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BIAXIAL PHASES OF BENT-CORE LIQUID CRYSTAL POLYMERS

IN SHEAR FLOWS∗

SARTHOK SIRCAR† , JUN LI‡ , AND QI WANG§

Abstract. We develop a kinetic theory of the biaxial phases for the bent-core or V-shaped liquid
crystal polymer solution (VLCPS). The Brownian motion of the biaxial molecules, biaxial molecular
excluded interaction, and the rotary convection are modeled explicitly. Using the hydrodynamic
theory, we study the flow-driven orientational dynamics and the corresponding rheological response
in selected regimes of plane shear flows, strength of intermolecular interaction, and the bent-angle
of the molecule. We identify three steady state biaxial phases and three periodic motions at various
regimes of the shear rate and strength of the intermolecular potential. Phase transition sequences
among the orientational phases and motions are documented with respect to the strength of the
intermolecular potential at fixed bent angles. The effect of the molecular configuration (or the bent-
angle) of the V-shaped molecule on mesoscopic phases and their transition sequences is investigated
as well.

Key words. Kinetic theory, biaxiality, V-shaped/bent-core liquid crystal polymers, shear flows,
orientational dynamics, steady states, periodic motions, rheology.
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1. Introduction

The phase of matter is determined by its fundamental constituents, the molecules,
and their geometric configuration and mutual interactions. In the 1970s, biaxial ne-
matogens in liquid crystals was theoretically predicted to exhibit mesoscopic biaxiality
at equilibrium under certain conditions besides the uniaxial symmetry reported ear-
lier [26, 37, 21]. The theoretical prediction of the biaxial phase of biaxial nematogens
by Freiser [21] was confirmed by computer simulations of biaxial liquid crystals in the
1990s and the early 21st century [2, 6, 10, 5, 30]. It was not until 2004, when several
groups of experimentalists independently discovered/confirmed the biaxial phase us-
ing different biaxial nematogens [27, 1, 28, 32, 16]. In addition to the thermotropic
biaxial liquid crystals discovered recently [27, 1, 28, 32, 16], there are also lyotropic
biaxial liquid crystal systems exhibiting biaxial phases being identified in the past as
well [42, 4, 17].

In the past, research on biaxial liquid crystals and their interactions with ex-
ternal fields was primarily focused either on uniaxial phases of biaxial molecules
[39] or on flow or external field induced biaxial phases of purely uniaxial molecules
[20, 41, 18, 19]. Very few studies addressed the biaxial phases due to the molecular
biaxiality. Leslie and his coworkers [24, 9] extended the well-known Ericksen-Leslie
continuum theory to biaxial liquid crystals, where they derived the theory based on
a single second order tensor. Their focus was to extend the distortional Oseen-Frank
elasticity to inhomogeneous biaxial liquid crystals to study their macroscopic mor-
phology due to the long-range distortional elasticity while neglecting the inherent
molecular elasticity. Straley studied the uniaxial and biaxial phase of biaxial nemato-
gens using a mean-field theory focusing on the phase behavior of biaxial liquid crys-
tals exclusively due to the molecular biaxiality and elasticity [37]. Recently, Virga
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et al. [36, 11, 7, 23] developed a self-consistent mean field theory for thermotropic
biaxial liquid crystals employing two second order, trace-less biaxial tensors that ac-
count for both the intrinsic biaxiality and the induced mesoscopic phase biaxiality
at equilibrium. The focus of the studies was on the phases both uniaxial and biax-
ial exclusively due to the short-range molecular interaction or molecular elasticity.
These models demonstrate that either a probability density function for three Euler
angles or more than one second order tensor order parameters are necessary to fully
describe the rotational orientation of an ensemble of rigid molecules of biaxiality at
the mesoscale.

For bent-core biaxial liquid crystal systems, more new mesoscopic phases are yet
to be experimentally found. However, they have shown some extraordinary promises
in their applications in ultrafast switch technology and new display devices in the
already discovered biaxial liquid crystal materials. Some of this applications involve
processing of the material in flowing conditions. It is therefore important to develop
hydrodynamic theories to understand the material system and genesis for morphology
development in inhomogeneous biaxial liquid crystal flows and the corresponding rhe-
ological consequences. Recently, we extended the work of Straley and Virga et al on
thermodynamic mean-field theories [37, 36] to allow the hydrodynamic coupling be-
tween the biaxial nematogens and small molecule solvent in solutions of ellipsoidal or
brick-shaped biaxial liquid crystal polymers to study shear induced phases, motions,
and phase transitions as well as associated rheological responses of the sheared ne-
matic biaxial liquid crystal polymer system [33, 34]. This paper aims at deriving an
analogous hydrodynamic model to address the issue on how biaxiality at the molec-
ular scale, molecular asymmetry (the bent-core configuration), and their interaction
with small molecule solvent can impact the mesoscopic phase and rheology in sheared
monodomain bent-core biaxial liquid crystal polymers. We model the biaxial molecule
as a rigid V-shaped body immersed in small molecule solvent. Using a kinetic theory
approach, we derive the transport equation for the orientational probability density
(or distribution) function for the biaxial liquid crystal polymer, known as the Smolu-
chowski equation, and the stress constitutive equation to allow a full coupling with the
macroscopic momentum and mass transport. The current model refines our previous
hydrodynamic model for biaxial liquid crystal polymers and provides detailed kinetic
calculations of the phases and rheological responses in shear flows at various model
parameters as well as the varying bent-angle in the molecule [8, 33, 34].

The paper is organized as follows. In section 2, we describe the kinetic theory for
flows of bent-core biaxial liquid crystal polymers and, especially, present the Smolu-
chowski equation for homogenous flow of biaxial liquid crystal polymers, modeled as
V-shaped suspensions in viscous solvent (section 2.1), and derive the associated stress
constitutive equation (section 2.2). In section 3, we describe the Wigner-Galerkin
spectral method developed to solve the Smoluchowski equation numerically. In sec-
tion 4, we report and discuss various aspects of the numerical results in sheared
bent-core biaxial liquid crystal polymers: the presence of the newly discovered time-
periodic motions in addition to the steady-states; the associated nematic order and
the mixed moments or correlation matrices with respect to the orientational distri-

bution function, which are used to describe the mesoscale material structures in fast
motion ESR [29] and NMR [14] experiments . The rheological response of this sheared
liquid crystal system is elucidated therein as well.
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2. Kinetic theory for V-shaped LCPs

In this section, we derive the kinetic theory for the monodomain solution of the
V-shaped liquid crystal polymer in biaxial phases. The elastic stress expression is
derived using a virtual work principle while the viscous stress is calculated using
an energy dissipation method. The elastic and viscous constitutive stress equation
couples the kinetic equation to the transport of the macroscopic mass and momentum
equation to yield the governing system of equations for the VLCP system.

m

n

Fig. 2.1. A schematic V-shaped molecule with bent angle (β∗). The unit vectors (m, n) denote
the molecular axes. n is known as the direction of the bow and m points to the opposite direction
to the arrow.

