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Abstract. In 1953 G.I. Taylor showed theoretically and experimentally that a passive tracer diffusing
in the presence of laminar pipe flow would experience an enhanced diffusion in the longitudinal

direction beyond the bare molecular diffusivity, κ, in the amount a
2
U

2

192κ
, where a is the pipe radius

and U is the maximum fluid velocity. This behavior is predicted to arise after a transient timescale
a
2

κ
, the diffusive timescale for the tracer to cross the pipe. Typically, κ is very small, so provided a

fairly long time has passed, this is a very large diffusive boost. Before this timescale, the evolution is
expected to be anomalous, meaning the scalar variance does not grow linearly in time. A few attempts
to compute this anomalous growth have been made in the literature for different special cases with
different approximations. Here, we derive an exact approach which provides the scalar variance
evolution valid for all times for channel and pipe flow for the case of vanishing Neumann boundary
conditions. We show how this formula limits to the Taylor regime, and rigorously study the anomalous
regime for a range of initial data. We find that the anomalous timescales and exponents depend
strongly upon the form of the data. For initial data whose transverse variation is a delta function on

the centerline, the anomalous regime emerges after a timescale, ( a
4

κU2 )
1
3 , with variance growing as

t
α, with α=4. In contrast, for the case of uniform data (independent of the transverse variable), the

anomalous timescale is κ

U2 , with exponent α=2, and this result is generalized for generic shear flows
given that the initial condition is not a transverse Dirac delta function. Further, these exact formulas
explicitly show what features the short time approximations which ignore physical boundaries are
able to capture.

Key words. Taylor dispersion, mixing, transport, stochastic and partial differential equations,
multi-scale asymptotics, pipe and channel flow.
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1. Introduction

The enhanced diffusion of a passive scalar is a fundamental problem with a long
history, dating back to the pioneering work of G.I. Taylor [18] who developed the
first theory and experiments for pipe flow, for which the phrase Taylor dispersion
was born. Taylor dispersion is the phenomena by which a shear flow boosts the
longitudinal diffusivity well above the bare molecular diffusivity, κ; on long times
Taylor theoretically predicted and experimentally validated this diffusivity to be κ(1+
U2a2

192κ2 ) for the case of laminar flow in a pipe, where U is the maximum velocity and a
is the pipe radius.

Since Taylor, there has been an intense effort to calculate, the general enhanced
diffusion coefficient for a given fluid flow, which is known to be a complicated function
of the fluid flow structure as well as of the Peclet number, Pe= Ua

κ , where U and a are
typical flow and length scales. Much of this effort has been explored using the multi-
scale asymptotic method of homogenized averaging theory, just one of the many tools
Andy Majda has employed in his many studies in this area of his influential research
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602 SCALAR VARIANCE IN PIPE AND CHANNEL FLOW

program (see the review article at Physics Reports for a thorough overview of modern
turbulent transport) [15].

While Taylor’s work and the turbulent transport campaign have been quite suc-
cessful in predicting the long time transport behavior, and in generally assessing how
the emergence of stochasticity in turbulent fluid flows manifests upon transported
quantities with and without sufficient scale separation [3, 4, 15], much less is gener-
ally known regarding transient dynamics, which may be highly anomalous, and even
less is known with the inclusion of real, solid wall boundary conditions. It is for this
reason that we revisit the cases of channel and pipe flow with the goal of captur-
ing the exact evolution using the correct physical boundary conditions for confined
geometries.

Some transient predictions have been obtained for the case of pipe flow, mainly
using various free space approximations; see Young and Jones for a partial listing of
the known results on Taylor dispersion [20]. By assuming the tracer does not interact
with the pipe wall, Lighthill peered into the anomalous regime, and found that a
transversely uniform distribution of scalar would spread longitudinally with variance
growing quadratically in time [11]. More recently, in an interesting study Latini
and Bernoff generalized the method employed by Lighthill to consider the anomalous
spread of an initial distribution, which is a delta function in the transverse direction,
again employing a free space approximation neglecting the pipe wall boundary [8].
Their results predict an anomalous scaling regime in which the scalar variance grows
with scaling exponents and timescales depending upon the location of the transverse
delta function relative to the centerline of the pipe, while all of these free space
approaches break down when the pipe wall begins to influence the evolution.

A few other studies regarding transient phenomena en route to Taylor’s enhanced
diffusion regimes merit mention. Aris [1] succeeded using a moment method to com-
pute the mean tracer distribution for all times for the special case of an initial tracer
which is uniformly distributed in the transverse direction. Chatwin [6] generalized the
Aris result for transversely uniform initial data to the full variance temporal evolu-
tion, and computed short time asymptotic behavior of this special case. Furthermore
by using a similar formal expansion Chatwin provided the full time behavior for a
some additional forms of smooth initial data. By employing an approach based on
the stochastic differential equations of the underlying passive scalar, Vanden-Broeck
[19] studied a more general class of time varying shear layers. In particular, he re-
derived the variance formula obtained by Chatwin for the case of transversely uniform
initial data. Finally, Smith [17] improved upon Chatwin’s approach employing a for-
mal Gaussian-Hermite ansatz to obtain a general formula for the temporal variance
evolution with transverse delta function initial data. While these studies succeed in
computing formulas for the scalar variance in various setups at various levels of ac-
curacy, the results of our paper, which include the general, mathematically rigorous,
short time asymptotic behavior of the scalar variance, and specifically the predic-
tion of the anomalous timescales for arbitrary initial data, appears to have not been
previously explored.

Our approach employs the stochastic differential equations underlying the passive
scalar equation, with care paid in properly imposing the vanishing Neumann condi-
tions for all time at the pipe wall. For the case of channel and pipe flow, the random
trajectories of these equations may be calculated exactly in closed form. In turn,
statistical moments may be obtained by appealing to two key tools: first, the exact
Green’s function is available for the heat equation in a circular pipe or finite channel
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subject to vanishing Neumann boundary conditions. This provides the single point
probability density function for bounded Brownian motion for these geometries. Sec-
ond, the application of rules of conditional probability provides the means to compute
the necessary higher order temporal correlations needed to explicitly calculate, with
no approximations, the moments needed to construct the scalar variance. This gives
rise to an explicit elementary formula for the evolution of the scalar variance for a
large class of initial distributions (radially symmetric in the case of pipe flow). These
formulas provide rigorous short and long time asymptotics which show the emergence
of anomalous scaling regimes in which the scalar variance is seen to demonstrate non-
linear, algebraic growth and generally shows the universality of the Taylor timescale,
a2/κ. The anomalous scaling regimes (both timescale and exponent) can further be
seen to depend nontrivially on the form of the initial data’s transverse dependence.

The paper is organized as follows: in section 2, we provide a review of the various
long time limits which may be obtained using multi-scale asymptotics for both pipe
and channel flow to compute the effective diffusivities. In section 3, we study the
stochastic differential equation for the case of channel flow, while in section 4, we
turn to the stochastic differential equation for pipe flow. In both cases, we compute
the complete variance valid for all times. The long time limit of the variance is shown
to agree precisely with the multi-scale calculations in all cases. The particularly in-
teresting simplifying case of transversely uniform data for both pipe and channel flow
is examined in detail. In these cases, complete short and long time asymptotic expan-
sions for the variance are computed which show the explicit form of the anomalous
regime. In contrast, the situations with more general initial data are studied for two
different flow geometries which involve delta functions in both the longitudinal and
spanwise directions. Through these cases, we have rigorously shown that the anoma-
lous regime depends non-trivially upon the form of the initial data, changing both the
anomalous timescales and scaling exponents. To further probe this dependence, for
the case of 2D channel flow, we consider an initial condition which is a delta function
in the longitudinal direction and a centered box function in the transverse direction
to explore how the case with transversely uniform initial data arises. At the end
of section 4, we show how the variance predicted by Latini and Bernoff using free
space methods arises directly from the stochastic differential equation approach by
simply replacing the bounded Brownian motion with free space Brownian motion. We
explore how the free space methodology successfully captures the anomalous regime
provided the transverse delta function initial condition is sufficiently isolated from the
wall, and document how those predictions erode as the source line is moved closer
to the wall. Additionally, using this free space approach we establish that the short
time asymptotic variance correction to the diffusive regime is always quadratic in time
for generic steady shear flows provided the initial condition is not a Dirac delta in
the transverse direction. In section 5 higher order statistics are discussed, and, in
particular, the evolution of the skewness is studied with Monte Carlo simulations.
This shows how the anomalous and Taylor timescales for channel flow computed for
the scalar variance precisely match the timescales on which the scalar experiences a
non-zero, transient skewness. Lastly, some details regarding the moment calculations
and Monte Carlo method are presented in the Appendix.

