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We prove a formula for {(4n + 3) discovered by Borwein and
Bradley (Experimental Mathematics 6:3 (1997), 181-194).

1. INTRODUCTION
The Riemann zeta function is defined by
1
= —, for R 1.
()= 3 for Refs) >

For every even positive integer 2m, it is known that

Clam) = (-~ ampm gt

where Bs,,, the (2m)-th Bernoulli number, is ratio-
nal. The numbers ((3),((5),¢(7),... remain rather
more mysterious; just about the only useful arith-
metic fact known is Apéry’s result that ((3) is irra-
tional (see [Apéry 1981] or [van der Poorten 1979]).
His proof is based on finding a series for ((3) that
converges exponentially fast, and so he uses

=33 oy

Analogously, it is known that

1 36 1
C2)=3) —my and (4)=-2) —-
2 () 17 2 ()
It seems unlikely that there are any such simple for-
mulae for either (5) or {(7), though Gosper [van der

Poorten 1980, footnote 10] noted that one can ob-
tain a slightly more complicated formula for {(5):

_5 (71)71, 1 1 1
C(5)§Zm<ﬁ+?+mm)

n>1 n
9 Z ﬂ
n>1 7715(2:)
(© A K Peters, Ltd.

1058-6458/1999 $0.50 per page
Experimental Mathematics 8:2, page 197



198 Experimental Mathematics, Vol. 8 (1999), No. 2

Presumably Gosper’s identity is just the tip of the
iceberg, and there is a whole slew of such identities
just waiting to be discovered. A big problem in try-
ing to uncover these new identities is the difficulty
in determining new ones without a general method
of proof. Borwein and Bradley [1997] came up with
an extraordinary new approach: If such identities
do exist then one can find them by computing the
values of all such relevant series to many decimal
places and then one can look for a linear combina-
tion that equals zero; or, in reality, equals zero to
many decimal places. In fact finding all such lin-
ear combinations with small coefficients is easy us-
ing standard lattice reduction algorithms. One then
conjectures, and tries to prove, that these identities,
discovered by computation, really are identities.

Borwein and Bradley found many such “identi-
ties”, and then naturally proceeded to look for some
general patterns. They came up with the follow-
ing incredible identity, which would imply the exis-
tence of fast converging series (of Gosper-type) for
all ¢(4n + 3):

Conjecture 1 [Borwein and Bradley 1997]. For any
complex number z, with |z| < 1, we have

C(4k + 3)z*
k>0

oo

1
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We will prove this conjecture here. In their paper,
Borwein and Bradley gave several fascinating refor-
mulations of (1). We will actually prove one of these
reformulations, due to Wenchang Chu; this is shown
to be equivalent to our Conjecture 1 in [Borwein and
Bradley 1997, Lemma 5.2]:

Conjecture 2 (Wenchang Chu). For all positive integers
n we have

202 [T (5 + 4k*) _ ()
R M ®  \n)

1
i#£k

(2)

Our main result is the following, seemingly unre-
lated, identity:

1<k<n

Theorem 1. For all t and for all integers n > 1 we

have
n 2
TL*]C 2n 2 -2 o (2%—1)'
(=1) (n—k) H (Kt +57) = n!
k=1 0<j<n—k
n<jLntk 3)
We deduce:

Corollary 1. Conjecture 2 is true. Thus Conjecture 1
is also true.

Borwein and Bradley [1997] give several amusing
consequences of this result (see their Corollaries 2.3
and 2.4 and equation (6-1) for strange hypergeomet-
ric series evaluations, Lemma 4.1 for another strange
sequence of “finite identities”, and Corollary 5.1 for
a marvellous integral to compute (2:)) In attempt-
ing to prove Theorem 1 we came across the following
result (which follows from, and implies, Theorem 1),
as well as several others, noted in Section 4.

Corollary 2. For all integers r > n > 1 we have

(=1, ") (

(7'+;’)nk':i-1n—1 ) ( (r—;’)nkj-ln—l )

)

- (2n+1)(2:). )

As we will see in the proof of Corollary 1, our ob-
jective, we only actually need to prove Theorem 1
in the case t = 1. We were unable to prove this
directly, and so searched for a generalization that
might be easier to prove, by trying various numeric
experiments in Maple, in ad hoc manner. It was
somewhat of a shock when (3) was turned up by
such an unlikely procedure!

