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HARMONICITY UP TO REARRANGEMENT AND ISOTHERMAL
GAS DYNAMICS*

YANN BRENIER '

Abstract. The concept of harmonic (or wave) maps up to rearrangement is introduced. A
relation is established with the smooth solutions of the isothermal irrotational inviscid gas dynamics
equations.
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1. Review of Some Classical Concepts

1.1. Harmonic (or Wave) Maps. Let S > 0,7 > 0, U =]0,T[x]0, S[ and
D =T¢= (R/Z)d be the unit periodic cube. A map (t,s) € U — X(t,s) € D
is usually called a harmonic map (resp. a wave map) if it is a critical point of the
functional

/ %(n|8tX(t,s)|2 F10,X (2, )[2)dtds, (1.1)
U

where n = 1 (resp. n = —1), with respect to perturbations with compact support
in U. (Here |.| denotes the Euclidean norm on R?.) This means that X solves the
homogeneous Laplace (resp. wave) equation

nattX + 8SSX =0. (12)

In the harmonic case n = 1, a map X is called minimizing harmonic if it minimizes
(1.1) as its value X sy along the boundary is fixed.

REMARK. A natural class for the “target” D of a harmonic (or wave) map is the class
of general Riemannian manifolds. The case D = T is fairly trivial but sufficient
for our discussion. Compact Riemmanian manifolds without boundary could also be
considered. However, compact manifolds with boundaries or non compact manifolds,
in particular the Euclidean space R¢, would cause difficulties.

1.2. Laws, Rearrangements, Moser’s Lemma. Let (A4,da) be a probabil-
ity space (typically A = [0,1] or A = T? equipped with the Lebesgue measure da).
For a measurable function a € A — X (a) € D, we define the “law” of X to be

() = /A&(m _ X(a))da, (1.3)

which is a probability measure on D, more precisely defined by
| m@ydnta) = [ nx@)da, (1.4)
D A
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14 HARMONICITY UP TO REARRANGEMENT AND ISOTHERMAL GAS DYNAMICS

for all h € C'(D). (An usual denomination for p is “push-forward” of da by X.) We
now say that two such measurable functions X and Y are equal up to rearrangement
if they have the same law, namely

/ 5(z — Y (a))da = / 5(z — X (a))da. (1.5)
A A

Let us quote a very useful result, due to Moser and later improved by Dacorogna and
Moser [DM], at least in the special case A = T¢.

LEMMA 1.1. Let A = D = T Let p(z) > 0 be a smooth function of x € D with
mean 1. Then there is a smooth orientation preserving diffeomorphism X from A to
D such that p(x)dx is the law of X. In addition, as p depends smoothly on some
parameter s € [0,1], we may find X that also depends smoothly on s.

An elementary proof is provided in Section 8.8

1.3. Isothermal Irrotational Gas Dynamics. The evolution of an inviscid
gas moving in the Euclidean space R? (physically d = 1,2, 3) is described by a density
field p(s,x) > 0, a pressure field p(s,z) > 0, a temperature field ©(s,z) > 0, and a
velocity field u(t,z), valued in R?, where s stands for the time variable and z for
the space variable. These fields are subject to the following equations (where we use
notations V for (0, ....,d;,) and . for the Euclidean inner product in R?)

Osp+ V.(pu) =0, (1.6)

which expresses the conservation of mass and is usually called “the continuity equa-
tion,”

Osu + (u.V)u + % =0, (1.7)

which is equivalent to the conservation of momentum. The evolution is called isother-
mal if the temperature field is a constant ©(s,z) = © > 0 and the pressure is given
by

p=1p0O (1.8)
for some constant 7 > 0. Introducing

A= +/n0Ologp, (1.9)

these equations can be written as a symmetric first-order hyperbolic system in space-
time variables (z, s)

OsA +u.VA+ /nOV.u =0, (1.10)
Osu + (u.-V)u + /nOVA =0, (1.11)

for which existence and uniqueness of smooth solutions, for smooth initial data and
short time intervals, are standard results (see [Si] for instance). Potential velocity
fields of form

u=Ve, (1.12)
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with (scalar) potentials ¢(s,z), are preserved during the evolution, as long as they
stay smooth. Then, the continuity equation becomes

Bsp + V.(pV) = 0, (1.13)

and the momentum equation can be integrated out, which leads (up to an irrelevant
constant) to :

1
050 + §|Vq5|2 +nOlogp = 0. (1.14)

Then, equations (1.13), (1.14), form a self-consistent system of evolution PDEs in p
and ¢, describing isothermal irrotational inviscid gas dynamics.

