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Let D be a positive integer such that D and D—1 are not per-
fect squares; denote by Xq, Yo, X;, Y; the least positive inte-
gers such that X3 — (D—1)Y3 = 1 and X? — DY? = 1; and put
p(D) = log X;/log Xog. We prove here that p(D) can be arbitrar-
ily large. Indeed, we exhibit an infinite family of values of D
for which p(D) > D'®/log D. We also provide some heuristic
reasoning which suggests that there exists an infinitude of val-
ues of D for which p(D) 3> /D loglog D/ log D, and that this is
the best possible result under the Extended Riemann Hypothe-
sis. Finally, we present some numerical evidence in support of
this heuristic.

1. INTRODUCTION

The very entertaining book [Roberts 1992], on the
properties of particular integers, discusses on pp.
260—263 the two Pellian equations

z? —1620y> =1 and z° — 1621y* =1,

as had been done earlier in [Carmichael 1959, foot-
note on p. 33] and [Beiler 1964, p. 255]. Roberts
remarks: “The first of these has smallest solution
with £ = 161, y = 4 and the second has smallest so-
lution with x of 76 digits! ... Is it mysterious that
neighboring integers can act so very differently?”
Let D—1 and D be nonsquare positive integers, let

X? —(D-1)Y? =1
have minimal solution Xy, Yy € Z with
Xo+VD-1Y, > 1,
and let
X?-DYy*=1
have minimal solution X, Y; € Z with

X, +VDY;, > 1.

In view of the observation quoted above, it seems
appropriate to define p(D) = log X;/log X, and
(© A K Peters, Ltd.
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ask: For what values of D might we expect p(D)
to be large, and just how large, as a function of D,
could p(D) become? For example, if D = 1621, we
find that p(D) = 34.35, but if D = 118681, we get

p(D) = 633.84.
We first note that if
X?*-DY*=1 (1-1)
and X + /DY > 1, then
0<X—vVDY = (X +VDY)™*

hence, 2X = X++v/DY +X /DY > 1,and X > 0.
Also, 2v/DY = X ++/DY — (X —v/DY) > 0. Since

2X:X+\/5Y<l+m),

we get

log X +log2 =log(X + \/EY)

1
+1 1+ —F.
Og( (X+VﬁYV)
If S =log(X + VDY) > (log D)/2, then

S —log2+ 1/\/5> S —log2+e %
>log X > 5 —log2;
thus
log X =~ 5 —log2,

particularly when D (or S) is large. Thus, if D is
large, we can replace log X by log(X ++/ DY) —log 2
in p(D); and, if we define £(D) to be the least value
of X +vV/DY (> 1), where X,Y € Z and X,Y satisfy
(1-1), then

loge(D)

pLD) ~ loge(D—-1)

We will show that p(D) can become arbitrarily
large; indeed, there exists an infinite family of val-
ues of D such that p(D) > DV¢/logD. How-
ever, this result, as we shall indicate later, seems
to be far from the truth concerning how large p(D)
can become as a function of D. In fact, under
a number of plausible hypotheses, we suggest that
there exists an infinitude of values of D for which
p(D) > +/Dloglog D/log D; and that under the
extended Riemann hypothesis, this is the best re-
sult we could expect. Finally, we will provide some
numerical evidence to support this heuristic.

2. THE SIZE RATIO CAN BE ARBITRARILY LARGE

In order to make p(D) as large as possible, we need
g(D) to be large and €(D—1) to be small. We can
guarantee the latter condition by insisting that D—1
be of a certain Richaud-Degert type; in this case
D—1 = M?*+m, where m | 2M. We have (see [Mollin
1996, Section 3.2], for example)

((D-1) = (M+\m/D—1) ‘

Also, Xo < 2M?/m+1 < D when m > 1. The next
step is to attempt to make (D) large. Yamomoto
[1971] showed that the form D = (p"q+p+1)*>—4p
where p, g are primes such that p < g hasloge(D) >
(log v/D)?; unfortunately, D—1 is not of Richaud-
Degert type here. However, it is easy to modify
Yamomoto’s form to

n __ 4 2
D:(iRT 4T+ ) + .

