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We consider some more or less classical hypersurfaces in pro-
jective space, known to be birational to a quotient of the unit
ball in the corresponding dimension by an arithmetic subgroup.
We are interested in understanding the intersection of each such
hypersurface with its Hessian from the point of view of arith-
metic groups. In addition to unifying certain results found pre-
viously in the literature, we compute for four of these hypersur-
faces the Hessian as well as its intersection with the hypersur-
face.

INTRODUCTION

An arithmetic quotient Xr = I'\D, where D is a
bounded symmetric domain and I' is an arithmetic
group, is an algebraic object: a fundamental theo-
rem of Baily—Borel states that a special type of au-
tomorphic forms embeds it in projective space, i.e.,
it is quasiprojective, and there is a normal algebraic
projective variety X; (called the Baily—Borel em-
bedding of the Satake compactification) containing
Xr. In special cases there is even such an embedding
Xr C X} c P7, displaying X} as a hypersurface.
Often these hypersurfaces turn out to be very spe-
cial, sometimes even spectacular. In several known
examples, X} has a large automorphism group and
is “exceptionally singular”, meaning it has a large
number of singularities compared with the degree of
X}. For example, the so-called Varchenko bound
gives an upper bound p(d,n—1) on the number of
ordinary double points which a hypersurface of de-
gree d and dimension n—1 can have. For (d, n—1) =
(3,3) and (4,3) (threefolds of degrees 3 and 4, re-
spectively), these numbers are 10 and 45, and this
maximum is achieved by such arithmetic quotients
(these are discussed in Examples 6 and 8 below).
In these two cases, the double points are in fact
just the compactification locus X — Xr, as these
are ball quotients whose boundary components are
zero-dimensional. In this paper we will define a no-
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tion which we call nice modular varieties, a notion
which makes the exhibited features of the examples
discussed below explicit and precise, in the case that
X} is a hypersurface.

1. NICE AND EXCEPTIONAL MODULAR VARIETIES

Let X C P" be a projective hypersurface defined
by the vanishing of the homogeneous polynomial f,
X ={z € P": f(z) = 0}; recall the Hessian matrix
of X, is the matrix

o*f
Hess X :=
> <axiaxj)ij ,

a (n+1) x (n+ 1) matrix, the entries of which are
homogenous polynomials of degree d —2 (where d =
deg(f)). The Hessian variety is

Hess X := {z € P" : det(Hess X)(z) = 0},

and it is again a hypersurface, of degree (n+1)(d—2).
It describes the following geometric properties of X:
the points z € Hess X are those points for which
the polar quadric of x with respect to X is sin-
gular (for precise definitions of the polar quadric,
see [Hunt 1996, Definition B.1.6] and the discussion
there). It follows in particular that the intersection
Hess X N X consists of z € X for which the tangent
hyperplane section X, := T, X N X of X has a sin-
gularity at x worse than an ordinary double point.
This intersection Dx := Hess X N X is a divisor
known classically as the parabolic divisor of X.

The Hessian variety is a covariant of X; an exam-
ple of a contravariant is the dual variety [Hunt 1996,
Appendix B|. Let dx : P — (P™)" be the duality
mapping

(To 1.1 2y) <§—i(m):...:§m{l(x));

the image dx(X) = X" is the dual variety. (More
precisely, take the closure of dx(X°), where X° is
the smooth locus of X.) It follows immediately that
Dx maps under dx to part of the singular locus of
X". For instance, for curves C € P?, the intersec-
tion Do = Hess CNC consists of the set of inflection
points, hence the image under dx has a cusp as in-
dicated in Figure 1. In general however the image
dx(Dx) is no longer a divisor.

The notion we now formulate is based on the
parabolic divisor Dx.

Definition 1.1. Let X C P™ be a projective hypersur-
face in P". We call X a nice modular variety if it
satisfies these conditions:

(i) There is an algebraic subvariety (reducible) D,
which is contained in the parabolic divisor, D C
Dx, such that X — D =T'\D =: Xt is an arith-
metic quotient.

(i) The complement of D in the parabolic divisor,
Dx — D is a “modular subvariety” (this notion
will be defined more precisely in a moment) of
the quotient Xy = X — D.

(iii) The automorphism group Aut(X) acts as “mod-
ular transformations”, i.e., there is another arith-
metic subgroup T, such that T« T is a normal
subgroup and the quotient T'/T 2 Aut(X).