REMARK ON THE ACTION PRINCIPLE. At a formal level, equations (1.13), (1.14) can
be easily derived by varying the Action

|E?

/(2—p —nOplog p)dsdx (1.15)

with respect to p(s,z) > 0, E(s,z) € R, subject to
dyp + V.E = 0. (1.16)

Indeed, ¢(s, ) is introduced as a Lagrange multiplier for constraint (1.16). By varying
the associated Lagrangian

2
/(% —nOplogp — 0s¢p — V.E)dsdx
with respect to (p, E, ¢), we get E = pV¢ and (1.14). Of course, as usual for hyper-
bolic equations, the Action principle does not correspond to a minimization problem.
Notice that, in the unphysical case n = —1, Action (1.15) becomes a convex func-
tional of (p, E). Then, the corresponding change of sign for log p in equation (1.14)
transforms system (1.13), (1.14) into an elliptic system in space-time variables (z, s).

2. Harmonic or Wave Maps up to Rearrangement
Let us now combine the concepts of harmonic (or wave) maps and rearrangements.

DEFINITION 2.1. We say that
(t,z,a) €U x A — X(t,s,a) € D

is a harmonic map (resp. a wave map) up to rearrangement, in short a« HMUR
(resp. a WMUR), if it is a critical point of

1

J(X) = inf ~()0: X (t,5,a)]* + |0:Y (t, 5,a)|*)dtdsda (2.1)
Y Juxa 2

with respect to perturbations with compact support in U, where the infimum is per-

formed over all possible rearrangement Y of X with respect to a € A, i.e. for all
functions Y such that

/h(Y(t,s,a))da:/ h(X(t,s,a))da (2.2)
A

A
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holds true for all h € C(D), (t,s) € U. We call J(X) the Dirichlet integral of X “up
to rearrangement” (even in the case n = —1, for simplicity).

Our main goal is to show that the equations governing the HU R maps are related
to fluid mechanics and, more specifically, to the equations of isothermal irrotational
inviscid gas. In order to establish this link, it is useful to introduce the “phase”
density f(t,s,z,£) > 0 associated to a given map X (¢, s,a) and defined by

f(ta 5, T, f) = /5('T - X(ta S, a))a(f - atX(ta S, a))daa (23)

for (t,s,2,) € U x D x R

DEFINITION 2.2. We say that X (t,s,a) is a homogeneous map if the phase density
f defined by (2.3) is t independent and factorized

f(s,2,8) = p(s, 2)G(E), (2.4)

where G > 0 is a smooth radially symmetric probability density on R? and p > 0 a
probablity density on [0,S] x D.

One of our main results (Theorem 5.1) will show a precise correspondence be-
tween smooth solutions of isothermal irrotational inviscid gas dynamics equations
and smooth HU R maps which are homogeneous in the sense of Definition 2.2. In ad-
dition, it will be shown that for most of such maps, the density G must be a centered
Gaussian law with uniform temperature ® > 0, namely

G(e) = (2r0) 2 exp(~ oL ). (2.5)

2.1. A Model of Collectively Vibrating Strings. The original motivation
of the concept of harmonic and wave maps up to rearrangement was the following (ar-
tificial, up to our knowledge) mechanical model of vibrating strings, which corresponds
to the case 7 = —1. Let us consider a collection of vibrating strings parameterized by

s €10,5] = X(t,s,a)

and labelled by a € A. The kinetic energy of each vibrating string is evaluated
individually

51
/ Lox(t, s, a)2ds
0 2

and then integrated in a € A and t € [0,7]. This leads to the first part of J(X),
defined by (2.1). The potential energy of X is not evaluated individually for each
vibrating string by the usual formula

51
/ Lio,x(t,5,0)ds,
0 2

but rather collectively by rearranging the labels of the strings for each fixed value
of (t,s), in order to get the lowest possible energy. In other words, we consider all
possible collections of fictitious vibrating strings

s€10,5] = Y(ts,a)



YANN BRENIER 17

having the same space repartition as X, i.e. satisfying (2.2), and compute in this class

the infimum of
51
// ~18,Y (t, 5,a)|*dsda.
ado 2

Integrating in ¢ the resulting infimum leads to the second part of J(X). As will be
shown, a WUR map is homogeneous, in the sense of definition 2.2, as the strings
vibrate with a collective Gaussian distribution of velocities with uniform temperature
© > 0. A cruder version of this model of vibrating strings has been considered in
[Br2], where the variable s is discrete with two values, say 0 and 1, and the potential
energy is defined with a finite difference instead of an s derivative. The corresponding
model is linked to incompressible fluid mechanics (Euler equations) and plasma physics
(Vlasov-Poisson equations).

