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Let D be a positive integer such that D and D�1 are not per-

fect squares; denote by X0, Y0, X1, Y1 the least positive inte-

gers such that X2
0 � (D�1)Y2

0 = 1 and X2
1 � DY2

1 = 1; and put�(D) = log X1/ log X0. We prove here that �(D) can be arbitrar-

ily large. Indeed, we exhibit an infinite family of values of D

for which �(D) � D1/6/ log D. We also provide some heuristic

reasoning which suggests that there exists an infinitude of val-

ues of D for which �(D) � p
D log log D/ log D, and that this is

the best possible result under the Extended Riemann Hypothe-

sis. Finally, we present some numerical evidence in support of

this heuristic.

1. INTRODUCTIONThe very entertaining book [Roberts 1992], on theproperties of particular integers, discusses on pp.260{263 the two Pellian equationsx2 � 1620y2 = 1 and x2 � 1621y2 = 1;as had been done earlier in [Carmichael 1959, foot-note on p. 33] and [Beiler 1964, p. 255]. Robertsremarks: \The �rst of these has smallest solutionwith x = 161, y = 4 and the second has smallest so-lution with x of 76 digits! . . . Is it mysterious thatneighboring integers can act so very di�erently?"Let D�1 and D be nonsquare positive integers, letX2 � (D�1)Y 2 = 1have minimal solution X0, Y0 2 Z withX0 +pD�1Y0 > 1;and let X2 �DY 2 = 1have minimal solution X1, Y1 2 Z withX1 +pDY1 > 1:In view of the observation quoted above, it seemsappropriate to de�ne �(D) = logX1= logX0 and
c
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ask: For what values of D might we expect �(D)to be large, and just how large, as a function of D,could �(D) become? For example, if D = 1621, we�nd that �(D) = 34:35, but if D = 118681, we get�(D) = 633:84.We �rst note that ifX2 �DY 2 = 1 (1–1)and X +pDY > 1, then0 < X �pDY = (X +pDY )�1 < 1;hence, 2X = X+pDY +X�pDY > 1, and X > 0.Also, 2pDY = X+pDY � (X�pDY ) > 0. Since2X = X +pDY �1 + 1(X +pDY )2� ;we getlogX + log 2 = log(X +pDY )+ log�1 + 1(X +pDY )2� :If S = log(X +pDY ) > (logD)=2, thenS � log 2 + 1=pD > S � log 2 + e�2S> logX > S � log 2;thus logX � S � log 2;particularly when D (or S) is large. Thus, if D islarge, we can replace logX by log(X+pDY )� log 2in �(D); and, if we de�ne "(D) to be the least valueof X+pDY (> 1), where X;Y 2 Z and X;Y satisfy(1{1), then �(D) � log "(D)log "(D�1) :We will show that �(D) can become arbitrarilylarge; indeed, there exists an in�nite family of val-ues of D such that �(D) � D1=6= logD. How-ever, this result, as we shall indicate later, seemsto be far from the truth concerning how large �(D)can become as a function of D. In fact, undera number of plausible hypotheses, we suggest thatthere exists an in�nitude of values of D for which�(D) � pD log logD= logD; and that under theextended Riemann hypothesis, this is the best re-sult we could expect. Finally, we will provide somenumerical evidence to support this heuristic.