2. PROVING THE MAIN THEOREM

For the sake of completeness we prove a well-known
identity:
Lemma 1. For all integers n > r > 1 we have

n

_1\n—k 2n ) 2r
(—1) (n_k k= 0.

k=1
Proof. This follows immediately by combining

efnm(em_l)Qn.: (1_,)7/:1:_’_%77/2_7;2_’_. . ) (7;_1_%7;2_1_ . ')Zn

::EQ"—i—%n:EQ’H'Z—i—---.



Almkvist and Granville
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Our next result may be of some independent inter-
est. It shows us a way to deal with the peculiar
limits in the product in (3).

In the proof we use the fact that for any nonneg-
ative integers + and m, one has

m—1

1
141

(Bis1(m) — Bita),

j=0

where By(z) := Zf:o (];)Bk,lml, and the B;s are the
Bernoulli numbers.

Proposition 1. Let g(z) be a given polynomial of de-
gree d. Fix a positive integer n. There exist poly-
nomials ¢, (x) for 0 < r <mn — 1, of degree at most
TL’”]J, such that, for any k in the range 1 < k < n,

fi(z) :

2
n—1
(z—9() = ()"
0<j<n—k r=0
or
n<j<n+k

Remark. There are exactly n — 1 elements in any
set {0 < j<n-—k}U{n < j<n+k} Also,
the polynomials ¢, (z) are defined independent of the
choice of k.

Proof. Throughout the proof we think of g(z) and n
as being fixed. Write g(z)" = ZdT

i=0 9r,iT
of the r-th powers of the roots of fj is

i, The sum

n—k—1 n+k—1

9(3)"+ 9(4)"

j=n+1

g, =
=0
dr n—k—1 n+k—1
J+ J
7=0 j=n+1
g’r,i

i=0 7+1

X (Biz1(n—k)+Bij1(n+k)—Bii1(n)—Bij),
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which evidently is a polynomial of degree at most
dr +1 in k, and is an even function of k. Thus
we can write o, = 0,(k?) a polynomial of degree at
most | 1] < r[251].

Note that ¢ = 1. Sir Isaac Newton showed that
for any r with 0 < r < n — 1 one has the recurrence
relation
r—1

C;Op_j.
=0

It then follows from this formula, via an induction
hypothesis on r, that we can write ¢, = ¢,(k?), a
polynomial of degree at most r L%J ]

Combining Lemma 1 and Proposition 1 we can eas-
ily prove the following generalization of Theorem 1:

Theorem 1'. Let g(x) be any polynomial of degree < 2.
For all t and for all integers n > 1 we have

n

ne 2n . .
S ’“(M)< [T e 1 9(3))
k=1 0<j<n—k 0<j<n—k

n<j0<rn+k n<j0<rn+k
=0. (5
Remark. Theorem 1 is the special case g(z) = 2%, as
we will verify after the proof.
Proof. Write each ¢,(z) in the form ZZJ:O ¢t in
Proposition 1, where D, < r (since LdglJ < 1);

then

n—2 D,

fu(@) = f2(0) =

r=0 =0

Cr’ikhxnflfrl

Therefore the left side of (5) is

n

(0t () (=R — £(0)

n—2 D,
— (_1)71,—1 Crz(_t)n_l_r
r=0 i=0
. n ( 1)”7,6( 2n >k2(¢+(n717r)) =0
- n—~k

by Lemma 1, since
I1<i+(n—-1-r)<r+(n—-1—-r)=(n-1)

O

in the range of our sums.
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Deduction of Theorem 1 from Theorem 1'. Taking g(x) =  However, except when k = n, the product vanishes,
x? in Theorem 1, we see that the left side of (3) is  since it contains the factor j = 0. Thus this sum
" ol 2n ‘2 becomes
(=1) <n—k> o |2
k=1 0<j<n—k (_1)0(271) 2= (2n —1)! O
'n.<j0<rn+k 0 i n! '
n<j<2n

3. DEDUCING THE COROLLARIES
Deduction of Corollary 1 from Theorem 1. Take t = 1 in (3) and multiply through by (2n)?/(2n)!, to get