3. Evaluation of the Dirichlet integral “Up to Rearrangement”

Our first result gives a more tractable formula for the Dirichlet integral “up to
rearrangement,” involving a second-order linear elliptic equation, at least in the case
when the law of X is a smooth function p > 0.

THEOREM 3.1. Let X (t,5,a) be a map U x A — D with D = T?. Assume its law

p(t,s,x) = /5(:6 — X(t,s,a))da (3.1)

to be a smooth (strictly) positive function on U x D. Then,
1
J(X) = / S 010X (1,5,0)? + |0, (¢, 5, ) )didsda, (3.2)
UxA

where Y is defined by
6SYv(ta S, a) = (V¢)(t7 S, Y(ta S, a))a Y(ta s =0, a) = X(ta 0, a)a (33)

and for each fized t and s, (t, s, ) is the unique solution, with zero mean, in z € T,
of the elliptic equation

_V.(pV ) = Dsp. (3.4)

A proof is provided in Section 8.1.

4. The HMUR and WMUR Equations
Our second result provides the equations satisfied by smooth HUR (or WUR)
maps X with smooth law p > 0.

THEOREM 4.1. Let X (t,s,a) be a smooth map U x A — D with D = T?. Assume
its law,

p(t,s,x) = /5(:6 — X (t,s,a))da, (4.1)

to be a smooth (strictly) positive function on Ux D. Then, X is HUR (resp. WUR) if
and only if there are two smooth real functions ¢ and q depending on (t,s,x) € U x D
such that

P+ V() =0, Db+ SVoP =1, (42)
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NOuX (1 5,0) = (—Vq)(t, 5, X (t,5,a)), plt, s,2) = / 5@ - X(t,s,a)da, (4.3)

with n =1 (resp. n = —1). In addition, (4.3) can be expressed in terms of the phase
density f defined by (2.3) as

Of +ENVf —nVqg.Vef =0, /f(t, s,x,d€) = p(t, s, x). (4.4)

The proof of Theorem 4.1 is provided in Section 8.2. Subsequently, we call HMUR
(resp. WMU R) equations the combination of (4.2) and either (4.3) or (4.4), forn =1
(resp. n = —1). The study of the initial value problem is entirely open. The coupling
between equations (4.2) and (4.4) is very peculiar -both ¢ and s play the role of a
“time” variable, ¢ for (4.4) and s for (4.2)- and, of course, highly nonlinear. However,
in the special case of homogeneous solutions, in the sense of Definition 2.2, these
equations can be related to classical fluid mechanics.

5. Link between HMUR Equations and Gas Dynamics

THEOREM 5.1. Let us consider a smooth solution (f,p,p) to the HMUR (resp.
WMUR) equations (4.4), (4.2), where f is the phase density defined by (2.3) for
some map X.

Assume that p does not depend on t and that, for some so €]0, S|, there is a non
degenerate mazimum point xo, i.e. (02, 2;P(50,%0)) > 0 in the sense of symmetric
matrices.

Then X is a homogeneous map in the sense of Definition 2.2, if and only if

fs,2,6) = p(s,2)G(E),

where i) G is a centered Gaussian density (2.5) with uniform temperature ©® > 0, i)
(p, @) does not depend on t and solve the isothermal irrotational inviscid gas dynamics
equations (1.13), (1.14) withn =1 (resp. n = —1).

Proof. Notice first that the nondegeneracy condition is not artificial. Indeed
p(s,z) =1, ¢(s,x) =0, f(s,z,&) = G(&) is a trivial solution for any choice of G, even
when G is not Gaussian. The proof is straightforward. From (4.4), we get

G(§)&-Vp(s,x) —nVq(t, s, 2)p(s, 7). VG(E)
and therefore, since p and G are (strictly) positive,
&Vlog p(s,z) —nVq(t,s,z).Viog G(&) = 0.