2. THE SIZE RATIO CAN BE ARBITRARILY LARGEIn order to make �(D) as large as possible, we need"(D) to be large and "(D�1) to be small. We canguarantee the latter condition by insisting that D�1be of a certain Richaud-Degert type; in this caseD�1 =M 2+m, wherem j 2M . We have (see [Mollin1996, Section 3.2], for example)
"(D�1) = �M +pD�1�2m :Also, X0 � 2M 2=m+1 < D when m > 1. The nextstep is to attempt to make "(D) large. Yamomoto[1971] showed that the form D = (pnq+p+1)2�4pwhere p; q are primes such that p < q has log "(D)�(logpD)3; unfortunately, D�1 is not of Richaud-Degert type here. However, it is easy to modifyYamomoto's form toD = �Rrn � r + 44 �2 + r: (2–1)If we insist only that r;R be odd, r > 1, Rrn�1 � 1(mod 4), and R > 3r, then it is easy to produce the�rst few partial quotients in the simple continuedfraction expansion of pD.We will use hq0; q1; : : : ; qni to denote the continuedfraction q0 + 1q1 + 1q2 + 1. . . + 1qn :As is usual, we put P0 = 0, Q0 = 1, q0 = bpDc andde�ne Pi+1 = qiQi � Pi;Qi+1 = (D � P 2i+1)=Qi;qi+1 = b(Pi+1 +pD)=Qi+1cfor i = 0; 1; 2; : : :. ThenpD = hq0; q1; q2; : : : ; qn�1; �ni;where �n = (Pn+pD )=Qn, is a means of expressingthe simple continued fraction expansion of pD. Wealso mention that at some point we must �nd thateither Pr = Pr+1 or Qs = Qs+1; in either event weget (see [Stephens and Williams 1988], for example)
"(D) > � tYi=1 Pi +

pDQi �2
(2–2)
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for t = r or s.It is easy to see that for D given by (2{1) wehave q0 = 14(Rrn � r + 4). We can also establish byinduction that for k = 0; 1; 2; : : : ; n� 1 we haveP3k+1 = 14(Rrn � 2rk+1 + r + 4);Q3k+1 = rk+1;q3k+1 = 12(Rrn�k�1 � 1);P3k+2 = 14(Rrn � r � 4);Q3k+2 = rn�k�1R;q3k+2 = 12(rk+1 � 1);P3k+3 = 14(Rrn � 2Rrn�k�1 + r + 4);Q3k+3 = 14(Rrn � rn�k�1R� rk+2 + r + 4);q3k+3 = 2:Since no two consecutive P or Q values are equal for0 � k � n� 1, we �nd from (2{2) that
"(D) > n�1Yk=0�(rn�k�1R � 1)(rk+1 � 1)2 �2 : (2–3)

Since� 14(Rrn�r+4)+ 12�2�D = 12� 14(2Rrn�2r+8)+ 12��r= 14(Rrn�5r+5) > 0for n � 1, we getpD < 14(Rrn � r + 6): (2–4)Also, since r � 3, we getrk+1 > 2 + 43rn�k � 2 (0 � k � n� 1):Hence, 3rn+1 � 6rn�k > 2rk+1and R(rn � 2rn�k�1) > 3rn+1 � 6rn�k > 2rk+1:From this we see thatRrn > 2rn�k�1R + 2rk+1and Rrn + r � 2rn�k�1R + 2rk+1 + 4:It follows that2(Rrn � rn�k�1R � rk+1 + 1) � Rrn � r + 6