2. The multiscale analysis approach

We now review the multi-scale asymptotic calculation which yields the effective
diffusivities for the two cases of pipe and channel flow, assuming a scale separation in
the initial data, which is expected after a long time has passed.
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Consider the following advection-diffusion equation:


























∂T

∂t
+u(y,z)

∂T

∂x
=κ∆T,

lim|x|→∞T =0,
∂T

∂~n

∣

∣

∣

∂Ω
=0,

T (x,y,z,t=0)=Td

( x

L

)

,

(2.1)

where the domain Ω can be either of the following:

Ω=

{

{(x,y,z)|y2 +z2 =a2}, Pipe Geometry,

{(x,y,z)|y∈ [0,a],} Channel Geometry,
(2.2)

and the parabolic shear u is accordingly

u(y,z)=











U
(1

2
− y2 +z2

a2

)

, Pipe Geometry;

4U
[z

a
(1− z

a
)− 1

6

]

, Channel Geometry.

(2.3)

Here we use the centerline, maximum velocity as the characteristic velocity U and
we make a Galilean translation in the x-direction as mentioned earlier, so that the
average shear over the transverse plane has mean zero. Also, the length scale L≫a
is chosen since we are only interested in the diffusing behavior in the x-direction at
large times, when the scalar in the transverse directions is well-mixed and can be
considered uniform.

With the change of variables

x′ =
x

L
, y′ =

y

a
, z′ =

z

a
, t′ =

κ

a2
t,

T (x,y,z,t)=T ′(x′,y′,z′,t′), u(y,z)=u′(y′,z′),
(2.4)

we can drop the primes without confusion and obtain the nondimensionalized equation
for (2.1):



















∂T

∂t
+

Pe

ε
u(y,z)

∂T

∂x
=

∂2T

∂x2
+

1

ε2

(∂2T

∂y2
+

∂2T

∂z2

)

,

lim|x|→∞T =0,
∂T

∂~n

∣

∣

∣

∂Ω
=0,

T (x,y,z,t=0)=Td(x).

(2.5)

Here we introduce the Péclet number and the scale separation as

Pe=
Ua

κ
, ε=

a

L
. (2.6)

Pe characterizes the relative importance of advection to molecular diffusion and ε
compares the length scales in the transverse and flow directions. Furthermore, the
fluid domain (2.2) and the shear flow (2.3) can also be nondimensionalized accordingly.

Next, we seek the asymptotic approximation to T (x,y,z,t) in the limit ε→0 that
has the following multiscale expansion

T (x,y,z,t)=T0(x,ξ,y,z,t)+εT1(x,ξ,y,z,t)+ε2T0(x,ξ,y,z,t)+O(ε3) (2.7)
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with two spatial scales in x-direction: x (slow) and ξ = x
ε (fast). Consequently, the

differential operators along the x-direction will be replaced:

∂

∂x
→ ∂

∂x
+

1

ε

∂

∂ξ
,

∂2

∂x2
→ ∂2

∂x2
+

2

ε

∂2

∂x∂ξ
+

1

ε2

∂2

∂ξ2
. (2.8)

Substituting (2.7) and (2.8) into equation (2.5), we would have a hierarchy of equa-
tions, as one would see in a classical Homogenization Problem, such that the following
equation holds for arbitrarily small ε,

O(ε−2) : LT0 :=
[

Peu(y,z)
∂

∂ξ
−

(

∂2

∂ξ2
+

∂2

∂y2
+

∂2

∂z2

)

]

T0 =0. (2.9)

Since the initial condition, Td, is a function of the large-scale variable x only,
we expect the leading behavior of the solution to be a function of x and t,
namely, T0(x,ξ,y,z,t)=T0(x,t) which is consistent with the above equation,

O(ε−1) : LT1 =−Peu(y,z)
∂T0

∂x
+2

∂2T0

∂x∂ξ
. (2.10)

Fredholm’s Alternative requires that this equation has a solution if and only
if the average of right hand side over the transverse directions (y and z), 〈·〉,
vanishes, which is guaranteed since 〈u(y,z)〉 and ∂2T0

∂x∂ξ =0. For example, in
the channel geometry

〈

u(y,z)
〉

=4U

∫ 1

0

[

z(1−z)− 1

6

]

dz =4U

(

1

2
− 1

3
− 1

6

)

=0. (2.11)

Therefore, introducing the separation of variables T1(x,ξ,y,z,t)=
∂T0

∂x
θ(ξ,y,z)+C(x,t), we obtain the cell problem:

Lθ =−Peu,
∂θ

∂~n

∣

∣

∣

∂Ω
=0. (2.12)

Since neither the right hand side nor the boundary condition depends on ξ,
a particular solution to this PDE in the pipe case is

θ(ξ,y,z)=θ(r)=Pe(∆r)
−1u(r), (2.13)

where r=
√

y2 +z2 and ∆r = ∂
r∂r (r ∂

∂r ) is the cylindrical Laplacian operator
with periodic boundary conditions in the longitudinal direction and the Neu-
mann boundary condition in (2.12). In the channel case, the solution is

even more straightforward: θ(ξ,y,z)=θ(z)=Pe
(

∂2

∂z2

)−1
u(z), since the chan-

nel shear in (2.3) only depends on z.

O(ε0) : LT2 =−∂T0

∂t
−Peu(y,z)

∂T1

∂x
+

∂2T0

∂x2
+2

∂2T1

∂x∂ξ
. (2.14)

The last term on the right hand side indeed vanishes since T1 does not depend
on ξ as we discussed. Another application of Fredholm’s Alternative yields
the homogenized/effective diffusion equation in the x-direction:

∂T0

∂t
=

(

1−Pe
〈

uθ
〉

)∂2T0

∂x2
. (2.15)
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From (2.3) and (2.12)–(2.15), the diffusion enhancement in the pipe geometry is

−
〈

uθ
〉

=−Pe

π

∫ 2π

0

dφ

∫ 1

0

r u(r)θ(r)dr

=−2

∫ 1

0

rθ
[ ∂

r∂r

(

r
∂θ

∂r

)

]

dr

=−2rθ
∂θ

∂r

∣

∣

∣

r=1

r=0
+2

∫ 1

0

r
(∂θ

∂r

)2

dr

=2Pe2

∫ 1

0

r
[1

r

∫ r

0

s
(1

2
−s2

)

ds
]2

dr

=
Pe2

192
, (2.16)

whereas in the channel geometry,

−Pe
〈

uθ
〉

=−
∫ 1

0

θ
∂2θ

∂z2
dz =Pe2

∫ 1

0

{

∫ z

0

4
[

s
(

1−s
)

− 1

6

]

ds
}2

dz =
2Pe2

945
. (2.17)

Consequently, in either geometry, the enhanced diffusivity can be defined as

κeff :=κ
(

1−Pe
〈

uθ
〉)

=κ
(

1+CPe2
)

(2.18)

in the limit ε→0 [1, 18], or sufficiently, t→∞, where C=Cp =1/192 in a pipe and
C=Cc =2/945 in a channel. This result suggests that to the leading order, the flow-
induced enhancement scales quadratically with the Péclet number with a constant
factor at large times. This is exactly the classical result for Taylor dispersion [18, 8].

From the above calculations, it is clear that the multiscale analysis above rests
on the scale separation between the initial scalar distribution of the scalar and the
flow geometry. With other types of data, such as point sources that do not possess
scale separations, an extra, fast timescale needs to be introduced [10] and similar
analysis would also produce the description for the long-time and large spatial scale
features of the passive scalar field. In the next section, we will propose a general SDE
formulation that yields the same results and can solve a much wider class of problems
while revealing their transient dynamics in a straightforward way.

