 1997].
We have not as yet worked out the details.

Every simple F,[GL(3,F,)]-module W occurs as
a submodule of V, for some g. This is proved in
[Doty and Walker 1996]. In fact, if W is classified
by the highest weight (a,b,c), then W is a sub-
module of V; where d = a + bp + cp*. Hence, any
W has a twist which is a submodule of V, for some

g<2p—24+(p—-1)p+0=p°>+p—2.
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If W is a submodule of V,, the long exact se-
quence in homology gives

0=HM,V,/W)—= Hs(M,W) = Hs(M,V,) = ---

since M has dimension 3.

As in Lemma 1.1.1 in [Ash and Stevens 1986al,
this exact sequence is Hecke equivariant. Taking I'-
invariants gives a Hecke equivariant injective map
H(M, W) = H{(M,V,).

We see that to check Conjecture 1.2 for n = 3,
* = 3, and V any admissible module, it suffices to
check it for V' =V, with ¢ < p* + p — 2. This is
because by Lemma 2.1 of [Ash and Stevens 1986a],
any package of Hecke eigenvalues appearing in the
homology with coefficients in V appears already in
the homology with coefficients in some simple sub-
module W of V. From the exact sequence above,
it also appears in the homology with coefficients in
V, as long as W embeds in V,. Thus it suffices to
prove that Conjecture 1.2 is stable under twisting.

To see this, let p be a Galois representation at-
tached to a homology class « in H3(A,V). For
any nonnegative integer m let V(m) denote the
M, (F) module V ® [F(m), where [F(m) is the one-
dimensional F-module on which M, (IF) acts via the
m-th power of the determinant. Since the determi-
nants of the elements of A are all 1, we can view the
same homology class « as being in H3(A, V(m)).
However the eigenvalue of T'(/, k) on the new class
is [* times the old eigenvalue. It’s easy then to see
that if w denotes the cyclotomic character mod p,
then p ® w™ is attached to the new class.

However, when p > 5, we can prove Conjecture
1.2 for n = 3 and any *, and V any admissible
module, as long as it holds for n = 3, * = 3, and
V =V, with ¢ < p* +p — 2. This is stated in
Theorem 4.2 below. To prove this we need some
preliminary remarks.

For the next few paragraphs, we work with gen-
eral n, so that H is the Hecke algebra for GL(n, Z).
Recall that an R-valued system of H-eigenvalues is
a set function o : H — R for some ring R. We
say o occurs in an R-module Y if there exists an

eigenvector y € Y such that Ty = o(T)y for every
T € H. In particular, y # 0. We also define the
dual system of eigenvalues o# as follows: If T is
the double coset I'sI', let T# be the double coset
[(det(s)!s~)I'. Then o#(T) = o(T#).

We shall write o(l, k) instead of o(T'(/,k)). Note
that if o actually occurs in the homology of an ad-
missible module of level p then | — o(l,n) defines
a multiplicative character x : (Z/p)* — F*. We
shall also denote by x the corresponding charac-
ter x : Gg — F™ via class field theory. That is,
x(Frob; 1) = x(0).

Given an F-valued system of H-eigenvalues o,
we say that a representation p : Gg — GL(n,F)
is attached to o if the characteristic polynomials
of p on Frobenius elements equal the correspond-
ing Hecke polynomials as in Conjecture 1.2, with
o(T(l,k)) in place of a(l, k).

Given a representation p attached to o as above,
we define the representation p# by setting p* (g) =
w(g)™Vx(g)p(tg™"), where w is the cyclotomic
character mod p and x depends on ¢ as explained
above.

Lemma 4.1. If p is attached to o, then p* is attached
to o.

Proof. Note that T'(I,k)* = T(l,n)*"'T(l,n — k).
Therefore, o(l,k)#* = x(1)*"'o(l,n — k). On the
other hand, the k-th symmetric polynomial of the
eigenvalues of p#(Frob, ') is equal to

(= x(0) " ()

times the k-th symmetric polynomial of the eigen-
values of p(Frob; "), since

det p(Frob, ") = 1"(""V/25(] n).

A simple computation from the definitions now fin-
ishes the argument. 0

For any IF,-vector space A, A* denotes the vec-
tor space dual. If A is also a right G-module for
some group G, we make G act on A* by (¢g)(a) =
o(ag™t). We also define the right G-module A#
by keeping the underlying space A the same and
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letting ¢ € G act via the outer automorphism g —
det(g)tg~*. Assume A has a central character x.
Then since A* ® (x o det) and A# have the same
Brauer character, they have the same composition
factors. In particular, if A is simple, they are iso-
morphic.

Theorem 4.2. Suppose p > 5 and Conjecture 1.2
holds for H}(T',V,) for all g < p* +p — 2. Then
Congjecture 1.2 holds for H} (T, V) for all k and all
admissible coefficient modules V.

Proof. First, by Lemma 2.1 of [Ash and Stevens
1986a] we may assume that V' is simple. By [Ash
1992] we know Conjecture 1.2 holds for k = 0, 1. It
also holds vacuously for k£ > 3 since the homology
vanishes in that range. Suppose now we have an
eigenclass in HJ(I', V). If it is a boundary class,
the conjecture holds by Theorem 3.1. If not, it
is quasicuspidal and dual to a class in Hj (I, V#).
By Lemma 4.1, if the conjecture holds for this dual
class, then it holds for the original class. Thus we
only have to worry about the case k = 3.

Now if ¢ is the system of eigenvalues attached
to a given eigenclass in H3(T', V'), we know that o
occurs (up to a twist) in Hs(T', V) for some g <
p’+p—2. ad

In our computations below, we found that forp < 7
and g < p?+p — 2, all the homology was boundary
homology. Combining this fact with theorems 3.1
and 4.2, we obtain:

Theorem 4.3. (i) Conjecture 1.2 holds for HJ(I',V)
for all p <7 and all admissible V.

(ii) If p =5 or 7, Conjecture 1.2 holds for H,:[(F, V)
for all k and oll admassible V.

Remark. For p = 11, we do find quasicuspidal ho-
mology for V, with ¢ < p? + p — 2. However
as noted in Section 6 below, our results suggest
strongly that each of these quasicuspidal classes
does have an attached Galois representation. Thus
our evidence strongly supports the assertion that
the range of p in (ii) could be extended to include
p=11.

5. TESTING FOR THE IMAGE OF THE GALOIS
REPRESENTATION

For this paper, we have computed many exam-
ples of nontrivial quasicuspidal homology classes
and the action of some of the Hecke operators on
them. By Conjecture 1.2, there should be attached
to each Hecke eigenclass a Galois representation p.
In only a few of the quasicuspidal cases that we
computed can we prove the conjecture, as discussed
below. However in all cases we can say something
about the image of p should it exist. This is be-
cause the conjecture tells us that our computed
Hecke eigenvalues can be used to give us the char-
acteristic polynomials of various elements of the
image of p, namely the images of Frobenius at [ for
small [. We then can invoke the classification of
subgroups of GL(3,Z/p) to make assertions about
the possibilities for the image of p.

To do this we begin with a paper of H. H. Mitchell
[1911]. Although this paper studies the projective
special linear group, from his main result we can
easily list the maximal proper subgroups up to con-
jugacy of J = GL(3,Z/p) for odd p. To facilitate
comparison, for each such subgroup H we indicate
the order of

H = H/(H N Z(J)) NPSL(3,Z/p)

where Z(J) denotes the center of J. We let p =
ged(3,p—1). The possibilities for H are as follows:

1. The stabilizer of a line in (Z/p)%; then |H| =
(p+1p*(p—1)*/p. )

2. The stabilizer of a plane in (Z/p)?; then |H| =
(p+ 1p*(p — 1)%/ps.

3. The stabilizer up to similitudes of a nondegen-
erate quadratic form in 3 variables with coeffi-
cients in Z/p; then [H| = (p + 1)p(p — 1).

4. The normalizer of the subgroup of diagonal ma-
trices; then |H| = 6(p — 1)*/p.

5. The normalizer of the units in the cubic exten-
sion F s of Z/p embedded into J by the regular
representation (after choosing a basis of F s over

Z/p); then |H| = 3(p* +p+1)/p.
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6. Certain finite groups with |[H| = 36, 72, 168,
216, or 360. These cases can only occur de-
pending on certain congruence properties of p.

Of the groups of type 6, the group of order 168 only
occurs if p = Tor if p = 1,2 or 4 (mod 7). The
group of order 216 only occurs if p = 1 (mod 9)
and the ones of order 72 and 36 only occur if p =
1 (mod 3). The group of order 360 requires that
p=1or4 (mod 15).

Now we fix a Hecke eigenclass in Hj(T',V,) with
eigenvalues a; and b; for T'(I,1) and T'(l,2), respec-
tively. Since the central character of V is raising
to the g-th power, we see that the eigenvalue of
T(l,3) is I9.

As in [Ash and McConnell 1992] we find it more
convenient to study a certain twist of p, namely
p' = p@w™t where w denotes the cyclotomic char-
acter. Then what we know (conjecturally) about
p’ are the characteristic polynomials

P/(X) = det(X — p'(Frob; ')
= X3 — ql T X blIX — 1,

Note that if P,(X) has a root of multiplicative
order d then d must divide the order of p'(Frob; ™).
Similarly, if the companion matrix to P(X) in J
has order d' for some d' prime to p, then d divides
d" and d' divides the order of p'(Frob, ').