If we insist only that r, R be odd, » > 1, Rr"~1 =1
(mod 4), and R > 3r, then it is easy to produce the
first few partial quotients in the simple continued
fraction expansion of VD.

We will use (qo, q1, - - - , g») to denote the continued

2-1)

fraction
qo + 1
1
Q1+
1
g2 + 71
oL
dn
As is usual, we put Py =0, Qo = 1, ¢o = |v/D] and
define
z+1 QZQ'L - l’
Qiv1= (D ‘Pzz-&-l)/Q“
Gis1 = |(Pis1 + VD) / Q1]
for i =0,1,2,.... Then

\/5 = <q07 q1,92,- - - 7qn7170n>7
where 6,, = (P,++v/D)/Q,, is a means of expressing

the simple continued fraction expansion of v/D. We
also mention that at some point we must find that
either P, = P,y or Qs = Q,.1; in either event we
get (see [Stephens and Williams 1988], for example)

(HP+J3

(2-2)
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for t =r or s.

It is easy to see that for D given by (2-1) we
have go = $(Rr™ — r +4). We can also establish by
induction that for £k =0,1,2,...,n — 1 we have

Pyjy = (R — 2r" 41 4 4),

Qsk+1 = rt

QBr+1 = %(an_k_l —1),

P o = i(Rr” —r—4),

Q32 =" "R,

q3k+2 = %(THI - 1),

Pyjy3 = 3(Rr* — 2Rr" * ' 4 r 4+ 4),
Q3ri3 = i(RTn — " TRIR k2 e 1 g,
Q3r+3 = 2.

Since no two consecutive P or ) values are equal for
0 <k <n-—1, we find from (2-2) that

e(D) > ;ﬁ ((MMR Dl Gt 1)>2. (2-3)

2
=0

Since
(L(Rr"—r+4)+1)’ =D = L(L(2Rr"—2r+8)+1) —r
= ;(Rr"—5r+5) > 0
for n > 1, we get

VD < X(Rr™ — 1+ 6). (2-4)

Also, since r > 3, we get

rFtl > 2 4 (0<k<n-—1).

Hence,
3rntl —grn Tk > opktl
and
R(r™ — 2r" k1) > 3pntt — gpnk > 2pktL
From this we see that

Rr™ > 2rn k-1 R 4 opk+t

and
Rr* 47> 2r" P 1R 4 opktl 4 4,

It follows that

2(Rr" — "R — T L 1) > Rt —r + 6

and
(rm=*=1R—1)(r**1-1)

an 77,n—k—1R7Tk+1 ’I‘ 1
2 B 2

Z Rr ;7""‘6 > \/5,

by (2-4). By (2-3) we get
(D) > (VD)™ = D".

If we put » =5 (mod 8) and select n to be even,
then 7 = 1 (mod 2(r — 1)). Furthermore, if R is
selected such that R = r — 4 (mod 2(r — 1)), then
2r —2|r"R—r+4 and

loge(D) — log 2

D _ %o

pD) > log X, -

Thus, p(D) can be arbitrarily large for an infinite

number of values of D. We have therefore shown

that there exists an infinitude of values of D such
that p(D) > log D.

3. SOME FURTHER RESULTS ON THE SIZE RATIO

We say that any positive nonsquare integer d such
that d = 0,1 (mod 4) is a quadratic discriminant.
If o, € X = Q(v/d), we let [a, 5] denote the Z-
module {ax + By | z,y € Z}. We define the order
Qg4 of the real quadratic field X by Oy = [1,wq],

where
Vd/2 when 4 | d,
Wy =
(vVd+1)/2 whend=1 (mod 4) .
Here d is the discriminant of O4, and if d = dof?,
where dj is the discriminant of X, then f is the con-
ductor of O4 and dy is the fundamental discriminant
belonging to d. We denote the fundamental unit of
O4 by eq4(> 1). If, for any nonsquare D > 0, we put
g {D when D = 1,0 (mod 4)
~ 14D when D = 2,3 (mod 4),
then

3-1)

e(D) =€}

for some positive integer v.

We can improve upon (2-5) by modifying slightly
the proof of Yamomoto’s Theorem 3.1 to produce
the following theorem.