2.1. Smoluchowski equation. We model the V-shaped LCP molecule by
two rigid massless arms of length a and b, respectively, with a bent angle β∗ shown
in figure 2.1. m and n are two mutually orthogonal unit vectors in the plane spanned
by the arms of the biaxial molecule as shown in figure 2.1. When a = b, m is a unit
vector in the opposite direction of the arrow and n is a unit vector in the direction
of the bow. In this theory, we assume a = b. However, we present some results in
the more general case where a is not necessarily equal to b in the derivation below.
k = m×n is the third unit vector perpendicular to both m and n. The orientation of
the rigid molecule is completely determined by the triad of unit vectors (m,n,k). In
a fixed Cartesian frame (x, y, z), the three unit vectors can be parametrized by three
Euler angles Ω = (α, β, γ):

m = (cosα sinβ, sinαsinβ, cos β)T ,

n = (cosα cosβ cos γ − sinα sin γ, sinα cosβ cos γ + cosα sin γ,− sinβ cos γ)T ,

k = (− cosα cosβ sin γ − sinα cos γ,− sinα cosβ sin γ + cosα cos γ, sinβ sin γ)T ,

(2.1)
where T denotes the transpose of a matrix or a vector.

Let f(Ω, t) be the orientational probability density function (PDF) of the V-
shaped, rigid polymer nematogens (or molecules). The transport of the PDF is
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governed by the Smoluchowski equation in the mesoscale accounting for the con-
figurational space flux due to the Brownian rotation of the molecules, the excluded
volume interaction, and the flow-induced convection. The Smoluchowski equation in
the molecular (or rotating) frame (m,n,k) is given by:

∂

∂t
f + ∇(vf) = L∗Dr · (Lf +

1

kBT
fLU) − L∗ · (gf), (2.2)

where

Dr = Dr0 diag

(

1

2 cos2 β∗
,

3

2 sin2 β∗
,

3

2(3 − 2 sin2 β∗)

)

is the rotational diffusivity (assumed a constant diagonal matrix), 3Dr0

2 sin2 β∗
is the ro-

tational diffusivity of a rigid rod of length 2a, a = b is assumed, kB is the Boltzmann
constant, T is the absolute temperature, g is the complex angular velocity due to the
flow of velocity v given by

g = i[m(∇v : nk)−n(∇v : mk)+
k

1 + 2 cos2 β∗
(sin2 β∗∇v : mn−3 cos2 β∗∇v : nm)],

(2.3)
where the contraction operator is defined in this paper by A : B = tr(A · BT ), ∇v

is the velocity gradient, and L = ix × ∂
∂x

is the angular momentum operator whose
components in the rotating frame are

Lm = i ∂
∂γ
,

Ln = i(cos γ cotβ ∂
∂γ

+ sin γ ∂
∂β

− cos γ
sin β

∂
∂α

),

Lk = i(sin γ cotβ ∂
∂γ

+ cos γ ∂
∂β

+ sin γ
sin β

∂
∂α

).

(2.4)

U is the “biaxial” excluded volume or steric interaction potential given by the gen-
eralized quadratic potential (a linear variant of the straley’s pair-potential depending
on the bent angle β∗ [37])

U = −
3

2
NkBT [ξ0M : mm + γ0(N : mm + M : nn) + λ0N : nn] (2.5)

where M = 〈mm〉 and N = 〈nn〉 are the second moment tensors of m and n with
respect to the pdf respectively, the symbol

〈(•)〉 =

∫

(•)f(Ω)dΩ

denotes the ensemble average with respect to the pdf f , and N is a dimensionless
parameter measuring the strength of the intermolecular potential and proportional
to the concentration of VLCP molecules. The material parameters (ξ0, γ0, λ0) are
linearly related to the parameters (γ, λ) of the Straley’s pair-potential:

ξ0 = 1 + 2γ + λ, γ0 = 2(γ + λ), λ0 = 4λ.

In the V-shaped or bent-core liquid crystal theory, however, these material parameters
are functions of the bent-angle (β∗) according to Teixeira et al. [38]. We briefly
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outline these relations (the details of the expression for the material parameters (γ, λ)
are derived in [38]):

ξ0 = 11
4 + | cosβ∗| + 3

4 | cos 2β∗| − 1
2 | sin(cos−1(sin2 β∗))| − 3| sin(cos−1( 1

2 sin 2β∗))|

γ0 = 5
2 + | cosβ∗| + 3

2 | cos 2β∗| + | sin(cos−1(sin2 β∗))| − 6| sin(cos−1( 1
2 sin 2β∗))|

λ0 = 3(1 + | cos 2β∗| + 2| sin(cos−1(sin2 β∗))| − 4| sin(cos−1( 1
2 sin 2β∗))|).

(2.6)
We note that the potential represents only the second order interaction since we wish
to present only the biaxial phases of these V-shaped liquid crystals. Vector (the first
moment) and higher order (the third moment) interactions, which are also observed
in these liquid crystals [25] and correspond to a symmetry other than the biaxial
D2h symmetry, are neglected and will be considered in a forthcoming paper. The
free energy for the ensemble of the V-shaped molecules in solutions, consisting of the
rotational Brownian motion and the excluded volume interaction, is given by

A[f ] = ν

∫

Ω

[

kBT (lnf − 1) +
U

2

]

fdΩ, (2.7)

where ν is the number density of the VLCP molecules in the system and Ω is the
domain that the VLCP solution occupies.