3. The stochastic differential equation approach: channel flow

From the previous section, the homogenization analysis does reveal the long time
limit of the flow-enhanced diffusion as a leading order solution. However, as we will
demonstrate next, a study of the stochastic differential equation representation of
equation (2.1) can actually obtain explicit formulas for the diffusion enhancement
valid for arbitrary times and for arbitrary initial distributions.

3.1. The Green’s function for the two-dimensional channel. In work-
ing with the stochastic differential equation, we will need the explicit Green’s function
for the infinite strip with vanishing Neumann boundary conditions. Here, for com-
pleteness, we present this formula, which will be essential in providing the single point
statistics for the bounded Brownian motions.

Consider the fundamental solution to the nondimensional diffusion equation for
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a passive scalar in an infinitely long, two-dimensional channel:



















∂

∂τ
G(x′,z′,τ)=∆G(x′,z′,τ), (x,z)∈ (−∞,∞)×(0,1),t>0,

lim|x|→∞G=0,
∂G

∂z

∣

∣

∣

z′=0,1
=0,

G(x′,z′,τ =0)= δ(x′−X ′
0)δ(z

′−Z ′
0).

(3.1)

where nondimensional variables x′,X ′
0,z

′,Z ′
0,τ are related to the dimensional size of

the channel a, molecular diffusivity κ, and the dimensional variables x,X0,z,Z0,t by

x′ =
x

a
, z′ =

z

a
, X ′

0 =
X0

a
, Z ′

0 =
Z0

a
, τ =

κt

a2
. (3.2)

Without confusion, we will drop the ′ in the spatial variables hereafter. After the
Fourier transform in x and the cosine series expansion in z, namely,

G(x,z,τ)→ Ĝn(k,τ)=

√

2

π

∫ ∞

−∞
dx

∫ 1

0

dz eikx cos(nπz)G(x,z,τ), (3.3)

the transformed solution is readily computed,

Ĝn(k,τ)=

√

2

π
cos(nπZ0)e

ikX0−τ(n2π2+k2). (3.4)

Therefore, the Green’s function in the physical domain as a cosine series is [5]

G(x,z,τ)=G(x,z,τ ;X0,Z0)=
e−

(x−X0)2

4τ√
πτ

[1

2
+

∞
∑

n=1

cos(nπz)cos(nπZ0)e
−n2π2τ

]

=
e−

(x−X0)2

4τ

4πτ

∞
∑

n=−∞

[

e−
(z−Z0+2n)2

4τ +e−
(z+Z0+2n)2

4τ

]

,

(3.5)

with the alternative form as a sum of exponentials that can be derived by the
method of images. Essentially this is just the product of the solution to the

1D problem with decay at infinity on the real line, Gu(x,τ ;X0)=e−
(x−X0)2

4τ /
√

4πτ ,
and that with Neumann boundary conditions in the closed interval [0,1],

Gb(z,τ ;Z0)=1+2
∞
∑

n=1

cos(nπz)cos(nπZ0)e
−n2π2τ

=
1√
4πτ

∞
∑

n=−∞

[

e−
(z−Z0+2n)2

4τ +e−
(z+Z0+2n)2

4τ

]

.

(3.6)

3.2. Stochastic ODE for channel flow and the calculation of scalar vari-

ance for delta Function initial data. With the Green’s function defined, next
we compute the scalar variance for the case of channel flow. Here, we derive the
general solution for an initial condition which is a delta function in the longitudi-
nal direction, and a delta function located at height Z0 in the transverse direction.
This general formula eventually limits in long time to the exact effective diffusivity
computed by multi-scale averaging in the previous section.



608 SCALAR VARIANCE IN PIPE AND CHANNEL FLOW

The problem of a diffusing passive scalar advected by a longitudinal, parabolic
shear in the same channel has the following nondimensionalized SDE representation

{

dX =4Pe
[

Z(1−Z)− 1
6

]

dτ +
√

2dW1,

dZ =
√

2dW2,
(3.7)

with the Péclet number Pe defined previously in (2.6) and W1(τ) is the 1D, free-space
Brownian motion whereas W2(τ) is the 1D Brownian motion with reflective, solid wall
boundaries at z =0,1. The solution to this SDE is

{

X(τ)=X0 + 2
3 Peτ +4Pe

∫ τ

0
Z(s)[1−Z(s)]ds+

√
2W1(τ),

Z(τ)=Z0 +
√

2W2(τ),
(3.8)

where (X0,Z0) is the starting location of a scalar particle at t=0. Conse-
quently, the variance of a scalar particle’s displacement along each direction is

〈

X2(τ)
〉

ω
−

〈

X(τ)
〉2

ω
=2τ +16Pe2

〈

∫ τ

0

∫ τ

0

Z(s)Z(s′)[1−Z(s)][1−Z(s′)]dsds′
〉

ω

−16Pe2
{

∫ τ

0

〈

Z(s)[1−Z(s)]
〉

ω
ds

}2

,

〈

Z2(τ)
〉

ω
−

〈

Z(τ)
〉2

ω
= 2

〈

W 2
2 (τ)

〉

ω
.

(3.9)

It should be clear that this formulation indeed applies to arbitrary longitudinal
flow V (z), which replaces 4Pe[Z(1−Z)−1/6] above, and it applies to other boundary
conditions which correspond to Brownian motions subject to different geometries other
than a channel specified earlier.

The significant statistical properties of bounded Brownian motion to reduce (3.9)
to explicit, closed-form formulas are 1) the variance of the bounded Brownian motion
starting at z =Z0, and 2) the temporal correlations of the bounded Brownian motion

starting at z =Z0 emerging from the integrals that contribute to
〈

X2(τ)
〉

ω
−

〈

X(τ)
〉2

ω
:

〈

Z(s)Z(s′)
〉

ω
,
〈

Z2(s)Z(s′)
〉

ω
,
〈

Z2(s)Z2(s′)
〉

ω
, and their integrals in the temporal box

[0,τ ]2.
Unfortunately, the bounded nature of W2, whose statistics depends on the starting

position Z0, prevents rescaling these processes to random variables in time, which in
contrast applies to classical Brownian motions in free space and thus simplifies the
calculations greatly. The variance of bounded Brownian motion is relatively easy to
compute with the knowledge of (3.6), namely,

〈

Z2(τ)
〉

ω
−

〈

Z(τ)
〉2

ω
=

∫ 1

0

(z−Z0)
2Gb(z,τ ;Z0)dz

=
1−3Z0 +3Z2

0

3
+4

∞
∑

n=1

(−1)n(1−Z0)+Z0

π2n2
cos(nπZ0)e

−n2π2τ . (3.10)

However, the temporal correlations of the Brownian motion in the bounded z-direction
that starts at Z0, Z(t), are more complicated since we need to know the joint proba-
bility density fZ(s),Z(τ)(y,x). Here we resort to conditional probabilities to chain the
paths together, fZ(s′),Z(s)(y,x)=fZ(s′)|Z(s)(y|x)×fZ(s)(x) assuming s′ >s, since the
conditional probability, fZ(s′)|Z(s)(y|x)=Gb(y,x,s′−s), and the marginal probability,
fZ(s)(x)=Gb(x,Z0,s), are readily available from the Green’s function (3.5) due to
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the Markovian nature of Brownian motion. Then the temporal correlation can be
computed as

〈

Zm(s)Zn(s′)
〉

ω
=

∫

[0,1]2
xmynfZ(s),Z(s′)(x,y)dxdy

=

∫

[0,1]2
xmynGb(y,x,s′−s)Gb(x,Z0,s)dxdy. (3.11)

Taking the symmetries in the integration domain and in the integrand into account,
we have

∫

[0,τ ]2

〈

Z(s)Z(s′)
〉

ω
dsds′

=8

∫ τ

0

ds′
∫ s′

0

ds

∫

[0,1]2

{

xy
[1

2
+

∞
∑

n=1

cos(nπx)cos(nπZ0)e
−n2π2s

]

×
[1

2
+

∞
∑

m=1

cos(mπy)cos(mπx)e−m2π2(s′−s)
]

}

dxdy

= I11 +I12 +I13, (3.12)

where

I11 =

∫ τ

0

ds′
∫ s′

0

ds

∫ 1

0

dx
[

x+4x

∞
∑

m=1

(−1)m−1

m2π2
cos(mπx)e−m2π2(s′−s)