and(rn�k�1R�1)(rk+1�1)2 = Rrn�rn�k�1R�rk+1+12� Rrn�r+64 > pD;by (2{4). By (2{3) we get"(D) > �pD �2n = Dn:If we put r � 5 (mod 8) and select n to be even,then rn � 1 (mod 2(r � 1)). Furthermore, if R isselected such that R � r � 4 (mod 2(r � 1)), then2r � 2 j rnR � r + 4 and�(D) > log "(D)� log 2logX0 > n� log 2logD: (2–5)Thus, �(D) can be arbitrarily large for an in�nitenumber of values of D. We have therefore shownthat there exists an in�nitude of values of D suchthat �(D)� logD.
3. SOME FURTHER RESULTS ON THE SIZE RATIOWe say that any positive nonsquare integer d suchthat d � 0; 1 (mod 4) is a quadratic discriminant.If �; � 2 K = Q (pd), we let [�; �] denote the Z -module f�x + �y j x; y 2 Z g. We de�ne the orderOd of the real quadratic �eld K by Od = [1; !d],where!d = (pd=2 when 4 j d,(pd+ 1)=2 when d � 1 (mod 4) .Here d is the discriminant of Od, and if d = d0f2,where d0 is the discriminant of K, then f is the con-ductor of Od and d0 is the fundamental discriminantbelonging to d. We denote the fundamental unit ofOd by "d(> 1). If, for any nonsquare D > 0, we putd = �D when D � 1; 0 (mod 4)4D when D � 2; 3 (mod 4), (3–1)then "(D) = "�dfor some positive integer �.We can improve upon (2{5) by modifying slightlythe proof of Yamomoto's Theorem 3.1 to producethe following theorem.
Theorem 3.1. Let ri, for i = 1; 2; : : : ; k, be positiveintegers which are relatively prime in pairs . If thereexists an in�nitude of real quadratic �elds K such
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that each ri can be decomposed in K into the prod-uct of two principal ideals ri and r0i and each rationalprime divisor of ri can be decomposed into the prod-uct of two distinct prime ideals , thenlog "� �logpd0 �k+1;where d0 and " are respectively the discriminant andfundamental unit of K.Since, for our values of D given by (2{1), we haveQ1 = r, Q3n�1 = R, we see that if (r;R) = 1and (R;D) = 1, we can use Yamomoto's reason-ing to show that the conditions of Theorem 3.1 canbe ful�lled for an in�nitude of �elds K = Q (pD),where D is given by (2{1) with r � 5 (mod 8),(r(r + 4); R) = 1, R > 3r > 0, R � r � 4 mod(2(r � 1)) and 2 jn. Since "(D) = "� for some posi-tive integer �, we must have�(D)� (logD)3 (3–2)for such values of D.Halter-Koch [1989] extended Yamomoto's Theo-rem 3.1 to show that there exists an in�nite familyof real quadratic �elds for which log "� �logpd0�4;thus, one might expect to produce a better resultthan (3{2). Unfortunately, a subtle error in theproof of his Main Theorem in [Halter-Koch 1989,Section 3] invalidates his result. In order to get abetter result than (3{2), we proceed in another di-rection.We consider "(D0) and "(D), where D = f2D0.We must have "(D) = "(D0)m for some positive in-teger m. If we put "(D0) = X + pD0Y , we cande�ne integers Xn; Yn byXn +pD0Yn = "(D0)n:If "(D) =W +ZpD =W +fZpD0, we see that mmust be the least positive integer such that f jYm.The problem of determining m can be very di�cultin general. We know that m must divide �f(D0),where �f(D0) = fYp j f
�1� (D0=p)p �

(3–3)

and (D0=p) denotes the Kronecker symbol, but thisis often as much as can be said. The problem ofthe divisibility of Yn by certain integers was con-sidered by Lehmer [1928]. If p is any prime divisorof D0 which does not divide Y1(= Y ), then p kYp

and p 6 jYi if (i; p) = 1 [Lehmer 1928, Theorem 9].From this it follows that pk kYpk and pk 6 jYi when1 � i < pk [Lehmer 1928, Theorem 10]. Since fYngis a divisibility sequence, we see that if the square-free kernel �f of f is such that �f jD0 and � �f; Y1� = 1,then m = f andlog "(D) = f log "(D0): (3–4)If we put D0 = k2 �f2 + �f , then D0 is of Richaud-Degert type and"(D0) = �k �f +pD0 �2�f = 2 �fk2 + 1 + 2kpD0:To ensure that "(D�1) is small, we need D�1 =f2D0 = k2f2 �f2 + f2 �f � 1 to be of Richaud-Degerttype. This will occur if f 2 �f � 1 j k2f 2 �f 2. We canguarantee this if we put k = f2 �f � 1. In this casewe get �f jD0 and �Y1; �f� = 1 when �f is odd. In thesimple case where f = pn and p is an odd prime, weput Dn = p2n+2 �p2n+1 � 1�2 + p2n+1< p2n �p2n+2�2 = p4p6n:We see by (3{4) thatlog "(Dn) = pn logD0 > pn > D1=6np2=3 :Now"(Dn � 1) = �pn+1 (p2n+1 � 1) +pDn�1 �2(p2n+1 � 1) < Dn;thus, log "(Dn)log "(Dn � 1) � D1=6n = logDn;and therefore � (Dn)� D1=6n = logDn:We have proved the following theorem.
Theorem 3.2. There exists an in�nite family of valuesof D such that �(D)� D1=6= logD.
4. MAXIMIZING THE SIZE RATIOIn this section we will attempt to produce some in-formation on just how large �(D) might become asa function of D. We will �rst attempt to �nd anupper bound on the size of �(D). We note that theleast possible value of log "(D) = log(X + YpD)must exceed 12 logD.
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We must now examine the problem of maximizingX1 or "(D) or "d, where d is the discriminant de�nedby (3{1). By the Analytic Class Number Formula(see [Cohn 1962], for example), we have2hR = pdL (1; �d) ;where R = log "d, h is the class number of Od, andL (1; �d) =Yq � qq � (d=q)� = 22� (d=2)E(d)is the Euler product representation of L (1; �d). Theproduct is taken over all primes q, (d=q) is the Kro-necker symbol, andE(d) =Yq � qq � (d=q)� ; (4–1)

