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MODERATE DISPERSION IN CONSERVATION LAWS WITH
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Abstract. We consider the weakly dissipative and weakly dispersive Burgers-Hopf-Korteweg-
de-Vries equation with the diffusion coefficient ε and the dispersion rate δ in the range δ/ε→0. We
study the traveling wave connecting u(−∞)=1 to u(+∞)=0 and show that it converges strongly
to the entropic shock profile as ε,δ→0.
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1. Introduction
This paper is concerned with hyperbolic conservation laws approximated by a

weakly dissipative and weakly dispersive equation; that is, we are interested in the
limit as ε→0, δ→0 of the solutions of the following problem

∂u

∂t
+

∂

∂x
(A(u))=ε

∂2u

∂x2
−δ

∂3u

∂x3
,

u(t,0)=u0(x). (1.1)

It is well known that when the parameter ε vanishes too fast compared to δ, the dis-
persive effects dominate and produce oscillations. In that case the (weak) limit is not
a weak solution to the conservation law with ε= δ =0 ([9]). Therefore several authors
have considered the weak dispersion case δ =αε2, with 0<α<∞ fixed, showing that
the solutions of (1.1) converge strongly ([7, 8, 11]) to weak solution to the equation
with ε= δ =0. Such limits may lead to non-entropic solutions [1, 6, 7, 10, 11] for non-
convex fluxes A(u). However, for strictly convex fluxes and in this weak dispersion
regime δ =αε2 with α>0 fixed, one expects that the (strong) limits always satisfy
the family of Kruzkov entropies; this is proved in [10] for instance for traveling waves.
For general solutions to the initial value problem in the weak dispersion regime, it is
easy to prove that the square entropy satisfies the entropy inequality but there is no
direct derivation of the full family of entropy inequalities. However, an indirect argu-
ment due to R. DiPerna indicates that for convex fluxes a single entropy inequality
implies all the others; the original argument uses the BV regularity of solutions (such
a bound is not available here) and this regularity assumption has been removed re-
cently in [3, 4]. But we are not aware of any related result in the moderate dispersion
regime.

The purpose of this paper is to further investigate the case of convex fluxes, on
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474 MODERATE DISPERSION IN SCL

the simple example of the Burgers-Hopf equation

∂u

∂t
+

∂

∂x

(
u2

2

)
=ε

∂2u

∂x2
−δ

∂3u

∂x3
. (1.2)

Then we sustain, by means of the study of traveling waves, the idea that the entropy
inequalities are reached in the more general limit

δ

ε
→0 (moderate dispersion), (1.3)

and that the condition δ =O(ε2) is perhaps too stringent. More precisely we prove
the

Theorem 1.1. There exists a (unique up to translation) traveling wave solution
u(t,x)=Sε,δ(x− t/2) of (1.2) connecting the states u(−∞)=1 to u(+∞)=0 which
converges strongly, as ε,δ→0, together with (1.3), to the entropic shock profile
ū(t,x)= S̄(x− t/2) with

S̄(x)=
{

1, for x<0,
0, for x>0.

The proof of this theorem is given in the next section. We first recall several facts
on traveling waves and rescale the problem to settle a clearer asymptotic problem.
Then, we study the limiting case c=0 which serves as a basis for the expansions
performed in the study of the general traveling wave. Our analysis indicates that
when δ =αε with α>0 fixed then the traveling wave Sε,δ converges only weakly and
convergence to the entropic shock breaks down at this level. In that sense, the result
of Theorem 1.1 is sharp.

2. Convergence of Burgers-KdV traveling wave solutions

2.1. Rescaled traveling waves. We now look for traveling wave solutions
of the Burgers-KdV equation

ut +uux =εuxx−δuxxx (2.1)

that connect u=1 as x→−∞ and u=0 as x→+∞, and move with the correct speed
c0 =1/2 (the fact that this is the only possible speed for a traveling wave connecting
these two states follows immediately from the Rankine-Hugoniot condition), as is the
case for an entropic shock of the Burgers equation. Such solutions have the form
u(t,x)=Sε,δ(x− t/2), where the function Sε,δ(x) solves

−1
2
S′ε,δ +Sε,δS

′
ε,δ =εS′′ε,δ−δS′′′ε,δ, Sε,δ(−∞)=1, Sε,δ(+∞)=0. (2.2)

Integrating between −∞ and x we obtain

−1
2
Sε,δ +

S2
ε,δ

2
=εS′ε,δ−δS′′ε,δ, Sε,δ(−∞)=1, Sε,δ(+∞)=0. (2.3)