Let us say that p or p’ is “big” if the projec-
tion of its image to PGL(3,F) contains PSL(3,F).
By looking at the roots and companion matrix of
P,(X) as [ varies, and using the list above, we can
usually determine that p must be big if it exists.
In those cases where it doesn’t seem to be big, we
can determine what the image of p is likely to be.
In the latter cases, if we compute more Hecke data
for larger [ it would be possible, but not likely, that
the putative image might grow, but it could never
shrink.

It is hard to predict how many [’s are required to
be satisfied with the apparent answer. By the effec-
tive Tchebotarev theorem, one knows that finitely
many [’s determine p but the bound given by the
theorem is not practical. A small number of [’s

may be misleading. For example, when g = 44,
p = 97, we had initially computed the Hecke poly-
nomials P(X) for [ <19. They were all reducible.
This pointed to a possibly reducible p. However,
examination of the roots of the Hecke polynomials
(as discussed further below) showed that in fact
p had to be big. Yet if the Frobeniuses were be-
having randomly, the chances that the first 8 Hecke
polynomials should be reducible would be less than
5%. If we were experimental scientists we should
have rejected the “bigness” hypothesis. Eventu-
ally P»3; turned out to be irreducible, and so did
Pyy.

(The probability calculation alluded to in the
preceding paragraph goes like this: In J we can
compute the sizes of the conjugacy classes divided
by the order of the group using Jordan canonical
form. Since p is large we may estimate the results
by keeping only the leading powers of p. We see
that the union of the conjugacy classes whose char-
acteristic polynomials factor into three linear terms
make up roughly one sixth of the group; those
that factor into one linear and one quadratic term
make up roughly half the group, and those with ir-
reducible characteristic polynomial contribute ap-
proximately one third of the group. Thus the prob-
ability that the first eight polynomials should be
reducible given that p is big and assuming ran-
domness, would be (2/3)% < 0.04.)

For the rest of this section we will assume that
we have a homology eigenclass # such that all the
Hecke eigenvalues lie in the prime field, so that
F = Z/p; and a representation p associated to [
as in Conjecture 1.2.

We will prove a theorem in the case when we
have an irreducible characteristic polynomial, and
we will make some remarks about cases in which
all the computed characteristic polynomials are re-
ducible.

Let J = GL(3,Z/p) as above, and set

J =PGL(3,%Z/p),
SJ = PSL(3,Z/p).
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Let G denote the image of p’ in J, G its projection
to J and SG = GNSJ. Since [J : SJ] = p =
ged(p — 1,3), we have that [G : SG] = p or 1.

Let L be a finite set of rational primes and let
there be given the characteristic polynomial

P(X) = det(X — p/(Frob, 1))
for each [ € L.

Theorem 5.1. Assume p > 11. Suppose there exist
l,m € L satisfying these conditions:

1. P(X) is irreducible.
2. p'(Frob, ")? is not a scalar matriz.
3. One of the following holds:
a. P,(X)=L(X)Q(X), where L is linear and
Q is an irreducible quadratic and the com-
panion matriz of Q raised to the 2¢3/-th power
is not scalar, where 2¢ and 37 are the highest
powers respectively of 2 and 3 dividing p + 1;
or
b. P,,(X) = L(X)Q(X), where L is linear and
Q is an irreducible quadratic and the coeffi-
cient of X? is nonzero and p'(Frob, ")'6%* s
not a scalar matriz.
Then the image of p' is big.

Remark. P;(x) has three distinct roots, so that its
companion matrix is conjugate to p'(Frob; '). Thus
one can check condition 2 using the companion ma-
trix of P(X). A similar remark applies to P,,(z)
and the second part of condition 3b.

Using this theorem one checks easily that p’ is
big where indicated in Table 11. We used Maple for
computing the orders of roots of companion matri-
ces.

Proof. Referring to the list of possible maximal sub-
groups, we see that condition 1 rules out types 1,
2 and 3 immediately, since the characteristic poly-
nomials of elements of these subgroups are always
reducible.

Let a be a root of P;(X). Write the multiplica-
tive order d of a as d = dyd, where dy = ged(p —
1,d). Then d, divides (p*—1)/(p—1) =p*+p+1.
Note that d must be the order of p'(Frob; ") since

the latter is semisimple with eigenvalues equal to
three conjugate elements of F s /IF,,.

Now (a%)P=! = 1so that (a™) € (Z/p)*. There-
fore the eigenvalues of p'(Frob; ')® lie in the prime
field. Since p'(Frob, ') is semisimple with eigenval-
ues conjugate over the prime field, it follows that
p'(Frob, ")® is a scalar matrix, i.e., lies in the cen-
ter of J.

Suppose d; = 2°3Y5*. But p? + p + 1 is not
divisible by 2, 9 or 5. Hence d; =1 or 3. It follows
from condition 2 and the preceding paragraph that
this alternative is impossible, so d; has a prime
divisor ¢ > 7. Since ged(p —1,p? +p+1) =1 or
3, ¢ must be prime to p — 1.

Let g denote the image of p'(Frob; ')#¢ in J. If
g =1, p'(Frob; ")#¢ would be a scalar matrix, and
hence p(Frob; ")#»~1/7 = 1, But

ged(d(p —1)/q,d) = d/q,

so that the order of p/(Frob; ') would divide ¢/d, a
contradiction.

Thus g # 1 and g has order q. Hence ¢® is an
element of order ¢ in SG. This rules out type 4
and all the groups of type 6 except the ones with
|H| = 168.

Assume now condition 3a. Let h be the com-
panion matrix to P,,(X), so that h is conjugate
to p'(Frob, ') (which has three distinct eigenvalues
and hence is semi-simple). Suppose the rational
eigenvalue of h is b and the conjugate irrational
eigenvalues are o and @ € Fj2 \ ).

Let h be the image of h in J, and let ¢ be the
order of h. So h' is scalar and t divides p* — 1.
Write ¢t = tt, where t, = ged(p — 1,¢). Then ¢,
divides p + 1. One of the eigenvalues of h*(P~1) is
(bP=V)t = 1. But it is scalar, so it is the identity
matrix. It follows that h’* has all rational eigen-
values.

Suppose now that ¢; is divisible by no prime
greater than 3. Then ¢, is a multiple of 2¢3/. Thus
h?# has rational eigenvalues. In particular, a? %’
and @3 are rational and hence equal. But by
hypothesis, the companion matrix to @), which is
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semisimple with eigenvalues « and & when raised
to the 2¢3/ power would not be scalar, and this is
a contradiction.

Hence ¢, is divisible by some prime r greater
than 3. Thus the image of p’ in SJ contains an
element of order r. Since r divides p + 1 it must
be prime to pu(p? +p+ 1) and this rules out type 5.
If r #£ 7 we also can rule out the remaining group
of type 6 (with 168 elements). But if » = 7, then

= —1 (mod 7) and SJ doesn’t have a maximal
subgroup of order 168 anyway.

Now assume instead condition 3b. Since

0 (FI‘Obl_l YO8k

is not a scalar matrix, the remaining groups of
type 6 are eliminated. The only possibility left is
type 5.

Every element in a group of type 5 is conjugate
over [F,s to a matrix of one of the following forms:

G 0 0 0 0 p5
0 52 0 ) ﬁl 0 0 ’
0 0 6 0 B 0

0 B O

0 0 ﬂ3 )

f 0 0

where (i, [f» and (3 are the three Galois images
of an element (not necessarily irrational) of Fs.
The first type of matrix is either scalar or has ir-
reducible characteristic polynomial, so p'(Frob. ')
can’t be conjugate to it. But our hypothesis im-
plies that the trace of p/(Frob ') isn’t zero, so that
rules out the other two types of matrices. O

Symmetric Squares and Other Classes with Small Image

When there are no irreducible Hecke polynomials
P,(x) for a relatively long list of I’s, it is likely that
the image of p is not big. Reference to Table 11
bears this out.

When (g,p) = (42,29), (54,37) or (60,41), our
Hecke data is compatible with the equality p’ =
ad’(7) ® x. Here x is the nontrivial chracter of Gy
of order 2 unramified outside p, and 7 is the Galois

representation attached to a cusp form of weight
2, level p and nebentype y, and ad’ : GL(2) —
GL(3) is the homomorphism given by conjuga-
tion on matrices of trace 0. In this case p and p’
would have their images contained in the orthogo-
nal group GO(3,F,).

In fact, using congruences mod p for classical
modular forms, the symmetric squares lift from the
theory of automorphic representations, the theory
of modular representations of GL(3,F,) and some
auxilliary computations, it can be proved for the
values of (g,p) listed above that there does indeed
exist a p of this form attached to 3 as in Conjecture
1.2. This will be the subject of a paper by the
second author with P. H. Tiep, under preparation.
We would like to thank Richard Taylor and Luiz
Figueiredo for helping us to figure out what was
going on in these cases.

When (g,p) = (112,229) or (126,257), our Hecke
data is compatible with the equality

p = (Indg ¢) ®w ' @1,

where 1 is the trivial character, w the cyclotomic
character mod p, K = Q(y/p) (which has class
number 3) and 1 a nontrivial cubic character of
G i unramified everywhere.