where the product is taken over all the odd primes.If d0 is the fundamental discriminant belonging toOd, then h = �f(d0)h(d0)=u;where h(d0) is the class number of Q (pd)=Q (pd0 ),u is the unit index of Od over Od0 ("d = "u, where" is the fundamental unit of Q (pd)), and �f(d0) isgiven by (3{3).In order to maximize "d, we need h = 1; hence,since u j�f(d0), we need h(d0) = 1 and �f(d0) = u.Also, since "(D) = "�d, we would like to maximize �as well. If we let "d = (T + Upd)=2, the value of �can be determined from Table 1, where we use N(�)to denote the norm ��� of � 2 K.
Remark. Whenever 3 j �, we have D � 5 (mod 8).From these remarks it follows thatlog "(D) = B(d)E(d); (4–2)

D mod 4 T mod 2 U mod 2 N("d) ��1 � � 1 10 � 0 1 10 � 1 � 22 � 0 1 12 � 1 �1 21 0 0 1 11 0 0 �1 21 1 1 1 31 1 1 �1 6
TABLE 1. Values of � such that "(D) = "�d.

where B(d) = �pd=h���=(2� d=2)� and�=(2� d=2) � 2:By results of Littlewood [1928] and Shanks [1973],we know thatE(d) < f1 + o(1)ge
 log log d;under the extended Riemann hypothesis, or ERH.Thus, since �(D)=�log "(D)= log "(D�1)��1+o(1)�,we get�(D) < 4e
pD log logDlogD �1 + o(1)�: (4–3)We now investigate the problem of maximizing�(D). Since X0 =p(D�1)Y 20 + 1, in order to make�(D) large, we would want Y0 to be small. The leastpossible value for Y0 is 1, but this would mean thatD = X20 , which is not permitted. The next possiblecandidate for Y0 is 2, which means that X0 must beodd. Putting X0 = 2M+1, we get D =M 2+M+1.We now look at the problem of getting the largestpossible value for B(d)=pd. If h = 1, then h(d0) =1. By genus theory this means that d0 can only be aprime, the double of a prime congruent to �1 (mod4) or the product of two such primes. Thus, a goodstrategy to employ to maximize B(d)=pd would beto select D such that D is a prime.For f(x) = x2 + x + 1, put P (n) = #ff(k) jf(k) prime for k = 1; 2; : : : ; ng. By Hardy and Lit-tlewood's Conjecture F [Fung and Williams 1990],we expect that P (n) � C(�3)L(n)where L(n) = 2Z n1 dxlog f(x)and C(�3) = 1:12073275 [Shanks 1960]:Also, by the Cohen-Lenstra heuristics [1984], wewould expect that these prime values of f(x) forwhich h(f(x)) = 1 should have density of about0:75446. In Table 2 we provide some results of atrial run of computing P (n) and H(n) = #ff(k) jf(k) prime; h(f(k)) = 1; k = 1; 2; : : : ; ng for all n �106. This lends some numerical support to this ex-pectation.We also note that if q j d0 and q � �1 (mod 4),then 2 6 j � unless 4 jD. Furthermore, if 3 j �, the
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n P (n) L(n) P (n)=L(n) H(n) H(n)=P (n)100000 10751 9628:12018 1:11663 8255 0:76784200000 20154 18034:36084 1:11753 15455 0:76685300000 29139 26084:99959 1:11708 22263 0:76403400000 37935 33920:92844 1:11834 28985 0:76407500000 46514 41604:59464 1:11800 35438 0:76188600000 55013 49171:13232 1:11881 41860 0:76091700000 63445 56642:96762 1:12009 48107 0:75825800000 71716 64035:60199 1:11994 54362 0:75802900000 79992 71360:35885 1:12096 60680 0:758581000000 88118 78625:85310 1:12073 66776 0:75780
TABLE 2. Values of P (n) and H(n).value of 1=(2 � (d=2)) is only 1=3 because d � 5(mod 8). We see, then, that the best possible valuefor B(d) as a function of D is 2pD. As it is di�cultto guarantee a priori that 3 j � we are most easilyable to say that we will get a maximal value of B(d)when D is a prime congruent to 1 (mod 8).Following Shanks [1973], we de�ne the Upper Lit-tlewood Index, or ULI, asULI = L (1; �d) =(2e
 log log d) = 1 + o(1)for d � 1 (mod 4). Then R = pd (e
 log log d)ULI,and for prime values of D = M2 + M + 1 � 1(mod 8) such that h(D) = 1, we get

