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The asymptotic frequency with which pairs of primes below x

differ by some fixed integer is understood heuristically, although

not rigorously, through the Hardy–Littlewood k-tuple conjec-

ture. Less is known about the differences of consecutive primes.

For all x between 1000 and 1012, the most common difference

between consecutive primes is 6. We present heuristic and em-

pirical evidence that 6 continues as the most common difference

(jumping champion) up to about x = 1.7427�1035, where it is re-

placed by 30. In turn, 30 is eventually displaced by 210, which

is then displaced by 2310, and so on. Our heuristic arguments

are based on a quantitative form of the Hardy–Littlewood con-

jecture. The technical difficulties in dealing with consecutive

primes are formidable enough that even that strong conjecture

does not suffice to produce a rigorous proof about the behavior

of jumping champions.

1. INTRODUCTIONAn integer D is called a jumping champion if itis the most frequently occurring di�erence betweenconsecutive primes � x for some x. Occasionallythere are several jumping champions. Since the ini-tial primes are 2, 3, 5, 7, 11, the jumping championsare: 1 for x = 3; 1 and 2 for x = 5; 2 for x = 7;and 2 for x = 11. (It is clear that we only need toconsider prime values of x.)Jumping champions for various x up to around1000 are presented in Table 1. Initially 2 and 4dominate, with 2 showing up more frequently than4, and 6 showing up only a few times. However, atx = 563, D = 6 takes over as jumping champion,and except for x = 941, where it shares the leader-ship with D = 4, it is the only champion at least upto x = 1012. One might therefore be led to concludethat 6 should remain the jumping champion out toin�nity. However, this appears to be another of themany number theoretic functions where the initialbehavior is misleading. We will present heuristicsthat suggest that 6 does not remain a jumping cham-pion forever.
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x Champion(s) x Champion(s)5 1 2 421 2 67 2 431 2 611 2 433 2... ... 439 2 697 2 443 2 6101 2 4 449 6103 2 457 6107 2 4 461 6109 2 463 2 6113 2 4 467 2 4 6127 2 4 479 2 4 6131 4 487 2 4 6137 4 491 4139 2 4 ... ...149 2 4 541 4151 2 547 4 6157 2 557 4 6163 2 563 6167 2 4 ... ...173 2 4 937 6179 2 4 6 941 4 6181 2 947 6... ... 953 6373 2 967 6379 2 6 971 6383 2 6 977 6389 6 983 6397 6 ... ...401 6 1:7427�1035 ? 30 ?409 6 ... ...419 6 10425 ? 210 ?
TABLE 1. Jumping champions for small x.

Conjecture 1. The jumping champions are 4 and theprimorials 2, 6, 30, 210, 2310, . . . .The heuristics (see Section 2) suggest that 6 is thejumping champion up to about x = 1:7427 �1035,where 30 becomes the jumping champion. (Harley[1994], stimulated by a report on an early phase ofour research, has independently computed this num-ber as the point of transition between 6 and 30.) Inturn, 30 is displaced as jumping champion by 210around x = 10425. This is substantiated by numer-ical experimentation (see the end of Section 2 andTable 3). It is likely that in the transition zones,the two contenders in all cases trade places as jump-ing champions, but we have neither the computingpower to verify this numerically nor the theoretical