Theorem 3.1. Let r;, for i = 1,2,...,k, be positive
integers which are relatively prime in pairs. If there
exists an infinitude of real quadratic fields K such
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that each r; can be decomposed in X into the prod-
uct of two principal ideals v; and t; and each rational
prime divisor of r; can be decomposed into the prod-
uct of two distinct prime ideals, then

loge > (log \/%)Hl,

where dg and € are respectively the discriminant and
fundamental unit of X.

Since, for our values of D given by (2-1), we have
Q1 =7, Q3,1 = R, we see that if (r,R) = 1
and (R,D) = 1, we can use Yamomoto’s reason-
ing to show that the conditions of Theorem 3.1 can
be fulfilled for an infinitude of fields K = Q(v/D),
where D is given by (2-1) with r 5 (mod 8),
(r(r+4),R) =1, R > 3r >0, R =r —4 mod
(2(r — 1)) and 2|n. Since e(D) = ¥ for some posi-
tive integer v, we must have

p(D) > (log D)’

for such values of D.

Halter-Koch [1989] extended Yamomoto’s Theo-
rem 3.1 to show that there exists an infinite family
of real quadratic fields for which loge > (log \/d_0)4;
thus, one might expect to produce a better result
than (3-2). Unfortunately, a subtle error in the
proof of his Main Theorem in [Halter-Koch 1989,
Section 3] invalidates his result. In order to get a
better result than (3-2), we proceed in another di-
rection.

We consider £(Dy) and (D), where D = f2D,.
We must have £(D) = (D)™ for some positive in-
teger m. If we put e(Dy) = X + v/DyY, we can
define integers X,,,Y,, by

Xn =+ \/ DOYn = E(Do)n

If (D) = W+ Zv/D = W + fZ+/Ds, we see that m
must be the least positive integer such that f|Y,,.
The problem of determining m can be very difficult
in general. We know that m must divide ®;(Dy),

where
p= (- 5)

pl|f

and (Dy/p) denotes the Kronecker symbol, but this
is often as much as can be said. The problem of
the divisibility of Y, by certain integers was con-
sidered by Lehmer [1928]. If p is any prime divisor
of Dy which does not divide Y;(= Y), then p| Y,

(3-2)

(3-3)

and p [Y; if (i,p) = 1 [Lehmer 1928, Theorem 9].
From this it follows that p* || Y,« and p* /Y; when
1 <i < p* [Lehmer 1928, Theorem 10]. Since {Y,}
is a divisibility sequence, we see that if the square-
free kernel f of f is such that f | Dy and (f,Y;) =1,
then m = f and

loge(D) = floge(Dy). (3-4)
If we put Dy = k?f2 + f, then Dy is of Richaud-
Degert type and

_ 2
M:ﬁkuu%\/ﬁ@

To ensure that e(D—1) is small, we need D—1 =
2Dy = K2 f2f2 4+ f2f —1 to be of Richaud-Degert
type. This will occur if f2f — 1|k2f2f2. We can
guarantee this if we put &k = f2f — 1. In this case
we get f| Do and (Y3, f) =1 when f is odd. In the
simple case where f = p™ and p is an odd prime, we
put

e(Do) =

D, = p2n+2 (p2n+1 . 1)2 +p2n+1
< pn (p2n+2)2 _ p4p6n
We see by (3-4) that
D1/6
loge(D,,) =p"log Dy > p" > TR
Now
(pn+1( 2n+1 )+ /—n 1)
thus
log &(Dy) 1
- DY%/log D,
loge(D,, — 1) > D,/ log D,

and therefore
p(D,) > DY®/log D,.
We have proved the following theorem.

Theorem 3.2, There exists an infinite family of values
of D such that p(D) > D% /log D.