]

=
τ2

4
+

4

π8

∞
∑

m=1

[(−1)m−1]2

m8

[

m2π2τ +(e−m2π2τ −1)
]

, (3.13)

I12 =

∫ τ

0

ds′
∫ s′

0

ds

∫ 1

0

dx
[

2x

∞
∑

m=1

cos(mπx)cos(mπZ0)e
−m2π2s

]

=
2

π6

∞
∑

m=1

(−1)m−1

m6
cos(mπZ0)

[

m2π2τ +(e−m2π2τ −1)
]

, (3.14)

I13 =8

∞
∑

m,n=1

(−1)m−1

m2π2
cos(nπZ0)

∫ τ

0

ds′
∫ s′

0

ds

∫ 1

0

dx
{

xcos(mπx)

×cos(nπx)e−m2π2(s′−s)−n2π2s
}

=
8

π8

∞
∑

m,n=1,m 6=n

[(−1)m−1][(−1)m−n−1](m2 +n2)

m4n2(m2−n2)3
cos(nπZ0)

×
[

m2(1−e−n2π2τ )+n2(e−m2π2τ −1)
]

+
2

π6

∞
∑

n=1

cos(nπZ0)
[(−1)n−1][1−e−n2π2τ (1+n2π2τ)]

n6
. (3.15)
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Similarly,

∫

[0,τ ]2

〈

Z2(s)Z2(s′)
〉

ω
dsds′ =8

∫ τ

0

dτ

∫ s′

0

ds

∫

[0,1]2

{

x2y2

×
[1

2
+

∞
∑

n=1

cos(nπx)cos(nπZ0)e
−n2π2s

]

×
[1

2
+

∞
∑

m=1

cos(mπa)cos(mπx)e−m2π2(s′−s)
]}

dxdy

= I21 +I22 +I23, (3.16)

and

∫

[0,τ ]2

〈

Z2(s)Z(s′)
〉

ω
dsds′ =4

∫ τ

0

ds′
∫ s′

0

ds

∫

[0,1]2

{

(x2y+xy2)

×
[1

2
+

∞
∑

n=1

cos(nπx)cos(nπZ0)e
−n2π2s

]

×
[1

2
+

∞
∑

m=1

cos(mπy)cos(mπx)e−m2π2(s′−s)
]}

dxdy

= I31 +I32 +I33 +I34 +I35 +I36, (3.17)

for which the explicit calculations of I21 through I23 and I31 through I36 are tedious
but very similar to those of I11, I12 and I13 as shown in (3.13) through (3.15). The
details of computing these averages can be found in Appendix.

Substituting the results from (3.12) through (3.16) into (3.9) and with the similar

but tedious calculations for 〈X(τ)
〉2

ω
, we arrive at

〈

X2(τ)
〉

ω
=X2

0 +2τ +
4Pe2

π6

∞
∑

n=1

1

n6

[

τ +
e−4n2π2τ −1

4n2π2

]

−4Pe2

3π4

∞
∑

n=1

cos(2nπZ0)

n4

[

τ +
e−4n2π2τ −1

4n2π2

]

+
2Pe2

π6

∞
∑

m,n=1

cos(2nπZ0)Kmn(τ),

〈

X(τ)
〉2

ω
=X2

0 −
4Pe2

3π4

∞
∑

n=1

cos(2nπZ0)

n4
(τ −τe−4n2π2τ )

+
Pe2

π8

[

∞
∑

n=1

cos(2nπZ0)(e
−4n2π2τ −1)

n4

]2
, (3.18)

with

Kmn(τ)=















m2 +n2

π2m2(m2−n2)3

[

1−e−4n2π2τ

n2 + e−4m2π2τ−1
m2

]

, m 6=n,

1

2n6

[ 1

4n2π2
− 1

3

][

1−e−4n2π2τ (1+4n2π2τ)
]

, m=n.

(3.19)
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Consequently, we define the diffusivity enhancement via the exact longitudinal flow-
enhanced variance compared to the pure diffusion variance, 2τ , of a particle that
starts at an arbitrary location (X0,Z0) at an arbitrary time as

κeff

κ
≡

〈

X2(τ)
〉

ω
−

〈

X(τ)
〉2

ω

2τ

=1+
2Pe2

π6

∞
∑

n=1

1

n6

[

1+
e−4n2π2τ −1

4n2π2τ

]

−2Pe2

3π4

∞
∑

n=1

cos(2nπZ0)

n4

[

e−4n2π2τ +
e−4n2π2τ −1

4n2π2τ

]

+
Pe2

π6τ

∞
∑

m,n=1

cos(2nπZ0)Kmn(τ)− Pe2

2π8τ

[ ∞
∑

n=1

cos(2nπZ0)(e
−4n2π2τ −1)

n4

]2

.

(3.20)

This result and the analogous formula for the pipe geometry actually solves the first of
the partial differential equations in a hierachy of previously established moment equa-
tions [1, 5, 6]. However, solving the full hierarchy of those PDEs directly for arbitrary
τ and Z0 is generally impossible even for this simple flow, except for some special
cases of initial distributions, and therefore (3.20) were not derived by the moment
problem approach. Alternatively, motivated by the relationship between particle dis-
placement and the solution to the diffusion equation, this formula could be obtained
by making a Gaussian approximation to the solution to the advection-diffusion equa-
tion (2.1) whose variance is expanded in Hermite polynomials [17]. Nonetheless, the
Gaussian-Hermite approximation approach is fairly involved and seems hard to gen-
eralize compared to the more transparent SDE-based approach presented here.

As τ →∞, it is straightforward to see from (3.20) that the long time behavior of
the flow-enhanced longitudinal diffusion is

κeff

κ
∼1+

2Pe2

π6

∞
∑

m=1

1

m6
=1+

2Pe2

945
(3.21)

for τ ≫1, or equivalently t≫ a2

κ in dimensional units. This scaling law (3.21) is exactly
the result we obtained in (2.18), for an arbitrary initial scalar distribution.

Next, we will see how the initial transverse distribution of the data establishes a
short-time, anomalous regime of the diffusion enhancement, in which

κeff

κ ∼1+cPe2τα

with α=1, 2, or 3 depending on different initial data.

3.3. Transversely uniform initial data. The general variance formula just
computed enjoys a tremendous simplification when the initial condition is spanwise
uniform. This simplification allows for a complete asymptotic expansion for both short
and long times, which we show sets the anomalous timescales and scaling exponents
rigorously.

For the PDE representation of (3.7), if the initial data consisted of only vertical
layers, namely, T0(x,z)≡ T̄0(x), the initial transverse location of a scalar particle, Z0,
can considered as a random variable uniformly distributed in [0,1]. Consequently, we
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can greatly simplify (3.20) by averaging over Z0∈ [0,1] to have

κeff

κ
=

〈

X2(τ)
〉

ω,Z0
−

〈

X(τ)
〉2

ω,Z0

2τ
=

∫ 1

0

〈

X2(τ)
〉

ω
dZ0−

[

∫ 1

0

〈

X(τ)
〉

ω
dZ0

]2

2τ

=1+
2Pe2

π6

∞
∑

n=1

1

n6

[

1+
e−4n2π2τ −1

4n2π2τ

]

=1+
2Pe2

945

[

1− 1

40τ

(

1− 9450

π8

∞
∑

m=1

e−4m2π2τ

m8

)]

(3.22)

since all the terms with the factor cos(nπZ0) would be averaged to zero by
∫ 1

0
cos(2nπZ0)dZ0 =0, n=1,2,... . Generally for a separable initial distribution

T0(x,z)≡X(x)Z(z) one has to evaluate integrals
∫ a

0
Z(z)cos(2nπz)dz, n=1,2,... to

determine the universal diffusion enhancement.
Since

d4

da4

e−am2

m8
=e−am2

,

∞
∑

m=1

e−am2 ∼
√

π

4a
, a→0 (3.23)

and we know that the series in (3.22) is convergent for τ ≥0, anti-differentiating(3.23)
term-by-term and matching the coefficients yields the short-time asymptotics with a
fractional power correction

κeff

κ
∼1+

16Pe2

3

( τ

120
− τ2

6
+

32τ
5
2

35
√

π

)

, τ →0. (3.24)

Formulas (3.22) and (3.24) are in agreement with previous results for this special case
of initial data [6, 19].