tools to prove it. Although Conjecture 1 is verysimple and elegant, it is surprisingly deep.The heuristics we develop are based on the fa-mous Hardy{Littlewood k-tuple conjecture. Recallthat the twin prime conjecture says that there ex-ist in�nitely many primes p such that p + 2 is alsoa prime. On the other hand, there is only a singleprime p such that p, p+ 2, and p+4 are all primes,since at least one of these three integers is divisi-ble by 3. The Hardy{Littlewood k-tuple conjecture[1922] is that unless there is a trivial divisibility con-dition that stops p, p+a1, . . . , p+ak from consistingof primes in�nitely often, then such prime tuples willoccur, and will even occur with a certain asympoticdensity that is easy to compute in terms of the ai.While there is a general belief that the k-tuple con-jecture is true, it remains unproved.There seems to be little hope of making any prog-ress towards a proof of Conjecture 1 without as-suming at least a quantitative form of the k-tupleconjecture. However, as we will show, even assum-ing the strongest form of that conjecture that seemsreasonable in view of our knowledge of prime num-bers, we are still left with formidable obstacles thatprevent us from obtaining a complete proof of Con-jecture 1. Still, in investigating jumping champions,we are led to some nice combinatorics related to thecoe�cients in the k-tuple conjecture.A strong form of the k-tuple conjecture leads to anexplicit asymptotic formula for the frequency withwhich an integer D appears as the di�erence of con-secutive primes � x. This formula has some inter-esting arithmetical properties, and it leads to the\irregularly regular" behavior shown in Figure 1.Brent [1974] was the �rst to suggest this formulaand gave an algorithm for computing certain coe�-cients that arise in it.A conjecture that follows from Conjecture 1, butshould be considerably easier to prove, and mightconceivably be provable unconditionally, is the fol-lowing.
Conjecture 2. The jumping champions tend to in-�nity. Furthermore, any �xed prime p divides allsu�ciently large jumping champions.The �rst part of Conjecture 2 was proved by Erd}osand Straus [1980] under the assumption of a quan-titative form of the k-tuple conjecture.
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FIGURE 1. Log plot of logN(x; d), the number of jumps of length 2d between consecutive primes up to x, forx = 220; 222; : : : ; 244. Integrating (2{8) by parts and taking logarithms we see that, for �xed x, the graph shouldfollow a straight line with small pertubations of size logAd;1 (see text); this can be seen clearly in the �gure. Theprominent bump at 2d = 210 re
ects the relatively large size of A105;1.As far as we are aware, the �rst question about thebehavior of jumping champions was raised by HarryNelson [1978{79]| though the term jumping cham-pion itself was introduced by John Horton Conwayin 1993. Erd}os and Straus, motivated by Nelson'snote, proved, under the assumption of a form of thek-tuple conjecture, that jumping champions for xtend to in�nity with x. They also raised the ques-tion of the rate at which champions tend to in�n-ity. We answer this question in our note, assumingstronger conjectures, as Erd}os and Straus suggestedmight have to be done. Evidence suggests that thesize of the champion jumps from(1 + o(1)) logx=(log log x)2to (1 + o(1)) logx=(log log x)at the transition point, and then, as x increases,slowly goes down again to(1 + o(1)) log x=(log log x)2:Jumping champions have been thought about in-dependently several times since the work of Erd}osand Straus. We were led to look at them by Con-way. Meally and Leech have also asked about theirbehavior [Guy 1994].

2. THE HEURISTICS

The k-tuple ConjectureLet 0 < m1 < m2 < � � � < mk. The k-tuple conjec-ture predicts that the number of primes p � x suchthat p+2m1, p+2m2, . . . , p+ 2mk are all prime isP (x;m1;m2; : : : ;mk)� C(m1;m2; : : : ;mk)Z x2 dtlogk+1 t ; (2–1)whereC(m1;m2; : : : ;mk)= 2kYq (1� w(q;m1;m2; : : : ;mk)=q)(1� 1=q)k+1 : (2–2)

In Equation (2{2), q runs over all odd primes, andw(q;m1;m2; : : : ;mk) denotes the number of distinctresidues of 0;m1;m2; : : : ;mk mod q. Note that ifk = 1 thenC(m) = 2Yq q(q � 2)(q � 1)2 Yqjm (q � 1)(q � 2) (2–3)

depends only on the odd primes dividing m, andC(m1) = C(m2) if and only if m1 and m2 have thesame odd prime factors (possibly raised to di�erentpowers).



110 Experimental Mathematics, Vol. 8 (1999), No. 2For a discussion on the k-tuple conjecture and ref-erences to numerical computations in its support,see [Halberstam and Richert 1974, Introduction].Brent [1974; 1975] was apparently the �rst one tostudy the size of the error term in the k-tuple con-jecture. Hardy and Littlewood did not make anypredictions about its size, although the standard ar-guments that assume random cancellation of vari-ous terms suggest it should be about px for eachk-tuple. Brent's computations [1975, Table 4] sup-port this suggestion for tuples p; p+2 where we �nda remainder with roughly half as many digits as themain term. See also the comment following (2{7).
The HeuristicsLet N(x; d) be the number of primes p � x suchthat p+2d is the smallest prime > p. By inclusion-exclusion we have, for each K = 0; 1; : : : ,
N(x; d) � 2KXk=0(�1)k X0<m1<���<mk<dP (x;m1; : : : ;mk; d)