�(D) � 2pDe
 log logD(ULI)1=2 logD= 4e
pD log logDlog D(ULI):
Thus, the ULI here provides a measure of just howclose �(D) can get to the likely maximum given in(4{3). We know (see Joshi [1970]) that if D is aprime and D � 1 (mod 8), then ULI > (1��)=2in�nitely often for any positive � < 1. Thus, itwould certainly seem that there is an in�nitude ofvalues of D such that

�(D)� pD log logDlogD ; (4–4)

but a proof of this requires us to prove, among otherthings, the existence of an in�nitude of primes D ofthe formM 2+M+1 such that h(D) = 1. At presentthis seems to be well beyond the boundaries of whatmodern number theory can achieve.

5. SOME EXPERIMENTAL RESULTSWhile Theorem 3.2 provides the best result we cur-rently have concerning the growth of �(D), the re-marks in the previous section suggest that it is farfrom the best possible result. In this section wewill provide some numerical evidence in support of(4{4). We will do this by attempting to �nd valuesof D for which �(D) is as large as it can be. To seehow close we can get �(D) to its maximum (underthe ERH) (4{3), by (4{2) we now need to maximizeE(D) = (ULI) log logD. In general, this is a verydi�cult problem, but the method used in [Jacob-son et al. 1995] to obtain large ULI values can beadapted for use here. We should selectM such that�M 2 +M + 1q � = 1 (5–1)

for as many of the primes q, particularly the smallvalues of q, as possible. We also will need M 2 +M+1 to be a prime and 8 jM(M+1) orM � 0;�1(mod 8). To this end we now de�ne Mp; Np and Hpfor a given prime p. Consider the set of positiveintegers S = fMg such that
1. M � 0;�1 (mod 8)
2. ((M 2 +M + 1) =q) = 1 for all odd primes q � p.We de�ne Mp to be the least element in S, Np to bethe least prime in S and Hp to be the least prime inS such that h(H2p +Hp + 1) = 1.Since for any prime q, we havep�1Xx=0�x2 + x+ 1q � = �1;
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it is easy to see that when q > 3 there are exactly(q � (�3=q)� 2) =2 values of x modulo q such that((x2 + x+ 1)=q) = 1. Thus, if we putQ = 8Yq�p q;where the product is taken over the odd primes, thenthe number of elements of S which are less than orequal to Q is given by
4 pYq>3 q � (�3=q)� 22 :

If we assume that these values are more-or-less equi-distributed, we get
T (n) � �16 pYq>3 q � (�3=q)� 22q �n;

where T (n) is the number of values of S which areless than or equal to n. Furthermore, if we referagain to Hardy and Littlewood's conjecture F, wewould expect
Q(n) � 14C(�3) pYq>3 (q � 2� (�3=q))2 (q � 1� (�3=q))L(n);where Q(n) is the number of values of x 2 S lessthan or equal to n such that x2 + x + 1 is a prime.Thus, to �nd Mp and Np, for even modest values ofp, we would expect to have to search through manypositive integer values. This is a task that can bereadily accomplished by using a numerical sievingdevice.We made use of the MSSU [Lukes et al. 1995;1996] to �nd values for Mp, Np and Hp for all p �233. The entire computation took just over 12 days.Table 3 records our results.For all the values of D = H2p +Hp + 1 in Table 3we certainly have