Since G is assumed to be radially symmetric, V log G(€) is proportional to £. Tt follows
first that

Vlogp(s, ) = —ncVlogq(t, s, z)
for some constant ¢, which cannot be equal to zero, because of the nondegeneracy

condition (95, ,.p(s0,20)) > 0 which implies that the range of Vp(so, ) spans R
Thus, we have

q(t, s,2) = —nOlog p(s, ), (5.1)
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up to an irrelevant additive constant, for some constant O distinct from 0. Next, we
get

(& —OVlogG(£)).Viog p(s,z) = 0.
Since the range of x — Vp(so, ) spans R?, we obtain
£E—0VliogG() =0

and deduce that G is the centered Gaussian density (2.5) with uniform temperature
© > 0. Finally, using (4.2), we conclude that a necessary and sufficient condition for
a solution X to the HMUR (resp. W MU R) equations to satisfy (2.4) is that ¢ does
not depend on t and solve the isothermal irrotational inviscid gas dynamics equations
(1.13), (1.14) with n =1 (resp. n = —1).

REMARK. Somewhat surprisingly, the physical isothermal gas dynamics equations,
with 7 = 1, are linked to HU R maps, not to WU R maps. The WU R maps correspond
to isothermal gas dynamics equations with = —1, in which case the system is
unphysical and space-time elliptic (with imaginary speeds of propagation).

6. Minimizing HUR Maps

In the harmonic case n = 1, we can provide a suf ficient condition for a smooth
map X to be a minimizing HU R map. In addition, we can relate the corresponding

minimization problem, which is certainly not convex, to a linear maximization problem
with convex constraints that can be seen as its dual problem.

THEOREM 6.1. Let (X, p, ¢,q) be a smooth solution to the HMUR equations (4.2),
(4.8), as in Theorem 4.1, withn =1 and U =]0,T[x]0, S[. Let us denote by X sy the
restriction of X for (t,x) € OU, a € A. Assume

d
AT? sup{ > 92, q(t,;s,2)&& | (t,s,2) €U XD, [§ <1} < =% (6.1)

i=1,j=1

Then, X is a minimizing HUR map on U x A. In addition, the Dirichlet integral of
X “up to rearrangement” J(X), defined by (2.1), is equal to the following functional

J(Xj0) = sup /B s X (s () (6.2)

+o(t, 5, X (t,5,0))ns(t, 5))dH' (¢, 5)da,
where dH* is the Hausdorff measure along OU, n = (ng,n,)(t,s) the external normal
for (t,s) € OU, and 0 and ¢ are smooth functions depending respectively on (t,s,z,a)

and (t,s,x) subject to the pointwise inequality

210+ 5IV0P + 0,0 + 5|VoP <0 (6.3)

A proof will be provided in Section 8.3.
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7. Generation of Minimizing HUR Maps from Isothermal Gas Dynam-
ics

Finally, we can provide a rather explicit construction of minimizing HU R maps,
which are homogeneous in the sense of Definition 2.2, from smooth solutions to the
isothermal gas dynamics equations. Subsequently, n = 1 is dropped in the notations.

THEOREM 7.1. Let p(s,z) > 0,¢(s,x) be a smooth solution of the isothermal irrota-
tional inviscid gas dynamics equations (1.13), (1.14) for s € [0,S] and x € D = T4,
with normalized total mass

/ p(s,z)dr = 1. (7.1)
D

For each s, let y € D — Xy(s,y) € D be a diffeomorphism chosen (according to
Moser’s lemma 1.1) with law p(s,z)dz

/D 5z — Xo(s,y))dy = p(s, 7). (7.2)

Define A = D x [0,1]"*! and solve, for each fivred s and a = (y,w) € A, the au-
tonomous second-order ODE in t € [0,T]

O X (t,5,a) = (%)(s,X(t,s,a», (7.3)

with initial conditions
X(t=0,5,a) = Xo(s,), X (t=0,s,0) = Vo(w), (7.4)

where a = (y,w) and

Vo(w) = (cos(2mwy), ..., cos(2mwq)) v/ —2 log(wat1). (7.5)

Assume

d
AT? sup{ > 32, (—logp(s,2))&& |0<s< S, 2 €D, |¢ <1} < =°. (7.6)

i=1,j=1

Then, X is a minimizing harmonic map up to rearrangement on U X A, where
U =]0,T[x]0,S[. In addition, X is homogeneous in the sense of Definition 2.2.