Point (iii) in this definition amounts to requiring
that the quotient

X/ Aut(X) =T\D

is itself a (in general singular) arithmetic quotient.

We now define what we mean by “modular subvari-
ety”. We are assuming that X — D = X = T'\D,
where D is a bounded symmetric domain of dimen-
sion n — 1. This means that there is a Q-group Gy,
such that PGg(R) = Aut(D) (the group is the pro-
jective group of R points), and I' C G¢(Q) is com-
mensurable to Gg(Z). A modular subgroup Hgy C
Gy is a Q-subgroup, such that PHg(R) = Aut(D’)
for a bounded symmetric domain D’; it then fol-
lows that we have an embedding D’ < D. Finally,
we assume that I' N Hp(Q) is an arithmetic group
I in Hg(Q). It then follows that the image in X
of I"\D’ is a (possibly singular) arithmetic subquo-
tient; this is what we will refer to as a modular sub-
variety. Since we are discussing the case here where
Dy is a divisor, hence the modular subvariety should
be a divisor, it follows that the domain D is either
a complex ball B,,_; or the non-compact dual of a
quadric. In these cases it is known that the subdo-
main D’ < D is the fixed point set of an involution
¢ C Aut(D), and the condition that I' N Hop(Q) is
arithmetic is implied by requiring this involution to
lie in the arithmetic group T'.

Since (ii) implies that the Hessian variety contains
modular subvarieties, one can ask whether it itself
is a modular variety. This motivates the following
definition.



Definition 1.2. Let X C P" be a hypersurface, and
assume that (i) of the previous definition holds, i.e.,
X — D = Xr. We call X an ezxceptional modular
variety if in addition Hess X is again an arithmetic
quotient.

In a sense it seems surprising that such varieties ex-
ist at all. However, as we shall see, it turns out
to be common, or even somewhat universal (for hy-
persurfaces). We will give examples of both nice
and exceptional modular varieties, and a number of
these examples turn out to be both.

2. BALL QUOTIENTS

Conditions (ii) and (iii) of the definition of nice mod-
ular varieties are related. Suppose that X is the
compactification of a ball quotient. If X is the Sa-
take compactification, then the locus D consists of
isolated points. Suppose that X is smooth outside
of this locus. Then we can show:

Theorem 2.1. Assume that X is a Satake compact-
ification, and that the isolated singularities D are
rational. Moreover, assume that every component
of Dx contains components of D. Then condition
(iii) in Definition 1.1 implies condition (ii).

Proof. Condition (iii) in the definition implies that
the automorphisms of X can be lifted to automor-
phisms of the ball, i.e., for each v € Aut(X), there is
a?y € Aut(B,_,), such that 4 induces the action of y
on X = Xr. In particular, the element ¥ is a linear
automorphism, and its fixed point set (modulo I' it
has finite order) consists of a linearly embedded sub-
ball. The image of this subball is then in the branch
locus of X — X/ Aut(X). The Hessian is a covari-
ant of X, in other words Aut(Hess X) = Aut(X),
hence the intersection is fixed (not necessarily point-
wise) under the action of Aut(X). Now we invoke
the assumption that D C Dx consists of rational
singularities. In this case, there are elements of fi-
nite order in Aut(X) which fix the components of D.
This is because a Satake compactification of a ball
quotient has singularities at the cusps, which, when
resolved, give rise to abelian varieties (see [Hunt
1996, Section 5.6.2] for a discussion), and the fact
that the singularities are rational implies that the
group has torsion “at the cusps”, i.e., the corre-
sponding parabolic subgroups have torsion. These
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torsion elements fix the singularities of D pointwise.
By assumption D C Dx and every component of
Dx contains a component of D. The corresponding
elements which fix that component of D then also
fix (a neighborhood of) the component of Dx con-
taining it, and hence there are elements fixing all
components of Dy pointwise, as claimed. From this
it follows immediately that Dx consists of modular
subvarieties. 0

3. EXAMPLES

Example 1: The Klein Quartic

Consider the quartic curve
Ky := {xoz’ + 2175 + 2325 = 0} C P°.

As is well-known, this is the compactification of the
modular curve (I'(7)\S;)*, where S; is the upper
half-plane and I'(7) C SL(2,Z) denotes the princi-
pal congruence subgroup, so (i) is satisfied. The
automorphism group is the simple group Gigz =
I'(1)/T(7) of order 168, so (iii) is satisfied. The
Hessian variety is the curve of degree 6 Hess X, =
{z5z, + 232y + 2520 — brlxizs = 0}. The inter-
section Hess K, N K, consists of the 24 inflection
points of the curve. Note that 24 is also the number
of cusps of the modular curve. Under the action of
G16s, there is a single orbit of order 24, and the set
of cusps is one such, hence

Dy, = Hess K, N K, = (D(7T)\S1)* — T(7)\S1,

so the condition (ii) is satisfied (actually, the con-
dition is vacant in this case), and the Klein quartic
K4 is a nice modular variety.