We also rescale and reverse the direction: t=−x/
√

δ and arrive at

Sε,δ(x)=Sc(−x/
√

δ) with c=ε/
√

δ, (2.4)
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and

−1
2
Sc +

S2
c

2
=−cS′c−S′′c , Sc(−∞)=0, Sc(+∞)=1. (2.5)

Note that the function φ(t)=1−Sc(t) satisfies the familiar Fisher-KPP equation

−cφ′=φ′′+
1
2
φ(1−φ), φ(−∞)=1, φ(+∞)=0. (2.6)

It follows that there are three regimes for the traveling front solutions of (1.2).
• The first one arises when c≥ c∗=

√
2, the minimal KPP speed. Then equation

(2.6) admits monotonic traveling wave solutions. In terms of (2.1) this means that
such solutions exist for ε2/δ≥2. After rescaling as in (2.4) and normalizing Sc(0)=1/2
we observe that Sε,δ(x) converges pointwise to the entropic shock profile

S̄(x)=
{

1, for x<0
0, for x>0.

(2.7)

This regime has been widely studied, see [5] and the references therein.
• The second regime, when 0<c<c∗, is different — a traveling wave still exists for

all ε>0, δ >0, that is, for all c>0 but it is no longer monotonic in x. Nevertheless, as
long as we keep ε/

√
δ≥ co for any fixed co >0 and let ε,δ→0, the wave Sε,δ converges

to the shock (2.7), and here again an additional normalization is needed to fix the
location of the traveling wave:

S′c(x)>0 for x<0 and S′c(0)=0, (2.8)

a normalization we will use throughout the paper. This has been shown in [2], see
also [7, 6, 10] for the same conclusions on the initial value problem. In terms of (2.6)
this means that the speed c is bounded away from zero: c≥ co >0.

• Here we are interested in what happens in the third regime, when c becomes
small but so that δ/ε vanishes. We would like to show that for the wave Sε,δ(x)
the picture is as follows (arguing backward from +∞ to −∞: for x>0 the solution
decays to zero on the length scale λ=

√
δ/c; this region is followed by an interval of a

comparable length where the solution oscillates between u=0 and u=3/2, which is
finally followed by a region where the solution oscillates on the length scale λ1 =

√
δ

and approaches the value u=1 at the exponential rate k =1/λ. This means that the
traveling wave converges pointwise to a shock profile as ε,δ→0, as long as λ→0. In
terms of the parameters ε and δ this translates into δ/ε→0 as opposed to the case
δ≤ c2

oε
2 studied previously in [2]. The main difference compared to the latter regime

is that there is a region inside the “viscous shock” where oscillations are strong.
In terms of the wave Sc(t) we have to show the following: (i) in the first zone

(the monotonicity region), t<0, we have S′c(t)>0 and there exists a constant B >0,
independent of c>0 so that 0<Sc(t)≤Bet/B ; (ii) in the second zone (the transient
oscillations region), between x=0 and x=O(1/c), the wave Sc(t) oscillates between
the values 0 and 3/2 with the period O(c−1/4); (iii) in the third zone (the exponential
damping region), x>B/c, we have |1−Sc(x)|≤Be−c(x−B/c) but Sc is still an oscilla-
tory function with the period equal to O(1) — and these bounds should hold with a
constant B independent of c>0. A profile of Sc(x) with c= .05 is depicted in Figure
2.2 with translated abscissae.
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Fig. 2.1. The potential energy, the function G(w).
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Fig. 2.2. Solid line: a profile of Sc(x) with c= .05, w(0)=5 ·10−5. Dashed line: the derivative
S′c(x).

For this purpose, it is convenient to introduce the phase space variables w=Sc

and v =−S′c to rewrite (2.5)–(2.8) as





w′=−v,

v′=−cv− 1
2w(1−w),

w(−∞)=v(−∞)=0, v(0)=0, w(+∞)=1, v(+∞)=0.

(2.9)
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This system has an energy

H(v,w)=
v2

2
+G(w),

d

dt
H(v(t),w(t))=−cv(t)2, (2.10)

with G′(w)=−w(1−w)/2. We choose the normalization so that minG=G(1)=0,
which means that

G(w)=
w3

6
− w2

4
+

1
12

=
(1−w)2(1+2w)

12
.

This function is plotted in Figure 2.1.
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Fig. 2.3. Large energy periodic solution. Solid line: a profile of Sc(x) with c=0, w(0)=5 ·10−5.
Dashed line: the derivative S′c(x).

