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FAST COMMUNICATION

QUENCHING AND PROPAGATION OF COMBUSTION FRONTS IN
POROUS MEDIA∗

PETER GORDON†

Abstract. In this short note we study the model of subsonic detonation introduced by Sivashin-
sky. The model is described by the system of reaction-diffusion equations involving temperature,
pressure and concentration of deficient reactant. It is shown that initial data with small support
lead to quenching (decay of solution). In contrast, initial data with support large enough lead to
propagation with finite velocity.
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1. Introduction
As is well known there are basically two mechanisms controlling propagation of

combustion waves in gaseous mixtures : molecular transport and adiabatic compres-
sion. The first mechanism is referred to as deflagrative combustion or deflagration
and the second regime is called detonation. Gaseous detonation is a phenomenon with
very complicated dynamics which has been studied extensively by physicists, mathe-
maticians and engineers for many years. Despite many efforts the problem is far from
complete resolution. Recently Sivashinsky proposed a theory of subsonic detonation
that occurs in highly resistable porous media [3]. This theory provides a model which
is realistic, rich and suitable for a mathematical study. In particular, the model is
capable of describing transition from a slowly propagating deflagration wave to the
fast detonation. This phenomena is known as a deflagration to detonation transition
and is one of the most challenging issues in combustion theory. The model reads [11]:

γTt−(γ−1)Pt =ε∆T +Y Ω(T ),
Pt−Tt =∆P,

Yt =εLe−1∆Y −Y Ω(T ). (1.1)

Here P , T and Y are the appropriately scaled pressure, temperature and concentration
of the deficient reactant; γ >1 is the specific heat ratio, ε is a ratio of pressure and
molecular diffusivities, Le is a Lewis number and Y Ω(T ) is the reaction rate. The first
and third equations of the system (1.1) represent the partially linearized conservation
equations for energy and deficient reactant, while the second equation is a linearized
continuity equation taking into account the equations of state and momentum (Darcy
law).

We consider the problem (1.1) in the whole space, that is (t,x)∈R+×Rd. We
also assume that the nonlinearity Ω(T ) is of the ignition type. More specifically,

Ω(T )=0 for 0≤T ≤Θ. (1.2)
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Moreover, Ω(T ) is an increasing Lipschitz continuous function for T ≥Θ, except for a
possible discontinuity at the ignition temperature T =Θ. In addition we assume that

Ω(T )≤KT (1.3)

where K is some constant. An example of nonlinearity Ω(T ) most commonly used in
applications is the so-called Arrhenius law [13]:

Ω(T )=
{

exp(−Z/T ) if T ≥Θ
0 if T <Θ (1.4)

where Z is the Zeldovich number (scaled activation energy).
One of the central problems in detonation theory is the initiation of detonation

[12]. Subsonic detonation similar to the conventional (supersonic) one may be initi-
ated by localized energy deposition, localized temperature elevation (hot spot). In a
framework of the model (1.1) this corresponds to the following initial conditions:

T (0,x)=T0(x)≥0, Y (0,x)=1, P (0,x)=0. (1.5)

That is, concentration of deficient reactant and pressure are assumed to be constant
while temperature is a localized function.

Most relevant for applications is the case when ε is small. For realistic materials ε
varies in the range ε∼10−2−10−5. Therefore we will assume throughout of this paper
that ε<1. In this case, the system (1.1) exhibits interesting dynamics. According
to the results of numerical simulations there are three general scenarios of the long
time behavior of solutions for system (1.1) with initial conditions (1.5). Let ωΘ =
{x∈Rd :T0(x)>Θ} be a support of the initial data for temperature strictly larger
than the ignition temperature and set vol(ωΘ)=meas(ωΘ). If lΘ =vol(ωΘ)||T0||L∞
is large, the detonation wave forms almost immediately. This wave propagates with
the velocity of order one. In the case when lΘ has some intermediate value, the
detonation wave forms after a long induction time as a result of an abrupt transition
from a slowly spreading deflagration wave driven by thermal diffusivity. That is,
initially propagation with characteristic velocity of order

√
ε is observed for a time

period of order of 1/
√

ε, then the solution experiences rapid changes and jumps to the
detonation regime which was described before. Finally when lΘ is small quenching
(decay of solution) occurs. That is (T,Y,P )(x,t)→ (0,1,0) as t→∞. The first two
regimes have been extensively studied both rigorously and numerically in recent years
see review [11] for details. In particular, it was shown that immediate initiation is
impossible if the support of the initial data is small [9]; existence, uniqueness and
stability of traveling waves have been analyzed in [9], [7], [8], [4]. Metastability of
the deflagration regime has been explored in [2], [5]. However, a rigorous study of
quenching has not yet been performed.

