
Borwein and Bradley’s
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We prove a formula for �(4n + 3) discovered by Borwein and

Bradley (Experimental Mathematics 6:3 (1997), 181–194).

1. INTRODUCTIONThe Riemann zeta function is de�ned by�(s) :=Xn�1 1ns ; for Re(s) > 1:
For every even positive integer 2m, it is known that�(2m) = (�1)m�1(2�)2m B2m2(2m)! ;where B2m, the (2m)-th Bernoulli number, is ratio-nal. The numbers �(3); �(5); �(7); : : : remain rathermore mysterious; just about the only useful arith-metic fact known is Ap�ery's result that �(3) is irra-tional (see [Ap�ery 1981] or [van der Poorten 1979]).His proof is based on �nding a series for �(3) thatconverges exponentially fast, and so he uses�(3) = 52Xn�1 (�1)n�1n3� 2nn � :Analogously, it is known that�(2) = 3Xn�1 1n2� 2nn � and �(4) = 3617Xn�1 1n4� 2nn � :It seems unlikely that there are any such simple for-mulae for either �(5) or �(7), though Gosper [van derPoorten 1980, footnote 10] noted that one can ob-tain a slightly more complicated formula for �(5):�(5) = 52Xn�1 (�1)nn3� 2nn � � 112 + 122 + � � � 1(n� 1)2��2Xn�1 (�1)nn5� 2nn � :
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198 Experimental Mathematics, Vol. 8 (1999), No. 2Presumably Gosper's identity is just the tip of theiceberg, and there is a whole slew of such identitiesjust waiting to be discovered. A big problem in try-ing to uncover these new identities is the di�cultyin determining new ones without a general methodof proof. Borwein and Bradley [1997] came up withan extraordinary new approach: If such identitiesdo exist then one can �nd them by computing thevalues of all such relevant series to many decimalplaces and then one can look for a linear combina-tion that equals zero; or, in reality, equals zero tomany decimal places. In fact �nding all such lin-ear combinations with small coe�cients is easy us-ing standard lattice reduction algorithms. One thenconjectures, and tries to prove, that these identities,discovered by computation, really are identities.Borwein and Bradley found many such \identi-ties", and then naturally proceeded to look for somegeneral patterns. They came up with the follow-ing incredible identity, which would imply the exis-tence of fast converging series (of Gosper-type) forall �(4n+ 3):
Conjecture 1 [Borwein and Bradley 1997]. For anycomplex number z, with jzj < 1, we haveXk�0 �(4k + 3)z4k

= 1Xn=1 1n3(1� z4=n4)
= 52 1Xn=1 (�1)n+1n3�2nn � 11� z4=n4 n�1Ym=1 1 + 4z4=m41� z4=m4 : (1)

We will prove this conjecture here. In their paper,Borwein and Bradley gave several fascinating refor-mulations of (1). We will actually prove one of thesereformulations, due to Wenchang Chu; this is shownto be equivalent to our Conjecture 1 in [Borwein andBradley 1997, Lemma 5.2]:
Conjecture 2 (Wenchang Chu). For all positive integersn we have nXk=1 2n2k2 Qn�1i=1 (i4 + 4k4)Qni=1i6=k (k4 � i4) = �2nn �: (2)

Our main result is the following, seemingly unre-lated, identity:

Theorem 1. For all t and for all integers n � 1 wehavenXk=1(�1)n�k� 2nn�k� Y0�j<n�korn<j<n+k(k2t+j2) = �(2n�1)!n! �2:
(3)We deduce:

Corollary 1. Conjecture 2 is true. Thus Conjecture 1is also true.Borwein and Bradley [1997] give several amusingconsequences of this result (see their Corollaries 2.3and 2.4 and equation (6{1) for strange hypergeomet-ric series evaluations, Lemma 4.1 for another strangesequence of \�nite identities", and Corollary 5.1 fora marvellous integral to compute � 2nn ��. In attempt-ing to prove Theorem 1 we came across the followingresult (which follows from, and implies, Theorem 1),as well as several others, noted in Section 4.
Corollary 2. For all integers r > n � 1 we haveX1�k�n(�1)k�1rk� 2nn�k�� (r+1)k+n�12n�1 �� (r�1)k+n�12n�1 �� rk+n2n+1�= (2n+1)�2nn �: (4)As we will see in the proof of Corollary 1, our ob-jective, we only actually need to prove Theorem 1in the case t = 1. We were unable to prove thisdirectly, and so searched for a generalization thatmight be easier to prove, by trying various numericexperiments in Maple, in ad hoc manner. It wassomewhat of a shock when (3) was turned up bysuch an unlikely procedure!
2. PROVING THE MAIN THEOREMFor the sake of completeness we prove a well-knownidentity:
Lemma 1. For all integers n > r � 1 we havenXk=1(�1)n�k� 2nn�k�k2r = 0:
Proof. This follows immediately by combininge�nx(ex�1)2n= �1�nx+ 12n2x2+� � ���x+ 12x2+� � ��2n= x2n + 112nx2n+2 + � � � :