10
−8

10
−6

10
−4

10
−2

10
0

10
0

10
1

10
2

10
3

10
4

10
5

τ

κ ef
f/κ

Temporal Evolution of Effective Diffusivity

 

 

Exact
Large τ Approx.
Small τ Approx.

Fig. 3.1:
κeff

κ
vs τ when Pe=2500 in a rectangular channel with T0(x,z)≡T0(x).

Figure 3.1 is a log-log plot of the temporal evolution of the non-dimensionalized
effective diffusivity (3.22) along with its asymptotic approximations. Here the solid
line is the numerical evaluation of (3.22) truncated to 100 terms in the sum, whereas
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the large τ approximation only keeps the first two terms and the small τ approximation
utilizes (3.24). From the figure, the constant behavior of the diffusion enhancement as

τ →0 (
κeff

κ ≈1) and as τ →∞ (
κeff

κ ≈1+ 2Pe2

945 ≈1.32×104), and the linear scaling for
intermediate times are evident. Furthermore, the time scale of the first transition from
molecular diffusion of the scalar without flow enhancement to an “anomalous” regime
is τ∗≈ 360

16 Pe−2 =3.6×10−6, just as predicted by the first correction term in (3.24), or
in dimensional units, t≈ 360κ

16U2 ; whereas when τ ≈ 1
4π2 ≈0.025, or in dimensional units,

t≈ a2

4π2κ , the enhancement starts to converge to its long time, constant value 1+ 2Pe2

945 .

3.4. Point source initial data. The situation is quite different when the
initial condition is transversely a delta function located at Z0 = b. The general for-
mula for the scalar variance involves a double series as opposed to a single series,
and the complete evaluation of the short time asymptotic expansion (which provides
the anomalous timescale) is tedious. Below, we present a study of this behavior and
document by numerical summation of the series that the anomalous timescale and
scaling exponent is substantially different from the uniform case here, and depends
upon the release position Z0 = b. We also demonstrate that the numerical summation
accurately agrees with direct Monte-Carlo simulations, and further demonstrate the
free space formalism of Latini and Bernoff [8] does accurately capture the anoma-
lous short timescale provided the release position is bounded away from the channel
walls. Lastly, we rigorously prove that the anomalous timescale for this case involv-
ing transverse point source initial data has order of O(Pe−1) (centerline release), or

of O(Pe−2/3) (off-center release), as opposed to the much smaller O(Pe−2) for the
uniform case.

Consider the situation when all the particles start at a fixed location within
the pipe, Z0 = b,b∈ (0,1), or equivalently, T0(x,z)= T̄0(x)δ(z−b). Although (3.21)
holds for the Taylor regime, the time scale of the transition into the short-time,

anomalous regime, τ∗, is different and it increases from O(Pe−2) to O(Pe−
2
3 ) if b= a

2

(t∝ a4/3

U2/3κ1/3 in dimensional units), or to O(Pe−1) if b 6= 1
2 (t∝ U

a in dimensional units)
when Pe is large. We stress that this assertion at present hinges upon a numerical
summation of the double series representation formula for the scalar variance, unless
otherwise noted, the double series is approximated with 502 terms and does not show
substantial change with the inclusion of more terms. Furthermore, as we will derive
below in section 4, using an approximated Gaussian kernel in the calcuations of 〈·〉ω,
we directly obtain that the short-time behavior of the enhancement with a point
source discharge is

κeff

κ
∼1+

64
(

b− 1
2

)2
Pe2τ2

3
+

32Pe2τ3

3
, τ →0, Z0 = b. (3.25)

We can identify two anomalous time scales for point source release at different lo-
cations in the channel. Physically, in the case of T0(x,z)= T̄0(x)δ(z− 1

2 ), when τ is
negligible compared to the molecular diffusion time scale all scalar particles are still
close to their initial center-line position, where there is almost no transverse variation
in the parabolic shear. Therefore molecular diffusion initially dominates in an almost
Galilean translation. However, in the off-center case, b 6= a

2 , the particles experience
the shear and the consequent flow-enhanced diffusion much sooner. Figure 3.2 illus-
trates the difference in the short time behavior of κeff

κ with two types of initial data.

It is clear that the first transition occurs at τ∗ =O(Pe−1)≈3×10−4 when b= 1
4 and

at τ∗ =O(Pe−
2
3 )≈2.5×10−3 when b= 1

2 .
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Fig. 3.2: Comparison in κeff

κ between T0(x,z)= T̄0(x)δ(z−b) and T0(x,z)= T̄0(x)
when Pe=2500.

It should be noted that since the asymptotic estimate (3.25) is obtained from
a free-space Gaussian approximation of the exact Brownian kernel Gb, we expect
that as Z0 approaches one of the walls the estimate should start to fail due to the
boundary effect. Figure 3.3 lists a sequence of plots for Z0→0; the deviation of the
estimate (3.25) from the exact value is obvious with decreasing Z0, although the free-
space estimate still accurately captures the time scale of transition into the anomalous
regime.

The existence of the alternative time scale, different than O(Pe−2), of the onset of
the anomalous regime with point-source discharge can be determined through general
short time asymptotic estimates of the exact variance given in equation(3.20). From
this equation we can derive a three-term asympotic expansion for κeff/κ as τ →0, by
expanding the exponentials around τ =0

κeff

κ
∼1+

8Pe2τ

π4

[

∞
∑

m=1

4+cos(2mπZ0)

8m4
−

(

∞
∑

m=1

cos(2mπZ0)

m2

)2

+
∞
∑

m,n=1,
m 6=n

cos(2nπZ0)(n
2 +m2)

m2(n2−m2)2

]

+C2Pe2τ2 +o(Pe2τ2), τ →0.
(3.26)

Rigorously showing hat this expansion is asymptotic is complicated by several factors.
First, observe that several of the series in equation (3.20) involve division by τ . Second,
although all the series involved and their term by term derivatives converge absolutely
for τ >0, it is not immediately obvious that this differentiation property extends to
τ =0. To demonstrate that this approximation is asymptotic, we will next show that
κeff/κ∼1+o(τ) as τ →0, and leave proving the next expansion term to future work
(here, we present this last term only formally). To this end, we re-write the enhanced
diffusion in equation (3.20) grouping terms which form the coefficient of the factor
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Fig. 3.3: Asymptotics of κeff

κ with T0(x,z)= T̄0(x)δ(z−b) when Pe=2500.

1/τ as G(τ) and the rest as F(τ):

κeff

κ
=F(τ)+

G(τ)

τ
.

It may be directly shown that G(τ) is twice continuously differentiable for all Z0∈ [0,1],
τ ≥0, and the third derivative exists for all τ >0, since term-wise differentiation yields
absolutely convergent series for two derivatives, and the third derivative is absolutely
convergent for τ >0 thanks to the rapidly decaying exponentials in the sum indices.
By utilizing Taylor’s theorem with remainder, this allows us to write

G(τ)= τG′(0)+
τ2

2
G′′(0)+

τ3

6
G′′′(τ∗

1 ), F(τ)=F(0)+τF ′(0)+
τ2

2
F ′′(τ∗

2 ).