The present paper is concerned with the quenching and thermo-diffusive propa-
gation of the disturbances in a highly resistable porous media. In particular, we show
that if the initial data have a small support, quenching occurs (Section 2) and initial
data with large enough support lead to propagation with a speed at least of the order√

ε (Section 3). Similar problems in the case of a single reaction diffusion equation
were studied in the famous works by Aronson and Weinberger [1] and Kanel [10].

2. Quenching
In this section we show that if the support of the initial data for temperature is

small, then quenching occurs.
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As a first step we make a change of variables. We represent the temperature field
as a linear combination of pressure and some new variable R

T (t,x)=λP (t,x)+(1−λ)R(t,x) (2.1)

with λ being a positive solution of the following equation

(1−λ)(γ+ελ)=1. (2.2)

After simple algebraic manipulations with Eqs.(1.1)1 and (1.1)2 and scaling ∆→
(1−λ)∆ we have

Rt = δ∆R+Y Ω(T ),
Pt−Rt =∆P,

Yt =µ∆Y −Y Ω(T ), (2.3)

with δ =ε(1−λ)2, µ=ε(1−λ)Le−1 and T defined by (2.1). Next we add Eqs.(2.3)1
and (2.3)2, in a way (2.3)2 + 1

1−δ (2.3)1. Then the system (2.3) can be written in an
equivalent form

Rt = δ∆R+Y Ω(T ),

St =∆S +
1

1−δ
Y Ω(T ),

Yt =µ∆Y −Y Ω(T ), (2.4)

where S(t,x) is defined as follows

S(t,x)=P (t,x)+
δ

1−δ
R(t,x). (2.5)

In other words, we have made a linear transform of the variables (T,P )→ (R,S). As
is clearly seen from Eqs.(2.1) and (2.4) this transform is defined as follows

T (t,x)=λS(t,x)+
(

(1−λ)− λδ

1−δ

)
R(t,x) (2.6)

P (t,x)=S(t,x)− δ

1−δ
R(t,x). (2.7)

Initial values for S and R are easily determined as

R(0,x)=
1

(1−λ)
T (0,x), S(0,x)=

δ

(1−δ)
R(0,x)=

δ

(1−δ)(1−λ)
T (0,x). (2.8)

So the problem (1.1) is equivalent to the following

Rt = δ∆R+Y Ω(T ),

St =∆S +
1

1−δ
Y Ω(T ),

Yt =µ∆Y −Y Ω(T ),

T (t,x)=λS(t,x)+
(

(1−λ)− λδ

1−δ

)
R(t,x), (2.9)
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with initial conditions:

R(0,x)=
1

(1−λ)
T0(x), S(0,x)=

δ

(1−δ)(1−λ)
T0(x), Y (0,x)=1. (2.10)

The system (2.9) resembles that arising in conventional combustion (deflagration
in a free space). The main difference is that the nonlinear term Ω is a function of
two variables R and S whereas in conventional combustion the nonlinear term is a
function of a single variable.

The strategy of proving that an initial data with small support is quenched is as
follows. First we will show that the function R is bounded by S uniformly in (t,x)
(Lemma 2.1). This will enable us to construct an equation which describes super-
solutions of S. This equation is formally identical to the one studied in conventional
combustion. Then we apply the technique suggested in [6] to obtain the result.