(2–4)andN(x; d) �2K+1Xk=0(�1)k X0<m1<���<mk<dP (x;m1; : : : ;mk; d)
(2–5)(here the k = 0 term is P (x; d)). So it is natural tocompare N(x; d) withZ x2 MXk=1 Ad;klogk+1 tdt (2–6)

where M is a positive integer andAd;k = (�1)k+1 X0<m1<���<mk�1<dC(m1; : : : ;mk�1; d)
(2–7)(here Ad;1 = C(d)).Computations of Brent [1974] indicate that tak-ing all the terms in (2{6) (that is, choosing M sothat Ad;M+1 = 0) approximates N(x; d) to withinO(x1=2). This can be seen in [Brent 1974, Table 2],which shows an agreement between theoretical ap-proximation and reality to roughly half the decimalplaces.Now, the sum in (2{7) runs over �d�1k�1� terms and itwould not be unreasonable to guess that Ad;k grows

nicely with this binomial coe�cient. In fact, weshow in Theorem 3 (Section 3) that for k �xed,Ad;k+1 � (�1)kAd;1 (2d)kk! as d!1:This suggests, in conjuction with (2{6), that, for dlarge,N(x; d) � Ad;1 Z x2 exp(�2d= log t)log2 t dt (2–8)should approximate well the number of gaps of size2d up to height x. However, not only does d haveto be large for this to be a good approximation, butx has to be large compared to d, and this restrictsthe range in which we may use (2{8).The presence of the Ad;1 factor in (2{8) indicatesthat, in order to make N(x; d) huge, it is preferablefor d to have many small prime factors. On the otherhand, the exp(�2d= log t) term in the integrand tellsus that amongst all d that produce the same valuefor Ad;1, the smallest one wins. More precisely, let2d1 = 2a0pa11 � � � pajj ;2d2 = 2p1 � � � pj;2d3 = 2�3 � � � qj;where ai � 1, the pi's are odd primes, and qj is thej-th odd prime (q1 = 3, q2 = 5, and so on). Notethat d3 � d2 � d1.Formula (2{8) tells us that, for d3 large enough,we should expectN(x; d2) � N(x; d1)(because Ad2;1 = Ad1;1 but d2 � d1), and N(x; d3) �N(x; d2) (because Ad3;1 � Ad2;1 and d3 < d2). So wesee that primorials are favored.Furthermore, integrating Formula (2{8) by parts,we �nd thatN(x; 3 � � � qj+1) should begin to overtakeN(x; 3 � � � qj) roughly whenqj+1�1qj+1�2 exp �2�3 � � � qj+1log x > exp �2�3 � � � qjlog x ;that is, roughly whenx > exp(2�3 � � � qj(qj+1 � 1)(qj+1 � 2)):These considerations justify Conjecture 1, at leastfor su�ciently large gaps (and very large x). Forsmaller d, rather than using (2{8), we could use the�rst few terms of (2{6) to study N(x; d).



Odlyzko, Rubinstein, and Wolf: Jumping Champions 111For example, A1;1 = A2;1, and A2;2 = 0 (sincethere are no triplets of primes p; p + 2; p + 4 otherthan 3; 5; 7). Hence both N(x; 1) and N(x; 2) shouldbe very close to A1;1 Z x2 dtlog2 t :This explains why 4 also appears as a champion.We can also determine roughly when 30 will takeover from 6 as champion, and when 210 will �rstbeat 30. Using the coe�cients from [Brent 1974] tocompute (2{6) with all the terms (M = 2 when 2d =6 and M = 8 when 2d = 30), we �nd that 30 shouldtake over as champion roughly at x = 1:7427�1035.Further, taking M = 4 terms in (2{6), predicts that210 will �rst begin to beat 30 sometime in the in-terval 10425 < x < 10426. Numerical experimenta-tion substantiates these claims. We used Maple'sprobable prime function to test intervals of length107. If all the probable primes that this functionproduced for us are indeed prime, then in the in-terval [1030; 1030 + 107] there are 5278 gaps of size6, and 5060 gaps of size 30, whereas in the interval[1040; 1040 + 107] there are 3120 gaps of size 6 and3209 gaps of size 30. (Note that even if some ofthe probable primes we found are not prime, it isextremely likely there are few of them, so the statis-tics we produce would not be noticeably a�ected.)