�(D) > pD log logDlogD : (5–2)

We next attempted to �nd quite large values of Dsuch that (5{2) holds. However, as the MSSU slowsdown considerably for values of p in excess of 200,we made use of a strategy originally employed by

Lehmer [1928, pp. 222{223]. We considered Dp =M 2 +M + 1, where M = BpX +Ap,Bp = pYq�191 qand �A2p +Ap + 1q � = 1for all primes q (191 � q � p). As the Bp and Apvalues for any given p are �xed, we could use theMSSU to �nd values of X such that BpX + Ap �0;�1 (mod 8) and�(BpX +Ap)2 + (BpX +Ap) + 1q � = 1for all odd primes q � 181. As the sieve will �ndsuch values of X quite quickly, we could a�ord togenerate quite a lot of them in order to search forprime values of Dp such that h(Dp) = 1. For exam-ple, when p = 233 (so Ap = 359) we generated 50values of X, but for only 2 of these values is Dp aprime and h(Dp) = 1 for only one of those.The table below summarizes the results of ourcomputations. The values of X here are such thatDp is prime and h(Dp) = 1; the symbol np denotesthe number of decimal digits of Dp.p Ap X np ULI211 6 1930606338268662 54 0:55800898223 6 477020716317042 58 0:57045097227 6 698133317203686 63 0:56122233229 6 832043694532638 67 0:53703765233 359 3034198402422072 73 0:54638899239 1542 18161128276718634 80 0:55182559We made use of the technique of [Jacobson 1999]to evaluate h(Dp) for these large values of Dp. Thetable's last entry concerns a very large value of Dp;we provide more details concerning this number atthe top of page 639.The computation of R and h(Dp) for the six Dpvalues in the preceding table was carried out on a296 MHz SUN UltraSPARC-II processor with 1024MB of main memory using C++ routines which willbe publicly available in release 1.4 of the LiDIA com-puter algebra library [LiDIA 1997]. The CPU timerequired for these computations ranged from justover 6 minutes for the 54-digit D211 to about 2:05
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p Mp Np Hp ULI(Hp)3 8 8 (0) 8 (0) 0:345928305 15 15 (0) 15 (0) 0:398891027 104 119 (1) 279 (3) 0:4768700711 104 119 (1) 560 (6) 0:5521710513 104 560 (2) 560 (2) 0:5521710517 560 560 (0) 560 (0) 0:5521710519 1560 1560 (0) 1560 (0) 0:5611282223 1560 1560 (0) 1560 (0) 0:5611282229 3464 3464 (0) 3464 (0) 0:5551510231 19095 66639 (3) 157415 (10) 0:6077338937 61424 66639 (1) 157415 (5) 0:6077338941 61424 178359 (4) 178359 (4) 0:5695197943 71784 178359 (1) 178359 (1) 0:5695197947 71784 957144 (4) 8756559 (29) 0:5977909353 228255 957144 (2) 10595024 (22) 0:6025043359 228255 1081080 (1) 10595024 (6) 0:6025043361 1081080 1081080 (0) 28280615 (9) 0:6286234967 1081080 1081080 (0) 28280615 (3) 0:6286234971 23735999 28280615 (1) 28280615 (1) 0:6286234973 28280615 28280615 (0) 28280615 (0) 0:6286234979 28280615 28280615 (0) 28280615 (0) 0:6286234983 28280615 28280615 (0) 28280615 (0) 0:6286234989 28280615 28280615 (0) 28280615 (0) 0:6286234997 39529280 39529280 (0) 39529280 (0) 0:63935724101 3020217759 4328058944 (3) 4328058944 (3) 0:66479727103 3020217759 4328058944 (2) 4328058944 (2) 0:66479727107 3020217759 4328058944 (2) 4328058944 (2) 0:66479727109 3020217759 4328058944 (2) 4328058944 (2) 0:66479727113 4328058944 4328058944 (0) 4328058944 (0) 0:66479727127 27559966224 211959196344 (6) 211959196344 (6) 0:58832886131 86936942519 1956241743015 (34) 1956241743015 (34) 0:61535648137 86936942519 1956241743015 (12) 1956241743015 (12) 0:61535648139 86936942519 1956241743015 (6) 1956241743015 (6) 0:61535648149 86936942519 3101501785640 (8) 3101501785640 (8) 0:64232546151 86936942519 4640009799215 (7) 4640009799215 (7) 0:63013461157 1772215317599 8436198739695 (5) 8436198739695 (5) 0:63258650163 1772215317599 8436198739695 (5) 8436198739695 (5) 0:63258650167 3044985940815 42043856056104 (4) 42043856056104 (4) 0:59866969173 3044985940815 66221372694959 (4) 72449567456784 (5) 0:63189010179 3044985940815 