When (g,p) = (90,277), our Hecke data is com-
patible with the equality p' = ow™' @ 1, where
w is the cyclotomic character mod p and o has
image isomorphic to A,. More specifically, let K
be the unique cyclic cubic extension of Q rami-
fied only at p, and let @ be the quartic exten-
sion of QQ generated by a root of the irreducible
polynomial z* + 2® — 1622 — 3z + 1. Let L be
the compositum K@Q. The class group of K is
Z/2 x Z/2 and L is the Hilbert class field of K.
Then Gal(L/Q) ~ A, and the splitting of primes
in L agrees with our Hecke data under the assump-
tion that L can be embedded into an A4 extension
M of Q and 0 : Gy - A, C GL(2,F,) has fixed
field M, which is unramified outside p. An abstract
argument with Brauer groups shows that o exists.
Thanks to help from Jordi Quer and Warren Sin-
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not, we constructed o and checked the splitting of
primes from L to M against our Hecke data.

We also computed a number of Hecke polynomi-
als for eigenclasses with p < 11. They were not
included in Table 11 because they are better dis-
cussed in the context of the following section.

6. CASESWITH p < 11

In this section we discuss computations we made
of Hecke eigenvalues when p was odd and less than
12. We did not list them in Table 11 because they
are more easily described in terms of GL(1) and
GL(2) phenomena.

First consider p = 5 or 7. By Theorem 4.3 above
and its proof, we know that every Hecke eigenclass
in HJ(T,V,(F,)) has an attached Galois represen-
tation p always of boundary type. Thus p is re-
ducible and can be written as

~ b
pwdwo,

where w is the cyclotomic character mod p and
o is a 2-dimensional mod p Galois representation
attached to a cohomology eigenclass a for GL(2,Z)
with coefficients in U, = homogeneous polynomials
in two variables over [, for some h. Equivalently,
by a theorem of Eichler and Shimura, ¢ is attached
to a classical modular form of weight h + 2 and
level 1. A direct applicaton of Corollary 3.6 of
[Ash and Stevens 1986b] shows that after possible
twisting of o, we may take h < p. In this range,
all such o are themselves reducible.
So we have

pRw Dwdwe

for some a, b, c. We checked this numerically
for the quasicuspidal classes with (g,p) = (52,5),
(54,5), (58,7), (64,7), (70,7) and (106,7). That
is, for each class we found (a,b, ¢) such that

P(z) = (z = 1")(z = ") (= = I)

for all small values of [ that we tested.

In the case p = 3, the results of [Ash and Stevens
1986b] and Theorem 4.2 above are no longer appli-
cable. They are probably still true, but since 3
divides the torsion of I', the methods we used are
not sufficient to establish their truth. We still ex-
pect that any eigenclass in Hj (I, V, (Fs)) will have
attached a p of the form w® ® w® @ w*. We checked
this for ¢ = 36, p = 3 and [ < 19. In this case,
there is no quasicuspidal homology, but there are
five linearly independent boundary classes, 4 in F°
and one of type 2. We upper triangularized this
5-dimensional space and verified that each Hecke
eigenclass has attached to it the Galois representa-
tion

Prrleéwdw.

Finally, suppose p = 11. By Theorem 4.2, if
Conjecture 1.2 holds for any eigenclass in H3“(I',V,)
for ¢ < 130, then it holds for any eigenclass in
H.(I',W) for any * and any admissible V.

We computed T} for | =2, 3, 5, 7 on H(I', V)
for g < 130. There was a strong “p — 1 regularity”,
that is, every package of Hecke eigenvalues for V,
also occured for Vi, ;. (When p = 7, we also
verified such a p—1 regularity for ¢ = 52, 58, 64,
and 70.) See Section 4 for a heruistic explanation
of this pattern.

In all, there are 9 distinct packages of Hecke
eigenvalues in P, 4, H3"(I',V;). Of these, 3 are
consistent with a Galois representation

prwDwdw
for some a, b, ¢ and 5 are consistent with
7 7
prwewT

for some s, t where 7 = the 2-dimensional mod 11
representation associated to A, the classical holo-
morphic cusp form of weight 12 on SL(2,Z). The
remaining package is consistent with

p~ad’(7).

These results strongly support Conjecture 1.2 for
p=11.
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7. COMPUTATION OF HOMOLOGY

Theory

Let I' = GL(3,Z) and I'ys = GL(2,Z). Let V =
V,(F,) denote the set of homogeneous polynomials
in three variables z, y, and z of total degree g with
coefficients in F,. Given a matrix m = (m;;) in I,
we let it act on f € V as follows:

f(x)-m= f(mzx), where z ="(z,y,2).
Suppose p > 2. Let Z be the subspace of solutions
in V' of equations (i)-(iii) in Theorem 2.1. From
equation (i), any solution must consist of terms
of even degree in each variable. From equation
(ii), a solution must be antisymmetric in the three
variables.

A nice basis for the polynomials in V' satisfying
these two equations are the antisymmetric polyno-
mials of the form

A(@?) =) (sgno)(oz)"(oy) (02),

oc€S3

where A = (a, b, ¢) ranges over unordered partitions
of g into exactly three distinct nonnegative even
parts. Any two unordered partitions are the same
so long as they contain the same elements, each
with the same multiplicities. We will follow the
convention that unordered partitions are always
written in descending sequence. The symmetric
group S3 acts on the set of variables {z,y,z} by
permuting the set.

On the other hand, suppose p = 2. The only di-
agonal matrix is 1 so we no longer get a restriction
on the degree of the variables in each term. Since

(mod 2),

sgno =1

the antisymmetries A(x*) which are the solutions
to equation (ii) in Theorem 2.1 reduce to symmet-
ric polynomials. In the p = 2 case, a nice basis
for the solutions to the first two equations are the

symimetric polynomials of the form

4

> (ow)"(oy)'(02)" ifa>b>c,
ocES3
S@) =9 3 (02)"(0y)'(02)° fa=b>c
oEA; ora>b=c,
L 2%y®z° ifa=b=c,

where A = (a, b, ¢) ranges over all unordered parti-
tions of ¢ into three nonnegative parts.

Boundary homology. The homology group Hi (', V)
consists of boundary homology and quasicuspidal
homology. We divided the boundary homology
into four overlapping subspaces designated as types
0, 1, 2a, and 2b, for which we give explicit genera-
tor polynomials below. We let 7°, T, T2% and T
denote these four subspaces and define a filtration
as follows:

F°=1°
F'=F°vT,
F2a — Fl vTZa,,

F2b — F2a Vi T2b

where V denotes the linear span. Since F? is
precisely the boundary homology, we obtain the
quasicuspidal homology H3(I', V') as the quotient
H;(T,V)/F?.

Type 0 homology. Let U = U,(F,) denote the set of
homogeneous polynomials of degree g in two vari-
ables z and y with coefficients in F,. The anti-
symmetrization map A above is a linear map from
U into V. Further, if f(x,y) is a solution in U
to the system of equations in Theorem 2.3, then
A(f(x,y)) is a solution in V' to the system in The-
orem 2.1. The type 0 solutions are all such anti-
symmetrizations:

F'=T°%= {A(f(z,y,2) : f(z,y) € HI(F%U)}'

One particular solution in U to equations (i),
(i), (iii) of Theorem 2.3 is 9 — y9. This solu-
tion vanishes in F° under the antisymmetry map
A. Moreover let f(x,y) be a GL, solution and let
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F(z,y,z) = A(f(x,y)). There exists a € IF, such
that

f(‘/'UJy) - F(l’,y,O) = a(l,g - yg)
We can accordingly view F° as a quotient:
F® = H{(T5,U)/(a — y*).

(In characteristic 0, F° would correspond to clas-
sical cusp forms of weight g + 2.)

For some g, Hi(T',V))/F° contains nonzero solu-
tions that can be written explicitly:

Example 7.1. If p > 2, then A(z?’ 'y?" 1z#71) is a
solution to the equations in Theorem 2.1.

Proof. It is easy to see that the first two equations
are satisfied. To verify the third, let

flz,y,2) = A@? 1y 1t

and use the fact that (o + 3)? = o 4+ (P to show
that

(I—y)(f(I,y,Z)—f(I—y,y,Z)—f(l’,I—y,Z)) =0.
Since x —y # 0, the third equation is satisfied. O

Type 1 solutions. The solutions of type 1 are con-
structed as follows. First let p be odd. Set

bz,y) = (v —2"'y)",
c(w,y,2) = (b, 2)"* = bz, )" b(x, 2))",
frm(@,y,2) = 2*"b(2,y) c(2,y, 2)",
so that ¢(x,y, z) is a fundamental invariant (mod-
ulo p > 2) for GL(3,Z); see [Dixon 1911].
For p = 2, this scheme is modified as follows:
b(z,y) =y" —a" 'y,
c(z,y,2) = b(z, 2)* — b(z,y)b(z, 2),
fum(@,y, 2) = 2*b(x,y)'c(z, y, 2)"™.

Here ¢(z,y, z) is the corresponding fundamental in-
variant for p = 2.

Example 7.2. Fklm(xaya Z) = A(fklm('mayaz)) is a
solution.