Remark. The complement K, — Dy, is (a connected
component of) the moduli space of elliptic curves
with a full level 7 structure, so we have a moduli
interpretation of this complement.

Example 2: The Fermat Cubic Curve

Consider the Fermat cubic curve &3 := {z3 + =3 +
3y = 0} C P2, It is elliptic, and since it has an
automorphism of order 3, it is the elliptic curve
C/(Z & 0Z), where o = €5 is a primitive third
root of unity. On the other hand, the modular curve
I'(6)\S; is also elliptic, and (fixing a point of order
3 on that elliptic curve as the origin) has an auto-
morphism (fixing the given point of order 3) of order
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3. It follows that F3 = (I'(6)\S;)*. The intersection
of the Hessian (which is zoz,22 = 0) consists of the
nine inflection points on that curve (which are just
the points of order three). The group I'(6) has 12
cusps, and it is easy to see that

(T'(6)\S1)* —I'(6)\S; = 12 2- and 3- torsion points.
Hence, F; is almost, but not quite, a nice modular

variety (D ¢ Dg,).

Example 3: The Cayley Cubic Surface

There is a unique cubic surface in P? with four or-
dinary double points; it is called the Cayley cubic
and can be given by the equation

¢:= {0—3(1'0,.’151,&72,1:3) = O} C P3,

where o3 denotes the elementary symmetric poly-

nomial in the four variables xg,...,z3: TiTox3 +
ToToZs + Tox1X3 + Tori1Te = 0. The four hyper-
planes xo = 0,...,x3 = 0 define the faces of the co-

ordinate tetrahedron, the vertices of which are the
nodes of €. There are 9 lines on €, the six edges
of the coordinate tetrahedron, and three additional
lines. The former six lines are the exceptional P!’s,
viewing € as the blow-up of P? at the six points de-
picted in Figure 1 of [Hunt 1998], the latter three
are the three diagonals which are denoted in that
figure by Noi2s, Noi2s and Nyjo3 (see [Hunt 1996,
Section 4.1.3] for details about and pictures of this
and other cubic surfaces).

It has been shown in [Hunt 1998, Theorem 1.1]
that the Cayley cubic surface is the compactification
of a ball quotient; i.e., if we set D = 4 nodes, then
the condition (i) is satisfied, € — D = I'\B;3. (The
dual variety, the unique quartic surface singular in
three lines which meet at a point, is in fact also
a special case of a Humbert surface on the Siegel
modular variety of level 2 in dimension 3, but we
will not use this.) The Hessian variety of € is the
quartic surface given by the equation {oy(zy : ... :
x3)o3(xg ... wy) —dog(xg ¢ ... x3) = 0} Tt
has 14 double points, 10 of which are the vertices of
the Sylvester polyhedron and the other four at the
four singular points of €. Clearly the intersection of
¢ and its Hessian is given by {03 = 04 = 0}, and
as {04 = 0} is just the coordinate tetrahedron, this
intersection consists of the six lines which are the
edges of that tetrahedron. On the other hand, from

[Hunt 1998, Section 1] we know that the 9 lines on
¢ are modular curves, and condition (ii) is satisfied.

As to condition (iii), the surface is itself a modu-
lar subvariety on a three-dimensional ball quotient
with symmetry group X (the Segre cubic, discussed
below), and the symmetry group of €, ¥, is a sub-
group of this. It is known from [Hunt 1996, Chapter
3] that the quotient of the Segre cubic by X is a ball
quotient, hence it follows that €/%, is a (sub-)ball
quotient, and (iii) is satisfied. Hence, the Cayley
cubic € is a nice modular variety.

Remark. The surface € parameterizes certain abelian
fourfolds with complex multiplication by the Eisen-
stein numbers K =Q(y/—3), and the modular curves
correspond to loci where these fourfolds split, i.e.,
are reducible. Hence we have

the moduli space of irreducible
abelian fourfolds with the men-
tioned complex multiplication

= ¢ — 9 lines.

Q:_DQC

This justifies the notion modular in our nomencla-
ture. A similar remark applies to other examples.