2.2. Constitutive stresses. The extra elastic stress tensor for the VLCP
system is calculated by an extended virtual work principle [12, 40, 34]. Here, we
present the derived results only. Details can be found in [40, 34]. We denote the flow
vector (g) by

g = K : α1m +K : α2n +K : α3k. (2.8)

The elastic stress tensor can then be expressed in terms of the angular momentum
operator (L) as follows:

ταβ
e = ν〈α∗αβ

1 Lmµ+ α
∗αβ
2 Lnµ+ α

∗αβ
3 Lkµ〉

= ν[−kBT 〈L
∗ · ~ααβ〉 + 〈α∗αβ

1 LmU + α
∗αβ
2 LnU + α

∗αβ
3 LkU〉], (2.9)

where µ = δA
νδf

is the chemical potential of the system, ~ααβ = (ααβ
1 , α

αβ
2 , α

αβ
3 ) is a

third order tensor and L∗ · ~ααβ =
∑

i=m,n,k L
∗
iα

αβ
i . There is also an elastic external

force

Fe = −ν〈∇µ〉. (2.10)

For homogeneous flows, we note that the elastic body force vanishes.
The viscous stress for the VLCPs is given by

τv = τs
v + τV LCP

v , (2.11)

where τs
v = 2ηD is the viscous stress tensor at the zero strain rate and τV LCP

v is the
viscous stress due to solvent and VLCP friction, which follows a model calculation
involving energy dissipation (W ), given by:

W = K : τV LCP
v . (2.12)
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In this calculation, we model the V-shaped molecule as a geometric object consisting
of two joined arms, each of which is made up of a finite number of small beads
of spherical shapes [12]. We note that this V-shaped molecular model used here is
slightly different from the one adopted in the derivation of the Smoluchowski equation
in that the arms here are not coarse-grained into two joined dumbbells of bead-springs.
We derive the stress expression for the general case but present the final result only
for the case where the length of each arm is the same, i.e., a = b. The hydrodynamic
interaction due to the presence of multiple beads is neglected. Under the velocity
gradient K = ∇v, each rod rotates about the center of mass of the rigid V-shaped
body with the angular velocity gv = −ig (given by equation (2.3)). The velocity of
the nth bead (in the kth arm, k=1,2) relative to the fluid suspension is

Vk
n = gv × uk − K · uk, (2.13)

where uk is the distance vector of the nth-bead in the kth arm measured from the
center-of- mass of the system, which is given by

xC.M =
a2 + b2

2(a+ b)
sin(β∗)m +

a− b

2
cos(β∗)n.

The directional vector along each arm is given, in the general case, by

u1,2 = (s−
a2 + b2

2(a+ b)
) sin(β∗)m + (±s−

a− b

2
) cos(β∗)n. (2.14)

Hence,

V1
n = r1[(K : mk)k − K · m] + r2[(K : nk)k − K · n] + K : α3v(r1n − r2m),

V2
n = r1[(K : mk)k − K · m] + r3[(K : nk)k − K · n] + K : α3v(r1n − r3m),

(2.15)
where s is the arclength measured from the origin in figure 1 along either arm
a or b, and α3v = −iα3 is a real second order tensor. We denote r1 = (s −
a2+b2

2(a+b) ) sin(β∗), r2,3 = (±s − a−b
2 ) cos(β∗). (K : αkv) is the kth component of the

angular velocity vector g. We assume that the frictional force acting on each segment
is Fk

n = ζVk
n, where ζ is the friction coefficient. Then, the work done by the frictional

force per unit time and unit volume is:

W = νkBT
∑

n,k〈F
k
n · Vk

n〉 = νkBTζ[
∫ a

0
〈V1

n · V1
n〉ds+

∫ b

0
〈V2

n · V2
n〉ds], (2.16)

where the discrete sum is replaced by a continuous integration along the arms of the
V-shaped rigid body.

In the following, we limit to the case where the arm length of the molecule is
symmetric (i.e., a=b). Using equations (2.12), (2.16), the viscous stress in this case
is given by

τV LCP
v = νkBTζ

a3

6
∇v : [sin2 β∗〈mmmm〉 + 4 cos2 β∗〈nnnn〉 +

sin2 β∗ cos2 β∗

(1 + 2 cos2 β∗)2

(5 cos2 β∗ + 4)〈(mn + nm)(mn + nm)〉]. (2.17)

The total extra stress tensor is then given by

τ = τe + τv. (2.18)



SARTHOK SIRCAR, JUN LI AND QI WANG 703

It couples the Smoluchowski equation for the pdf f to the macroscopic transport of
the momentum

ρ
dv

dt
= ∇ · (−pI + τ) + Fe, (2.19)

where ρ is the density of the VLCP solution and p is the hydrodynamic pressure. The
velocity is subject to the constraint imposed by the incompressibility of the biaxial
liquid crystal system

∇ · v = 0. (2.20)

Equations (2.2), (2.3), (2.9), (2.17)–(2.20) constitute the governing system of equa-
tions for the solution of VLCPs in the kinetic theory.

3. Numerical methods

We next consider the flow-driven nematodynamics of the VLCP monodomain.
For any linear flow, so long as it satisfies the continuity equation, a pressure can be
chosen to satisfy the conservation of the linear momentum. The stress tensor in this
case is a constant, so the only equation that we need to solve is the Smoluchowski
equation. Once the pdf is obtained from solving the Smoluchowski equation, the stress
tensor is calculated from the stress constitutive relations by ensemble averages, which
is constant in the entire monodomain. We employ a Galerkin spectral method based
on the Wigner-function expansion to solve the Smoluchowski equation numerically
[33, 34].

The equations (2.2), (2.9), (2.17) are then discretized in a generalized Fourier
series using the Wigner function expansion. The product of Wigner’s functions (ma-
trices) is carried out by using the Clebsh-Gordon formula [31]. The details of deriva-
tion are presented in [34]. The resulting system of equations is an ODE system for
a truncated set of generalized Fourier coefficients in the expansion. We use a fourth
order Runge-Kutta method to integrate the large ODE system in time and adopt a
time step of ∆t = 10−3 in our calculations.