Further, in the intervals [10400; 10400 + 107] we �ndthat gaps of size 30 and 210 show up 50 and 33times, respectively, and 26 and 34 times in the in-terval [10450; 10450+107]. These last results are onlyroughly indicative of true behavior, since samplesizes are so small. In fact, in our data for 10450,198 appears to be the champion, as it shows up asa gap of consecutive primes 40 times!Section 3 is devoted to studying the coe�cientsAd;k that appear in (2{6).
3. THE COEFFICIENTS Ad,kWe turn now to the problem of estimating the co-e�cients Ad;k that appear in (2{6). In this sectionwe use the O-notation: a = O(b) is equivalent tojaj � K jbj for some constant K, and a = Oc(b) isequivalent to jaj � K(c) jbj for some K(c).We can prove (unconditionally)
Theorem 3. Let 1 � k � c log log d, where c is aconstant . Then

Ad;k+1 = �Ad;k 2dk (1 +Oc(k= log log d)) (3–1)

Remark. Numerical data suggest (see Figure 2) thatthe 1 + Oc(k= log log d) in this formula can be re-placed by 1 +O(k log d=d) or even 1 + o(k log d=d).
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FIGURE 2. A �gure substantiating the remark that follows (3{1). It shows (superimposed on one another) thegraphs of d versus � 1k + 12d Ad;k+1Ad;k � dlog d , for k = 1; 2; 3. According to the remark, these graphs should all bebounded. The picture suggests that they not only are bounded, but, for �xed d, deviate from some constantvalue by an amount proportional to 1=k.
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Proof. First observe that if Ad;k = 0 then Ad;k+1 = 0and the theorem holds trivially. (Ad;k = 0 impliesthat all p, p + 2m1, . . . , p + 2mk�1, p + 2d tuplesare ruled out. Hence, so are all the p, p+ 2m1, . . . ,p + 2mk, p + 2d tuples, because each one contains(many) p, p+2m1, . . . , p+2mk�1, p+2d subtuples).Therefore, assume Ad;k 6= 0. To shorten the nota-tion, we set wr;s(q; d) = w(q;mr;mr+1; : : : ;ms; d).From (2{2) and (2{7) we have
Ad;k+1Ad;k = �2 P0<m1<���<mk<d Qq�1� w1;k(q; d)=q�P0<m1<���<mk�1<dQq�1� w1;k�1(q; d)=q�(1� 1=q) :
(If k = 1, the sum in the denominator has a singleterm,Qq�1�w(q; d)=q�(1�1=q).) If q > d, we havew1;k(q; d) = k + 2 and w1;k�1(q; d) = k + 1. So thequotient above isAd;k+1Ad;k = �2P1P2; (3–2)with
P1 =

P0<m1<���<mk<d Qq�d�1� w1;k(q; d)=q�P0<m1<���<mk�1<dQq�d�1� w1;k�1(q; d)=q�(1� 1=q)
(3–3)and P2 =Yq>d (1� (k + 2)=q)(1� 1=q)(1� (k + 1)=q) : (3–4)

P2 poses little di�culty and is easily estimated byusing the Taylor series for log(1� x),P2 = exp�� 1Xm=2Xq>d 1m��k+2q �m��k+1q �m� 1qm��;
(3–5)for k + 2 � d.Now 0 < (k+ 2)m � (k+ 1)m � 1 < m(k+ 2)m�1,for m � 2, which can be seen by writing(k + 2)m � (k + 1)m= (k+2)m�1+(k+2)m�2(k+1)+� � �+(k+1)m�1:Hence1 > P2 > exp�� 1Xm=2(k + 2)m�1Xq>d 1qm�:

ButXq>d 1qm < 1Xn=d+1 1nm < Z 1d dttm = 1(m� 1) 1dm�1 ;so 1 > P2 > exp�� 1Xm=2 1(m� 1) (k + 2)m�1dm�1 �
= 1� k + 2d ;for k + 2 < d, which is to sayP2 = 1 +O(k=d); (3–6)for k + 2 < d. In fact, a better estimate is not hardto establish. Since (3{6) contributes less than theerror claimed in the theorem, we omit the proof andsimply state thatP2 = 1� kd log d +O� 1d log d + kd log2 d� ; (3–7)for k < d=2.Next, consider P1. On scrutinizing (3{3), we seethat each term in the denominator may be matchedwith terms in the numerator. We write

P1 = 1k
P0<m1<���<mk�1<d P0<m0<dm0 6=m1;:::;mk�1Qq�d�1� w0;k�1(q; d)=q�P0<m1<���mk�1<d Qq�d (1� w1;k�1(q; d)=q) (1� 1=q)

(3–8)and claim that each inner sum in the numerator isapproximately d times its corresponding term in thedenominator. More precisely, we show that, for k �c log log d, with c a constant,X0<m0<dm0 6=m1;:::;mk�1 Qq�d�1� w0;k�1(q; d)=q�
= d(1 +Oc(k= log log d))�Qq�d�1� w1;k�1(q; d)=q�(1� 1=q): (3–9)The theorem would then follow on combining (3{9)with (3{8), (3{6), and (3{2).To prove (3{9), break up Qq�d into two pieces.Let d � 15 satisfy3�5 � � � qa � d < 3�5 � � � qa+1; (3–10)and write Yq�d = Yq�qa�1 Yqa�q�d : (3–11)