In the remaining examples we will need some more
work to verify the properties.

Example 4: The Hessian of the Clebsch Cubic Surface

The Clebsch cubic surface €, also known as the Cleb-
sch diagonal surface, is given in P* by the equations

5 5
= {Zyi =D =0} cP, G-
i=1 i=1

and since the first equation is linear, this is in fact
a cubic hypersurface in a P>. The automorphism
group of C is the symmetric group on 5 letters (clear
from the defining equation), and as the Hessian va-
riety is a covariant, it also has the same symmetry
group 5. The Hessian is the quartic with equation

Hess C = {0,053 — 04 = 0},

where o; stands for o;(z : ... : x3); it has, as does
any Hessian of a smooth cubic, 10 nodes. Let H :=
Hess C.

Proposition 3.1. H{ is a nice modular variety.
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FIGURE 1. The dual of an inflection point is a cusp.

Proof. (i) H is a ball quotient: It has been shown in
[Hunt 1996, that the Burkhardt quartic B, (this ex-
ample will be discussed in detail below) is the Baily—
Borel embedding of the Satake compactification of
a ball quotient. Also, in [Hunt 1996, Section 5.2.5],
it is shown that 3 is a hyperplane section (the hy-
perplanes are called n-primes there) of B, (there are
216 such hyperplane sections). The automorphism
group of By is the simple group of order 25,920,
and this group reduces to the X5 on these hyper-
plane sections. Unfortunately, there are no elements
of Aut(B,4) which fix these hyperplanes point-wise
(from which one could immediately conclude that
they are subball quotients). Instead, an easy calcu-
lation as in [Hunt 1996, Lemma 5.6.1.4] shows that
they fulfill relative proportionality, from which it fol-
lows that they are subball quotients. More precisely,
letting D C H denote the union of the ten nodes,
we have H — D = T'\B,, and condition (i) is sat-
isfied. Now, from [Hunt 1996, Theorem 5.6.1], B,
is the Satake compactification of the Picard modu-
lar group of level 2, and its automorphism group is
Gas.020 & PU(3,1;0x/20k), where K = Q(y/—3)
denotes the field of Eisenstein numbers. From this
it follows that B,/ Aut(B,) is again a ball quotient,
and from this it follows that the same holds for the
subball quotients H, verifying (iii). Finally we con-
sider condition (ii). The Hessian of H is a surface
of degree 8, and intersects H in a curve of degree
32. We have, using the computer algebra package
Macaulay, calculated this intersection: it consists of
the 10 k-lines of B, [Hunt 1996, 5.2.1, I] lying in the
n-prime whose section with B, is H (these 10 lines
are edges of the Sylvester pentahedron of €), each
counted twice, together with the intersection H N C.
It follows here just as in Theorem 2.1 that this curve
is also a modular subvariety on the ball quotient J.
It now follows that (ii) is also satisfied. O

Example 5: The Clebsch Diagonal Surface

Now that we have established that H is a modular
variety, we can prove the following.

Theorem 3.2. The Clebsch diagonal surface C is an
exceptional modular variety.

Proof. € is a modular variety: this is slightly dif-
ferent from the cases above in that € is a compact
quotient. First, Hirzebruch [1976] has shown that C
is the compactification of the Hilbert modular sur-
face of level 2 and the field Q(+/5). Thus C is modu-
lar. There is yet another interpretation. Recall from
[Hunt 1996, Proposition 4.1.10] that the Clebsch cu-
bic is the result of embedding the blow-up of P? at
the six points which are the vertices and center of
a pentahedron, or what amounts to the same, the
six five-fold points of the icosahedral arrangement,
by the system of cubics through those six points.
It was shown in [Barthel et al. 1987] that there are
two ball quotients which are branched covers of the
plane, branched along the lines of the icosahedral
arrangement. Of these, there is one for which the
threefold points of the arrangement (which are just
the 10 Eckard points of €) are not blown up. This
shows that C is a (compact) ball quotient.