4. Numerical results and discussions

A typical V-shaped molecule with bent angle β∗ = (π
2 − θ

2 ) is shown in figure
2.1. The Smoluchowski equation (equation (2.2)) is nondimensionalized by the elastic
time scale t0 = 1

Dr0
. For an imposed shear flow field v = (γ̇y, 0, 0) with shear rate γ̇,

the nondimensionalization leads to the non-dimensional shear flow parameter (Peclet
number)

Pe = γ̇Dr0. (4.1)

The dimensionless equation also contains the bent-angle β∗ and the material param-
eters associated with the excluded volume potential: N, ξ0, λ0, γ0, (note that only the
parameter N is independent, ξ0, λ0, γ0 are functions of β∗ and their explicit relation-
ship is given by equation (2.6)). The dimensionless time is scaled as t̃ = t

t0
. The

stress tensors are also nondimensionalized by νkBT :

τ̃e = −〈L∗ · ~ααβ〉 +
1

kBT
[〈α∗αβ

1 LmU + α
∗αβ
2 LnU + α

∗αβ
3 LkU〉],

τ̃v =
2

Re
D +

1

ReV LCP

∇v : [sin2 β∗〈mmmm〉 + 4 cos2 β∗〈nnnn〉 +
sin2 β∗ cos2 β∗

(1 + 2 cos2 β∗)2

(5 cos2 β∗ + 4)〈(mn + nm)(mn + nm)〉], (4.2)
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where an appropriate length scale is used to nondimensionalize the velocity field v =
(Pey, 0, 0), Re = η

νkBTt0
is the Reynolds number for the solvent and ReV LCP =

6
ζa3 is the Reynolds number for the VLCP. For brevity, we will drop the tilde on
dimensionless quantities in the following.

Our numerical studies are carried out in the range of shear strength 0.0 ≤ Pe ≤
14.0, bent angle values (β∗ = 5o, 20o, 40o, 50o, 700), and VLCP dimensionless con-
centrations N = 1.25, 4.9, 5.5, 6.28, 7.84, respectively. We arrange our discussions in
this section as follows. In section 4.1, we describe the various orientational phases
observed in our studies of the selected regime of the shear strength and the bent-angle
values. The variation in the biaxial order and rheology vs. the nematic concentration
N (section 4.2) and vs. the bent-angle (section 4.3) are then discussed in the next two
sections. In section 4.4, we make an attempt to address the biaxial ordering of the
V-shaped liquid crystals from the perspective of the Correlation matrices. Finally, we
provide a brief discussion on how the variation of the bent-angle effects the nature of
the phase transition, using the “free-energy” functional (section 4.5).

The correlation matrices provide additional mesoscopic information of molecular
orientation, correlation, and the phase of these bent-core liquid crystals. In addition
to the autocorrelation matrices 〈mm〉, 〈nn〉, 〈kk〉 = I − 〈mm〉 − 〈nn〉, the other
correlation matrices are given by the mixed moments (〈mn〉, 〈nk〉, 〈km〉). For any
pair of unit vectors ri and rj , the effective Orientational Correlation Functions (OCF)
are defined as

φmn(ri, rj) = rT
i · 〈mn〉 · rj

= 〈(ri · m)(rj · n)〉

= 〈(cos ∠rim)(cos ∠rjn)〉, (4.3)

which is the mean value of the product of the direction cosines of the angle between
the pair of vectors (ri, m) and the pair of vectors (rj ,n). Hence, φmn(ri, rj) gives the
correlation between the projection of m onto the direction ri and n onto the direction
rj . Similarly, its Auto Correlation Function (ACF) (ψmn(ri) = φmm(ri, ri) = ri ·
〈mn〉 · ri) is defined as the correlation between the degree of orientation of m and
that of n in direction ri. In this paper, we restrict our qualitative analysis to vectors
{ri, rj} ∈ {m1,n1,k1}, where (m1,n1,k1) are the major directors of the second
moments (M,N, K), respectively. By a major director of a second moment, say, M,
we mean the eigenvector corresponding to the largest eigenvalue of M. Hence, by
definition, the ACFs and OCFs give measures of the correlational alignment of the
molecular axes (m,n,k) with respect to the mesoscale major directors (m1,n1,k1).

4.1. Orientational phases. In the VLCP system, each molecule is subject
to an elastic torque due to the mean field interaction potential and convective torque
due to the imposed flow field. Different mesoscopic nematic phases arise out of the
balance/imbalance between the two competing torques. These orientational phases
seen in the biaxial LCP system are the steady state phases: (a) Log-Rolling LR, (b)
Flow-Aligning FA, and (c) Out-of-Plane steady state OS; the time periodic phases:
(d) Mixed-Kayaking MK, (e) Fluttering-Kayaking FK and (f) Wagging-Kayaking
WK. Our numerical investigations only capture the chaotic phase CH in the limit
β∗ → 0 (when N=4.9 is held fixed). However, in this limit the bent-core structure of
these molecule ceases to exist and reverts back to the rodlike uniaxial LCPs. Hence,
we conclude that the CH phase is less favored in the phase transition sequence of
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Fig. 4.1. Orientational phases at (N=6.28, β∗ = 20o). (i) Steady phases: (a) Log-Rolling
phase (at Pe = 1.0) (d) Out-of-Plane steady state (at Pe = 7.0) (f) Flow- Aligning phase (at
Pe = 14.0); and (ii) Periodic phases: (b) Mixed-Kayaking (at Pe = 6.0 with Period T = 5.02) (c)
Wagging-Kayaking (at Pe = 8.0, Period T = 4.90) (e) Fluttering- Kayaking (at Pe = 10.0 with
Period T = 4.76)

the biaxial phases of VLCPs as the bent angle increases compared to the case of the
ellipsoidal biaxial LCP [33]. Further, we note that the largest eigenvalue selecting the
major director n1 of N is larger than the one selecting the major director m1 of M for
all the bent-angle values β∗ < 45o. This trend reverses for β∗ ≥ 45o, when suddenly
the major director m1 of M becomes the distinguished VLCP mesoscale director. The
sudden switching of the distinguished direction in the mesoscale ensemble is the major
distinction in the kinetic theory of the shear-induced biaxial phases of the V-shaped
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LCP from the shear induced biaxial phases of ellipsoidal biaxial LCPs [33, 34]. Hence,
the major director for the VLCP system is n1 at β∗ < 45o and m1 at β∗ > 45o. We
denote this major director collectively as m̃ for all bent angles.