If m = 0, then such a solution will be type 0. Lin-
ear combinations of these solutions (m > 0) give
the type 1 solutions of weight ¢:

if p=2;

1_{\/{me:g=4m—+—2l—f—k, m >0}
VA{Fxim : 9 =2mp*+2lp+2k, m>0} if p>2.

From the inequality 2mp? < g, it follows for the
range of our calculations (¢ < 200) that type 1
solutions can only exist for p < 7.

Since all homology for p = 2 and g < 100 turned
out to be type 1, we will assume p > 3 for the rest
of this section.

Type 2a solutions. Let ¢(z,y) be a I'; solution of to-
tal degree d, i.e., o € H(I'y, Uy(F,)). Let c(x,y, 2)
be the fundamental invariant as above.

Example 7.3. If ¢ = d + 2mp?, a boundary solution
is given by

Gime(2,y,2) = Z o(p(z,y)c(z,y,z)™).

ocEA3

If m = 0, then the solution is a type 0 solution.
The type 2a solutions, T%¢, are the linear span of
solutions G1,,, of weight g:

T>* = \V{Ginp ¢ € H{ (Lo, UalF)),
g =d+2mp®, m > 0}.
For p > 2, the smallest 'y solution is of weight

d = 10. This gives rise to the inequality g > 10 +

2p®. For g < 200, we have p < 7 for all type 2a

solutions.
Type 2b solutions. Set
B(z,y) =y’ —a’ly = H (ax +y).
«€ZL[p

As before, let p(x,y) be a T'y solution of total de-
gree d.

Example 7.4. If ¢ = pd+ 2m, a boundary solution is
given by

G2mw($ayaz) = Z o ($2m90 (B(Q},y),B(Q},Z))) .

ocEA3
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The type 2b solutions, T?°, are the linear span of
solutions G, of weight g:

T2 = \/{Gamy : p € H{ (T, Uy(F,)), g = pd+2m}

For type 2b solutions, since d > 10, we have the
inequality g > 10p. Hence we have p < 19 for any
type 2b solution with g < 200.

Algorithms

Fix a prime p and a weight g and let V' = V(F,)
of degree g with coefficients in F,. Let D(V') be
the span of the set of monomials z%y’z¢ of de-
gree g with a, b and c all even. Define A(V) :=
Upev A(v). For p > 2, A(V) is the set of solutions
to equation (ii) of Theorem 2.1.

Let A={A=(a,b,¢) :a>b>c>0, atb+c=
g, a=b=c=0 (mod 2)}. An indexed basis for
A(V)ND(V) is given by B = {A(x*) : A € A}. For
p > 3, we may take A(V) N D(V) as a superspace
of Hi(I',V). Recall that for p > 3, HJ(I,V) ~
Hy(I, V).

Assume now that p > 2. To compute HJ (', V),
we construct a matrix m with rows indexed by
monomials in V' and columns indexed by A. Given
a monomial v € V and a partition A € A, the en-
try m,, , in row v column A is the coefficient of v
in A(x*)(1+ h+ h?). Setting f(z, —y,z) = A(z?),
we have

A(x)(1+h+h?)
(z, —y, 2)(1+h+h?)
(@, —y, 2)+ fy, —2+y, 2)+ f(—2+y, 2, 2)
(by the action of h on f)
= f(xa Y, Z)+f(ya r—y, Z)'I‘f(l'—y, €, Z)
(since f is in D(V))
= f(xa Y, Z)—f(ﬂi‘—y, Y, Z)—f(.CL‘, r—Yy, Z)

= f
= f

(since f is in A(V)).

We used this last form for computational purposes.

The number of rows in the matrix is larger than
the number of columns so there are necessarily de-
pendencies. One simple application of symmetry
reduced the number of rows by more than half.

Consider the monomials v = 2%y°2° and v’ = 2y 2¢
obtained by permuting z and y in v. Given any
partition A € A, the associated matrix entries sat-
isty m, » = —m, . The rows associated with v and
v" are thus dependent. In particular, if v =" (that
is, if a = b), the row is zero.

We then used row reduction and back-substi-
tution to obtain a basis for Hj(I',V) consisting
of linear combinations of the basis elements for
A(V)Nn D(V). To obtain F° we restricted A to
partitions into two parts:

A2(9) ={ = (a,0,0):a>b>0, a+b=g,
a=b=0 (mod 2)}.

To obtain H}(T,V)/F°, what we call excess ho-
mology, we restricted A to partitions into three
nonzero parts:

As(g) ={ = (a,b,¢c):a>b>c>0, a+b+c=y,
a=b=c=0 (mod 2)}.

We illustrate the calculation of type 1 homology
with the case g = 36, p = 3. The 19 partitions in
A3(36) act as labels for a basis of Hj (I, Vs (F3))/Fy.
For example, the partition (30,4,2) corresponds
to the basis polynomial A(z*°y*z?). We construct
a matrix with columns indexed by these nineteen
partitions as follows. The rows are indexed by the
(g;rl) = 666 ordered partitions u = (a,b,c) of 36.
The entry in row p column A is the coefficient of
x%y’z¢ in the computational form of

uy = Az (1 + h + h?).

For example, since the coefficient of x%y¢z* in

U(14,12,10) 15 714 or 0 (mod 3), the entry in row
(6,16,14) and column (14,12,10) is 0. We find a
basis for the nullspace of {uy : A € A3(36)} by per-
forming Gaussian elimination on our matrix. For
g = 36, p = 3, we obtain the basis {A(2*%y®2%)}
for HJ(T, Via(F))/Fy.

As mentioned, we were able to exploit symmetry
to reduce the number of rows in our matrix.

To calculate a basis for type 1 boundary homol-
ogy, we used the same set of partitions Az(g) to
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index the columns of the matrix. The rows were
indexed by the generators Fj,,, of the type one so-
lutions. Given a partition A = (a,b,c) € Az(g) and
a generator F' = Fj,,,, the entry in row F' column
A is given by the coefficient of 2%y’z¢ in F. Row
reducing this matrix and deleting rows of all zeros
gives a basis for the type 1 solutions.

Bases for type 2a and type 2b homology were
calculated in a similar fashion.

For p = 2, we made appropriate modifications
to the procedures above.

Implementation

We used Mathematica to do the necessary poly-
nomial manipulation to obtain the matrix m for
fixed g, without reducing entries modulo p. A C
language implementation of Gaussian elimination
read the entries, reducing them modulo p, row re-
duced the matrix and used back substitution to
get a basis for HJ(I',V') which could be checked
against the original equations. For larger ¢, back
substitution and verification were omitted to re-
duce program running time. In this case, we used
the corank of the row reduced matrix to obtain the
dimension of HJ (', V).

All our arithmetic was exact arithmetic. Our
primes p all satisfied p? < 23! — 1, this number
being our largest machine integer. Thus integer
overflow was not a significant concern in writing
our C language code for row reduction and back
substitution.

Consistency Checks

To check against programming errors, the program
verified that solutions obtained by the matrix cal-
culations satisfied the equations. Of course, this
only verifies our results to be lower bounds of the
true dimensions of the solution space. As this
checking is time consuming for large g, we omit-
ted this check for g > 100. For small g, we used
hand calculations as an exact check. The success
of the Hecke operator calculations (see Section 9)
is a very strong indication of correctness of the ho-
mology programs.

Examples

Table 1 shows some specific examples of the homol-
ogy computations. The program output has been
converted to tabular form for compactness.

g=36,p=3 g =142, p=29 (exc.)
A nullspace basis A n.b.
(30, 4, 2) (36, 4, 2)
(28, 6, 2) (34, 6, 2)
(26, 8, 2) | 1 (32, 8, 2) 1
(26, 6, 4) (32, 6, 4) | 26
(24,10, 2) (30,10, 2)
(24, 8, 4) (30, 8, 4)
(22,12, 2) (28,12, 2) | 22
(22,10, 4) (28,10, 4) | 10
(22, 8, 6) (28, 8, 6) 5
(20,14, 2) (26,14, 2) | 15
(20,12, 4) (26,12, 4) | 22
(20,10, 6) (26,10, 6) 27
(18,16, 2) (24,16, 2) 4
(18,14, 4) (24,14, 4) 6
(18,12, 6) (24,12, 6)
(18,10, 8) (24,10, 8) 2
(16,14, 6) (22,18, 2) | 27
(16,12, 8) (22,16, 4) | 12
(14,12,10) (22,14, 6) 6
(34, 2,0 | 1 (22,12, 8) | 18
(32, 4, 0) 1 (20,18, 4) | 19
(30, 6, 0) 1 (20,16, 6) 10
(28, 8, 0) 1 (20,14, 8) 3
(26,10, 0) 12 1 (20,12,10) | 11
(24,12, 0) 2 1 (18,16, 8) | 15
(22,14, 0) (18,14, 10) 7
(20,16, 0) (16,14,12) 7
TABLE 1. Output of sample homology computa-

tions. A is the index set, consisting (in the case
g = 36) of the 27 partitions of 36 into distinct even
parts. “Nullspace basis” gives a basis for our re-
alization of the homology; each column represents
a vector in the basis (vector entries not shown are
zero). See next page for details.
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The left half of the table shows the case g =
36, p = 3. Our program outputs the index set A,
consisting of the 27 partitions of 36 into distinct
even parts; this is shown in the first column. It
then outputs five 27-tuples representing a basis for
our realization of HJ(I',Vis(F3)). These vectors
are shown here as columns in the next section of
the table. For instance, the first basis vector has a
single nonzero entry at the position (26,8,2), and
so corresponds to the polynomial

A(I26y822) — .’,U26y82:2 + y2628$2 + 226I8y2

BBy 2By 26,82

34

while the second vector corresponds to A(z**y?) +
A(z*y%) and so on.