C is exceptional, since by the previous result its
Hessian is modular. O

Remark. This surface also occurs as a hyperplane
section of the Segre cubic, the example considered
next. Since the Segre cubic is itself a ball quotient,
it seems natural that € is also. In this case it would
be a compact quotient on the non-compact quotient
83. This could be shown to be the case if one could
show relative proportionality for €. We sketch what
happens when one tries to do this. The Segre cubic
threefold (the next example) is known to be a ball
quotient, more precisely [Hunt 1996, Theorem 3.2.5]
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it is the Picard modular threefold of level v/—3 for
the field K of Eisenstein numbers. From its equation
(3-2) below, one can see that there are five hyper-
plane sections, given by x; = 0, which are copies
of the Clebsch surface € (cf. (3-1)). The symmetry
group of the Segre cubic 83 is the symmetric group
Y6 on six letters, which acts by permutations of the
x;. Moreover, the symmetry group Xg of 83 consists
of ball automorphisms, i.e.,

Y6 = PU(3,1; 0k /vV—30x),

and as above it follows that 83/ Aut(S;) is again a
ball quotient. Once again, there are no elements of
this symmetry group fixing the hyperplane, so we
can not immediately conclude the intersection with
83 is a subball quotient. To show it is a subball quo-
tient, we must verify relative proportionality for C.
Without going into detail, we sketch this. First, we
need to verify relative proportionality for a torsion-
free quotient, i.e., for a certain cover. In [Hunt 1996]

we have constructed a cover ¥ — B’ which is a
smooth compactification of a ball quotient with a
Zariski open subset cover the complement in 83 of
the ten nodes. We use this cover; let S be one of the
copies of € on 83, and denote also its proper trans-
form on P° by the same symbol. Finally, let T'— §
be the cover given by one of the inverse images in
Y of S. Then for this subvariety of the compactifi-
cation of ball quotient Y, we must verify

AV ) = (2) (D).

(Here we need not use the logarithmic Chern classes,
as the surface does not meet the compactification lo-
cus). To calculate the right-hand side, we must pre-
cisely determine the branch locus of 7' — S. This
is by [Hunt 1996, 4.1.12] the set of 15 lines comple-
mentary to a double six. In terms of the blow up
of P? mentioned above, this means it is branched
precisely over the 15 lines, not over the six excep-
tional P'’s. There is no such example in Hofer’s list.
Thus we start getting suspicious. Note that for each
Eckard point of €, there are three of the branch di-
visors meeting. In other words, T is singular at the
inverse images of those points. This is the reason
that relative proportionality cannot be verified. It
is not clear whether C is a subball quotient.

Example 6: The Segre Cubic Threefold

This variety has been studied in great detail; see in
particular [Hunt 1996, Chapter 3] for this and the
following examples. The Segre cubic is given by the
same equations as the Clebsch diagonal surface in
one dimension higher:

5 5
83:{Z$i22x?:0}CP5. (3-2)
0 0

It is the unique cubic hypersurface in P* which has
10 ordinary double points. It is also the unique ¥4-
invariant cubic hypersurface. As mentioned above,
it was proved in [Hunt 1996, Theorem 3.2.5] that 83
is the Satake compactification of a ball quotient (in
fact even the arithmetic group was identified there),
so setting D = the 10 nodes, the condition (i) is
fulfilled. Furthermore, the Hessian variety of 83 is
just the Nieto quintic N5 (see Example 9 below).
It was shown in [Hunt 1996] that the intersection
83 M N5 consists of the union of the 15 Segre planes
on both of these varieties. In the interpretation of
83 as a ball quotient in [Hunt 1996], these 15 Segre
planes are subball quotients. In fact, 83 is the Pi-
card modular threefold of level /—3 for the field
K of Eisenstein numbers, and each of the 15 Segre
planes is a copy of the Picard modular surface of
level v/—3 for the field K. Furthermore all of the
10 nodes are contained in the union of the 15 Segre
planes (there are four of the nodes in each of the
planes, and six of the planes pass through each node,
forming a (6), configuration). It follows that (ii) is
satisfied. Finally, as mentioned above, the symme-
try group Aut(83) = Xg = PU(3,1;0x/v—30k),
and condition (iii) is immediate for 83. Thus The
Segre cubic is a nice modular variety. This case was
quite easy to verify.

Remark. We have the following moduli interpretation

of the complement of the parabolic divisor on 8j:

the moduli space of irreduci-
ble abelian fourfolds with the
given complex multiplication

See [Hunt 1996, 3.2.6].