4. MAXIMIZING THE SIZE RATIO

In this section we will attempt to produce some in-
formation on just how large p(D) might become as
a function of D. We will first attempt to find an
upper bound on the size of p(D). We note that the
least possible value of loge(D) = log(X + YD)
must exceed %log D.
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We must now examine the problem of maximizing
X or (D) or g4, where d is the discriminant defined
by (3-1). By the Analytic Class Number Formula
(see [Cohn 1962], for example), we have

2hR = VdL (1, x4),

where R = log ey, h is the class number of O4, and

q 2
=11 () = 7t

is the Euler product representation of L (1, x4). The
product is taken over all primes g, (d/q) is the Kro-
necker symbol, and

£ =TI (;~{a7)

where the product is taken over all the odd primes.
If dy is the fundamental discriminant belonging to
O4, then

(4-1)

h =@ (do)h(do) /u,

where h(d,) is the class number of Q(v/d) =Q(v/dy ),
u is the unit index of Q4 over O4, (g4 = €*, where
£ is the fundamental unit of Q(+/d)), and ®;(dy) is
given by (3-3).

In order to maximize ¢4, we need h = 1; hence,
since u | ®(dp), we need h(dy) =1 and ®4(dy) = u.
Also, since (D) = €Y, we would like to maximize v
as well. If we let ;4 = (T + U+/d)/2, the value of v
can be determined from Table 1, where we use N («)
to denote the norm aa of a € K.

Remark. Whenever 3 | v, we have D =5 (mod 8).

From these remarks it follows that

loge(D) = B(d)E(d), (4-2)

Dmod4 Tmod2 Umod2 N(gq) v
-1 — — 1 1
0 — 0 1 1
0 - 1 - 2
2 - 0 1 1
2 — 1 -1 2
1 0 0 1 1
1 0 0 -1 2
1 1 1 1 3
1 1 1 -1 6

TABLE 1. Values of v such that (D) = .

where B(d) = (\/a/h) (v/(2—d/2)) and
v/(2—-d/2) <2.

By results of Littlewood [1928] and Shanks [1973],
we know that

E(d) < {1+ o0(1)}e"loglogd,

under the extended Riemann hypothesis, or ERH.
Thus, since p(D) = (log e(D)/ log e(D—1)) (140(1)),

we get
4e7v/Dloglog D
D 1 1)).
pD) < ——p (+o(d)

We now investigate the problem of maximizing
p(D). Since Xy = y/(D—1)Y{ + 1, in order to make
p(D) large, we would want Y; to be small. The least
possible value for Yy is 1, but this would mean that
D = X2, which is not permitted. The next possible
candidate for Y} is 2, which means that X, must be
odd. Putting Xy = 2M +1, we get D = M?+ M +1.

We now look at the problem of getting the largest
possible value for B(d)/+/d. If h = 1, then h(dy) =
1. By genus theory this means that dy can only be a
prime, the double of a prime congruent to —1 (mod
4) or the product of two such primes. Thus, a good
strategy to employ to maximize B(d)/v/d would be
to select D such that D is a prime.

For f(z) = 2> + = + 1, put P(n) = #{f(k) |
f(k) prime for k =1,2,...,n}. By Hardy and Lit-
tlewood’s Conjecture F [Fung and Williams 1990],
we expect that

(4-3)

P(n) ~ C(=3)L(n)

" dx
Lim) = 2/1 log f()

C(—3) = 1.12073275 [Shanks 1960].

Also, by the Cohen-Lenstra heuristics [1984], we
would expect that these prime values of f(x) for
which h(f(z)) = 1 should have density of about
0.75446. In Table 2 we provide some results of a
trial run of computing P(n) and H(n) = #{f(k) |
f(k) prime; h(f(k))=1; k=1,2,...,n} for alln <
10%. This lends some numerical support to this ex-
pectation.

We also note that if ¢|dy and ¢ = —1 (mod 4),
then 2 fv unless 4| D. Furthermore, if 3|v, the

where

and



636 Experimental Mathematics, Vol. 9 (2000), No. 4
n P(n) L(n) P(n)/L(n)  H(n)  H(n)/P(n)
100000 10751 9628.12018 1.11663 8255 0.76784
200000 20154 18034.36084 1.11753 15455 0.76685
300000 29139 26084.99959 1.11708 22263 0.76403
400000 37935 33920.92844 1.11834 28985 0.76407
500000 46514 41604.59464 1.11800 35438 0.76188
600000 55013 49171.13232 1.11881 41860 0.76091
700000 63445 56642.96762 1.12009 48107 0.75825
800000 71716 64035.60199 1.11994 54362 0.75802
900000 79992 71360.35885 1.12096 60680 0.75858
1000000 88118 78625.85310 1.12073 66776 0.75780

TABLE 2. Values of P(n) and H(n).

value of 1/(2 — (d/2)) is only 1/3 because d = 5
(mod 8). We see, then, that the best possible value
for B(d) as a function of D is 2v/D. As it is difficult
to guarantee a priori that 3|v we are most easily
able to say that we will get a maximal value of B(d)
when D is a prime congruent to 1 (mod 8).