The steady Log-Rolling response LR is the one where m̃ aligns along the vorticity
(or in the fixed frame z-) direction. This alignment of m̃ changes to the flow (or in the
vicinity of the fixed frame x-) direction in the steady Flow-Alignment response FA.
The transitional Out-of-plane steady state OS is the one where m̃ points away from
the flow-velocity gradient plane but not in the vorticity direction either. Our numerical
calculations reveal that roles of the eigenvector pairs: (m1,m2) and (n1,n2) reverse
at β∗ = 45o in all the phases including the periodic motions. Below, we describe the
trajectories of these eigenvectors in these motions at an arbitrarily fixed bent-angle
and concentration (say β∗ = 40o, N = 6.28), as follows.

• The mixed-kayaking MK motion is a combination of a tilted kayaking motion
of m1 and a full kayaking motion of n1 [33].

• The periodic fluttering-kayaking FK motion is a combination of wagging
motion of m1 in the flow velocity-gradient plane (reminiscent of a fluttering
motion of a falling leaf) and a completely non-circular (wagging) motion of
n1.

• In the periodic wagging-kayaking WK motion, m1 and m2 undergo a tilted
kayaking motion while osculating along the vorticity axis. The major direrctor
n1 is held stationary while n2 wags along the (y-z) plane.

The second moments M and N in steady states and the principal and secondary
eigenvectors of the second moments M,N in time periodic motions (at the parameter
values: N = 6.28, β∗ = 40o) are shown in figure 4.1, respectively. Again, we emphasize
that the role of M and that of N reverses and so do their eigenvectors when β∗ > 45o

in the above solutions.

4.2. Biaxial phases, order and rheology at β∗ = 20o.

N LR MK WK OS FK FA

1.25 – – – – – (0,14.0)
4.9 (0,4.3) – – (4.3,4.4) – (4.4,14.0)
5.5 (0,4.3) (4.3,4.8) (4.8,5.4) (5.4,5.6) (5.6,8.0) (8.0,14.0)
6.28 (0,4.7) (4.7,5.2) (5.2,5.7) (5.7,5.9) (5.9,8.4) (8.4,14.0)
7.84 (0,5.7) (5.7,6.0) (6.0,6.4) (6.4,6.9) (6.9,8.9) (8.9,14.0)

Table 4.1. The shear strength windows corresponding to different orientational phases at
β∗ = 20o and at the indicated values of N .

Table 4.1 presents the range of shear strength values in which the different orien-
tational phases exist when the bent-angle is fixed at β∗ = 20o and the nematic con-
centration are given at the four specified values. The value of critical shear strength
(Pe∗), at which the system transitions from one orientational phase to another, in-
creases with the dimensionless concentration (N). This is because the elastic repulsive
torque due to the excluded volume potential (which opposes the torque due to the
external flow) becomes stronger with increasing concentration. At low concentration
(N = 4.9), the biaxial excluded volume interaction of these V-shaped molecules, is
not fully developed and hence the phase transitions occur only via the steady states
while the periodic phases are absent. The steady state phases are LR at the small
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Peclet number range and FA in the high Peclet number range. The OS state exists in
a narrow range of Pe at N = 4.9 to connect the LR state on the left to the FA state
on the right. When N = 5.5, 6.28, 7.84, the solution of the Smoluchowski equation
samples all the six phases mentioned previously. The phase transition sequence fol-
lows the pattern LR →MK → WK → OS → FK → FA. The width of the internal
in which OS exists widens as N increases. Figure 4.2 presents the mesoscopic
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Fig. 4.2. Order Parameters: (a) s1; (b) β1; (c) s2; (d) β2 vs the non-dimensional shear
strength (Pe) at the bent-angle β∗ = 20o and for different values of the nematic concentration (N).

biaxial ordering via the order parameter information: (s1, β1, s2, β2) at (β∗ = 20o).
The order parameters are defined by

s1 = ν1 = 〈(m · m1)
2〉. (4.4)

s1 measures the propensity of the axis of the arrow m to orient along the major
director (m1). The order parameter (β1), measures the difference of the nematic order
of the molecular axis m with respect to the other two eigenvectors of M: m2,m3, i.e.

β1 = 〈(m · m2)
2〉 − 〈(m · m3)

2〉. (4.5)

To measure the biaxiality due to the other two distinguished molecular axis n

and k, we label the axis as Z = m1 and identify the eigen-vector corresponding to
the largest eigenvalue of N and K as Y-axis. If this direction is not orthogonal to
the Z-axis, it is then projected onto the plane orthogonal to the Z-axis and relabeled.
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Fig. 4.3. Order parameters at N=1.25 and bent-angle β∗ = 20o

.

The X-axis is chosen to complete this to a right-handed system. The order parameter
(β2) is defined as

β2 =
1

2
(XT · N · X + YT · K · Y − XT · K · X − YT · N · Y)

=
1

2
〈(n · X)2 − (k · X)2 + (k · Y)2 − (n · Y)2〉, (4.6)

which is the net difference between how well the molecular axes n and k are aligned
with the Y and X direction respectively. If the molecular axes n and k are perfectly
aligned with the Y and X directions respectively (or likewise the X and Y directions
respectively), this quantity is 1 (or -1), while a zero value of this parameter shows
that the system does not distinguish between any particular orientation in the plane
orthogonal to Z. Clearly, it is the case when the molecule is uniaxial, where the
probability distribution of n and k is identical. In other words, the choice of n and k

is arbitrary so that β2 must be zero then. Any nonzero value of β2 must be generated
by the departure of the molecular symmetry from uniaxiality. Finally, the order
parameter (s2) gives another measure of intrinsic biaxiality. It is used to measure the
net alignment of the molecular m and n axes along the X and Y direction respectively.

s2 =
1

2
(XT · M · X + YT · N · Y − XT · N · X − YT · M · Y)

=
1

2
〈(m · X)2 − (n · X)2 + (n · Y)2 − (m · Y)2〉. (4.7)