This result also establishes an intriguing relationship between, on one side, the
isothermal irrotational inviscid gas dynamics equations, which are hyperbolic and
for which the Action principle does not correspond to a minimization problem (as
explained in Section 1.3), and, on the other side, the minimization of the Dirichlet
integral up to rearrangement for prescribed Dirichlet boundary data and the dual
problem (6.2) which is a linear maximization problem with convex constraints.

Proof. Let us consider the phase density f associated with X by (2.3). By
construction of (X(0,s,a),8;X(0,s,a)), through (7.2), (7.4), (7.5), f satisfies

(4

2

ft,s,2,6) = p(s,2)G(E), G(€) = (2m) " exp(—5-) (7.7)
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at time t = 0. (Indeed, p(s,z) is the law of Xy(s,y), by construction of Xy from
Moser’s lemma, and it is well known that the Gaussian law can be written

GO = [ ool (7.9

where 1} is given by (7.5).) Because of (7.3), f satisfies

atf+§.fo+¥.V§f:O, (7.9)
where p does not depend on ¢. Since p(s, )G (£) is an obvious solution of this equation,
we conclude that (7.7) is true for all ¢t € [0,T]. By setting ¢ = —logp, we conclude
that (X, p, ¢) solve the HMUR equation (4.3), (4.2). From Theorem 6.1, we deduce
that X is a minimizing HU R map and from Theorem 5.1 that X is homogeneous in
the sense of Definition 2.2. The proof of Theorem 7.1 is therefore complete.

8. Proofs
8.1. Proof of Theorem 3.1. Let us introduce

1
i) :igq/f/§|83Y(t,s,a)|2dadtds, (8.1)
where Y is subject to

/5(:6 —Y(t,s,a))da = p(t, s, z), (8.2)

and p is supposed to be smooth and (strictly) positive. Let us prove

ip) = /U D%p(t,s,x)|V¢(t,s,x)|2dtdsdx, (8.3)

where ¢ solves (3.4). Notice that the minimization problem involved in definition
(8.1) requires no boundary conditions. Introduce

E(t,s,z) = /83Y(t, 5,0)8(z — Y(t, 5,a))da. (8.4)

Observe that this vector-valued measure E is absolutely continuous with respect to
p. By Jensen’s inequality, its (vector-valued) density, denoted by e(t, s, x), is square
integrable with

1 1
/§|e(t,s,w)|2p(t,s,a:)dtdsd:n < /§|83Y(t,s,a)|2dadtds. (8.5)

In addition, from (8.4), we deduce
Osp+ V - (pe) = 0. (8.6)

(Indeed, for all ¢ € [0,T] and all smooth functions g(s,z) compactly supported in
0<s<S:

/ (p0sd + pe.NVo)dsdr = / (p0sp + E.N ¢)dsdx
UxD

UxD
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d
= /(asg +0:Y (t,5,a).Vg)(s,Y(t,s,a))dsda = /g(g(s,Y(t, s,a)))dsda = 0.)
Thus, we get a lower bound for j(p) by minimizing the left-hand side of (8.5) in e,
subject to (8.6). Since p > 0 is fixed, the unique solution is given by e = V¢, where

#(t, s, x) is, for each fixed ¢, s, the unique solution, with zero mean, in € T? of (3.4).
So we have

i) 2 [ 3IVo patdsda. (8.7)

Next, let us define Y (¢,s,a) € D = T for (t,5) € U, a € A, by (3.3) and check that
the law of V', denoted by p(t, s, ) and defined by

pt, s, x) = /6(3: -Y(t,s,a))da
does not differ from p. First, p solves the “continuity” equation
0sp+ V.(pVo) = 0.