Following Shanks [1973], we define the Upper Lit-
tlewood Index, or ULI, as

ULI =L (1, x4) /(2¢" loglogd) =1+ o(1)

for d =1 (mod 4). Then R = v/d (¢” loglog d)ULI,
and for prime values of D = M2+ M +1 =1
(mod 8) such that h(D) = 1, we get

o(D) ~ 2v/De” log log D(ULI)
1/2log D
_ 4e7y/Dlog logDD
log

(ULI).

Thus, the ULI here provides a measure of just how
close p(D) can get to the likely maximum given in
(4-3). We know (see Joshi [1970]) that if D is a
prime and D = 1 (mod 8), then ULI > (1-n)/2
infinitely often for any positive n < 1. Thus, it
would certainly seem that there is an infinitude of
values of D such that

v Dloglog D

D

(4-4)
but a proof of this requires us to prove, among other
things, the existence of an infinitude of primes D of
the form M?+ M +1 such that h(D) = 1. At present
this seems to be well beyond the boundaries of what
modern number theory can achieve.

5. SOME EXPERIMENTAL RESULTS

While Theorem 3.2 provides the best result we cur-
rently have concerning the growth of p(D), the re-
marks in the previous section suggest that it is far
from the best possible result. In this section we
will provide some numerical evidence in support of
(4-4). We will do this by attempting to find values
of D for which p(D) is as large as it can be. To see
how close we can get p(D) to its maximum (under
the ERH) (4-3), by (4-2) we now need to maximize
E(D) = (ULI)loglog D. In general, this is a very
difficult problem, but the method used in [Jacob-
son et al. 1995] to obtain large ULI values can be
adapted for use here. We should select M such that

<M2+M+1)_1
q

(5-1)

for as many of the primes ¢, particularly the small
values of g, as possible. We also will need M? +
M +1 to be a prime and 8| M (M +1) or M =0, -1
(mod 8). To this end we now define M,, N, and H,
for a given prime p. Consider the set of positive
integers 8 = {M} such that

1. M =0,—1 (mod 8)
2. (M?4+ M +1)/q) =1 for all odd primes g < p.

We define M, to be the least element in 8, N, to be
the least prime in 8 and H, to be the least prime in
8 such that h(H)+ H,+ 1) = 1.

Since for any prime ¢, we have

§<x2+x+1) _
x=0 q
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it is easy to see that when ¢ > 3 there are exactly
(¢ — (—=3/q) — 2) /2 values of x modulo ¢ such that
((z* + 2 +1)/q) = 1. Thus, if we put

Q=38]]q
q<p

where the product is taken over the odd primes, then
the number of elements of § which are less than or
equal to @ is given by

4Hq

q>3

3/q —2

If we assume that these values are more-or-less equi-
distributed, we get

( Hq— 3/q —2> n,

q>3

where T'(n) is the number of values of § which are
less than or equal to n. Furthermore, if we refer
again to Hardy and Littlewood’s conjecture F, we
would expect

. 7 (¢—2—-(=3/9)
A~ 305 )

L(n),

where Q(n) is the number of values of z € § less
than or equal to n such that 2% + x + 1 is a prime.
Thus, to find M, and N,, for even modest values of
p, we would expect to have to search through many
positive integer values. This is a task that can be
readily accomplished by using a numerical sieving
device.

We made use of the MSSU [Lukes et al. 1995;
1996] to find values for M,, N, and H, for all p <
233. The entire computation took just over 12 days.
Table 3 records our results.