The last four of these five vectors are I'y solu-
tions. Restricting A to partitions of ¢ = 36 into
distinct even positive parts gives the excess ho-
mology. The program can be queried about the
excess homology separately; it responds essentially
with the information shown above the dashed line
in the table—that is, a 19-element index set and
one 19-tuple, which corresponds to a basis of the
nullspace. This solution, A(z%%y®2?), turns out to
be type 1 boundary homology.

To isolate the nontrivial ', solutions, needed for
calculation of type 2a and 2b solutions, our pro-
gram has a ['; homology mode. Choosing this
mode and running the program on the same exam-
ple yields the information shown below the dashed
line in the table: an eight-element index set and
four solutions, each corresponding to a solution
found in the earlier realization of Hj (T, Vis(F3))
(which is why we need not display the output sep-
arately). This simple correspondence of solutions
always occurs as a result of our ordering of the ba-
sis vectors. The trivial solution z3¢ — 33® needs
to be added to this list to obtain a basis for the
realization of H|(Ty, Usg(Fs)).

The right half of the table shows the excess ho-
mology in the case ¢ = 42, p = 29. The interpreta-
tion of the columns is similar; the nullspace turns
out to be one-dimensional.

8. HOMOLOGY TABLES

The next several tables list the dimension of so-
lution spaces by prime p and by weight g. See
Definition 1.1 and Section 7 for an explanation of
the notations H', F'*, T, H,

Homology for p = 2

We computed excess homology for p = 2 and g <
100. All this homology turned out to be type 1
boundary homology. We list the dimension of type
1 boundary homology for each g < 100.

g dim | g dim | ¢ dim | g dim g dim
11 1 29 13 | 47 41 65 &4 83 143
12 1 30 14 | 48 43 66 87 84 147
13 1 31 15 49 45 67 90 85 150
14 2 32 17 | 50 47 | 68 93 86 154
15 2 33 18 51 49 69 96 87 158
16 2 34 19 52 51 70 99 88 162
17 3 |35 21 53 54 71 102 89 166
18 4 | 36 22 54 56 72 105 90 170
19 4 | 37 23 55 58 73 108 91 174
20 5 38 25 56 61 74 112 92 178
21 6 | 39 27 | 57 63 75 115 93 182
22 6 | 40 28 58 65 76 118 94 186
23 7 | 41 30 59 68 77 122 95 191
24 8 | 42 32 60 71 78 125 96 195
25 9 |43 33 | 61 73 79 128 97 199
26 10 | 44 35 62 76 80 132 98 204
27 11 45 37 | 63 79 81 136 99 208
28 12 46 39 | 64 81 82 139 | 100 212

TABLE 2. p = 2: Excess homology (and also type 1
boundary homology) for Hi(GL(3,Z),V,(F,))/F°
by weight g, for g < 100.

Homology for p > 2

Tables 3 and 4 list the dimension of the solution
spaces for all pairs (g,p) with 3 < p <541, g <
200 and such that this dimension is nonzero. (For
primes p > 3, the solution spaces are isomorphic to
the homology groups without the {.) The tables
are organized by p and g, respectively. The dimen-
sion appears as a superscript when greater than 1
and is implicit when equal to 1.
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P g: a superscript indicates the dimension of the solution space when greater than 1
36, 38,40, 42, 442, 462,482,502, 523, 54%, 562, 582, 60*, 62°, 64°, 66°, 68°, 707, 727, 747, 768, 78", 80, 827, 8410,
861,882,902, 9213 9414 9615 9815 1006,102!7,1048,106'%,108'7,110%°,1122%,114%2,11623,118%*
12025,12226 12427 12628, 1282°,1303°, 13231, 1343213633, 13834, 14036, 14237, 14438 14639, 14841 1502
15243 154* 15646, 15847, 160*%, 1624, 164%', 16653, 168°4,170%%, 17257, 17459, 176°, 17861 1806318265
18466 186%7, 18859, 19071, 19272,19474,19675, 19878, 2008°
5 | 52,54,56,58,60,62,64,66,68, 70,722, 74,762, 782,803,822, 843,862, 883,903, 924,943, 96, 983, 100°, 102*
104°,106%,108%,110%,112%,114°%,1167,118°%, 1208, 1225, 1248, 1267, 128%, 1308, 1329, 1348, 136, 138°, 140!,
142101441 14610, 14811 15012, 15214, 15413, 15614, 15813, 160'°, 1625, 16416, 166, 16816, 17016, 17218
174717619, 17818, 18020, 18219, 1842018620, 18821, 19021, 19223, 19421, 19623, 19822, 20026
7 | 58,64,70,72,74,76,78,80,82,84, 86,88, 90,92,94, 96,98, 100%, 1022, 1042, 1063, 1083, 1102, 1123, 114*,
1163,1183,120%, 1224, 124,126, 128%,130%, 1325, 134%, 1365, 1385, 140°,142°, 1445, 146°, 148%, 1506, 152°
1548,156%,1587,160%,1628,164°,166%,168°, 17010, 17210, 174% 176°,178'°,180'0, 18210, 18411862,
188,190, 19212 1941 196'3,198!3, 200'3
11 | 68,78,88,90,92,98,100,102,108,110%,1122,114,116, 1182,1202, 1222, 124, 126, 1282, 1303, 1322, 1342,
1362,1383,1403,1423, 1442, 1462,1483, 1503, 1523, 1542, 1563, 1583, 1603, 1624, 164>, 1663, 168+, 170*, 1724
1743,1763,178%,180°%, 1824, 184%,186%,188%,190°,192°, 1944, 1964, 1985, 2006
13 | 80,92,104,106,108,116,118,120,126,128,1302,1323,1342,1362, 1382,1402, 1422 1443,1462, 1482 150
1522,1542, 1564, 1582, 1602, 1622, 1642, 1662, 1684, 1702, 1722, 1742, 1762, 1782, 180%, 1823 184%,186%,188*
190%,1926,1943,196°, 1984, 2004
17 | 94,102,1042,110,118,1202,126,1342,1362, 138, 140, 142, 1502, 1522, 154, 156, 158, 1662, 1682, 170%,1723
1743,1762,178, 180, 1823,1843, 1862, 1883,190%, 1922, 194, 196, 1983, 2003
19 | 66,76,84,94,102,112,116,120, 130, 134, 1382, 1482, 150, 1522, 1542, 1564, 1662, 168, 1702, 1722,174%,178,
1842186, 1883,190%,1925,1942, 1963, 198, 200
23 | 92,114,136,138,1402, 158,160, 1622,174,176,180, 182, 1843, 1862, 1882,196, 198
29 | 42,70,98,116,126,144,154,160,168,172,1742, 176,182,188, 196, 200
31 | 108,1242,138,1542,168,1842 186, 1882,198
37 | 54,88,90,124% 126,134,140, 1482,1602,162,170,176, 18421962, 198
41 | 50,60,70,90,96,100,110,130, 136,140,150, 1642,168,170,176, 178,180, 190
43 | 66,96,108,116,138,1503,158,1723,180, 184, 1923, 200
47 | 138,164,184,1883
53 | 52,782,1042,114,1302%,1562,166,178,1822,192,198
61 | 60,80,902,100,1203,140,1503, 160, 174, 1803, 200 ) gdim b | gt
67 | 102,160,168,196
71 | 128,176,198 109 | 126,162% 198 229 | 112
73 | 108%,124,1807,196 113 | 78,140,168%,190,196 || 239 | 60
79 | 78,104,130,156% 182 127 | 146 257 | 126
83 | 136 137 | 186 277 | 90,182
89 | 88,1323,148,1762 139 | 188 307 | 124
97 | 44,140,1443 181 | 54,84 397 | 188
101 | 150% 191 | 48 401 | 100,1982
103 | 84,186 199 | 150 463 | 88
107 | 88,146,194 211 | 52 523 | 106

TABLE 3. Excess homology H;f(GrL(3,Z),Vg(lﬁ'p))/F0 by prime p, for 3 < p < 541, g < 200. If a combination
(g9,p) in this range is not shown, the space has dimension 0. In particular, this happens for all g < 200 in the
case of the primes p = 59, 131, 149, 151, 157, 163, 167, 173, 179, 193, 197, 223, 227, 233, 241, 251, 263, 269,
971, 281, 283, 293, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 409, 419, 421, 431, 433,
439, 443, 449, 457, 461, 467, 479, 487, 491, 499, 503, 509, 521, 541.
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dim

dim

g p g P
36 3 120 325,58 7%,112,13,17%,19,613

38 3 122 326 56 74 112

40 3 124 327,58, 74,11, 312,372, 73,307

42 3,29 126 328,57 7%,11,13,17,29, 37,109, 257

44 32,97 128 329,58 74,112,113, 71

46 32 130 330,58, 74,113,132, 19,41, 532,79

48 32,191 132 331,59,7°,112,133, 893

50 32,41 134 332,58, 74,112,132, 172,19, 37

52 3%,5,53,211 136 333,59 75,112,132, 17%,23,41,83

54 33,5,37,181 138 334,59,7°,113,13%,17,192,23, 31,43, 47

56 33,5 140 336,511 75,113, 13%,17,232,37,41,61,97,113

58 3%,5,7 142 337,510 75 113 132,17

60 34,5,41,61,239 144 338,511 76,112,133,29,973

62 3°,5 146 339,510 75 112,132,107, 127

64 35,5,7 148 34,511 76113 132,192,372, 89

66 3°,5,19,43 150 342 512 76 113 132,172,19,41,43%,61°,101%,199
68 30,5,11 152 343 514 76 113,132,172,192