2.2. The periodic solutions for c=0. In order to study the problem with
c>0 we first recall the basic properties of the periodic solutions that exist when c=0.
Then, the system (2.9) becomes





w′=−v,

v′=− 1
2w(1−w),

(2.11)

and the energy is conserved. The energy level, 0≤H =H(0,w(0))=G(w(0))<1/12=
G(0), characterizes the solution.

The period. There exists a global solution (corresponding to T =∞) with the
maximal energy H =1/12 and w>0, which corresponds to a homoclinic orbit of (2.11)
that connects (0,0) to itself. Other solutions with energies 0≤H <1/12 are periodic,
with the period T given in terms of the energy H by

T =2
∫ w2(H)

w1(H)

dw√
2
(
H−G(w)

) . (2.12)
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Fig. 2.4. Small energy periodic solution. Solid line: a profile of Sc(x)−1 with c=0, w(0)=
1−0.005. Dashed line: the derivative S′c(x).

Here w1(H)<w2(H) are the two solutions of G(w1,2(H))=H, that is, the minimum
and maximum values of the function w(t) on the trajectory. We have two limit-
ing cases: (maximal energy) w1(1/12)=0 and w2(1/12)=3/2, and (minimal energy)
w1(0)=w2(0)=1.

Large energies, H .1/12. Such a periodic solution, with w(0)=5 ·10−5, is
depicted in Figure 2.3. The periodic solutions with H close to H =1/12 spend most
of the time close to the minimal value w1(H)≈0 as can be seen from Figure 2.3 –
the reason is that they “follow” the bound state for a long time. However, the time
they spend between w=1/2 and w=w2(H)≈3/2 is uniformly (in H) bounded from
above. Indeed, assume that H >H(1/2,0)=1/24, w(t1)=1/2 with v(t1)>0 and t2 is
the first time larger than t1 such that w(t2)=w2(H). Then we have

t2− t1 =2
∫ w2(H)

1/2

dw√
2(H−G(w))

≤C,

since G′(w2(H)) is bounded away from zero for H≥1/24. On the other hand, as
G′(0)=0, the period T (H) for H≥1/24 is bounded from below:

T (H)=2
∫ w2(H)

w1(H)

dw√
2(H−G(w))

≥ 1√
2

∫ 1/2

w1(H)

dw√
2
(
H−G(w)

) ≥T0 >0.

Moreover, as H→1/12 we have

T (H)=2
∫ w2(H)

w1(H)

dw√
2(H−G(w))

→+∞.
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For H .1/12, one can also prove that

w1(H)=2

√
1
12
−H +

4
3

(
1
12
−H

)
+O((

1
12
−H)3/2),

w2(H)=
8
3

(
1
12
−H

)
+O((

1
12
−H)2),

T (H)=−2
√

2ln(w1(H))+O(1). (2.13)

Indeed, we have, by a simple Taylor expansion, w1(H)=O(
√

1
12−H). Then we obtain

from the expression (2.12) for the period that

T (H)=2
∫ ·

w1

dw√
2
(
H− 1

12 + w2

4 − w3

6

) =2
∫ ·

0

ds√
s(w1−w2

1)+s2( 1
2−w1)− s3

3

=2
∫ ·/w1

0

du√
u(1−w1)+u2( 1

2−w1)− u3

3 w1

≈2
∫ ·/w1

0

du√
u+ u2

2

≈−2
√

2lnw1.

Small energies, H &0. The situation is different for small energies: the period
is bounded both from below and from above. Indeed, note that G(w) is convex for
w≥1/2 so that

H−G(w)≤−G′(w1(H))(w−w1) for w1(H)≤w≤1,

H−G(w)≤G′(w2(H))(w2−w) for 1≤w≤w2(H).

Using these bounds we obtain by an elementary calculation

T =2
∫ w2(H)

w1(H)

dw√
2(H−G(w))

≥C

(
1√

w1(H)
+

1√
w2(H)

)
≥T1 >0.

On the other hand, we have an upper bound for G(w):

G(w)≤H− H

1−w1(H)
(w−w1(H)) for w1(H)≤w≤1,

and

G(w)≤H +
H

w2(H)−1
(w−w2(H)) for 1≤w≤w2(H).

It follows with the help of another elementary computation that

T =2
∫ w2(H)

w1(H)

dw√
2(H−G(w))

≤C

(
1−w1√

H
+

w2−1√
H

)
≤T2 <+∞.

In fact, the asymptotic behavior for small energy is clear. The solution approaches
the harmonic oscillator 1−w(x)≈ (1−w(0))cos(2πt).
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2.3. Traveling waves for a small c>0. As we have mentioned, exis-
tence of traveling wave solutions for all 0<c<c∗=

√
2 has been established in [2].