2n ! —k 4n? 2, 2 2, 2
= B k k
G R i T IO G N el
k=1 0<j<n—k-1 n+1<j<n+k—1
=y ek (R (R,
k=1 (n—k)! (n+F)! k<i<n—1 ntl—k<i<n—1

via the simple changes of variables 7 — ¢ — k and j — ¢ + k respectively. Multiply top and bottom of the
k-th term in this sum through by

(k% + (i — k)?) (K + (i 4+ k)*) = (k* +4%),
1<i<k—1 1<i<n—k 1<j<n
i#k

respectively, to get
4n? [Licic, (" + 4K%)

A e S TCED] [Dhyn (k2 + 72)

since (k% + (i — k)2) (k% + (i + k)?) = i* + 4k*. Next multiply bottom and top through b
( ply p gh by

k)!
(=)= (=i i) = (-0 ky) SN
1<j<n 1<j<n 1<j<n )
7k 7k R
respectively, which gives the k-th term in the sum in (2), and thus (2) is proved. O

Corollary 2: Equivalence of (3) and (4). The left side of (3) is a polynomial of degree < n —1 in ¢. Thus, in order
to establish the identity in (3) it suffices to show that (3) holds for at least n different values of ¢. We will
show that (4) is essentially the same as (3) with ¢ = —r?, and so proving Corollary 2 establishes Theorem 1;
the converse is clear.

If we take t = —r? then j2 — (kr)? = —(kr — j)(kr + j), which is nonzero since k > 1> (n—1)/(r — 1)
so that kr +j > kr —j > kr — (n + k — 1) > 0. Therefore we obtain, from this substitution,

(= * (k*(=r%) + %) = (=)D (kr —7) (kr + ) (kr = 7) (kr + )
0<j<n—k 0<j<n—k—1 n+1<j<ntk-1
n<j<n+k
B k1 (kr)! (kr4+n—k—1'(kr—n—1)V(kr+n+k—1)!
= (=D (kr+k—n)l  (kr—1)! (kr—k—mn)!  (kr+n)!
(20— 1)12 ((r+1)k+n71) ((771)k+n71)

— (_1)](}717,]6 2n—1 — 2n—1
(2n +1)! (5i1)

Equation (4) follows immediately from substituting this into (3). O
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4. FURTHER CONSEQUENCES

Many identities arise as consequences of Theorem 1’; perhaps one of those is already known and might itself
imply our results (in the same way that we showed (3) and (4) to be equivalent). For example, using the
[-function we can rederive Corollary 2 (replacing r by ) as

(2n— 1)1 2

(71)7%,6( 2n )F(n—I—kx—i—k)F(nfk:v—l—k)F(n—i—kmfk)F(nfkmfk)

n—=k

1<k<n

Below we list a few identities for binomial coef-
ficients that are easy deductions from our results.
It is convenient to use, at times, a variant on the
“falling factorial” notation:

™ =z(@—1)...(r—n+1)
M =1/(z+1)(z+2)...(z+n)

z® =1,

ifn>1,
ifn>1,

More generally than in Corollary 2, we now take
t =r? and g(j) = —(j + a — n)? in Theorem 1’ to
obtain:

For any given integers a and n the value of

()" (nzj]k>

1<k<n
((r+1)k+a—1)2*V((r—1)k+a—1)2=V
(’}"k—i—(l,) (2a+1) (rk+a_n_1)(2(L—2n—1)

)

is independent of r. (Corollary 2 is the case a =n.)

Next we take ¢ = r and ¢g(j) = j + a — n in The-
orem 1’, and then ¢t = r and ¢g(j) = —j +a+n in
Theorem 1’, to obtain:

For any given integers a and n the values of

T

(kz%—i—a)
k+1

8)

D™
b k*r+a+k
(T )

(_
1<k<n

are independent of r.