Almkvist and Granville: Borwein and Bradley’s Apéry-Like Formulae for �(4n + 3) 199withe�nx(ex�1)2n= nXk=�n� 2nn+k�(�1)n+kekx
= �2nn �(�1)n+ nXk=1� 2nn�k�(�1)n�k(ekx+e�kx)
= 2Xr�1� nXk=1� 2nn�k�(�1)n�kk2r� x2r(2r)! : �Our next result may be of some independent inter-est. It shows us a way to deal with the peculiarlimits in the product in (3).In the proof we use the fact that for any nonneg-ative integers i and m, one hasm�1Xj=0 ji = 1i+ 1(Bi+1(m)�Bi+1);

where Bk(x) :=Pkl=0�kl �Bk�lxl, and the Bjs are theBernoulli numbers.
Proposition 1. Let g(x) be a given polynomial of de-gree d. Fix a positive integer n. There exist poly-nomials cr(x) for 0 � r � n � 1, of degree at mostr�d+12 �, such that , for any k in the range 1 � k � n,fk(x) := Y0�j<n�korn<j<n+k (x� g(j)) = n�1Xr=0 cr(k2)xn�1�r:
Remark. There are exactly n � 1 elements in anyset f0 � j < n � kg [ fn < j < n + kg. Also,the polynomials cr(x) are de�ned independent of thechoice of k.
Proof. Throughout the proof we think of g(x) and nas being �xed. Write g(x)r =Pdri=0 gr;ixi. The sumof the r-th powers of the roots of fk is�r = n�k�1Xj=0 g(j)r+n+k�1Xj=n+1 g(j)r= drXi=0 gr;i� n�k�1Xj=0 ji+n+k�1Xj=n+1 ji�= drXi=0 gr;ii+1��Bi+1(n�k)+Bi+1(n+k)�Bi+1(n)�Bi+1�;

which evidently is a polynomial of degree at mostdr + 1 in k, and is an even function of k. Thuswe can write �r = �r(k2) a polynomial of degree atmost �dr+12 � � r�d+12 �.Note that c0 = 1. Sir Isaac Newton showed thatfor any r with 0 � r � n� 1 one has the recurrencerelation rcr = � r�1Xi=0 ci�r�i:It then follows from this formula, via an inductionhypothesis on r, that we can write cr = cr(k2), apolynomial of degree at most r�d+12 �. �Combining Lemma 1 and Proposition 1 we can eas-ily prove the following generalization of Theorem 1:
Theorem 10. Let g(x) be any polynomial of degree � 2.For all t and for all integers n � 1 we havenXk=1(�1)n�k� 2nn�k� Y0�j<n�korn<j<n+k(k2t+g(j))� Y0�j<n�korn<j<n+kg(j)

!
= 0: (5)

Remark. Theorem 1 is the special case g(x) = x2, aswe will verify after the proof.
Proof. Write each cr(x) in the form PDri=0 cr;ixi inProposition 1, where Dr � r (since �d+12 � � 1);then fk(x)� fk(0) = n�2Xr=0 DrXi=0 cr;ik2ixn�1�r:Therefore the left side of (5) is
(�1)n�1 nXk=1(�1)n�k� 2nn�k�(fk(�k2t)� fk(0))

= (�1)n�1 n�2Xr=0 DrXi=0 cr;i(�t)n�1�r� nXk=1(�1)n�k� 2nn�k�k2(i+(n�1�r)) = 0
by Lemma 1, since1 � i+ (n� 1� r) � r + (n� 1� r) = (n� 1)in the range of our sums. �
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Deduction of Theorem 1 from Theorem 10. Taking g(x) =x2 in Theorem 10, we see that the left side of (3) isnXk=1(�1)n�k� 2nn�k� Y0�j<n�korn<j<n+k j2:
However, except when k = n, the product vanishes,since it contains the factor j = 0. Thus this sumbecomes(�1)0�2n0 � Yn<j<2n j2 = �(2n� 1)!n! �2 : �

3. DEDUCING THE COROLLARIES

Deduction of Corollary 1 from Theorem 1. Take t = 1 in (3) and multiply through by (2n)2=(2n)!, to get�2nn � = nXk=1(�1)n�k 4n2(n�k)! (n+k)! Y0�j�n�k�1(k2+j2) Yn+1�j�n+k�1(k2+j2)
= nXk=1(�1)n�k 4n2(n�k)! (n+k)! Yk�i�n�1(k2+(i�k)2) Yn+1�k�i�n�1(k2+(i+k)2);

via the simple changes of variables j ! i � k and j ! i + k respectively. Multiply top and bottom of thek-th term in this sum through byY1�i�k�1(k2 + (i� k)2) Y1�i�n�k(k2 + (i+ k)2) = Y1�j�nj 6=k (k2 + j2);
respectively, to get (�1)n�k 4n2(n� k)! (n+ k)! Q1�i�n�1(i4 + 4k4)Q1�j�nj 6=k (k2 + j2)since (k2 + (i� k)2)(k2 + (i+ k)2) = i4 + 4k4. Next multiply bottom and top through byY1�j�nj 6=k (k2 � j2) = Y1�j�nj 6=k (k � j) Y1�j�nj 6=k (k + j) = �(k � 1)! (�1)n�k(n� k)!��(n+ k)!k! (2k) �
respectively, which gives the k-th term in the sum in (2), and thus (2) is proved. �
Corollary 2: Equivalence of (3) and (4). The left side of (3) is a polynomial of degree � n� 1 in t. Thus, in orderto establish the identity in (3) it su�ces to show that (3) holds for at least n di�erent values of t. We willshow that (4) is essentially the same as (3) with t = �r2, and so proving Corollary 2 establishes Theorem 1;the converse is clear.If we take t = �r2 then j2 � (kr)2 = �(kr � j)(kr + j), which is nonzero since k � 1 > (n � 1)=(r � 1)so that kr + j � kr � j � kr � (n+ k � 1) > 0. Therefore we obtain, from this substitution,(�1)n�k Y0�j<n�korn<j<n+k (k2(�r2) + j2) = (�1)(n�k)+(n�1) Y0�j�n�k�1(kr � j)(kr + j) Yn+1�j�n+k�1(kr � j)(kr + j)

= (�1)k�1 (kr)!(kr + k � n)! (kr + n� k � 1)!(kr � 1)! (kr � n� 1)!(kr � k � n)! (kr + n+ k � 1)!(kr + n)!= (2n� 1)!2(2n+ 1)! (�1)k�1rk � (r+1)k+n�12n�1 �� (r�1)k+n�12n�1 �� rk+n2n+1� :
Equation (4) follows immediately from substituting this into (3). �
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4. FURTHER CONSEQUENCESMany identities arise as consequences of Theorem 10; perhaps one of those is already known and might itselfimply our results (in the same way that we showed (3) and (4) to be equivalent). For example, using the�-function we can rederive Corollary 2 (replacing r by x) asX1�k�n(�1)n�k� 2nn�k��(n+ kx+ k)�(n� kx+ k)�(n+ kx� k)�(n� kx� k)�(kx)�(�kx)�(n+ kx+ 1)�(n� kx+ 1) = �(2n� 1)!n! �2 : (6)

Below we list a few identities for binomial coef-�cients that are easy deductions from our results.It is convenient to use, at times, a variant on the\falling factorial" notation:x(n) = x(x� 1) : : : (x� n+ 1) if n � 1;x(�n) = 1=(x+ 1)(x+ 2) : : : (x+ n) if n � 1;x(0) = 1:More generally than in Corollary 2, we now taket = r2 and g(j) = �(j + a � n)2 in Theorem 10 toobtain:For any given integers a and n the value ofX1�k�n(�1)n�k� 2nn�k��((r+1)k+a�1)(2a�1)((r�1)k+a�1)(2a�1)(rk+a)(2a+1)(rk+a�n�1)(2a�2n�1) (7)is independent of r. (Corollary 2 is the case a=n.)Next we take t = r and g(j) = j + a� n in The-orem 10, and then t = r and g(j) = �j + a + n inTheorem 10, to obtain:For any given integers a and n the values of
X1�k�n(�1)n�k

�n+1k+1��k2r+a+k�1n+k ��k2r+ak+1 � (8)

and of
X1�k�n(�1)n�k

�n+1k+1��k2r+a+nn+k ��k2r+a+kk+1 � (9)

are independent of r.In results such as this, where we write that thevalue is independent of the variable r, we can obtain

a prettier identity if we can just evaluate the sumfor one particular value of r. For example, a nicespecial case of (8), when we take a = n+ 1, gives
X1�k�n(�1)n�k