Lemma 2.1. Let (R,S) be solution of the system (2.9),(2.10).
Then,

S(t,x)≥ δd/2+1

1−δ
R(t,x) for all t,x. (2.11)

Proof. Formally solution of Eqs.(2.9)1,2,(2.10) can be written in the form

R(t,x)=Gδ(t)?R0 +
∫ t

0

Gδ(t−s)?Y Ω(T )

S(t,x)=G1(t)?S0 +
1

1−δ

∫ t

0

G1(t−s)?Y Ω(T ) (2.12)

where

Gδ(t,x)=
1

(4δπt)d/2
e−|x|

2/4δt (2.13)

is the heat kernel in Rd. Taking into account the initial conditions we also have

R(t,x)=
1

1−λ
Gδ(t)?T0 +

∫ t

0

Gδ(t−s)?Y Ω(T )= IR +IIR

S(t,x)=
δ

(1−δ)(1−λ)
G1(t)?T0 +

1
1−δ

∫ t

0

G1(t−s)?Y Ω(T )= IS +IIS . (2.14)

Next we define

Hα(t,x)=G1(t,x)−αGδ(t,x)=G1(t,x)(1− α

δd/2
e−(1−δ)|x|2/4δt). (2.15)

The function Hα(t,x)≥0 for all (t,x) whenever δ≤1 and α≤ δd/2. Therefore

IS−pIR =
1

1−λ

δ

1−δ
Hp(1−δ)/δ ?T0≥0 p≤ δd/2+1

1−δ
. (2.16)

Similarly

IIS−qIIR =
1

1−δ

∫ t

0

Hq(1−δ)(t−s)?Y Ω(T )ds≥0 q≤ δd/2

1−δ
. (2.17)
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Inequalities (2.16), (2.17) and initial condition (2.8) imply the statement of the lemma.

In the following lemma we obtain a useful bound on S.

Lemma 2.2. Let ω ={x∈Rd :T0(x)>0} and set vol(ω)=meas(ω). Then,

S(t,x)≤ δ||T0||L∞vol(ω)eσt

(4πt)d/2(1−λ)(1−δ)
with σ =

KC0

δd/2+1(1−δ)
. (2.18)

Proof. Due to lemma 2.1, T (t,x)≤ C0
δd/2+1

S(t,x) with C0 =(1−λ)(1−δ)−δλ(1−
δd/2)<1. Next since Ω(T )≤KT we have Ω(T )≤ KC0

δd/2+1 S. Therefore the solution of
the equation

S̄t =∆S̄ +
KC0

δd/2+1(1−δ)
S̄, S̄(0,x)=S(0,x) (2.19)

will be a supersolution for S, that is S̄≥S for all (t,x). We are looking for the
solution of Eq.(2.19) in the form S̄(t,x)=Φ(t,x)eσt, where σ = KC0

δd/2+1(1−δ)
and Φ is

the solution of the following equation

Φ̄t =∆Φ̄, Φ(0,x)=S(0,x). (2.20)

Using the heat kernel we have

Φ(t,x)=
δ

(1−λ)(1−δ)
G1(t)?T0≤ δ||T0||L∞vol(ω)

(4πt)d/2(1−λ)(1−δ)
, (2.21)

which implies the statement of the lemma.

Theorem 2.3. Let ω ={x∈Rd :T0(x)>0} and set vol(ω)=meas(ω). Assume that

||T0||L∞vol(ω)≤
(

2πd

KC0e

)d/2 (1−λ)(1−δ)
C0

Θδ
d
2 ( d

2 +2). (2.22)

Then,

T (t,x),P (t,x)→0 and Y (t,x)→1 as t→∞ uniformly in x. (2.23)

Proof. Since T (t,x)≤ C0
δd/2+1

S(t,x), the solution of the problem

S̄t =∆S̄ +
1

1−δ
Ω(

C0

δd/2 +1
S̄) (2.24)

will be a supersolution for S. Since Ω is of the ignition type all we have to show is
that S̄ =Sign≤ Θδd/2+1

C0
for all x at some instance of time t= t∗. If this happens, then

S̄≤Sign for all x and t>t∗ since Sign will be a supersolution of the problem (2.24)
and S will satisfy a heat equation

S̄t =∆S̄ (2.25)
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for t>t∗. Therefore, S→0 as t→∞ uniformly in x. Moreover, by lemma 2.1, R is
bounded from above by S and thus R→0 as t→∞ uniformly in x. Since P and T
are linear combinations of R and S, previous observations imply that T →0, P →0
as t→∞ uniformly in x. Using these facts and equation for Y , we also deduce that
Y →1 as t→∞ uniformly in x.