For all the values of D = H} + H, + 1 in Table 3
we certainly have

v Dloglog D

D
p(D) > log D

(5-2)

We next attempted to find quite large values of D
such that (5-2) holds. However, as the MSSU slows
down considerably for values of p in excess of 200,
we made use of a strategy originally employed by

Lehmer [1928, pp. 222-223]. We considered D, =
M?+ M + 1, where M = B, X + A,,

“ 10

¢>191

(A§+A,,+1> .
q

for all primes ¢ (191 < ¢ < p). As the B, and A,
values for any given p are fixed, we could use the
MSSU to find values of X such that B,X + A, =
0,—1 (mod 8) and

C&X+&f

and

+(B,,X+A,,)+1)_1
q

for all odd primes ¢ < 181. As the sieve will find
such values of X quite quickly, we could afford to
generate quite a lot of them in order to search for
prime values of D,, such that h(D,) = 1. For exam-
ple, when p = 233 (so A, = 359) we generated 50
values of X, but for only 2 of these values is D, a
prime and h(D,) = 1 for only one of those.

The table below summarizes the results of our
computations. The values of X here are such that
D, is prime and h(D,) = 1; the symbol n, denotes
the number of decimal digits of D,,.

P Ay X Np ULI
211 6  1930606338268662 54 0.55800898
223 6 477020716317042 58 0.57045097
227 6 698133317203686 63 0.56122233
229 6 832043694532638 67 0.53703765
233 359  3034198402422072 73 0.54638899
239 1542 18161128276718634 80 0.55182559

We made use of the technique of [Jacobson 1999]
to evaluate h(D,) for these large values of D,. The
table’s last entry concerns a very large value of D,;
we provide more details concerning this number at
the top of page 639.

The computation of R and h(D,) for the six D,
values in the preceding table was carried out on a
296 MHz SUN UltraSPARC-II processor with 1024
MB of main memory using C++ routines which will
be publicly available in release 1.4 of the LiDIA com-
puter algebra library [LiDIA 1997]. The CPU time
required for these computations ranged from just
over 6 minutes for the 54-digit D,,; to about 2.05
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p M, Np Hy ULI(Hp)

3 8 8 (0) 8 (0) 0.34592830

5 15 15 (0) 15 (0) 0.39889102

7 104 119 (1) 279 (3) 0.47687007
11 104 119 (1) 560 (6) 0.55217105
13 104 560 (2) 560 (2) 0.55217105
17 560 560 (0) 560 (0) 0.55217105
19 1560 1560 (0) 1560 (0) 0.56112822
23 1560 1560 (0) 1560 (0) 0.56112822
29 3464 3464 (0) 3464 (0) 0.55515102
31 19095 66639 (3) 157415 (10) 0.60773389
37 61424 66639 (1) 157415 (5) 0.60773389
41 61424 178359 (4) 178359 (4) 0.56951979
43 71784 178359 (1) 178359 (1) 0.56951979
47 71784 957144 (4) 8756559 (29) 0.59779093
53 228255 957144 (2) 10595024 (22) 0.60250433
59 228255 1081080 (1) 10595024 (6) 0.60250433
61 1081080 1081080 (0) 28280615 (9) 0.62862349
67 1081080 1081080 (0) 28280615 (3) 0.62862349
71 23735999 28280615 (1) 28280615 (1) 0.62862349
73 28280615 28280615 (0) 28280615 (0) 0.62862349
79 28280615 28280615 (0) 28280615 (0) 0.62862349
83 28280615 28280615 (0) 28280615 (0) 0.62862349
89 28280615 28280615 (0) 28280615 (0) 0.62862349
97 39529280 39529280 (0) 39529280 (0) 0.63935724
101 3020217759 4328058944 (3) 4328058944 (3) 0.66479727
103 3020217759 4328058944 (2) 4328058944 (2) 0.66479727
107 3020217759 4328058944 (2) 4328058944 (2) 0.66479727
109 3020217759 4328058944 (2) 4328058944 (2) 0.66479727
113 4328058944 4328058944 (0) 4328058944 (0) 0.66479727
127 27559966224 211959196344 (6) 211959196344  (6) 0.58832886
131 86936942519 1956241743015 (34) 1956241743015 (34) 0.61535648
137 86936942519 1956241743015 (12) 1956241743015 (12) 0.61535648
139 86936942519 1956241743015 (6) 1956241743015 (6) 0.61535648
149 86936942519 3101501785640 (8) 3101501785640 (8) 0.64232546
151 86936942519 4640009799215 (7) 4640009799215 (7) 0.63013461
157 1772215317599 8436198739695 (5) 8436198739695 (5) 0.63258650
163 1772215317599 8436198739695 (5) 8436198739695 (5) 0.63258650
167 3044985940815 42043856056104 (4) 42043856056104 (4) 0.59866969
173 3044985940815 66221372694959 (4) 72449567456784 (5) 0.63189010
179 3044985940815 66221372694959 (2) 79095695036280 (3) 0.60373327
181 3044985940815 79095695036280 (1) 79095695036280 (1) 0.60373327
191 178466469858039 336161276892959 (2) 336161276892959 (2) 0.62104302
193 286833996987264 336161276892959 (1) 336161276892959 (1) 0.62104302
197 286833996987264 336161276892959 (1) 336161276892959 (1) 0.62104302
199 336161276892959 336161276892959 (0) 336161276892959 (0) 0.62104302
211 2679591249464415 11730619043063480 (4) 11730619043063480 (4) 0.64636237
223 2679591249464415 11730619043063480 (1) 11730619043063480 (1) 0.64636237
227 11730619043063480 11730619043063480 (0) 11730619043063480 (0) 0.64636237
229 11730619043063480 11730619043063480 (0) 11730619043063480 (0) 0.64636237
233 11730619043063480 11730619043063480 (0) 11730619043063480 (0) 0.64636237