We observe that all the order parameters show a distinct second order discon-
tinuity at the critical shear strength (Pe∗) where the phase transition occurs (refer
to Table 4.1 for the values of Pe∗) and that they are either monotonically increasing
(parameters s1, s2) or decreasing (parameters β1, β2) vs. the non- dimensional shear
strength. In general, they all increase with increasing LCP concentration. In the
periodic phases (MK, WK, FK), the value of these order parameters (at a given
shear strength) is averaged over one period. An increase in the shear-torque triggers
an increase in the mesoscale order along the direction of the major director m1 (repre-
sented by the uniaxial parameters s1, s2), while simultaneously reducing the preferred
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Fig. 4.4. Normalized rheometric functions vs Pe at four selected dimensionless concentration
N and the bent-angle β∗ = 20o: (a). the 1st normal stress difference N1; (b) the 2nd normal stress
difference N2; (c) the 1st normal stress coefficient ψ1; (d) the 2nd normal stress coefficient ψ2; (e)
the shear stress τ12; (f) the apparent viscosity: τapp. N1 decays linearly in the steady OS-phase
at a rate of: -0.05 (N=4.9), -0.2 (N=5.5), -0.35 (N=6.28) and -0.33 (N=7.84) respectively, while
N2 increases at a rate of: 0.005 (N=4.9), 0.02 (N=5.5), 0.03 (N=6.28, 7.84) respectively. All the
stress quantities are normalized with respect to νkBT .

degree of orientation in a plane orthogonal to m1 (represented by the biaxiality pa-
rameter β2). In the transitional OS-phase, the order parameters (s1, s2) rise while the
parameters (β1, β2) decay along straight lines. The slopes of these straight lines of the
respective order parameters in the OS-phase are 0.005 (for s1), 0.005 (for s2), -0.006
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(for β1), and -0.002(for β2), and these slopes remain identical at all the chosen values
of the concentrations. With varying LCP concentration, the order parameters range
from (0.35–0.55) for s1, (0.001–0.07) for β1, (0.52–0.7) for s2, and (0.006–0.24) for β2.
The small order parameter β1 indicates a nearly uniaxial behavior in the molecular
axis m in the mesoscopic ensemble.

In the case of N = 1.25, it seems the only observable phase is the FA phase,
in which the order parameters s1,2 grow rapidly while the the other parameters β1,2

decay. In this state, axis m tends to align in the direction of Z while the secondary
axis n aligns in the direction of Y. The overall nematic orders are low. Figure 4.3
depicts the four order parameters as functions of Pe ∈ [0, 14] at N = 1.25.

Figure 4.4 highlights rheological properties of the V-shaped molecules at β∗ = 20o,
where Re = 100, ReV LCP = 6 are employed in all rheological calculations. Through-
out the entire range of shear-strength studied, the first normal stress difference (N1 =
τ11 − τ22) remains one order of magnitude larger than the second normal stress dif-
ference (N2 = τ22 − τ33). In the low shear (Pe ≤ 4.0) and the high shear regime
(Pe ≥ 12.0), the larger the nematic concentration (N) is, the larger the magnitude of
these stress differences is. Both the normal stress differences change signs (N1 from
positive to negative and vice-versa for N2) in the transitory OS-phase, which occurs
in very narrow band of shear strength. Another change of sign (in both N1 and N2)
occur in the periodic FK-phase. The two other time periodic phases MK,WK does
not seem to induce any sign changes in the normal stress difference in the VLCP
system and the behavior of their time-averaged normal stress difference follows those
of LR and FA state.

At a fixed concentration (N = 5.5, 6.28, 7.84), the first normal stress coefficient
(ψ1 = N1

Pe2 ) rapidly changes sign from positive at low shear (Pe ≤ 5.4) to negative
at intermediate shear (5.4 < Pe ≤ 7.0) before decaying to a small positive value in
the high shear regime: Pe>7.0 (vice-versa for ψ2 = N2

Pe2 ). At N = 4.9, however, ψ1

remains positive (ψ2 remains negative) throughout the entire range of shear strength.
The first and second normal stress difference also takes on opposite signs for the shear
strength investigated. In general, the shear stress (τ12) decreases with increasing
particle concentration (N). At a fixed value of (N), τ12 increases slightly in the LR,

MK, WK phases and then decays marginally in the other phases. The apparent
viscosity (τapp = τ12

Pe
) shows a drastic shear thinning behavior, of the order of 350% to

450%, depending on the strength of the VLCP concentration. The rate of decay of the
apparent viscosity varies with the different orientational phases. In general, the decay
rate of the viscosity is inversely proportional to the concentration. At N = 1.25, it’s
about -0.45 at small Pe ∈ [0, 1].

4.3. Biaxial phases, order and rheology: the bent-angle effect. We
next look into how the bent-angle β∗ affects phases and their transitions at N = 6.28
and N = 1.25, respectively.

The occurrence of the various orientational phases at different bent-angles (β∗)
and at a fixed strength of the excluded volume potential N = 6.28 are tabulated in
Table 4.2. Increasing the value of the bent-angle (β∗) leads to an increase in the
critical shear strength (Pe∗) of the biaxial phase transitions. This phenomena (also
known as the “wing effect”) is understood as follows: increasing the bent angle leads
to a decrease in the length-to-breadth ratio of the bent-core molecules which in turn
leads to a closer alignment of these molecules in a given mono-domain. The effect
is similar to increasing the LCP concentration (N), leading to a higher “particle
density” in a mono-domain; a stronger torque due to the excluded volume, and hence
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Fig. 4.5. Order Parameters: (a) s1, (b) β1, (c) s2, and (d) β2 versus the non-dimensional
shear strength (Pe) at the nematic concentration N = 6.28 and a few selected values of the bent-angle
(β∗).

β∗ LR MK WK OS FK FA

5o – (0,1.1) (1.1,2.0) (2.0,2.8) (2.8,6.2) (6.2,14.0)
20o (0,4.7) (4.7,5.2) (5.2,5.7) (5.7,5.9) (5.9,8.4) (8.4,14.0)
40o (0,6.1) (6.1,6.6) (6.6,7.0) (7.0,7.1) (7.1,8.9) (8.9,14.0)
50o (0,7.2) (7.2,7.5) – – (7.5,9.1) (9.1,14.0)
70o (0,7.6) (7.6,8.1) – – (8.1,9.9) (9.9,14.0)
85o (0,0.9) (0.9,2.3) (2.3,3.6) (3.6,4.3) (4.3,7.3) (7.3,14.0)

Table 4.2. The shear strength windows corresponding to the different orientational phases at
N = 6.28 and at the indicated values of β∗.