83_D83:

Example 7: The Igusa Quartic

Here we are dealing with the variety in P* which
is the dual variety to the Segre cubic; it is a quar-



tic J, which was classically known and studied in
modern times again by Igusa and other mathemati-
cians. The singular locus of this quartic consists of
15 lines, which meet in 15 points. This is the most
singular in the pencil of Y¢-invariant quartics. It is
well-known that this is just the Satake compactifi-
cation of the Siegel modular variety I'(2)\S,, where
S, is the Siegel space of degree 2 (and dimension
3) and I'(2) C Sp(4,Z) is the principal congruence
subgroup of level 2, so condition (i) in the definition
is satisfied. The automorphism group is g, which
follows on the one hand since J, is dual to 83 and
the dual variety is a covariant. But here it arises
from the isomorphism ¢ = PSp(4,F,), hence con-
dition (iii) is satisfied. We remark that from the
fact that J4 is dual to 83, we have some information
on its geometry. For example, the 15 Segre planes
correspond to the 15 singular lines, which meet in
15 points, corresponding to the 15 hyperplane sec-
tions of 83 which cut out three of the 15 Segre planes.
Dual to the 10 nodes of 83 are 10 bitangent surfaces,
i.e., quadrics which are tangent hyperplane sections
of J,. Finally, the Hessian variety has degree 10, and
we have again using Macaulay calculated the inter-
section with J,: it consists of the 10 bitangents, the
quadric surfaces just mentioned, each counted twice.
An equation of the Igusa quartic is

Ja = { (Yowr +Yoya+ 1> —Ysya)> —4yoyn o S v = 0}

and the intersection J, N {yo = 0} is such a double
quadric (bitangent). These bitangents are modular
subvarieties of the Siegel space quotient, hence con-
dition (ii) is satisfied, and the Igusa quartic is a nice
modular variety. Again this example was quite easy
to check.

Remark. It is well-known that under the moduli in-
terpretation of J, as the moduli space of principally
polarized abelian surfaces with a level 2 structure,
the 10 bitangents correspond to those abelian sur-
faces which split as a product. Hence, we have
the (rough) moduli space of
Jo— Dy, = {irreducible abelian surfaces} .
with a level-two structure

Example 8: The Burkhardt Quartic

The Burkhardt quartic is another variety which had
been studied classically. Details from a more mod-
ern point of view can be found in [Hunt 1996, Chap-
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ter 5|. The Burkhardt quartic B, is the unique in-
variant of degree 4 of the simple group G 920 of or-
der 25,920, which has a representation in C° which
is generated by unitary reflections. There are 45
reflections (of order two), defining a set of 45 P*’s
(called Jordan primes) in P*. (These 45 correspond
in a well-defined manner to the 45 tritangents of a
smooth cubic surface, having to do with the fact that
the group of automorphisms of the 27 lines (equiv-
alently, the Galois group of the equation defining
the 27 lines) is the nontrivial extension by Z/2Z of
Gas5.920 (equivalently, the Weyl group of Eg). The
Burkhardt quartic is also the unique quartic hyper-
surface in P* which has 45 nodes, and each of these
nodes is the polar point of one of the 45 Jordan
primes. The equation of the Burkhardt quartic is

By = {Yo—Yo(yi+y5+y3+y3) +3y1yaysys = 0} C P
(3-3)

From the equation one sees that the hyperplane yy =
0 intersects B, in the union of 4 P?’s. There are
in fact 40 such special hyperplanes (called Steiner
primes), and the stabilizer of each is one of the sub-
groups of order 648 in Gy5920. There are also 40
P?’s altogether (called Jacobi planes) cut out by the
Steiner primes, and the stabilizer of each of these
is also a group of order 648, but these two types of
subgroups of order 648 are not conjugate in Gas g20.
It was proved in [Hunt 1996, Theorem 5.6.1] that
B, is the Baily—Borel embedding of a ball quotient
(in fact the group was also determined). More pre-
cisely, letting D denote the union of the 45 nodes, it
holds that B, — D = I'g\B3, and condition (i) is sat-
isfied. The symmetry group as already mentioned
is Ga5,920 = PU(3,1; O /20K ), and as the group I's
is the Picard modular group of level 2 (proved in
the theorem mentioned above), also X/ Aut(X) is
a ball quotient, and (iii) is satisfied. The Hessian
of B, is, as was the case for J4, of degree 10, so its
intersection with B, is of degree 40. Its equation is

32y0y1Y2y3Ys — 8y (y7ys + -+ + y3y1)
— 451 Y2ysya(y; + -+ U3)
+ 0 (6(y7y3y3 + - + Y3y3u3)
— (Y15 + - + ¥3u1))
+ 18y (¥iy3v3y;)
+ y1yaysya(Uiys + - FYSYE — U — o — 00
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From this is it easy to see that for y, = 0, both of
these varieties contain the four planes

ylzo, ey y4:0,

Since the Hessian is a covariant, it has the same
symmetry group, hence contains all 40 planes, and
the union of these 40 planes is of degree 40, and is
consequently the entire intersection. These planes,
called j-planes by Burkhardt, are themselves Picard
modular surface of level 2, by [Hunt 1996, Lemma
5.6.1.1]. It follows that condition (ii) is also fulfilled,
and B, is a nice modular variety.