In results such as this, where we write that the
value is independent of the variable r, we can obtain

= . (6)

L(kz)T(—kx)T'(n+ kz+1)I'(n — kz + 1) n!

a prettier identity if we can just evaluate the sum
for one particular value of r. For example, a nice
special case of (8), when we take a = n + 1, gives

k+1 n+k

o 2
1<k<n (k r+n+1)
- k+1

(n—l—l ) (k2r—i—n+k,
)nfk

) B {1 if n is odd,
0 if n is even.
(10)

Next we take ¢ = 2r and g(j) = 2(j+a—n)+1in
Theorem 1’, and then, in the same theorem, ¢ = 2r
and g(j) =2(—j+a+n)— 1, to obtain:

For any given integers a and n the values of

(=) <n2—n/~€>

1<k<n
(2(rk*+a—k)) =R (2(rk*+a+k)) 1
(rk?>+a—k)(n—*) (rk?+a+k)®)

(1)

and of

(=) (nz—nk>

1<k<n
(2(rk?+a+n)) =) (2(rk*+a—1)) -1
(rk2+a+n)=Fk) (rk?+a—1)%)

(12)

are independent of r.

There are similar, though more complicated, iden-
tities to be obtained from Theorem 1’ by taking
t =2r + 1 and g(j) equal to each of the values

20+a—n)+1,
2(j +a— n):

2(__j +a+ n)__ 17
2(—j+a+n).

We now move on to another class of identities, ob-
tained by studying the coefficients of t™*! in Theo-
rem 1, for various values of n—2 > m > 0. Let S}, be
the set of integers in (0, n—k)U (n, n+k). Equating
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the coefficient of t™*! in the £ = n term with the

others gives, in general,

1

,n2m, _
n<j1<jo<... (7172 - - 'j7n,+1)2
o Jm41<2n
km+1 2
m ( 2 k2) 1
_1\n—1—k \N°"—
t ey Y Griedn?
k=1 n—k ]l<]2<.---€<sjrrz ’
J1sosIm k (1 3)
Taking m = 0 here gives us
k 2
1 n n—1—=k <n2 — kz)
—=4 (-1 R 4
n<j<2n J k=1 <7’L—k)

which is a fast converging series to approximate this
sum. Taking m = 1 gives

2
2 (_1)71,7171C (#)2 i

n2 2n ]2
2

1
52

1
j i

J

n<j<2n n<j<2n

Similar results follow if we work with Theorem 1’ in-
stead of Theorem 1; though it is a matter of taste as
to what constitutes a nice identity and what an eye-
sore. We hope the reader will play with Theorem 1’
to discover further pretty identities.

5. MORE FORMULAS

It seems worth recording here several formulas of
Apéry type that we found in the literature [van der
Poorten 1979; 1980]. Define ¢ = (v/5 — 1)/2 and
7 =log(1/¢). Then

1 2mv/3+9 (=)t 4r 1
B G BT A CO BV A

1L _7v3 [CRV)
o 09 o 20 VB

1 2 1)t
o i R o

[ L (1)t 2¢(3)
(P 32407 or () 5

For similar formulas, though with the numerator a
polynomial in n, see [Lehmer 1985]. Zucker [1985]
showed how such sums are related to values of Di-
richlet L-functions and the polylogarithm function

Lipz:= ., a"/n". For example:
1 3 3 4¢(3
Ty L (=) -2
n>1 n mn
1 _9\/§7rL A (—3) m°¢(3) 19¢(5)
ns(*r) 8 " 9 3 7
n>1 n

(_1)n71 4.5 10, 371 : 2
~ =37 —20(5)+ P Lis p
+572 Liz ¢*+57 Liy *+ 32 Lis ¢°.

Adamchik recently informed us that he has found
similar expressions for these same sums. However,
it doesn’t seem that such expressions are known for
any higher exponents.

There are also other generalizations of Gosper’s
formula [Koecher 1980; Leshchiner 1981]:

C(2k + 3)2%

k>0
_ 1
1 n3(1 — 22/n?)
oyt 2 7
o1 nd(*) 2 (1 2%/n?) i m?
and
1 2k
k>0
o 1 1
_nZI n? 1-22/n? 1-22/2n?
B 1 1,2 n 22
202 a2y

These formulas have a slightly different flavour from
the generalization given in Conjecture 1.
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Using the revolutionary method of Wilf and Zeil-
berger [1990], Amdeberhan and Zeilberger [1997]
found the striking, and fast converging, formula

(@) (—1)"1(205n% — 160n + 32)

n5(2n)5

n

)
n>1

amongst several others.
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