Inspection of the series involved shows that G(0)=0 and G′(0)+F(0)=1. Further,
since τ∗

1,2 >0 this leads to

κeff

κ
=1+τ(F ′(0)+

1

2
G′′(0))+o(τ).

The following calculations explicitly show the linear coefficient is zero, and further
formally compute the quadratic coefficient hidden in o(τ) as well as establish the
convergence of the double sum of positive numbers,

∞
∑

n=1,n 6=m

(n2 +m2)

m2(n2−m2)2
,
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which arises from the second derivative of Kmn(τ) at τ =0. Using the identities
involving polylogarithm Lin(z) and Bernoulli polynomials Bn(z) [2]

∞
∑

m=1

cos(2mπZ0)

m2
=

Li2(e
2πiZ0)+Li2(e

−2πiZ0)

2
=π2B2(Z0)=π2

(

Z2
0 −Z0 +

1

6

)

(3.27)

and noticing that

∞
∑

n=1

cos(2nπZ0)(n
2 +x2)

(n2−x2)2
=

1

2

[π2 cos(2πZ0x)

sin2(πx)
− 1

x2

]

, x 6=1,2,... , (3.28)

yields

∞
∑

n=1,
n6=m

cos(2nπZ0)(n
2 +m2)

(n2−m2)2
= lim

x→m

(π2 cos(2πZ0x)

2sin2(πx)
− 1

2x2
− cos(2mπZ0)(m

2 +x2)

(m2−x2)2

)

=cos(2mπZ0)
[

π2
(

Z2
0 −Z0 +

1

6

)

− 1

8m2

]

− 1

2m2

(3.29)

for m=1,2,... and finally

∞
∑

m,n=1,
m 6=n

cos(2nπZ0)(n
2 +m2)

m2(n2−m2)2
=

(

∞
∑

m=1

cos(2mπZ0)

m2

)2

−
∞
∑

m=1

4+cos(2mπZ0)

8m4
. (3.30)

Thus the linear term of τ in the expansion (3.26) vanishes

κeff

κ
∼1+C2Pe2τ2 +o(Pe2τ2), τ →0, ∀Z0∈ [0,1], (3.31)

which implies that the onset of the anomalous regime is at least O(Pe−1) for Pe≫1,
instead of O(Pe−2) as in the case with uniform transverse data. A very similar, but
more involved calculation shows explicitly a non-zero, quadratic correction in (3.26)

C2Pe2τ2 =
64Pe2

3
B2

1(Z0) τ2 =
64Pe2

3

(

Z0−
1

2

)2

τ2. (3.32)

For higher order corrections, straightforward Taylor expansion leads to divergent series
and further analysis is required.

4. The circular pipe

In this section we consider the case of circular pipe flow. The behavior is quite
similar to channel flow, provided we focus upon axisymmetric initial scalar distribu-
tions: essentially all of the results for channel flow extend to pipe flow, though the
rigorous computation of the long time limit exactly connecting to the multi-scale effec-
tive diffusivity requires some special identities borrowed from the quantum mechanics
community.

Assuming axisymmetric initial data, the SDE calculations in a pipe geometry are
very similar to the channel case demonstrated before, but the Brownian kernel with
reflective boundaries in the transverse direction now becomes [5]

G(y,z,τ ;Y0,Z0)=Gp(r,τ ;R0)=
1

π

[

1+

∞
∑

n=1

J0(µnr)J0(µnR0)

J2
0 (µn)

e−µ2
nτ

]

(4.1)
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in cylindrical coordinates r=
√

y2 +z2 and R0 =
√

Y 2
0 +Z2

0 , instead of the heat kernel
on a closed interval [0,1], Gb(z,Z0,τ). Here Jν(z) are the νth-order Bessel Functions
of the first kind and µn, n=1,2,... solve J1(µn)=0.

4.1. General scalar variance formula for pipe flow. Since the mean-zero,
parabolic shear in a pipe is u(y,z)=u(r)=U( 1

2 −r2), the mean square displacement
along the x-axis is

〈

(X(τ)−X0)
2
〉

ω
=2τ +Pe2

〈

∫ τ

0

∫ τ

0

[
1

2
−R2(s)][

1

2
−R2(s′)]dsds′

〉

ω

=2τ +Pe2
(τ2

4
−τ

∫ τ

0

〈

R2(s)
〉

ω
ds+

∫ τ

0

∫ τ

0

〈

R2(s)R2(s′)
〉

ω
dsds′

)

,

(4.2)

where R(t) is the radial Brownian motion in the cross-section of the pipe with initial
position R0 and density distribution (4.1). The averages in (4.2) are computed as
follows:

∫ τ

0

〈

R2(s)
〉

ω
ds=

∫ τ

0

∫ 1

0

r2Gp(r,s;R0)2πrdrds

=
1

2
+2

∞
∑

n=1

J0(µnR0)

J2
0 (µn)

(

∫ 1

0

r3J0(µnr)dr
)(

∫ t

0

e−µ2
nsds

)

=
τ

2
+2

∞
∑

n=1

J0(µnR0)[2J2(µn)−µnJ3(µn)]

µ4
nJ2

0 (µn)

(

1−e−µ2
nτ

)

, (4.3)

∫

[0,τ ]2

〈

R2(s)R2(s′)
〉

ω
dsds′

=2

∫ τ

0

ds′
∫ s′

0

ds

{

∫

[0,1]2
x2y2Gp(y,s′−s;x)Gp(x,s;Z0)4π2xydxdy

}

=
τ2

4
+8τ

∞
∑

n=1

[2J2(µn)−µnJ3(µn)]2

µ8
nJ2

0 (µn)

[

µ2
n−

1−e−µ2
nτ

τ

]

+2τ

∞
∑

n=1

J0(µnR0)[2J2(µn)−µnJ3(µn)]

µ6
nJ2

0 (µn)

[

µ2
n−

1−e−µ2
nτ

τ

]

+16
∞
∑

m,n=1

J0(µmR0)K̄mn(τ), (4.4)

where

K̄mn(τ)=



















µ2
m

(

1−e−µ2
nτ

)

−µ2
n

(

1−e−µ2
mτ

)

µ4
nµ2

m(µ2
m−µ2

n)J0(µn)J2
0 (µm)

∫ 1

0
r3J0(µnr)J0(µmr)dr, m 6=n,

1−e−µ2
mτ

(

1+µ2
mτ

)

µ6
mJ3

0 (µm)

∫ 1

0
r3J2

0 (µmr)dr, m=n.

(4.5)
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To summarize, the flow-enhanced diffusion is

κeff

κ
=

〈

X(τ)2
〉

ω
−

〈

X(τ)
〉2

ω

2τ
=

〈

[X(τ)−X0]
2
〉

ω
−

〈

X(τ)−X0

〉2

ω

2τ

=1+Pe2
∞
∑

n=1

{

16

µ6
n

[

1−
(

1−e−µ2
nτ

)

µ2
nτ

]

+
2J0(µnR0)

µ4
nJ0(µn)

[

e−µ2
nτ −

(

1−e−µ2
nτ

)

µ2
nτ

]

}

+
8Pe2

τ

{ ∞
∑

m,n=1

J0(µmR0)K̄mn(τ)−
[

∞
∑

n=1

J0(µnR0)

µ4
nJ0(µn)

(

e−µ2
nτ −1

)

]2
}

, (4.6)

utilizing the recurrence identity Jν−1(z)+Jν+1(z)= 2ν
z Jν(z), ν =1,2,... [2].

4.2. Transversely uniform initial data in pipe flow. Similar to (3.22),
if we further assume that the initial condition is independent of r, the above formula
reduces to

κeff

κ
=1+

Pe2

192

[

1− 1

15τ

(

1−46080

∞
∑

n=1

e−µ2
nτ

µ8
n

)]

(4.7)

since the averages
∫ 1

0
rJ0(µnr)dr =J1(µn)=0, n=1,2,... and

ξ(2s) :=

∞
∑

n=1

1

µ2s
n

=
1

s+1

s−1
∑

n=1

ξ(2n) ξ(2s−2n), s=2,3,... (4.8)

with ξ(2)= 1
8 [7].

As τ →∞, we have

κeff

κ
→1+

Pe2

192
, (4.9)

whereas for τ →0, with a similar calculation as in the channel case, we recover the
formula [6]

κeff

κ
∼1+Pe2

( τ

24
− τ2

3
+

128τ
5
2

105
√

π

)

. (4.10)

Figure 4.1 illustrates the temporal evolution of the effective diffusivity in a circular
pipe described by (4.7), which is very similar as the channel case shown in figure 3.1.