Remark. We again can give a moduli interpretation of
the complement of the parabolic divisor. The mod-
uli interpretation of the j-planes was determined in
[Hunt 1996, Lemma 5.6.1.1] and consists of those
abelian fourfolds with complex multiplication and
level structure which split, i.e., we have the equality

moduli space of irreducible
principally polarized abelian
fourfolds given by the PEL-
data of [Hunt 1996, 5.7.4]

34_D34 =

In addition, it is known that the Hessian of B, is
also a modular variety. Hence :

Corollary 3.3. B, is both a nice and an exceptional
modular variety.

Proof. We have already shown it to be nice. To
see that it is exceptional, we need to show that the
Hessian is also a modular variety. Recall that the
Burkhardt quartic B, has the peculiar property of
being self-Steinerian, meaning it is its own Steine-
rian variety [Hunt 1996, Section 5.3]. Next, recall
that the Hessian variety is the locus of points x € P4,
such that the polar quadric of z with respect to
B, is singular (generically a cone), and the Steine-
rian is the (closure of the) locus of the vertices of
these cones. It then follows that quite generally the
Steinerian and the Hessian are birational to each
other. Since B, is a modular variety, it immediately
follows that the Hessian is also. Hence, by defini-
tion, B, is exceptional. O

Example 9: The Nieto Quintic

This beautiful hypersurface is, as mentioned above,
just the Hessian of the Segre cubic and is discussed

in detail in [Barth and Nieto 1994; Hunt 1996; Hunt
1998]. Its defining equation is

Ns ={o(zg: ...
c P?,

tx5) =0}
(3-4)

cx5) =os(x0 ...

in terms of the elementary symmetric functions; it is
clearly invariant under ¥4, which it must be as the
Hessian is a covariant and 85 is also invariant. The
singular locus of N5 consists of 20 lines which meet
in 15 points, and in addition the 10 nodes of S;.
It is the most singular quintic in the pencil of -
invariant quintics. On Ny there are five different loci
of interest: three in the singular locus already men-
tioned, consisting of 20 lines, 15 intersection points
and 10 isolated points. There are in addition two
types of P?’s on N5, 15 Segre planes and 15 other
planes.

Proposition 3.4. N5 is a nice modular variety.

Proof. It was proved in [Barth and Nieto 1994] that
N5 is birational to a compactification of a Siegel
space quotient, and in [Hunt 1998] it was shown
that it is birational to the compactification of a ball
quotient. For the second we have: blow up N5 by
blowing up the 10 isolated points (with P* x P! as ex-
ceptional divisors), the 15 intersection points (with
copies of the Cayley cubic surface as exceptional di-
visors), and the 20 lines (with again P! x P! as ex-
ceptional divisors). Let D denote the union of the
20 copies of P! x P! which are the exceptional di-
visors over the 20 singular lines of N5 and the 10
copies of P! x P! which are the exceptional divisors
over the 10 nodes of 83. Then

N5 — D =T'\Bs,

and condition (i) is satisfied. Actually, in [Hunt
1998] it is only proved that this is a ball quotient.
The fact that the group 'y is arithmetic is deeper,
and was shown in [Hunt 1999] as a consequence of
a general criterion for arithmeticity.

The Hessian of N5 has degree 15, and intersects
N5 in a surface of degree 75. We have, again us-
ing Macaulay, checked that this intersection con-
sists of the 15 Segre planes (each once) as well as
the 15 other planes (each with multiplicity 4). In
[Hunt 1998, Section 6] it is verified that each of these
planes is a subball quotient (relative proportionality
for them is verified). Hence (ii) is fulfilled.



We now check (iii), that the automorphism group
can be lifted to automorphisms of the ball. This
follows from the following fact.

Lemma [Hunt 2000, Corollary 5.4]. Let Xt be a com-
pactification of a ball quotient, G a group of sym-
metries acting on Xt and 7 : Xt — Xr a branched
cover with Xt~ a torsion-free ball quotient. If the
branch locus of 7 is G-invariant, then there is a dis-
crete group I, normal inclusions IV <«T'<I"”, and (at
least birationally) X = Xr/G.