Odlyzko, Rubinstein, and Wolf: Jumping Champions 113By the Prime Number Theorem,qa � log d: (3–12)Now, if the right-hand side of (3{9) is zero (thishappens if w1;k�1(q; d) = q for some q � d) thenso is the left-hand side (since then w0;k�1(q; d) alsoequals q), and (3{9) is trivially true. So, assumethat this isn't the case and considerX0<m0<dm0 6=m1;:::;mk�1
Yq�qa�1 Yqa�q�d fq(m0; : : : ;mk�1; d);

(3–13)wherefq(m0; : : : ;mk�1; d) = (1�w0;k�1(q; d)=q)(1�w1;k�1(q; d)=q) (1�1=q) :To simplify things, (3{13) may be written asdXm0=1 Yq�qa�1 Yqa�q�d fq(m0; : : : ;mk�1; d)� kYq�d 11�1=q :The second term above is O(k log d) (in fact, by atheorem of Mertens [Ingham 1932], it contributes� �k2e
 log d) and will be overshadowed by the �rstterm. So, let
S = dXm0=1 Yq�qa�1 Yqa�q�d fq(m0; : : : ;mk�1; d): (3–14)

Our goal is to show S = d(1 + O(k= log log d)). We�rst estimate the contribution from Qqa�q�d. Thevalue of w0;k�1(q; d) isw1;k�1(q; d)if q j m0(m1�m0) � � � (mk�1�m0)(d�m0),w1;k�1(q; d) + 1 otherwise.For most q (when k is small compared to d) thelatter holds. In fact, letL = #�q such that qa � q � d and q dividesm0(m1�m0) � � � (mk�1�m0)(d�m0)� :
(3–15)Now, m0(m1�m0) � � � (mk�1�m0)(d�m0) < dk+1,so qLa < dk+1. Hence, from (3{12),

L = O� k log dlog log d� : (3–16)

ButYqa�q�d 1� (k + 2)=q(1� 1=q)(1� (k + 1)=q) � Yqa�q�d fq� 1(1� 1=qa)L :The left-hand side above is roughly of the sameform as (3{4), and by (3{6), it is 1 + O(k=qa) =1 + O(k= log d), (so long as k < (qa � 2) � log d).Meanwhile,1(1� 1=qa)L = eO(L=qA)= eO(k= log log d) = 1 +Oc (k= log log d) ;assuming k � c log log d, with c a constant. There-fore, pulling out Qqa�q�d fq from (3{14), we getS = (1 +Oc (k= log log d))� dXm0=1 Yq�qa�1 fq(m0; : : : ;mk�1; d); (3–17)

for k � c log log d. Next, writed = �(3�5 � � � qa�1) + � = �Q+ �;where, by (3{10), �; � 2 Z , � � qa, and 0 � � <3�5 � � � qa�1. Then break up the sum over m0:dXm0=1 = �QXm0=1+ dX�Q+1 :The contribution of the second sum on the right isO(� log log d), as can be seen fromYq�qa�1 fq � Yq�qa�1 1=(1� 1=q):
But � < d=qa = O(d= log d), so the contributionto (3{17) from this sum is O(d log log d= log d). Tocomplete our proof we show that�QXm0=1 Yq�qa�1 fq(m0; : : : ;mk�1; d) = �Q= d(1+O(1= log d)):

(3–18)This in combination with all our other estimates willestablish the theorem.To prove (3{18), break up the range of summationm0 = 1; : : : ; �Q into blocks of length Q (there are



114 Experimental Mathematics, Vol. 8 (1999), No. 2� such blocks). Each block contributes the sameamount to (3{18) becauseYq�qa�1 fq(m0; : : : ;mk�1; d)depends only on the values modulo Q of its argue-ments. Next, we show by induction on a thatq1���qa�1Xm0=1 Yq�qa�1 fq(m0; : : : ;mk�1; d) = Q: (3–19)

If a� 1 = 1, our sum isq1Xm0=1 fq1(m0; : : : ;mk�1; d) (3–20)