�n+1k+1��k2r+n+kn+k ��k2r+n+1k+1 � =�1 if n is odd,0 if n is even.
(10)Next we take t = 2r and g(j) = 2(j+a�n)+1 inTheorem 10, and then, in the same theorem, t = 2rand g(j) = 2(�j + a+ n)� 1, to obtain:For any given integers a and n the values ofX1�k�n(�1)n�k� 2nn�k��(2(rk2+a�k))(2(n�k))(rk2+a�k)(n�k) (2(rk2+a+k))(2k�1)(rk2+a+k)(k) (11)

and ofX1�k�n(�1)n�k� 2nn�k��(2(rk2+a+n))(2(n�k))(rk2+a+n)(n�k) (2(rk2+a�1))(2k�1)(rk2+a�1)(k) (12)

are independent of r.There are similar, though more complicated, iden-tities to be obtained from Theorem 10 by takingt = 2r + 1 and g(j) equal to each of the values2(j + a� n) + 1; 2(�j + a+ n)� 1;2(j + a� n); 2(�j + a+ n):We now move on to another class of identities, ob-tained by studying the coe�cients of tm+1 in Theo-rem 1, for various values of n�2 � m � 0. Let Sk bethe set of integers in (0; n�k)[ (n; n+k). Equating



202 Experimental Mathematics, Vol. 8 (1999), No. 2the coe�cient of tm+1 in the k = n term with theothers gives, in general,n2m Xn<j1<j2<::::::<jm+1<2n 1(j1j2 : : : jm+1)2 =
4 n�1Xk=1(�1)n�1�k

� km+1n2�k2�2� 2nn�k� Xj1<j2<:::<jmj1;:::;jm2Sk 1(j1 : : : jm)2 :
(13)Taking m = 0 here gives usXn<j<2n 1j2 = 4 n�1Xk=1(�1)n�1�k

� kn2 � k2�2� 2nn�k� ; (14)

which is a fast converging series to approximate thissum. Taking m = 1 gives
8n2 n�1Xk=1(�1)n�1�k

� k2n2�k2�2� 2nn�k� Xj2Sk 1j2
= � Xn<j<2n 1j2�2 � Xn<j<2n 1j4 :Similar results follow if we work with Theorem 10 in-stead of Theorem 1; though it is a matter of taste asto what constitutes a nice identity and what an eye-sore. We hope the reader will play with Theorem 10to discover further pretty identities.

5. MORE FORMULASIt seems worth recording here several formulas ofAp�ery type that we found in the literature [van derPoorten 1979; 1980]. De�ne ' = (p5 � 1)=2 and� = log(1='). ThenXn�1 1� 2nn � = 2�p3+927 ; Xn�1 (�1)n�1� 2nn � = 4�5p5 + 15;Xn�1 1n� 2nn � = �p39 ; Xn�1 (�1)n�1n� 2nn � = 2�p5;Xn�1 1n2� 2nn � = �218 ; Xn�1 (�1)n�1n2� 2nn � = 2� 2;Xn�1 1n4� 2nn � = 17�43240 ; Xn�1 (�1)n�1n3� 2nn � = 2�(3)5 :

For similar formulas, though with the numerator apolynomial in n, see [Lehmer 1985]. Zucker [1985]showed how such sums are related to values of Di-richlet L-functions and the polylogarithm functionLik x :=Pn�1 xn=nk. For example:Xn�1 1n3� 2nn � = p3�2 L�2;��3� ��� 4�(3)3 ;Xn�1 1n5� 2nn � = 9p3�8 L�4;��3� ��+�2�(3)9 � 19�(5)3 ;Xn�1 (�1)n�1n4� 2nn � = 32� 4�7�(4)�� 2 Li2 '2�� Li3 '2� 12 Li4 '2+4� 2 Li2 '+8� Li3 '+8Li4 ';Xn�1 (�1)n�1n5� 2nn � = 43� 5�2�(5)+ 103 � 3 Li2 '2+5� 2 Li3 '2+5� Li4 '2+ 52 Li5 '2:Adamchik recently informed us that he has foundsimilar expressions for these same sums. However,it doesn't seem that such expressions are known forany higher exponents.There are also other generalizations of Gosper'sformula [Koecher 1980; Leshchiner 1981]:Xk�0 �(2k + 3)z2k
=Xn�1 1n3(1� z2=n2)
=Xn�1 (�1)n�1n3� 2nn � �12 + 2(1� z2=n2)� n�1Ym=1�1� z2m2�

andXk�0�1� 12k� �(2k+2)z2k
=Xn�1 1n2 � 11�z2=n2� 11�z2=2n2�
=Xn�1 1n2� 2nn � ��12+ 2(1�z2=n2)� n�1Ym=1�1� z2m2� :

These formulas have a slightly di�erent 
avour fromthe generalization given in Conjecture 1.



Almkvist and Granville: Borwein and Bradley’s Apéry-Like Formulae for �(4n + 3) 203Using the revolutionary method of Wilf and Zeil-berger [1990], Amdeberhan and Zeilberger [1997]found the striking, and fast converging, formula�(3) = 12Xn�1 (�1)n�1(205n2 � 160n+ 32)n5� 2nn �5 ;amongst several others.
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