70 37.5,7,29,41 154 344 513 78 112,132%,17,192,29, 312

72 37,527 156 346 514 78 113 13%,17,19%, 532,792

74 37,5,7 158 347,513 77,113, 13%,17,23,43

76 3%,52,7,19 160 348 515 78 11%,132,23,29,37%,61,67

78 39,5%,7,11,532,79,113 162 349 515 78 114,132, 232,37,109*

80 39,5%,7,13,61 164 351,516 79 113 132,412,47

82 39,5%,7 166 33,515 78,113, 132,172,192, 53

84 310 53,7,19,103,181 168 3%4 516,79 114,13%,17%,19,29,31,41,67,113*
86 31,527 170 355, 516 710 114 132,172,192, 37,41

88 312,53,7,11,37,89,107, 463 172 397,518 710 114,132,173,192, 29, 43°

90 312,53,7,11,37,41,612,277 174 399,517 79, 11%,132,173,19%,23,29%,61

92 313,54,7,11,13,23 176 360 519 79 113 132,172,23,29% 37,41, 71,892
94 314,53 7,17,19 178 361 518 710 115 132,17,19,41,53

96 315,5%,7,41,43 180 303,520 710 11°,134,17,23, 41, 43,613, 73>

98 315,53%,7,11,29 182 365,519 710 114,133,17%,23,29, 532,79, 277

100 316,55 72,11,41,61,401 184 306 520 711 114 13%,175,192,23%,312,372,43,47
102 317,54, 7%,11,17,19,67 186 367,520 712 11%,13%,172,19,23%, 31,103,137
104 318,55,7%,13,17%,53%,79 188 309,521 711 116,13%,173,193,232, 29, 312,473,139, 397
106 318 5% 7%,13,523 190 371,521 71 115 134,175,194, 41,113

108 319,55 73,11,13, 31,43, 732 192 373,523 712 11°,13%,172,195,43% 53

110 320,55,72,112,17,41 194 374,521 71 114,13%,17,192, 107

112 321 56 73.11%,19, 229 196 376 523 713 114,13°,17,19%,23,29,372,67,73,113
114 322,56 74.11,23,53 198 378,522 713 116,13%,175,19,23, 31,37, 53, 71,109, 401>
116 323,57,7%,11,13,19,29,43 200 380,526 713 116,134,173, 19,29, 43,61

118 324,56, 73,112,13,17

TABLE 4. Excess homology H;(GL(3,Z), V,(F,))/F° by weight g, for 3 < p <541, g <200
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Next we break down the dimensions given in Ta-
bles 3 and 4 into type 1 homology F*'/F° on the
one hand and type 2 plus quasicuspidal homology
HJ}(GL(3,2),V,(F,))/F" on the other. The results

for F'/F° are shown in Table 5.

Experimental Mathematics, Vol. 7 (1998), No. 4

p=35|p= 357|p=3 57|p=3 57
g dim g dim g dim g dim
36 1 78 9 2 120 25 8 1] 162 49 15 3
38 1 80 9 3 122 26 6 1| 164 51 16 4
40 1 82 9 2 124 27 8 1| 166 53 15 4
42 1 84 10 3 126 28 7 2| 168 54 16 5
44 2 86 11 2 128 29 8 2| 170 55 16 5
46 2 88 12 3 130 30 8 1| 172 57 18 4
48 2 90 12 3 132 31 9 2| 174 59 17 5
50 2 92 13 4 134 32 8 2| 176 60 19 5
523 1] 94 14 3 136 33 9 2| 178 61 18 4
54 3 1] 96 15 4 138 34 9 2| 180 63 20 5
56 3 1| 98 15 3 140 36 11 2 | 182 65 19 5
58 3 11100 16 5 1| 142 37 10 3 | 184 66 20 6
60 4 1]102 17 4 1| 144 38 11 3 | 186 67 20 6
62 511|104 18 51| 146 39 10 2| 188 69 21 5
64 5 1]106 18 4 1| 148 41 11 3 | 190 71 21 6
66 5 1| 108 19 5 1| 150 42 12 3| 192 73 23 6
68 6 1 | 110 20 5 1| 152 43 14 3| 194 74 21 5
70 7 11112 21 6 1 | 154 44 13 4| 196 76 23 7
727 2114 22 6 1| 156 46 14 3 | 198 78 22 7
7471|116 23 7 1| 158 47 13 4 | 200 80 26 8

TABLE 5. Dimension of type 1 homology F/F°, for
g <200 and 3 < p < 541. Combinations (g, p) not

shown have dimension zero.

gdim| g dim| g dim| g dim| g dim| g dim| ¢g dim
58 1| 861|106 2| 126 2 | 146 3 | 166 4 | 186 6
64 1| 881|108 2| 128 2| 148 3| 168 4| 188 6
701 901|110 1130 3|150 3| 1705|190 5
72 1] 921(1122|1323|1523|1726| 1926
741 941(1143|1342|1544|1744|1946
76 1| 961|116 2| 136 3| 156 5| 176 4 | 196 6
781 981|118 2138 3| 158 3|178 6198 6
801|100 1120 3| 140 3| 160 4 | 180 5 | 200 5
8211102 1|122 3| 1422|162 5| 182 5

84 11104 1124 3| 144 3| 164 5| 184 5

p= 3 5711 ||p= 3 5 7 11 13 17 19
g dim g dim

36 1 120 | 25 8 4 1

38 1 122 {26 6 3 1

40 1 124 | 27 8 4 1

42 1 126 | 28 7 4 1

44 2 128 129 8 4 1

46 2 130 | 30 8 4 1 1

48 2 132 131 9 5 1 1

50 2 134 132 8 4 1 1

52 31 136 133 9 5 1 1

54 31 138134 9 5 1 1

56 31 140 1 36 11 5 1 1

58 31 142 1 37 10 5 1 1

60 41 144 1 38 11 6 1 1

62 51 146 139 10 5 1 1

64 51 148 1 41 11 6 1 1

66 51 150 | 42 12 6 1 1

68 6 1 152 143 14 6 1 1

70 711 154 1 44 13 8 2 1

72 721 156 | 46 14 8 2 1

74 711 158 | 47 13 7 2 1

76 8§ 21 160 | 48 15 8 2 1

78 921 162 | 49 15 8 2 1

80 931 164 | 51 16 8 2 1

82 921 166 | 53 15 8 2 1

84 110 3 1 168 | 54 16 9 2 1

86 | 11 2 1 170 | 5516 9 2 1 1
88 112 3 1 172 157 18 9 2 1 1
90 | 12 3 1 174 159 17 9 2 1 1
92 |13 41 176 | 60 19 9 3 1 1
94 | 14 3 1 178 161 18 9 3 1 1
96 | 15 4 1 180 | 63 20 10 3 1 1
98 115 3 1 182 165 19 10 3 2 1
100 | 16 5 2 184 166 20 11 3 2 1
102 | 17 4 2 186 | 67 20 12 3 2 1
104 | 18 5 2 18 169 21 11 3 2 1
106 | 18 4 2 190 | 71 2111 3 2 1 1
108119 5 3 192 | 73 2312 3 2 1 1
110 | 20 5 2 1 194 | 74 2111 3 2 1 1
112 |21 6 3 1 196 | 76 23 13 3 2 1 1
114 1 22 6 4 1 198 | 78 22 13 4 2 1 1
116 | 23 7 3 1 200 | 80 26 13 4 2 1 1
118 | 24 6 3 1

TABLE 6. Dimension of type 2 plus quasicuspidal
homology H;(GL(?),Z), V,(F,))/F', for p=T7 and
g < 200.