Now let us show that under assumptions of the theorem this indeed happens. We
set

F (t)=
δ||T0||L∞vol(ω)

(4πt)d/2(1−λ)(1−δ)
eσt, with σ =

KC0

δd/2+1(1−δ)
. (2.26)

The minimum of this expression is achieved at time t∗=d/2σ and

F (t∗)=
(

KC0e

2πd

)d/2 vol(ω)||T0||L∞
δ

d
2 ( d

2 +1)−1
(2.27)

S≤F for all t, and in particular at t= t∗. Moreover, at t∗, F (t∗)≤Sign as long as

||T0||L∞vol(ω)≤
(

2πd

KC0e

)d/2 (1−λ)(1−δ)
C0

Θδ
d
2 ( d

2 +2) (2.28)

which implies the statement of the theorem.

Proof of theorem 2.3 provides a transparent physical picture of how quenching
occurs. There are two stages of the evolution involved. The first stage is associated
with a fast reaction in a localized region of space and intense transport of heat from
the reaction zone. Indeed, initially pressure is constant and the amount of fuel is
abundant while the region of high temperature is extremely localized in space. The
reaction raises pressure and temperature in a localized reaction zone and leads to
consumption of fuel. At the same time diffusion prevents high gradient of temperature
and eliminates sharp peaks by rapid transport of hot gas away from the reaction zone.
Thus after some (relatively short) time a reaction zone is surrounded by the large spot
of preheated gas. However, under assumptions of the theorem, the temperature of this
preheated gas is still smaller than the ignition temperature. This prevents initiation
of the reaction in a larger region. In other words, at the instance of time which is
estimated from above by t∗, the temperature drops below the ignition temperature
and the reaction stops in the entire space. Moreover, since t∗ is finite, just a finite
amount of fuel is consumed by this time. At this moment the second stage of evolution
starts. At this stage the dynamics of the system are governed exclusively by diffusion.
Diffusion tends to smooth out the pressure and temperature fields that approach zero
as time progresses. At the same time diffusion brings the fuel from infinity in order
to make the concentration field uniform and equal to unity at large times.

3. Diffusive propagation
In this section we show that initial data with large support lead to the propagation

of disturbances with a finite speed. The result is based on comparison principle and
classical result of Aronson and Weinberger [1].

We will use the following strategy to prove the result. First we restrict ourself
to the case when Le≥1/(1−λ). Similar restrictions arises in contest of study of
deflagration in a free space. This restriction allows us to estimate concentration Y
from below in terms of R uniformly in (t,x) (Lemma 3.1). The latter estimate makes it
possible to construct a single reaction diffusion equation which describes a subsolution
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for the function R. Solution of this equation propagates with the finite speed due to
results of [1]. This, in turn, implies that temperature T also propagates with finite
speed since T can be estimated in terms of R from below.

We start with the bound for the concentration Y in terms of R.

Lemma 3.1. Let Y,R be a solution of the problem (2.9),(2.10). Assume that Le≥
1/(1−λ). Then,

Y (t,x)≥1−((1−λ)Le)d/2R(t,x) for all t,x. (3.1)

Proof. The proof is similar to the one of the lemma 2.1. We formally write the
solution of the problem (2.9) as

R(t,x)=Gδ ?R0 +
∫ t

0

Gδ(t−s)?Y Ω(T )

Y (t,x)=Gµ ?Y0−
∫ t

0

Gµ(t−s)?Y Ω(T ) (3.2)

where the heat kernel Gδ is defined by (2.13). Next adding Eqs.(3.2) we have

Y =Gµ ?Y0 +αGδ ?R0−αR+
∫ t

0

(αGδ(t−s)−Gµ(t−s))?Y Ω(T ) (3.3)

with α being a positive constant. Define

Zα(t,x)=αGδ−Gµ (3.4)

After straightforward computations we have

Zα(t,x)=
α

(4πtδ)d/2
e−|x|

2/4δt

(
1− 1

α

(
δ

µ

)d/2

e−|x|
2(δ−µ)/4tµδ

)
. (3.5)

We then observe that Zα(t,r)≥0 whenever α≥
(

δ
µ

)d/2

. Thus,

∫ t

0

(αGδ(t−s)−Gµ(t−s))?Y Ω(T )=
∫ t

0

Zα(t−s)?Y Ω(T )ds≥0 for α≥
(

δ

µ

)d/2

.