a higher value of critical shear is needed to overcome this repulsive torque. As the
bent-angle β∗ is close to 90o, the critical transition values of Pe should go down as
β∗ increases since the wing effect is reversed as β∗ approaches 90o. The introduction
of the asymmetric flow breaks down the rotational symmetry of the VLCP ensemble.
This fact is evident from the observation in table 4.2 that the nature of the phase
transition at β∗ = (40o, 50o) or β∗ = (20o, 70o) (a complementary pair of bent-angles)
is different. At β∗ = 5o, 20o, 40o, the mesoscopic ensemble makes a second order

transition in the phase sequence WK→OS→FK (refer to figure 4.12). At β∗ = 50o,
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Fig. 4.6. Normalized rheometric functions vs non-dimensional shear strength (Pe) at concen-
tration N = 6.28 and a few different values of the bent-angle β∗: (a) the 1st normal stress difference
N1; (b) the 2nd normal stress difference N2; (c) the 1st normal stress coefficient ψ1; (d) the 2nd

normal stress coefficient ψ2; (e) the shear stress τ12; (f) the apparent viscosity: τapp. N1 decays
linearly in the steady OS-phase at a rate of: -0.04 (β∗ = 5o), -0.35 (β∗ = 20o) and -0.9 (β∗ = 40o)
respectively, while N2 increases at a rate of: 0.004 (β∗ = 5o), 0.03 (β∗ = 20o) and 0.09 (β∗ = 40o)
respectively. All the plotted stress quantities are normalized with respect to νkBT .

however, the nature of this phase transition changes into a first order transition at
Pe∗ = 7.5: MK→FK. When the bent-angle is increased to β∗ = 70o, this first order
transition occurs at Pe∗ = 8.1. The nature of the phase transition versus the bent-
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Fig. 4.7. Order Parameters: (a) s1, (b) β1, (c) s2, and (d) β2 versus the non-dimensional
shear strength (Pe) at the nematic concentration N = 1.25 and selected values of the bent-angle
(β∗).

angle will be analyzed in more detail in the next section. The apparent absence of the
LR state at small bent-angle is reminiscent of the rodlike LCPs at intermediate shear
strength. The first order phase transition at large bent-angles also draws analogies
to the ellipsoidal biaxial LCPs under shear [33, 34]. The order parameters versus
the bent-angles at N = 6.28 are presented in figure 4.5. The salient features observed
throughout these graphs are:

• the presence of a second order (continuous but not differentiable) transition
of these order parameters at the critical shear strength (Pe∗),

• order parameters (s1, s2) increase when the shear strength increases and the
bent-angle is held constant, whereas (β1, β2) decrease as Pe increases, and

• increasing the bent-angle marks an increase in the parameters (s1, β1) and
decrease in (s2, β2) decreases.

By definition (s1) is proportional to the eigenvalue of the second moment M, while
β2 measures the “net” projection of the second moments N,K on a specific plane.
A rising value of s1, β1 (and a decaying value of s2, β2) indicates that in general the
eigenvalues M get larger than the eigenvalues of N and M shows more biaxiality at
larger values of β∗. Hence, it is not surprising that the major director of the VLCP
ensemble switches from m1 to n1 at β∗ = 45o. The range of these parameters vary
from (0.39–0.68) for s1, (0.005–0.15) for β1, (0.42–0.66) for s2, and (0.0–0.18) for β2.
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Fig. 4.8. Normalized rheometric functions vs non-dimensional shear strength (Pe) at concen-
tration N = 6.28 and a few different values of the bent-angle β∗: (a) the 1st normal stress difference
N1; (b) the 2nd normal stress difference N2; (c) the 1st normal stress coefficient ψ1; (d) the 2nd

normal stress coefficient ψ2; (e) the shear stress τ12; (f) the apparent viscosity: τapp.

Figure 4.6 depicts the rheological measures of the ensemble of V-shaped molecules
at N = 6.28. Unlike the case of varying nematic concentration, the maximal magni-
tude of the normal stress differences starts to decrease at higher values of the bent-
angle (β∗ > 45o), although N1 still retains one order of magnitude larger than N2

throughout the entire range of the shear strength studied. By changing the molecular
bent-angle we change the major director of the mesoscale ensemble, which leads to a
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Fig. 4.9. Orientational Correlation Functions of (a)〈mn〉, (b)〈nk〉, and (c)〈km〉 at the pa-
rameter values: (N = 4.9, β∗ = 20o). The meso-structure undergoes the transition LR→OS→FA

at Pe∗ = 4.3, 4.4, respectively.

significant change in the rheological properties including the stress differences. The
normal stress coefficient (ψ1) also changes sign from positive to negative in the low
shear-strength region: 0 ≤ Pe ≤ 5.7, and back to positive in the high shear regime:
Pe > 10.0 (vice-versa for ψ2). The shear stress (τ12) decreases with increasing bent-
angle and for a fixed β∗, and it achieves a maximum at the end of the WK-phase
(at β∗ = 5o, 20o, 40o) and at the end of the MK-phase (at β∗ = 50o, 70o). Similar to
the case in section 4.2, the apparent viscosity (τapp) shows shear thinning, at a rate
which decreases with the bent-angle, another ramification of the wing effect.

At N = 1.25, the phase is clearly biaxial for all bent-angles listed. All four order
parameters are positive. The order parameters increase with respect to the bent angle
to 70o and decay afterwards at β∗ = 85o (shown in figure 4.7). The normal stress
difference, shear stress, and viscosity all follow an analogous trend as the bent angle
increases. The slops at all angles fall within [−0.47,−0.41] (figure 4.8), which are
in the approximity of the experimental results for the nematic phases of bent-core
biaxial liquid crystals [3].

4.4. Correlation matrices. In this section, we describe the biaxial order

of the VLCPs using projection of the mixed moments (〈mn〉, 〈nk〉, 〈km〉) onto the
plane spanned by the major directors (m1,n1,k1), or the Orientational Correlation

Functions (OCF) and Auto correlation functions (ACF). The bent-angle is fixed at
β∗ = 20o and the nematic concentration takes on the values N=4.9, 5.5, 6.28, 7.84,
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Fig. 4.10. Orientational Correlation Functions of (a)〈mn〉, (b)〈nk〉, and (c)〈km〉 at
the parameter values: (N = 5.5, β∗ = 20o). The meso-structure undergoes the transition
LR→MK→WK→OS→FK→FA at Pe∗ = 4.3, 4.8, 5.4, 5.6, 8.0, respectively.

respectively.