TABLE 7. Dimension of type 1 and 2 boundary
homology (Tt Vv T2 v T?*)/F°, for g < 200 and
3 < p < 541. Combinations (g, p) not shown have
dimension zero.
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It turns out that the dimensions for p = 3 and
p = 5 are the same as in Table 3, so there is no type
2 plus quasicuspidal homology for these values of p
(always for g < 200). Further, for p > 11, there is
no type 1 homology F'/F°, so the dimension of the
type 2 plus quasicuspidal homology can be read off
from Tables 3 and 4. There remains the case p =7,

where both types of homology are present: this is
shown in Table 6. In the range of these tables, T*
is always contained in the span of T2%% and T?".
Table 7 shows the type 1 and 2 boundary ho-
mology, and Table 8 the excess boundary homol-
ogy. Tables 9 and Tables 10 show the quasicuspidal
homology, organized by p and g, respectively.

g 12a2b 2 0 g 1 2a 2b2 0 g 12 2b 2 0 g 12 2b 2 0
p=71 p=71 p=71 p=7
709 [ 0011 1 1362245 51| 168|55 8 9 9 200 8 7 12 13 13
1000106 | 1022 21 133 |2 2 45 5 10|55 8 9 9 b= 11
108 112331 1490|2245 5 17245 7 9 9
110 10222 1492|3255 5 | 14|55 8 9 9| 110152700 1 1 1
112 113331 1441|3356 61| 16|55 8 9 9| 1541714100 2 2 2
114 113441 146 | 2 2 45 5 | 18|45 7 9 9| 176-196 100 3 3 3
116 103331 1498|3356 6| 18056 8 10 10 || 198200100 4 4 4
118 103331 1503356 61 18255 910 10 p=13
120 113441 1523356 61| 184]6 6 10 11 11
122 103331 154|447 8 81 18 |6 7 10 12 12 122:;28 8 8 ; ; ;
124 113441 156 |3 46 8 8 18|56 9 11 11
126 21444 158|437 7 7| 19166 10 11 11 p=17
128 2 144 41 160 | 4 4 7 8 8 | 1926 7 10 12 12 | 170200 |0 0 1 1 1
130 113441 162|346 8 8119456 911 11
132 2245 5| 164 | 4 4 7 8 8 || 196 | 7 8 11 13 13 p=19
134 21444 166 | 4 4 7 8 8| 198 |7 7 11 13 13 || 190200 00 1 1 1

TABLE 8. The columns labeled 0 show the dimension of the boundary homology modulo F°, for g < 200 and
7 < p < 541. Note that it is all type 2. The remaining columns show the composition of the excess boundary
homology. Combinations (g, p) not shown have dimension zero.

P g: a superscript indicates the dimension of the solution space when greater than 1

7 | 58,64,106,122,164,170,172,178
11 | 68,78,88,90,92,98,100,102, 108, 110,112,118, 120, 122, 128, 1302, 132, 134, 136, 1382, 1402, 1422, 144, 146,
1482,1502, 1522, 156, 158, 160, 1622, 164, 166, 1682, 1702, 1722, 174, 1782, 1802, 182, 184, 186, 1883, 1902,
1922,194, 196, 1982, 2002

13 | 80,92,104,106, 108, 116,118,120, 126, 128, 130, 1322, 134, 136, 138, 140, 142, 1442, 146, 148, 150, 152, 154,
156%,158, 160, 162, 164, 166, 168%, 170,172,174, 176, 178, 1803, 182, 1842, 1862, 1882, 1902, 1924, 194, 1967,
1982, 2002

17 | 94,102,1042,110,118,1202,126, 1342, 1362, 138, 140, 142, 1502, 1522, 154, 156, 158, 1662, 1682, 170, 1722,
1742,176, 1822,1842, 186, 1882, 1902, 192, 1982, 2002

19 | 66,76,84,94,102,112, 116,120,130, 134, 1382, 1482, 150, 1522, 1542, 156%, 1662, 168, 1702, 1722, 1744, 178,
1842,186, 1883, 190°,1925, 194, 1962

TABLE 9. Quasicuspidal homology H3“(GL(3,Z),V,(F,)) by prime p, for p < 19, g < 200. For the range
23 < p <541, g <200, the results are identical with those shown in Table 3.



386 Experimental Mathematics, Vol. 7 (1998), No. 4

g pdim g pdiln g pdiln

42| 29 106 | 7,13,523 156 | 11,13%,17,19%, 532, 79?

44 | 97 108 | 11,13, 31,43, 732 158 | 11,13,17,23,43

48 | 191 110 | 11,17,41 160 | 11,13,23,29, 372,61, 67

50 | 41 112 | 11,19, 229 162 | 112,13,232,37,109*

52 | 53,211 114 | 23,53 164 | 7,11,13,412,47

54 | 37,181 116 | 13,19, 29,43 166 | 11,13,172,192,53

58 | 7 118 | 11,13,17 168 | 112,133,172,19, 29,31, 41,67, 113*
60 | 41,61,239 120 | 11,13,172,19, 61 170 | 7,112,13,17,192, 37,41

64 | 7 122 | 7,11 172 | 7,112,13, 172,192, 29, 43

66 | 19,43 124 | 312,372, 73,307 174 | 11,13,172,19%, 23, 292, 61

68 | 11 126 | 13,17, 29, 37,109, 257 176 | 13,17,23,29%, 37,41, 71,892

70 | 29,41 128 | 11,13, 71 178 | 7,112,13,19,41, 53

76 | 19 130 | 112,13, 19,41, 532,79 180 | 112,133,23, 41,43, 613, 732

78 | 11,532,79,113 132 | 11,132,893 182 | 11,13,172,23, 29, 532,79, 277

80 | 13,61 134 | 11,13,17%,19,37 184 | 11,132, 172,192, 23%,312, 372, 43,47
84 | 19,103,181 136 | 11,13,172,23, 41,83 186 | 11,132,17,19, 232, 31,103, 137

88 | 11,37,89,107,463 || 138 | 112,13,17,192,23, 31,43, 47 188 | 113,132, 172,193,232, 29, 312, 47°
90 | 11,37,41,612,277 || 140 | 112,13,17,232,37,41,61,97,113 139,397

92 | 11,13,23 142 | 112,13,17 190 | 112,13%,172,19%,41, 113

94 | 17,19 144 | 11,132,29,97° 192 | 112,134,17,19°,43%, 53

96 | 41,43 146 | 11,13,107,127 194 | 11,13,19,107

98 | 11,29 148 | 112,13,192, 372,89 196 | 11,133,192, 23,29, 372,67, 73,113
100 | 11,41,61,401 150 | 112,13, 172,19, 41,43%,613, 1014, 199 || 198 | 112,132,172,23,31,37, 53, 71,109,
102 | 11,17,19,67 152 | 112,13,172,192 401°
104 | 13,172,532, 79 154 | 13,17, 192,29, 312 200 | 112,13%,17%,29,43,61

TABLE 10. Quasicuspidal homology H3“(GL(3,Z),V,(F,)) by weight g, for p < 541, g < 200.

9. THE HECKE ACTION ON H;(F,V)

Define V* as the contragredient of V. So V* =
Hom(V,F), and if s € § = GL3(Z,) and v* € V*
we have (v*s)(v) = v*(vs™!). Then the pairing
(+,): V xV* = F defined by (v,v*) = v*(v) is
S-equivariant, hence also GL3(F)-equivariant. Let
o € Hi(T',V). As in Theorem 2.1, denote by v =
v(z,y,z) € V the vector corresponding to a.
Let B;(k) := B; be such that

FCl)F k=1,

[IrB =

I‘(lzl> I itk =2

See Section 3 for notations concerning modular
symbols and the definition of the pairing between
homology and modular symbols. As in [Ash et al.
1984] we define the action of a Hecke operator on
homology to be the contragredient of its action on
the modular symbols. Then:

Lemma 9.1. For v € V and v* € V* we have
<T(luk)a7 [I,U*D = Z(UMijBi7v*>7
,J

where the M;; are unimodular matrices such that
>~ ;[M;i;] 1s homologous to [B;].

Proof. For k =1, 2,
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(T, k), [1, 1,0 1B7)

oy =2 (e
Yo
—Z , [My;,v*B)
—Z
—Z
—Zv v*B;'M;') (by (3-1))

1’ kal—l]>

[1,v* B M '1M,;)

, [L,0" B M)

= Z vM;; B, v*). O

Computation and Results

The unimodular matrices M,; were first computed
using the algorithm presented in [Ash and Rudolph
1979]. Later this was changed to the algorithm
of [van Geemen et al. 1997] because it produced a
shorter chain of unimodular symbols for each Hecke
operator. This was critical for larger primes [ as it
greatly reduced the number of arithmetic compu-
tations being done. Both algorithms were imple-
mented in C.

The Hecke action was then computed using the
formula stated in Lemma 9.1. The time consuming
step was finding vs in terms of the standard basis
of monomials, given v € V, and s € M3(Z). The
naive approach of just expanding the polynomials
worked in a reasonable amount of time only for
small degree g and for small primes [.

Numerical evaluation was then tried where p >
g. This required choosing multiple random points
in Fz, evaluating both vM;;B; and each basis el-
ement v; of the homology space at these points.
Row reduction over [F, was then used to determine
the coefficients of each basis element in v and hence
the Hecke action. This worked significantly better,
but still ran into time constraints.

The last method involved taking multiple par-
tial derivatives. Due to the row reduction used
to find a basis for the homology space, each ba-

sis polynomial had a unique “leading term” with
coefficient one. After applying the linear trans-
formations M;; B; to the variables z,y, z in v, one
variable was set to 1 (there was no loss of infor-
mation because the polynomials are homogeneous
and this reduced the number of derivatives that
were necessary). Derivatives were taken to reduce
the specified term to a constant and then the other
two variables were set to zero to eliminate higher
order terms. Taking this constant and dividing by
two factorials to counter the effects of the deriva-
tives isolated the coefficient of the leading term
of the basis polynomial in v. This was then the
correct coefficient for the entire basis polynomial.
Here the polynomial was treated as if over Q for the
purpose of the derivatives and dividing by factori-
als, but was then reduced modulo p. This worked
relatively quickly and was the preferred method
because it worked for both small and large p.