(3.6)
Therefore

Y =Gµ ?Y0 +αGδ ?R0−αR, α≥
(

δ

µ

)d/2

. (3.7)

Taking into account that

Gµ ?Y0 =Gµ ?1=1, αGδ ?R0≥0 (3.8)

we have

Y ≥1−
(

δ

µ

)d/2

R=1−((1−λ)Le)d/2
R. (3.9)
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Using the result of the previous lemma, we now can construct a subsolution for
R. Indeed by lemma 3.1, Y ≥1−((1−λ)Le)d/2

R. Moreover, by lemma 2.1, we have
S≥ δd/2+1

1−δ R. Thus by (2.6) T >
(
(1−λ)− λδ

1−δ

)
R. These observations lead to the

construction of a subsolution for R which satisfies the following equation

Rt = δ∆R+(1−((1−λ)Le)d/2
R)Ω

((
1− λ

1−δ

)
R

)
(3.10)

with initial condition

R(0,x)=
1

(1−λ)
T0(x). (3.11)

Here Ω(s) is a C1 function satisfying the following conditions: Ω(s)=0 for s<Θ, Ω(s)
is an increasing function for s>Θ, Ω(s)≤Ω(s) and |Ω(s)−Ω(s)|≤κ for κ sufficiently
small. In other words, Ω is a C1 approximation of Ω. We also assume that

Θ<
1

(Le(1−λ))d/2

(
1− λ

1−δ

)
. (3.12)

It is important to note that equation (3.10) admits a planar traveling wave solution
traveling in the direction of ν. That is, solutions of the form R(η), with η =x ·ν−ct

where ν is any unit vector in Rd. These traveling waves approach 0 and ((1−λ)Le)−d/2

as η→±∞. Moreover, there is a unique value of c= c∗ for which such type of solution
exists [1]. In addition, standard scaling arguments show that the velocity of the
traveling wave c∗ is of order of

√
ε. In [1] (Theorem 6.2 p.70) it was shown that if

initial data R(0,x)≥0 has sufficiently large support, then propagation with the speed
c∗ is observed. More precisely if

R(0,x)=





((1−λ)Le)−d/2 for |x|≤Cε−1/2

φ(|x|) for Cε−1/2 < |x|≤1+Cε−1/2

0 for |x|>1+Cε−1/2

(3.13)

for some C independent of ε and φ(z)∈C0 such that φ(Cε−1/2)=((1−λ)Le)−d/2 and
φ(Cε−1/2 +1)=0. Then,

lim
t→∞

min
|z−y|≤ct

R(t,z)=((1−λ)Le)−d/2 (3.14)

for any y∈Rd and c∈ (0,c∗). These results lead to the following theorem.

Theorem 3.2. Assume that

T (0,x)=





1 for |x|≤Cε−1/2

σ(|x|) for Cε−1/2 < |x|≤1+Cε−1/2

0 for |x|>1+Cε−1/2

(3.15)

where C is some constant independent of ε and σ(z)∈C0 with σ(Cε−1/2)=1,
σ(Cε−1/2 +1)=0. Assume also that

Θ<
1

(Le(1−λ))d/2

(
1− λ

1−δ

)
. (3.16)
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Then,

lim
t→∞

min
|z−y|≤ct

T (t,z)>
1

(Le(1−λ))d/2

(
1− λ

1−δ

)
(3.17)

for any c∈ (0,c∗) where c∗∼√ε is the speed of the traveling wave solution of the
problem (3.10).

Proof. Under the assumptions of the theorem, results of [1] are applicable. In
particular an estimate (3.14) holds. Taking into account that T >

(
1− λ

1−δ

)
R we

have (3.17).

Remark 3.1. We do not know whether an estimate (3.17) is optimal. One may expect
that the temperature in a burned gas region will approach unity in the case when a
stable propagation with constant velocity is observed. However, it is known that flames
may suffer instabilities for Le>1, which leads to oscillations even in dimension one
and may sufficiently reduce the minimal value of the temperature in the burned gas.

Remark 3.2. Theorems 2.3 and 3.2 provide sufficient conditions for quenching and
propagation to take place. In order for quenching to occur, the support of the tem-
perature should be of order εd(d/2+2)/2, whereas to ensure propagation support of the
initial data for temperature should be order ε−1/2. At this point it is not known what
happens if the support of the initial data has an intermediate scaling between these
two. We note that even for a single reaction diffusion equation this problem was solved
only recently [14].
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