Moreover, similar to the channel case if the initial condition is concentrated at a
fixed radius in the pipe, namely, R0 = b, the short time behavior of κeff

κ becomes

κeff

κ
∼1+

4b2Pe2τ2

3
+

4Pe2τ3

3
, τ →0, R0 = b. (4.11)

4.3. Short time approximations with gaussian kernels. The scaling
laws (3.24) and (4.10) provide detailed information about the short time behavior of
the diffusion enhancement, in terms of the transitional time scale between the initial
diffusion regime and the anomalous, ballistic regime when the initial distribution is
transversely uniform. However, they were obtained from small τ expansions and
summing of the exact formulas (3.20) and (4.6). Such a technique is difficult to apply
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Fig. 4.1:
κeff

κ
vs τ when Pe=104, T0(r)≡ const in a circular pipe.

to the point source discharge when the complete formulas involve series with the terms
cos(nπZ0) or J0(µnR0).

Latini and Bernoff [8] demonstrated how to obtain the short-time, transitional
scalings for point sources with the exact solution of equation (2.1) with free-space
boundary conditions, and this approach required a solution ansatz originally proposed
by Lighthill [11]. They were motivated by the physical intuition that for very small
times before the molecular diffusion effect is significant, the rigid boundaries do not
affect the scalars in the interior of the channel. However, with the same motivation,
the SDE approach as we discussed actually yields more complete and general results
in a straightforward way, which ultimately leads to the asymptotic relations (3.25)
and (4.11).

Assuming that initially the boundary effects are negligible, we can approximate
the bounded Brownian kernels Gb and Gp by their free-space counterparts, namely,
Gaussians:

Gb(z,τ ;Z0)≈
e−

(z−Z0)2

4τ√
4πτ

, Gp(y,z,τ ;Y0,Z0)≈
e−

(y−Y0)2+(z−Z0)2

4τ

4πτ
. (4.12)

Essentially, here the bounded Brownian motion W2(τ) in (3.8) is approximated by
free space Brownian motion B(τ)∼N (0,τ) on short times.

Now we consider the free space problem as a short-time approximation to the
channel problem under an arbitrary steady, smooth shear flow. For any Z0∈ (0,1)
around which there exists a neighborhood Ω such that a general shearing flow u(z)
has a power series expansion

u(z)=

∞
∑

k=0

u(k)(Z0)

k!
(z−Z0)

k (4.13)

on Ω, the mean square displacement in the sheared x-direction over Ω can then be eas-
ily computed by plugging in z =Z(τ)=Z0 +B(τ), since the averages over the Brown-
ian motion B are straightforward Gaussian integrals. In particular, given an arbitrary
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initial data distribution of Z0 on Ω with density function µ(Z0), averaging over the
space of the Brownian paths and over µ(Z0) reads

〈

X2(τ)
〉

−
〈

X(τ)
〉2

≈2τ +
∞
∑

j,k=0

ajak

∫ τ

0

∫ τ

0

〈

B(t)jB(s)k
〉

dsdt−
[

∞
∑

k=0

ak

∫ τ

0

〈

B(s)k
〉

ds
]2

≈2τ +τ2
(

a2
0−a0

2
)

+2τ3
(1

3
a2
1 +a0a2−a0a2

)

+τ4
(7

3
a2
2−a2

2 +2a0a3−2a0a3

)

+O(τ5) (4.14)

in which

f(Z0)=

∫

Ω

f(Z0)µ(Z0)dZ0 (4.15)

is the average taken over the initial distribution µ(Z0). In the special case of quadratic
shear u(Z)=4PeZ(1−Z),

a0 =4PeZ0(1−Z0), a1 =4Pe(1−2Z0), a2 =−4Pe, a3 =a4 = ···=0. (4.16)

Clearly, for a general distribution µ the coefficients of different powers of τ in (4.14)
do not vanish. But when µ(Z0) is a Dirac delta, the coefficient of the τ2, and more
generally, the difference aiaj −aiaj , i,j =0,1,2,... , vanishes. This establishes for a
general class of (smooth) shear flows that, generically, the short time variance ex-
pansion (4.14) will have a non-zero quadratic (in time) correction unless the initial
distribution is a Dirac delta in the transverse direction.

Furthermore, if µ(Z0)= δ(Z0−1/2), which corresponds to a point source at the
centerline, the coefficient of the τ3 term also vanishes. This calculation shows the
fundamental difference in the short time transitional time scales between point sources
at and off the centerline and non-point-source data such as a uniform distribution. In
the next section, we will see the application of formula (4.14) to a uniform distribution
across only part of the channel.

To summarize, the short time behavior of the enhanced diffusivity for point source
release at Z0 is

κeff

κ
≈1+

32Pe2

3

[

2

(

Z0−
1

2

)2

τ2 +τ3

]

(4.17)

for a channel between (0,1). Notice that the first quadratic correction term agrees
with the expansion (3.32) of the exact variance without free space approximation,
showing that the Gaussian kernel is a reasonable approximation when the short time
transitional effects occur. For a pipe,

κeff

κ
≈1+

4Pe2

3
(R2

0τ
2 +τ3). (4.18)

The anomalous scaling suggested by these two formulas agrees with those in Latini
and Bernoff.



CAMASSA, LIN AND MCLAUGHLIN 621

For transversely uniform initial distribution and quadratic shear, applying the
averaging over the width of the channel reads as

κeff

κ
≈















1+
16Pe2

3

( τ

120
+

τ2

3
+2τ3

)

, Channel,

1+
Pe2

3

(τ

8
+2τ2 +4τ3

)

, Pipe.

(4.19)

These approximations only agree with the asymptotic relations (3.24) and (4.10) de-
rived from the exact kernel up to the linear correction term, which yields the transi-
tion time scale to the anomalous regime. This should be expected since the boundary
effects are significant almost immediately for the particle near the walls for the trans-
versely uniform data. Figure 4.2 evaluates the accuracy of the higher order correction
of these Gaussian approximations compared to the exact enhancement (3.22). Here
we can clearly see that the 4-term, free-space estimate on the left fails much sooner
than the analogous exact kernel asymptotics.
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Fig. 4.2: Gaussian kernel asymptotics vs exact kernel asymptotics when
Pe=2500,T0(x,z,τ)≡ T̄0(x) in a channel.

4.4. Strip data. To try to understand how the case of transversely uniform
initial data arises from the case involving an initial condition which is a spanwise
delta function, we return to the case of channel flow, and derive an expression for the
scalar variance for the special case of initial data on a centered strip.

To connect the two different anomalous time scalings (3.24) and (3.25), we con-
sider the initial data T0(x,z)= T̄0(x)H(z− a

2 (1−w))H( 1
2 (1+w)−z), 0<w<1, where

H is the Heaviside function. With this data, Z0 is uniformly distributed in
[ 12 (1−w), 1

2 (1+w)]. Consequently, the limit w→1 formally corresponds to the trans-
versely uniform data, whereas w→0 corresponds to a point source at z = 1

2 . The
flow-enhanced diffusion with this initial data is

κeff

κ
=

〈

X(τ)2
〉

ω
−〈X(τ)

〉2

ω

2τ

=1+
2Pe2

π6

∞
∑

n=1

1

n6

[

1+
e−4n2π2τ −1

4n2π2τ

]

+
Pe2

π7wτ

∞
∑

m,n=1

cos(nπ)sin(nπw)

n
Kmn(τ)
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− 2Pe2

3π5w

∞
∑

n=1

cos(nπ)sin(nπw)

n5

[

e−4n2π2τ +
e−4n2π2τ −1

4n2π2τ

]

− Pe2

2π10w2τ

[

∞
∑

n=1

cos(nπ)sin(nπw)

n5

(

e−4n2π2τ −1
)

]2

(4.20)

since

1

w

∫ 1
2 (1−w)

1
2 (1−w)

cos(2nπz)dz =
cos(nπ)sin(nπw)

nπw
, (4.21)

and the short time asymptotic behavior obtained by free-space, Gaussian kernel ap-
proximation reads

κeff

κ
≈1+

16Pe2

3

(w4τ

120
+

w2τ2

3
+2τ3

)

, τ →0. (4.22)

Therefore, the w→0 limit of the above formula converges formally to (4.17), the
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Fig. 4.3: Gaussian kernel asymptotics for

T0(x,z)= T̄0(x)H(z− 1
2 (1−w))H( 1

2 (1+w)−z).