We �nd that (3{20) sums tow1;k�1(q1; d) 11� 1=q1+ (q1�w1;k�1(q1; d)) 1� (w1;k�1(q1; d) + 1)=q(1�w1;k�1(q1; d)=q1)(1�1=q1) ;which equals q1. Now say that (3{19) has beenproved for a� 1 and consider the a caseq1���qaXm0=1 Yq�qa fq(m0; : : : ;mk�1; d):Group the m0's according to their values modulo qaqaXn0=1 q1���qa�1�1Xn=0 Yq�qa fq(nqa + n0;m1; : : : ;mk�1; d):Now, because fqa only depends on its values moduloqa, the expression above isqaXn0=1 fqa(n0;m1; : : : ;mk�1; d)
�q1���qa�1�1Xn=0 Yq�qa�1 fq(nqa + n0;m1; : : : ;mk�1; d):As n runs from 0 to q1 � � � qa�1�1, the value of nqa+n0 runs over the complete set of residues moduloq1 � � � qa�1, since qa is relatively prime to q1 � � � qa�1.Hence the inner sum is, by our induction hypothesis,equal to q1 � � � qa�1, so the expression above equalsq1 � � � qa�1 qaXn0=1 fqa(n0;m1; : : : ;mk�1; d)= q1 � � � qa�1qa = Q: �

Remarks. Gallagher [1976] studied the combinatoricsof a related problem, essentially that of the asymp-totics of the sum Pd�M Ad;k. His method can beadapted for our problem, albeit with messier combi-natorics. The remainder term obtained grows veryquickly with k (though for small k, his method pro-vides a stronger result). On the other hand, The-orem 3 can be used, along with Corollary 5 belowand summation by parts, to obtain the asymptoticsof Pd�M Ad;k (though, they are not needed for thechampions problem).To establish Corollary 5 we �rst give a general count-ing formula which is useful for averaging certaintypes of products. As usual fxg = x � bxc willdenote the fractional part of x, and empty productsare taken to be 1.
Theorem 4. Let S be a set of pairwise relatively primepositive integers, and let f be a complex valued func-tion on this set . ThenMXd=1 Yajda2S f(a) =M Ya�Ma2S

�1 + 1a(f(a)� 1)�
�X� n MQa2� aoYa2�(f(a)� 1);where � ranges over all �nite non-empty subsets ofS whose elements are at most M .This formula can be derived using an inclusion-ex-clusion argument as in the sieve of Eratosthenes.

Corollary 5.MXd=1 Ad;1 = 2M Yq>M q(q � 2)(q � 1)2
�A1;1�(M)�1Xi=1 Xq1<���<qi�M

� Mq1 � � � qi� 1(q1�2) � � � (qi�2) :This implies MXd=1 Ad;1 = 2M +O(logM):
Proof. The �rst part of the corollary follows fromTheorem 4 and formulas (2{7) and (2{3).The second part follows by noting thatYq>M q(q � 2)(q � 1)2 = 1 +O(M�1);



Odlyzko, Rubinstein, and Wolf: Jumping Champions 115and0 ��(M)�1Xi=1 Xq1<���<qi�M
� Mq1 � � � qi� 1(q1 � 2) � � � (qi � 2)

< Yq�M�1 + 1q � 2� = O(logM): �
This corollary was also proved in [Bombieri and Dav-enport 1966, p. 10], but with O(log2M) instead ofO(logM) for the remainder, and, with the strongerremainder, in [Montgomery 1971, Lemma 17.4].
4. ADDITIONAL DATATable 2 compares two estimates for N(x; d) at x =1012. The �rst estimate was computed using (2{6)withM = 4. The second was computed using (2{8).The table shows that the higher terms in (2{6) areimportant for estimating N(x; d) if d is allowed togrow (notice that the middle column gives a goodapproximation roughly up to d = 18). Brent [1974]has observed this fact. His computations also showthat taking all the terms in (2{6) gives numbers thatagree very well with N(x; d). This is what (2{8)attempts to do (in closed form). However, d needsto be large for (2{8) to be a good approximationand x has to be large compared to d (though, evenfor small d and x not too huge, the table revealsthat (2{8) gives a decent, uniform approximation toN(x; d)).Figure 3 plots N(x; d) log2(x)=x versus x, for var-ious values of d, with emphasis on the primorials2d = 6 and 2d = 30. (The log2(x)=x factor was in-cluded to stabilize the curves.) The picture shows6 dominating as champion for x > 941, presumablyuntil roughly x = 1:7427�1035.Table 3 on page 117 shows the number g2d(x)of gaps of size 2 � 2d � 240 presumed to lie inthe intervals [x; x+107], for x = 1030, 1040, 10400,10450. These values of x are chosen to illustratethe predicted transitions. At x = 1030, g6(1030) =5278 dominates g30(1030) = 5060, but g30(1040) =3209 beats g6(1040) = 3120. Next, g30(10400) =50 and g210(10400) = 33, but g30(10450) = 26 andg210(10450) = 34. These numbers are consistent withour predictions that 30 begins to beat 6 as cham-pion near x = 1035, and that 210 �rst beats 30 near