66221372694959 (2) 79095695036280 (3) 0:60373327181 3044985940815 79095695036280 (1) 79095695036280 (1) 0:60373327191 178466469858039 336161276892959 (2) 336161276892959 (2) 0:62104302193 286833996987264 336161276892959 (1) 336161276892959 (1) 0:62104302197 286833996987264 336161276892959 (1) 336161276892959 (1) 0:62104302199 336161276892959 336161276892959 (0) 336161276892959 (0) 0:62104302211 2679591249464415 11730619043063480 (4) 11730619043063480 (4) 0:64636237223 2679591249464415 11730619043063480 (1) 11730619043063480 (1) 0:64636237227 11730619043063480 11730619043063480 (0) 11730619043063480 (0) 0:64636237229 11730619043063480 11730619043063480 (0) 11730619043063480 (0) 0:64636237233 11730619043063480 11730619043063480 (0) 11730619043063480 (0) 0:64636237
TABLE 3. Mp, Np, and Hp values for p � 233. The parentheses contain the number of values of M (� Mp)satisfying conditions 1 and 2 following Equation (5{1) that must be found before we get Np or Hp.
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D239 = 12779403100260586715025492824657916044067403863724697039719777303886059655053681R = 18287108921995753667199230265771142676945:486446669L(1; �) = 10:23103953006555� (D239) = 398551394858929682817618914464379104488:73182644883Quantities relative to D239.days for the 80-digit D239. In order to guaranteethe correctness of our results under the ERH, wealso performed the veri�cation described in [Jacob-son 1999, Chapter 3] for the four smallest Dp values.The algorithm used to compute the regulator as-sumes that a certain �nite set of prime ideals calledthe factor base contains a complete generating sys-tem of the class group. A theorem of Bach [1990]gives an upper bound on the norms of the prime ide-als which form such a generating system. Thus, toverify that the factor base used contains a generat-ing system, we need to show that every prime idealless than Bach's bound but not in the factor base isequivalent to some power-product of prime ideals inthe factor base.Unfortunately, this computation currently appearsto be infeasible for our largest two discriminants.In order to be able to compute the regulators, wewere forced to use much smaller factor bases thanrequired by Bach's theorem, and as a result therewere too many prime ideals which had to be ver-i�ed. Hence, we proceeded as follows. For bothdiscriminants, every ideal in the factor base usedwas principal since the class number computed was1. If these factor bases did not contain completegenerating systems, then by Bach's theorem therewould have to be prime ideals with norm less thanBach's bound but not in the factor bases which werenot principal and the actual class number would begreater than 1. Thus, if we run the algorithm againusing a larger factor base which is guaranteed byBach's theorem to contain a generating system, andwe still get class number 1, we can conclude that1 must be the actual class number under the ERH.The di�culty of the linear algebra prevents us fromcomputing the class number and regulator simulta-neously using such large factor bases, but for thepurposes of veri�cation we can simply use the reg-ulator computed using the smaller factor base. Thelinear algebra required to compute only the class

number is much simpler than that required to si-multaneously compute R, and in particular is man-ageable even with these larger factor base sizes. Inorder to verify the computation for D233 we neededto use a factor base containing 5800 prime ideals andfor D239 we needed 6900. The CPU time requiredwas about 9 hours for D233 and just under 1:4 daysfor D239.Thus, we see from the data above that it is possi-ble to �nd values of �(D) satisfying (5{2), even forquite large values of D. The mystery here resides inhow to prove that (5{2) is true in�nitely often.
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