TABLE 3. M, N,, and H, values for p < 233. The parentheses contain the number of values of M (> M,)

satisfying conditions 1 and 2 following Equation (5-1) that must be found before we get N, or H,.
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D39 = 12779403100260586715025492824657916044067403863724697039719777303886059655053681
R = 18287108921995753667199230265771142676945.486446669

L(1, x) = 10.23103953006555

p (D239) = 398551394858929682817618914464379104488.73182644883

Quantities relative to Dazg.

days for the 80-digit D,39. In order to guarantee
the correctness of our results under the ERH, we
also performed the verification described in [Jacob-
son 1999, Chapter 3] for the four smallest D,, values.
The algorithm used to compute the regulator as-
sumes that a certain finite set of prime ideals called
the factor base contains a complete generating sys-
tem of the class group. A theorem of Bach [1990]
gives an upper bound on the norms of the prime ide-
als which form such a generating system. Thus, to
verify that the factor base used contains a generat-
ing system, we need to show that every prime ideal
less than Bach’s bound but not in the factor base is
equivalent to some power-product of prime ideals in
the factor base.

Unfortunately, this computation currently appears
to be infeasible for our largest two discriminants.
In order to be able to compute the regulators, we
were forced to use much smaller factor bases than
required by Bach’s theorem, and as a result there
were too many prime ideals which had to be ver-
ified. Hence, we proceeded as follows. For both
discriminants, every ideal in the factor base used
was principal since the class number computed was
1. If these factor bases did not contain complete
generating systems, then by Bach’s theorem there
would have to be prime ideals with norm less than
Bach’s bound but not in the factor bases which were
not principal and the actual class number would be
greater than 1. Thus, if we run the algorithm again
using a larger factor base which is guaranteed by
Bach’s theorem to contain a generating system, and
we still get class number 1, we can conclude that
1 must be the actual class number under the ERH.
The difficulty of the linear algebra prevents us from
computing the class number and regulator simulta-
neously using such large factor bases, but for the
purposes of verification we can simply use the reg-
ulator computed using the smaller factor base. The
linear algebra required to compute only the class

number is much simpler than that required to si-
multaneously compute R, and in particular is man-
ageable even with these larger factor base sizes. In
order to verify the computation for D,33 we needed
to use a factor base containing 5800 prime ideals and
for Dy39 we needed 6900. The CPU time required
was about 9 hours for Dy33 and just under 1.4 days
for Dysg.

Thus, we see from the data above that it is possi-
ble to find values of p(D) satisfying (5-2), even for
quite large values of D. The mystery here resides in
how to prove that (5-2) is true infinitely often.
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