x = 10425. Note, however, that, at x = 10450, theapparent champion seems to be 2d = 198, whichshows up 40 times! Such are the dangers of workingwith small samples.
REFERENCES[Bombieri and Davenport 1966] E. Bombieri and H. Dav-enport, \Small di�erences between prime numbers",Proc. Roy. Soc. Ser. A 293 (1966), 1{18.[Brent 1974] R. P. Brent, \The distribution of small gapsbetween successive primes", Math. Comp. 28 (1974),315{324.[Brent 1975] R. P. Brent, \Irregularities in the distri-bution of primes and twin primes", Math. Comp. 29(1975), 43{56. Correction in 30 (1976), 198.[Erd}os and Straus 1980] P. Erd}os and E. G. Straus,\Remarks on the di�erences between consecutiveprimes", Elem. Math. 35:5 (1980), 115{118.[Gallagher 1976] P. X. Gallagher, \On the distribution ofprimes in short intervals", Mathematika 23:1 (1976),4{9. Corrigendum in 28:1 (1981), 86.[Guy 1994] R. K. Guy, Unsolved problems in numbertheory, Second ed., Springer, New York, 1994.[Halberstam and Richert 1974] H. Halberstam and H.-E.Richert, Sieve methods, London Mathematical SocietyMonographs 4, Academic Press, New York, 1974.[Hardy and Littlewood 1922] G. H. Hardy and J. E.Littlewood, \Some problems of `partitio numerorum',III: On the expression of a number as a sum of primes",Acta Math. 44 (1922), 1{70. Reprinted as pp. 561{630in Collected Papers of G. H. Hardy, vol. 1, OxfordUniv. Press, 1966.[Harley 1994] R. Harley, \Some estimates by RichardBrent applied to the \high jumpers" problem", 1994.See http://pauillac.inria.fr/~harley/wnt.html.[Ingham 1932] A. E. Ingham, The distribution ofprime numbers, Cambridge tracts in mathematics andmathematical physics 30, Cambridge Univ. Press,Cambridge, 1932. Reprinted by Stechert-Hafner, NewYork, 1964; Cambridge Univ. Press, 1990.[Montgomery 1971] H. L. Montgomery, Topics inmultiplicative number theory, Lecture Notes in Math.227, Springer, 1971.[Nelson 1978{79] H. Nelson, \Problem 654", J. Rec.Math. 11 (1978{79), 231.
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FIGURE 3. N(x; d) log2(x)=x as a function of x, for 2d = 2; 4; : : : ; 30 (in order or increasing x-coordinate of startingpoint: 2d = 2, 4, 6, 8, 14, 10, 12, 18, 20, 22, 24, 16, 26, 28, 30; in order of decreasing y-coordinate along theright-hand edge: 2d = 6, 2, 4, 12, 10, 8, 18, 14, 16, 24, 20, 22, 30, 28, 26). The two curves in bold represent2d = 6 and 2d = 30.
d N(1012; d) (2{6); M=4 (2{8) d N(1012; d) (2{6); M=4 (2{8)1 1870585221 1870559866: 1734571973: 26 299020127 19357608: 287761502:2 1870585458 1870559866: 1608489045: 27 511589763 �117485659: 489342519:3 3435528229 3435458600: 2983176210: 28 276101593 �190236598: 272337270:4 1573331564 1573293311: 1383199071: 29 238482555 �159446866: 218306665:5 2052293026 2052377278: 1710267841: 30 521616486 �872270696: 520705710:6 2753597777 2753698149: 2379035785: 31 173395125 �542475987: 187370709:7 1556469349 1556538305: 1323739864: 32 174696822 �466395227: 168010801:8 1202533145 1202481778: 1023002316: 33 337881160 �1472349367: 346327794:9 2246576317 2246300116: 1897433561: 34 144475047 �901708546: 154203810:10 1298682892 1297504207: 1173113388: 35 209257685 �1446734637: 214563934:11 1105634145 1104842257: 906625819: 36 225244356 �2345640221: 248794573:12 1754011594 1748689938: 1513472556: 37 112410088 �1279821387: 118692508:13 866077378 860228350: 765617165: 38 103953673 �1562442677: 113342851:14 946685406 940272873: 781065469: 39 202872036 �3480363786: 216657899:15 1803413614 1768917778: 1609765148: 40 109107891 �2536053455: 122824166:16 596278790 571983719: 559868265: 41 79287666 �2097549341: 87646234:17 629634308 602935653: 553874113: 42 169541709 �5569989899: 190259148:18 1069300358 994461819: 963192792: 43 63992940 �2740157702: 75335519:19 520188423 469051756: 472946539: 44 67022921 �3106662564: 75804586:20 626694626 549365467: 552378496: 45 141957467 �8653244845: 168777258:21 979052296 757589403: 922195739: 46 49878328 �3851360864: 61511925:22 414087760 277381704: 395992947: 47 46375798 �3982359526: 55682088:23 366906343 217998577: 346302520: 48 83989444 �8412724248: 101068993:24 651790197 305395231: 613209321: 49 45681754 �5553974513: 56258792:25 386726111 71637118: 379182356: 50 48416676 �6460114606: 57992596:

TABLE 2. A comparison of two estimates for N(1012; d).
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2d g2d(10k) for k = 2d g2d(10k) for k = 2d g2d(10k) for k =30 40 400 450 30 40 400 450 30 40 400 4502 2769 1539 25 11 82 932 654 12 12 162 509 582 27 164 2772 1473 20 29 84 1982 1582 44 20 164 264 297 16 136 5278 3120 32 26 86 882 674 18 12 166 252 247 11 158 2630 1520 17 13 88 835 652 12 8 168 619 622 44 2410 3462 1998 15 19 90 2119 1664 49 29 170 328 389 8 812 5016 2761 37 28 92 769 634 13 11 172 247 235 13 1214 2900 1644 19 18 94 813 609 12 12 174 466 550 28 2516 2392 1397 20 13 96 1452 1101 19 22 176 242 239 17 1118 4578 2681 27 17 98 804 648 25 14 178 225 233 9 1520 2866 1760 23 11 100 916 706 27 16 180 526 641 27 2622 2450 1460 14 22 102 1392 1118 27 18 182 255 273 20 1624 4305 2544 25 24 104 692 559 10 9 184 205 211 10 726 2241 1315 23 12 106 672 532 21 9 186 372 386 29 1928 2410 1472 21 10 108 1207 1047 33 15 188 180 206 11 1030 5060 3209 50 26 110 884 705 18 21 190 240 279 13 1632 1828 1217 17 13 112 707 631 15 19 192 342 413 22 1634 1938 1257 18 9 114 1145 967 24 15 194 161 186 11 1036 3518 2268 19 22 116 567 432 16 14 196 215 243 13 938 1758 1129 17 15 118 512 471 22 4 198 323 423 33 4040 2260 1397 20 19 120 1285 1162 40 30 200 207 234 13 1642 3718 2536 25 24 122 447 439 17 12 202 130 154 7 644 1798 1124 13 13 124 463 436 13 5 204 305 354 36 2146 1655 1066 6 14 126 1051 1011 28 22 206 151 170 12 548 2919 1974 32 21 128 466 408 8 6 208 152 190 11 1650 1968 1255 18 12 130 647 595 14 17 210 438 512 33 3452 1475 1068 19 9 132 892 831 25 23 212 112 159 8 754 2748 1826 23 21 134 380 367 11 10 214 121 155 14 1256 1557 1051 18 14 136 406 361 10 15 216 212 301 27 2558 1312 924 11 11 138 765 802 18 16 218 99 149 10 660 3305 2269 38 30 140 598 543 19 17 220 173 208 24 1462 1270 825 15 8 142 369 345 10 8 222 222 300 14 2464 1214 863 13 8 144 662 664 32 16 224 139 156 14 1466 2588 1739 29 17 146 333 318 9 9 226 113 131 11 1168 1107 816 8 14 148 336 361 15 15 228 216 292 28 2770 1658 1231 21 18 150 876 833 37 29 230 129 169 19 1172 2008 1456 25 25 152 311 332 15 15 232 95 103 15 474 984 785 14 13 154 398 418 20 13 234 184 251 20 2076 1036 777 13 8 156 650 629 26 23 236 87 116 14 1578 2130 1588 28 25 158 286 302 10 12 238 97 160 14 1080 1238 940 25 15 160 364 369 17 12 240 211 276 33 23
TABLE 3. Gap histograms. The columns show the presumed value of g2d(x) = N(x+107; d)�N(x; d) (as calculatedby Maple's probabilistic prime function), for values of 2d in the range 2 � 2d � 240.
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