The OCF matrices at N = 4.9 are presented in figure 4.9. At equilibrium, the
OCF’s are zero (or nearly zero). We note from our numerical experiments that the
highest value of the entries of the mixed moments at Pe = 0.0 is of the order of
10−3. We also notice that when we increase the order of the spectral accuracy from
L0 = 10 to L0 = 20, the highest value of these entries drops to 10−5 [33]. Hence,
we attribute the non-zero value of these entries at Pe = 0.0 due to the numerical
error of the spectral approximation and conclude that in the ideal situation (L0 = ∞)
these will be identically zero. A zero value of the mixed moments suggests that the
second moments (M,N,K) share the same eigen-frame at equilibrium. As the flow
is turned on the OCF’s diverge away from the zero values. The maximum range of
admissible values of the OCFs lie within (-1, 1). At N = 4.9 and Pe = 14.0, however,
the OCFs lie in the range (-0.5,0.5) and hence cover only 50% of the maximum range
of admissible values. This suggests that there is only a partially enhanced order of the
molecular axis (m,n,k) in sheared kinetics. One noticeable feature among the OCFs
is that the ACFs are all negative, 0 > ψmn(m1) > ψmn(n1) > ψmn(k1), the order
of ψnk(m1) and ψnk(n1) switches, ψnk(m1) < ψnk(n1), and it maintains the same
order in the OCFs of (mk).

In figure 4.10, we highlight the OCF’s at N = 5.5. Again, the OCFs diverge away
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Fig. 4.11. Orientational Correlation Functions of (a)〈mn〉, (b)〈nk〉, and (c)〈km〉 at
the parameter values: (N = 7.84, β∗ = 20o). The meso-structure makes the transition
LR→MK→WK→OS→FK→FA at Pe∗ = 5.7, 6.0, 6.4, 6.9, 8.9, respectively.

0 2 4 6 8 10 12 14
−6

−4.5

−3

−1.5

0

1.5

Pe

F
re

e 
en

er
gy

β*  = 40o

β*  = 5o

β*  = 20o

β*  = 50o

β*  = 70o

β*= 85o

Fig. 4.12. Free energy density normalized by νkBT at N=6.28 and six selected bent-angles.
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from their zero (or nearly zero) equilibrium values at Pe = 0.0, to some values at
Pe = 14.0 which lie in the approximate range −0.75 ≤ OCF ≤ 0.5. The orders of the
ACF with respect to mn and mk completely reverse those in the case of N = 4.9 while
the same ordering remains in the ACFs with respect to nk. The case of N = 6.28 is
analogous to the case of N = 5.5. At N = 7.84, however, the ordering in ψkm goes
like ψkm(m1) < ψkm(n1) < ψkm(k1). Figure 4.11 highlights the correlation function
information of the mixed moments at N = 7.84. It shows that the ordering of the
molecular axes (m,n,k) with respect to the major directors (m1,n1,k1) sensitively
depends on the strength of the torque due to the excluded volume potential (which
depends on the strength of the nematic concentration N).

4.5. Phase transition phenomena: a perspective from the free energy

consideration. Figure 4.12 presents the time-averaged “free-energy” density of the
V-shaped molecules at N=6.28 and for bent-angle values β∗ = 5o, 20o, 40o, 50o, 70o,
respectively. The major observations are:

• (a) At β∗ = 50o, the steady OS-phase is absent from the sequence of phase
transitions (refer to table 4.2). The nature of the phase transition changes
from second order (at β∗ = 5o, 20o, 40o) to first order at β∗ = 50o. Clearly,
there exists a critical bent-angle 40o ≤ β∗ ≤ 50o, at which there is a change
in the nature of the phase transition from the 2nd order↔ the 1st order. The
exact value of this critical bent-angle has yet been determined.

• (b) At low shear, the free energy increases with increasing value of the bent-
angles. However, at high shear, this trend reverses. A possible reasoning
by Johnson et. el [22] in the numerical simulations of a cluster of VLCPs
with Gay-Berne potential is as follows: at low shear, a higher value of bent-
angle, lowers the “length-to-breadth” ratio of the V-shaped molecules, which
in turn increases the “packing density” of these molecules in a given mono-
domain. This increase in “packing density” leads to a physically unfavorable
configuration, and hence a higher free-energy density. This is also consistent
with the notion that the strength of the interaction potential increases as
alluded to earlier. A very high value of shear somewhat negates this “packing

frustration”, and aligns these molecules in a configuration which becomes
increasingly favorable with higher bent-angles.

5. Conclusion

We have presented a fully coupled hydrodynamic theory for the solution of bent-
core or V-shaped biaxial liquid crystal polymers. The theory is formulated as a ki-
netic theory, where the dominating excluded volume interaction among the bent-core
molecules and the flow induced kinematics on the bent-core molecules are accounted
for. The extra elastic stress is derived using a virtual work principle while the vis-
cous stress is calculated from an approximate dissipation functional. We developed a
Galerkin-Spectral code to integrate the Smoluchowski equation using a Wigner func-
tion basis in the monodomain. Limited in biaxial phases, we investigated the flow
induced phases at various concentrations and bent-angles of the molecule as well as
shear induced phase transitions. Three truly biaxial steady states and three time
dependent motions/phases are observed in the computations. The chaotic motion,
known in rigid uniaxial liquid crystal polymers is apparently elusive in the bent-core
biaxial liquid crystal polymer at moderate bent-angles, indicating the enhanced bi-
axiality and asymmetry in the bent-core molecular configuration somehow impacts
on the erratic time-dependent motion and makes it unfavorable in the mesoscopic
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ensemble. Rheological studies demonstrate consistent shear shinning behavior in the
mesoscopic system, positive first normal stress difference in the steady Logrolling and
Flow-Aligning phase. The first normal stress and the second normal stress differ-
ence can change signs while going through the transitional Out-of-Plane steady state
and a time-periodic phase. The first normal stress difference can be positive in some
time-periodic phases known as MK and WK as well. At the regime of the weak in-
termolecular potential, the slope of the apparent viscosity predicted by this theory is
in the approximity of the experimental data on a couple of bent-core biaxial liquid
crystals [3].
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