It has been shown that they look as follows. In the first zone Sc(t) is increasing
for t<0 and has its first maximum at x0 =0. Then, Sc(t) oscillates with a de-
creasing amplitude in the following sense: there exists infinite sequences of maxima
0=x0 <x1 < ···<xn < ··· and minima 0<y1 <y2 < ···<yn < ··· with xn−1 <yn <xn

so that 1<Sc(xn+1)<Sc(xn)<3/2 and 0<Sc(yn)<Sc(yn+1)<1; see Figure 2.2 for a
typical profile (with translated abscissae). Our task is to estimate the differences of Sc

at successive maxima and minima, the distances Ln =xn+1−xn and ln =yn+1−yn,
and the energy drop Hc(xn+1)−Hc(xn), where Hc(t) denotes the energy of Sc as
introduced in (2.10). We do that in distinguishing two additional zones (transitory
oscillations and exponential damping).

Transitory oscillations. Here, we wish to prove

Lemma 2.1. For c>0 small enough, and as long as 1
24 ≤H(yn)< 1

12 , for some con-
stant K, we have

yn+1−yn≤an :=
K

(cn)1/4
, H(yn+1)−H(yn)≤−Kc.

Proof. We denote by K a universal constant independent of c throughout the
proof. We need a preliminary and straightforward estimate on solutions (wc(t),vc(t))
with c>0 by those (w0(t0;t),v0(t0;t)) obtained with c=0 and the same initial data
at t= t0, (wc(t0),vc(t0))=(w0(t0;t0),v0(t0;t0)). This estimate is

|vc(t)−v0(t0;t)|+ |wc(t)−w0(t0;t)|≤ cCT sup
|s−t0|≤T

|vc(s)|, for all |t− t0|≤T . (2.14)

This is a consequence of the Gronwall lemma applied to the system (2.9), where the
term −cv is considered as a source.

Next, we can consider the energy drop between −∞ and x0 =0. It is estimated
as

1
12
−Hc(0)= c

∫ 0

−∞
v2

c (t)dt.

We claim that Hc(0)≤1/12−cM with a constant M independent of 0<c<c0, for
some c0 small enough. Indeed, we have for −1≤ t≤0:

|vc(t)−v0(0;t)|+ |wc(t)−w0(0;t)|≤Kc sup
−1≤s≤0

|vc(s)|≤K ′c, for all −1≤ t≤0.

This means that
∫ 0

−∞
v2

c (t)dt≥
∫ 0

−1

v2
c (t)dt≥

∫ 0

−1

v2
0(0;t)dt−Kc≥K,

and thus

Hc(0)≤ 1
12
−Kc. (2.15)

We also have the following fact: if Hc(xn)≥1/24 then xn−xn−1≥T0 with T0 inde-
pendent of n. On the other hand, we have

Hc(xn−1)−Hc(xn)= c

∫ xn

xn−1

v2
c (t)dt. (2.16)
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By the same argument as above we deduce that

Hc(xn)≤Hc(xn−1)−Kc if Hc(xn)≥1/24.

This means that

Hc(xn)≤ 1
12
−Kcn if Hc(xn)≥1/24.

As a consequence, we have wc≥K
√

cn for xn−1≤ t≤xn and, in particular, wc(yn)≥
K
√

cn.
Let zn∈ (yn,xn) be the first point to the right of yn where wc =3/4. In order to

estimate |xn−yn| we will now first estimate the distance between yn and zn. On the
interval between yn and zn the function wc satisfies

−w′′c = cw′c−
1
2
wc(1−wc),

and wc≥K
√

cn. Therefore, on this interval (yn, zn) we have

w′′c +cw′c≥K
√

cn, wc(yn)≥K
√

nc, w′c(yn)=0, w′c≥0.

It follows that

w′c(t)≥
K
√

n√
c

(
1−e−c(t−yn)

)
for yn≤ t≤zn. (2.17)

Therefore, as long as (2.17) holds and t≤yn + 1
100c we get

wc≥K
√

cn+
K
√

n√
c

(t−yn)−K
√

n

c
√

c

(
1−e−c(t−yn)

)

≥K
√

cn+
K
√

n√
c

(t−yn)−K
√

n

c
√

c

(
1−1+c(t−yn)− c2

4
(t−yn)2

)

=K
√

cn(1+(t−yn)2).

It follows that

zn−yn≤ K

(cn)1/4
.

On the other hand, it is straightforward to compute that |zn−xn+1|≤T0 with T0

uniform in the energies. We see that

xn−yn−1≤ K

(cn)1/4
.