predictions using the free space Gaussian kernel with Z0 = 1
2 . However, as we saw in

figure 4.2, this estimate will deteriorate with increasing w, which is demonstrated in
figure 4.3 where this estimate is compared with the exact value (4.20) for different
values of w. Observe that as w increases, the timescale of agreement between the
exact formula and the free space approximation deteriorates, agreeing on shorter and
shorter timescales with increasing strip width.
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5. Higher order statistics

Besides the variance of scalar particles, which is directly related to the enhanced
diffusivity, the skewness and the kurtosis of the particle distribution is also of consid-
erable interest [8, 20]. The correlation formula (3.11) can also be applied to compute
averages like 〈(x−X0)

3〉ω and the averaging calculations are very similar but more
tedious than those for the variance, and we defer those calculations for future work.
Nonetheless, it is interesting to consider if the anomalous and Taylor timescales de-
rived in the second moment correspond to the timescales on which the passive scalar
may develop a non-zero skewness. To this end, we perform some preliminary Monte-
Carlo particle simulations of the SDE formulation. The details of these simulations
are outlined in the Appendix. We find that the evolution of the skewness and of
the kurtosis also exhibit phase transitions from the initial diffusive regime to an
anomalous, ballistic regime with a negative skewness and a smaller kurtosis than
Gaussian, and finally settle in the Taylor regime. Moreover, these transitions occur
at exactly the same time scales suggested by the asymptotic formulas (3.21), (3.25),
(4.9), and (4.11) for the variance. For example, figure 5.1 shows the evolution of the
particle skewness in the channel dispersion, which has a region of negative values be-

tween τ1≈
(

3
32Pe2

)1/3≈2.5×10−3 (centerline point data) or τ1≈ 360
16 Pe−2 =3.6×10−6

(transversely uniform data) and τ2≈0.25, suggesting an asymmetric probability den-
sity function for the displacement X(τ) of a particle, while when τ . τ1 or τ & τ2, the
density function is symmetric with vanishing skewness. These time scales are identical
to those observed in figure 3.2. Therefore, one future direction of our research will
involve the derivation of the exact formula for the skewness and the kurtosis in Taylor
dispersion, similar to the variance formulas (3.20) and (4.6).
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Fig. 5.1: The evolution of the skewness in channel dispersion when Pe=2500 which
shows the identical transitional time scales as the variance.

6. Conclusion

Using the stochastic differential equations underlying the passive scalar in the
presence of pipe and channel flow, appealing to the available single point probability
function for bounded Brownian motion with vanishing Neumann boundary conditions,
along with use of conditional probabilities to compute the needed temporal correla-
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tions, we have found new formulas for the exact evolution of the scalar variance. These
formulas connect the anomalous transport regime to the long Taylor dispersion regime,
and also simplify dramatically when the initial distribution is transversely uniform.
Further, the formulas show situations under which free space methods which neglect
the boundary conditions successfully model the anomalous regime. It is noteworthy
that the free space methodologies employed by Lighthill and Latini and Bernoff pro-
vide additional information beyond the variance in that they offer the spatial structure
as well, despite the fact that the boundary conditions are violated. Of course, the
methodologies employed here using the stochastic differential equation will offer the
same information by direct computation of the free space path integral connecting the
stochastic trajectories to the passive scalar solution. Andy Majda utilized free space
path integrals in several important contexts involving flows with random coefficients.
With these tools, he was able to derive exact statistical moment equations for the
random passive scalar [13], which in some cases can even be solved in closed form
showing situations in which the inherited scalar probability distribution may evolve
into a non-Gaussian distribution [14, 16]. In our current work, we are investigating the
use of path integrals for the much different case involving bounded Brownian motion
which may uncover new features of passive scalar transport.

Appendix A. Computing the integrals
∫

[0,τ ]2

〈

Z2(s)Z2(s′)
〉

ω
dsds′

and
∫

[0,τ ]2

〈

Z2(s)Z(s′)
〉

ω
dsds′. These averages can be decom-

posed as in (3.16), and the explicit formulas for these integrals are

I21 =8

∫ τ

0

ds′
∫ s′

0

ds

∫ 1

0

dx
[x2

12
+x2

∞
∑

m=1

(−1)m

m2π2
cos(mπx)e−m2π2(s′−s)

]

=
τ2

9
+

16

π8

∞
∑

m=1

m2π2τ +e−m2π2τ −1

m8
,

I22 =
4

3

∫ τ

0

ds′
∫ s′

0

ds

∫ 1

0

dx
[

x2
∞
∑

n=1

cos(nπx)cos(nπZ0)e
−n2π2τ

]

=
8

3π6

∞
∑

n=1

(−1)n

n6
cos(nπZ0)

(

n2π2τ +e−n2π2τ −1
)

,

I23 =16

∞
∑

m,n=1

(−1)m

m2π2
cos(nπZ0)

∫ τ

0

ds′
∫ s′

0

ds

∫ 1

0

dx
{

x2 cos(mπx)

×cos(nπx)e−m2π2(s′−s)−n2π2τ
}

=
32

π8

∞
∑

m,n=1

(−1)n(m2 +n2)

m4n2(m2−n2)3
cos(nπZ0)

[

m2(1−e−n2π2τ )+n2(e−m2π2τ −1)
]

,
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I31 = I34 =2

∫ τ

0

ds′
∫ s′

0

ds

∫ 1

0

dx
[x2

4
+x2

∞
∑

m=1

(−1)m−1

m2π2
cos(mπx)e−m2π2(s′−s)

]

=
τ2

12
+

4

π8

∞
∑

m=1

1−(−1)m

m8
[m2π2τ +e−m2π2τ −1],

I32 =

∫ τ

0

ds′
∫ s′

0

ds

∫ 1

0

dx
[

x2
∞
∑

n=1

cos(nπx)cos(nπZ0)e
−n2π2τ

]

=
2

π6

∞
∑

n=1

(−1)n

n6
cos(nπZ0)(n

2π2τ +e−n2π2τ −1),

I33 =4
∞
∑

m,n=1

(−1)m−1

m2π2
cos(nπZ0)

∫ τ

0

ds′
∫ s′

0

ds

∫ 1

0

dx
{

x2 cos(mπx)

×cos(nπx)e−m2π2(s′−s)−n2π2s
}

=
8

π8

∞
∑

m,n=1

[(−1)n−(−1)m−n](m2 +n2)

m4n2(m2−n2)3
cos(nπZ0)

×
[

m2(1−e−n2π2τ )+n2(e−m2π2τ −1)
]

,

I35 =
2

3

∫ 1

0

ds

∫ s

0

ds′
∫ 1

0

dx
[

x

∞
∑

n=1

cos(nπx)cos(nπZ0)e
−n2π2s′

]

=
2

3π6

∞
∑

n=1

(−1)n−1

n6
cos(nπZ0)[n

2π2τ +e−n2π2τ −1],

I36 =8

∞
∑

m,n=1

(−1)m

m2π2
cos(nπZ0)

∫ τ

0

ds

∫ s

0

ds′
∫ 1

0

dx
{

xcos(mπx)

×cos(nπx)e−m2π2(s−s′)−n2π2s′

}

=
8

π8

∞
∑

m,n=1

[(−1)n−(−1)m](m2 +n2)

m4n2(m2−n2)3
cos(nπZ0)

×
[

m2(1−e−n2π2τ )+n2(e−m2π2τ −1)
]

.

Appendix B. Direct Monte Carlo Simulation. The direct particle simula-
tion of the SDE (3.7) is straightforward and which involves generating sample paths
for the Brownian processes W1 and W2. For example, figure 5.1 is generated by 105

such random paths. W1 is the classical white noise process on the real line that can be
approximated by the discretization W1(τ)≃∑N

i=0dwi where dwi,i=0,1,... are i.i.d.
Gaussian random variables with the uniform temporal stepsize ∆τ (set to be 10−10 in
our simulations) being the variance. However, W2(τ) is the bounded Brownian motion
and therefore we need to impose a reflective solid wall boundary condition at 0 and
1. The simulation scheme we adopt is a straightforward Euler scheme [12] to general
particle trajectories, in which the position of a particle will be temporally incremented
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by a discretized Gaussian white noise process modulo the width of the channel or the
radius of the pipe. Consequently, the simulated values of quantities such as 〈X2(τ)〉ω
can be obtained by ensemble-averaging the stochastic processes evaluated along these
random samples.
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