All the polynomial manipulation (numerical eval-
uation and the derivatives) was done using Math-
ematica, but the row reduction was done in C.

The programs to compute the unimodular sym-
bols were checked by hand for numerous small ex-
amples to verify accuracy. The results were also
checked in many cases where the degree g was small
by verifying that the transformations 7'(l,1) and
T(l,2) commuted. This check was not employed
when the derivative algorithm was used, but the
derivative algorithm was also run on cases of lesser
degree to duplicate previous results and thus verify
accuracy.

Other strong evidence of the accuracy of the
program is that candidates for Galois representa-
tions can often be found. Also the eigenvalues for
p = 7,11 repeated as the weight g increased by
steps of p — 1 as was suggested by equation (4-1).
For the symmetric squares cases the results ob-
tained from the program matched those predicted
by the theory.

The results of our Hecke computations are shown
in Table 11. The complexity of the computations
increased with g and with [; Therefore we were lim-
ited to computing a representative sample of what



388  Experimental Mathematics, Vol. 7 (1998), No. 4
g p U a b Pi(z) G g p U a b Pi(z) G
42 29 2 2 3 (l+z)(1+16z+2?) ss || 52 211 2 119 25 (138+w)(154+119z+22) b
3 271 2 (142)(8+2)(11+x) 3 45 142 (95+4)(108+2)(204+x)
5 4 4 (284a)(1+6z+2?) 5 84 155  198+3lz+15222+2°
7 26 26 (23+4+2)(24+x)(28+x) 7 112 72 (43+2)(166+152z+2?)
11 6 23  (1+z)(1+9z+2?) 11 57 105  27+163z+1422+4°
13 17 17 (9+2)(13+z)(28+x) 13 49 101  (140+x)(58+51z+x?)
2
ig fg 13 (1(—;?55()1(;;1—;)3‘;) 54 37 2 35 2 (1+a)(6+2)(31+x)  ss
3 35 35 (2142)(30+2)(36+x)
44 97 2 58 86 (19+x)(70+z)(76+z) b 5 1 36  (1+42)(2+2)(19+2)
3 66 86 (57+a)(5+18z+1?) 72 2 (36+z)(1+62+a?)
5 49 22 (8+x)(9+)(12+w) 1135 35  (36+z)(1+18z+a?)
759 93 (394x)(48+4x)(57+1) 13 14 23 (1+2)(23+2)(29+2)
1146 32 (51+2)(13+33w+2”) 54 181 2 68 0 (22+a)(146+1250+2%) b
1317 36 (87+2)(30+46z+2) 3 146 7 46+123z+ 7202443
17 73 55 (90+x)(45+94z+17) 5 29 24 (15+a)(21+2)(103+)
99 80 (33+a)(1+38c+07) 7055 106 1+4lo+182%4a?
2376 0 244 220° 4% 11 164 127  (30+2)(26+169z+22)
20 62 31 9+78z+38z"+a 13 127 145  (12+2)(161+20z+22)
48 191 2 164 145 574168z + 10922+ > b 60 41 2 40 40 (40+$)(1+22CE+CE2) ss
5 164 169 (188+x)(59+123z+22) 5 40 40  (164z)(18+z)(40+x)
7 131 55 (70+4x)(24+750+a?) 740 1 (I+42)(1742)(29+x)
11 90 23  84+14lx+96z>+a® 113 38  (1+z)(12+x)(24+2)
50 41 2 7 11 (8+x)(36+9z+z%) b || 60 61 2 27 34  (26+z)(7+52z+22) b
3 40 32 (36+z)(10+19z+2?%) 3 4 51 (1+z)(60+18z+2?)
5 19 17 (17+2)(29+122+27) 5 7 54  (17+x)(27+z)(40+7)
725 26 (26+42)(17+29z+27) 7 17 38  (384z)(48+x)(51+x)
1139 36  (21+)(23+9z+42?) 11 33 26 (l4+2)(13+44z+22)
13 25 24 (2+42)(16+15z+2?) 13 50 3 (40+2)(32+50z+122)
17 3 28 9+33z+362° +2° 17 60 32  (11+z)(21+z)(47+z)
19 16 24 (7T+2)(13+3lw+2?) 19 31 3 (16+2)(23+2)(30+2)
52 53 2 23 26 (1+2)(52+14z+2?) b 23 4 6 (&242)(45+48r+27)
K 29 21 54 (8+x) (384 6z +x)
3 27 24 (3242)(48+12x+1?) 51 3 3 605522 1 08
5 1 1 (52+z)(1+22z+12?)
7 50 50 (13+x)(49+7)(52+w) 60 239 2 101 54 (237+x)(169+7lz+22) b
11 1 1 (33+2)(45+2)(52+x) 3 76 10 (217+a)(169+156z+12)
13 36 1 (26+7)(2+12z+2?) 5 19 39 (226+2)(223+57z+1?)
17 22 22 (52+z)(1+34z+2?) 7 50 92 94+4218z+27x%+a°
19 42 33  (3l4z)(4l+17z+2?) 11 78 88 (38+4z)(166+x)(180+x)
23 17 14 52+497+2022+43 13 63 116  86+156z+179z%+a3

TABLE 11. Hecke eigenvalues on H;f (T, V) by weight g. (Continued on next page.)
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g p U a b Pi(z) g p L a b Pi(z) G
8079 2 78 78  (T+)(34+x)(78+1x) 90 277 2 2 139 (304)(247+x)(276+x) A,
3 70 7 (4+z)%(74+ 1) 3 119 77 (185+x)(238+x)(276+x)
5 12 59 784751 +452% +1° 5 122 251 (143+1z)(16642)(276+)
7 5 68 (1642)(T4+5lz+a?) 7 167 137 (198+x)(254+2)(276+1)
11 64 17 (8+)(69+58x +?) 11 171 95 (126+x)(212+42)(276+x)
13 10 57  (63+z)(5+76z+z?) 13 13 64 (38+x)(23942)(276+x)
78 113 2 51 27 304+70z+3lz%+a’ 100 401 2 365 347 (24+2)(117+3%50+22) b
323 25 13+460+300%+a° 3 154 322 3814241042160 42
5 T4 12 (26+z)(14270+a7) 5 62 364 (83+)(130+1)(336+2)
7 91 73 (4+x)(98+x)(111+$2) 7 240 400 (33+z)(158+391z +1?)
84 103 2 64 63  (31+x)(79+40z+z?) 1365 93 (249+2)(327+1477+2?)
3 97 19 69+ 75z + 2224 2® S
5 47 32 (842)(18+2)(A7+) 106 523 2 254 264  399+132z+396x +a® b
7000 82 (93+2)(42+560+17) 3 343 164 (398+1)(342+185z+12)
5 3 104 (241+x)(440+z)(469+x)
84 181 2 158 1 (28+x)(10+ 74z +22) 7 497 266 98+ 381 +45222 4+ 3
3 97 68  36+83w+28z°+a’ 11 178 250  (97+x)(161+77z+1?)
5 170 25 46+50 41472 +2° 13 329 278  (57+x)(368+ 3202 +22)
778 8 180427z 414422417
11 79 173 154+98x+108z% 427 112 229 2 2 114 (11442)(11542)(228+z) Ss
13 175 179 64+153x+8422+23 3 2152 (45+x)(1084x)(228+x)
; 5 4 45 19+42)(27+2)(228+x
88 89 2 20 67 88+78x+79x2+a:;" 27 o8 ((98 +a:))((131 H:))((z% H))
g gg ?g (5;34(13;4:3716;123) 1110 124 (158+2)(196+x)(228+1)
- o4 51 (142)(55+2)° 13 13 88 (88+x)(141+x)(228+x)
11 13 70  88+63w+15z°+a® 124 307 2 267 198 (81+x)(128+246z+22) b
13 41 46 (29+2)(57+2)(82+x) 3 238 171 (302+x)(197+28z +22)
88 107 2 33 1 (1+a)(47+2)(96+2) 5 136 49 74+194z+157a% +a?
2 3
i;’ gg ?(2) 4650116032;:7450;:;3 126 257 2 1 128 (256+)(193+1295+427) Ss
3 3171 (86+xz)(171+1z)(256+1)
88 463 2 36 44 (146412)(353+299z+12) 5 5 154 (103+z)(1544x)(256+x)
3 251 351 (274+2)(116+414x+2?) 77 110 (110+x)(14742)(256+ )
5 216 313 (72+x)(1854x)(348+x) 11 10 186  (256+x)(17+187z+12)
7 135 354 (235+2)(213+341z+2?) 13 12 177 (256+)(73+ 178z +22)
11 369 34 (322+x)(254+3602+12) 17 16 120 (256+2)(249+121z+2?)
13 311 189  145+1572+261z244> 19 19 27  (27+2)(230+2)(256+1)

TABLE 11 (continued). Hecke eigenvalues on H;f(l", V') by weight g.
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we considered to be interesting cases with small g
and over a small range of [’s. The size of p was no
obstacle, but when p < g the numerical evaluation
method of computing vs had to be avoided.
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