Such a covering of (a birational model of) the Nieto
quintic has been constructed in [Hunt 1998]; it is
branched along the union of the the 30 planes, along
the 15 exceptional divisors which are the resolutions
of the 15 intersection points of the 20 lines (each of
these divisors is also a subball quotient), and along
the components of the compactification locus. The
lemma can be applied, and N5/ Aut(Ns) is again
a ball quotient, verifying (iii). This completes the
proof that N5 is a nice modular variety. O

We now get:

Corollary 3.5. The Segre cubic is a nice and an ex-
ceptional modular variety.

Example 10: The Invariant Quintic Fourfold

The beautiful geometry of this variety is discussed
in detail in [Hunt 1996, Chapter 6]. In this section
we only recall the loci we require in the sequel. The
quintic, to be denoted J5 in what follows, has the
equation

Js = {z} — 6301 () — 2Tz (07 (z) — 4o2(2))
— 648 x93 45 = 0}. (3-5)

It is the unique degree 5 invariant of the Weyl group
of Eg, acting on P° as a reflection group; there are 36
reflection hyperplanes in that P°. The singular locus
of J5 consists of 120 lines which meet in 36 points;
the 36 points correspond to the 36 positive roots,
while the 120 lines correspond to the 120 subroot
systems of type A,. So, for example, each of these
lines contains three of the 36 points (A contains
three positive roots). It is easy to desingularize J5:
first blow up P° in the 36 points; this resolves the
singular points on J5 and replaces each with a copy
of the Segre cubic. Then blow up along the proper
transforms of the 120 lines; this replaces each line
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by a divisor isomorphic to (P*)3. We let J5 denote
this resolved fourfold.

From the equation (3-5) one sees that the inter-
section J5 N {z¢ = 0} consists of the union of 5 P?’s
which lie on J5. That hyperplane is one of the 27
hyperplanes defined by primitive weight vectors, so
there are 27 such hyperplane sections. There are
45 such P3’s which lie on Js, and these 27 and 45
are in covariant relation with the 27 lines and 45
tritangents of a cubic surface.

It was shown in [Hunt 2000, Theorem 5.15] that J5
is (W (Es)-equivariantly) birational to the compact-
ification of a four-dimensional arithmetic ball quo-
tient. More precisely, let D denote the union on Js of
the 120 exceptional (P*)3’s. Then J5 — D = I';\B,,
and condition (i) is satisfied. The Hessian variety of
Js has degree 18, hence the intersection with J5 has
degree 90. We have, again using Macaulay, checked
that this intersection consists of the 45 P3’s on Js,
each being counted twice. On 55, we also have the 36
exceptional divisors resolving the triple points in the
proper transform of that intersection. The 45 P3’s,
as well as the 36 exceptional copies of the Segre cubic
over the 36 points, are modular subvarieties of the
ball quotient, which is shown in [Hunt 2000], Theo-
rem 3.3. Hence condition (ii) is satisfied. Finally, in
considering (iii), the question is again as to whether
the automorphisms of Js lift to the ball. They do, as
was proved in [Hunt 2000, Lemma 5.1] (which there
is a corollary of the lemma above). Hence (iii) is
satisfied, and J5 s a nice modular variety.

We formulate these results as a theorem.

Theorem 3.6. 1. The following varieties are examples
of nice modular varieties: the Klein quartic K4,
the Cayley cubic €, the Hessian of the Clebsch
cubic H, the Segre cubic S3, the Igusa quartic Iy,
the Burkhardt quartic B4, the Nieto quintic Ny
and the invariant quintic fourfold Js.

2. The following varieties are examples of excep-
tional modular varieties: The Clebsch cubic C,
the Segre cubic 83 and the Burkhardt quartic B,.

Remark. The notion of Janus-like algebraic varieties
was introduced in [Hunt and Weintraub 1994]. Many
of the varieties discussed above —at least F3, €, S,
J4, By, N5, and C— turn out to be Janus-like [Hunt
and Weintraub 1994; Hunt 1996; Hunt 1998]. We
do not know whether this is coincidental or the no-
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tion of Janus-like and nice modular varieties are re-
lated. Moreover, the dual of the invariant quintic,
a W (Es)-invariant of degree 32, is (almost) a quo-
tient of a type IV domain, in the sense that a twofold
cover of it is such a quotient; hence J5 is (almost)
Janus-like [Freitag and Hunt 1999].
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