A similar computation shows that

yn−xn≤ K

(cn)1/4
,

so that

yn−yn−1≤an =
K

(cn)1/4
,
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provided that H(yn)≥1/24.

We can now conclude the analysis of the transitory zone. Because we have seen
that energy drops by Kc between yn and yn+1, we conclude that the number N of
oscillations before the energy H =1/24 is reached is bounded by Nc =K/c. Therefore,
the total time it takes to reach this energy level is bounded by

L=
N=K/c∑

n=1

an =
N=K/c∑

n=1

K

(cn)1/4
≤ K

c1/4

(
K

c

)3/4

≤ K

c
.

Exponential damping. The third zone is when the energy Hc(t) is smaller than
1/24. There, using the inequality

H ′
c(t)=−cv2≥−cH(t),

we deduce the lower bound

H(t)≥H(t0)e−c(t−t0).

Our purpose is to prove the reverse inequality.
We begin by arguing as before for (2.14)

|vc(t)−v0(t0;t)|+ |wc(t)−w0(t0;t)|≤ c
√

Hc(t0)eM(t−t0). (2.18)

This proves, again by continuity as c→0 on the rescaled quantities vc(t)/
√

Hc(xn),
wc(t)/

√
Hc(xn), that

xn+1−xn =O(1), and yn+1−yn =O(1). (2.19)

Finally, with the similar argument and using again (2.16), we have a bound for
energy drop over each oscillation:

Hc(xn)≤ (1−Kc)Hc(xn−1).

This means that, in this third zone, energy decays exponentially at the rate cK:

Hc(xn)≤Ke−Kc(xn−K/c),

in other words, wc(t)→1 exponentially as we have claimed. This finishes the proof of
Theorem 1.1.

2.4. The general nonlinearities. Our results may be generalized to any
strictly convex flux f(u) and boundary conditions u(−∞)=ul and u(+∞)=ur:

ut +(f(u))x =εuxx−δuxxx, u(−∞)=ul, u(+∞)=ur. (2.20)

We look for a traveling wave that moves with the speed s=(f(ur)−f(ul))/(ur−ul):

−sS′ε,δ +[f(Sε,δ)]′=εS′′ε,δ−δS′′′ε,δ.

Integrating between −∞ and x we get

−sSε,δ +sul +f(Sε,δ)−f(ul)=εS′ε,δ−δS′′ε,δ.



B. PERTHAME AND L. RYZHIK 483

Again, after rescaling x by
√

δ and setting c=ε/
√

δ we arrive at

cS′c−S′′c =F (Sc), Sc(−∞)=ul, Sc(+∞)=ur.

The nonlinearity F has the form

F (φ)=−sφ+sul +f(φ)−f(ul). (2.21)

Note that F (ul)=F (ur)=0 — this follows from the Rankine-Hugoniot condition on
the speed s. Moreover, for φ between ul and ur we have

F (φ)=f(φ)−f(ul)− f(ur)−f(ul)
ur−ul

(φ−ul)≤0,

since f is convex. Thus, the situation is again reduced to the KPP since the nonlin-
earity F (φ) is convex in φ.

The situation is, of course, completely different in the non-convex case as traveling
waves may not exist even if δ =0 — that is, in the absence of dispersion. Indeed, if
we look for a traveling wave solution of (2.20) with δ =0 we arrive simply at

cS′c =F (Sc), Sc(−∞)=ul, Sc(+∞)=ur,

with F given by (2.21). This equation may not have a solution if there exists a point
φ between ul and ur such that F (φ)=0, that is, if the line joining (ul,f(ul)) and
(ur,f(ur)) intersects the graph of f(u) between ul and ur. For that to happen the
function f has to be non-convex.

3. Conclusion
We have studied the oscillatory traveling waves for the dissipative-dispersive

Burgers-Hopf equation and estimated precisely the periods and damping rate. From
this study, we deduce that when δ/ε vanishes, the traveling wave converges to an
entropic shock. We conjecture that the entropic solutions should be reached in this
regime even for the initial value problem.

It is therefore natural to ask the question of the regime δ =ε (or maybe larger). It
is easy to be convinced that the corresponding traveling wave converges only weakly
and thus does not reach the entropic shock in the limit. Indeed, in the third region
of our analysis, the oscillation length of Sc is of length O(1) and the damping rate
toward 1 is e−ct. Once rescaled to the actual traveling wave Sε, δ oscillates with the
period of the order

√
δ and the damping rate toward 1 is now e−x. In other words

in the third region, Sε, δ converges weakly to 1. It is plausible that the second region
remains of size O(1) and a smooth transition is generated in the weak limit.
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