(Indeed, for all test function g(s,z), vanishing at s = 0 and s = S, for all fixed ¢, we
have

/(asg + V¢.Vg)pdsdt = /(asg + 0:Y (t,8,a).Vg)(s,Y(t,s,a))dsda

_ / %(g(s,Y(t,s,a)))dads ~0)

At s =0, we have Y(¢,s = 0,a) = X(¢,0,a). Thus p(¢,s,z) = p(t, s, x) at s = 0, since
p is the law of X. By uniqueness of the smooth solutions to the continuity equation,

we deduce that p = p for all s € [0,S]. So, X and Y are equal up to rearrangement
with law p. It follows that

i(p) S/%|65Y(t,s,a)|2dadtds
(by definition (8.1))
1
:/§|V¢(t,s,Y(t,s,a)|2dadtds
(because of (3.3))
1 2
= §|V¢(t,s,m)| p(t, s, z)dtdsdz

(since p is the law of V)

<ij(p)

(by (8.7)), which completes the proof.
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8.2. Proof of Theorem 4.1. From Theorem 3.1, we already know that an
optimal YV associated with X can be defined by (3.3), where V¢ solves the linear
elliptic equation (3.4), with data depending on p. Next, going back to the original
definition of HUR (or WU R) maps, a necessary and sufficient condition for X to be
a HUR (or a WUR) map is that (X,Y,q) is a saddle point for the Lagrangian

1
/§(n|6tX|2 + |0,Y |?)dtdsda — /(q(t, s,X(t,s,a)) —q(t,s,Y(t,s,a)))dtdsda, (8.8)
where ¢(t, s, ) is the Lagrange multiplier for constraint (2.2). We get
nattX(tasaa) = (—Vq)(t,S,X(t,S,a)), (89)

aSSY(tagaa’) = (+Vq)(t7S7Y(t7S7a’)) (810)
Therefore, V¢, denoted by e, must satisfy
dse+ (e V)e = Vq. (8.11)

(Indeed, we have, for all ¢ € [0,7] and all test function g(s,z) vanishing about s =0
and s =T,

/qugdsdt: /assY(t,s,a)g(s,Y(t,s,a))dsda

(using (8.10) and the fact that p is the law of Y)

/8 Y(t,s,a) ( (s,Y(t,s,a)))dsda = — /(3394- V¢.Vg)Vopdsdx
(because of (3.3), and using again that p is the law of Y').) Thus, e = V¢ satisfies
9s(pe) + V.(pe @e) = pVq

and, therefore, (8.11), since p > 0 satisfies (1.13).) Next, by integration of (8.10) in
T, we get

1

up to the addition to ¢(¢, s, x) of an irrelevant function of (¢, s). So, we have obtained
the desired equations (4.2), (4.3) for X, p, ¢,q. Finally, equation (4.4) for the phase
density f follows from (4.3) by a standard argument. (Indeed, for all fixed s € [0, ]
and all test function g(¢,x, &) vanishing at ¢ =0 and ¢t = T', we have

[ 0ug + €529~ n¥a.Veo) fatdode
= /((atg)(ta X(t, S, a)a atX(ta S, a)) + atX(ta S, a)'(Vg)(ta X(ta S, a)7 atX(ta S, a))

—n(Ve)(t, X (t,5,0)).(Veg)(t, X (¢, 5,a),0: X (¢, 5,a)))dtda

= /%(g(t,X(t,S,a),BtX(t,s,a)))dtda =0,

since n0u X (t,s,a) = —(Vq)(t, s, X (t,s,a)).) The proof of Theorem 4.1 is now com-
plete.



24 HARMONICITY UP TO REARRANGEMENT AND ISOTHERMAL GAS DYNAMICS

8.3. Proof of Theorem 6.1. We use two intermediary results :

PROPOSITION 8.1. Let X(t,s,a) be a smooth function on U x A valued in D = T?,
Let J(X) be defined by (2.1) as the Dirichlet integral “up to rearrangement” of X .
Then J(X) > J(X|sr) where J(X|ay) is defined by (6.2) as in Theorem 6.1.

PROPOSITION 8.2. Let X (t,s,a) a smooth function on U x A valued in D = T?, and
satisfying the assumptions of Theorem 6.1, including condition (6.1) on T'. Then

I 25 [ (0K (s, + 0 (5,0 drdsda, (813)
- UxA

where J(X o) is defined by (6.2) and Y is some rearrangement of X in a € A.

By combining Propositions 8.1 and 8.2, we see that, under the assumptions of
Proposition 8.2, X is a minimizing harmonic map up to rearrangement and, therefore,
Theorem 6.1 follows. In addition, we get

J(X) = L(Xjov), (8.14)

which relates X to the linear maximization problem (6.2) in (6, ¢) with convex con-
straint (6.3).

8.4. Proof of Proposition 8.1. Let X (t,s,a) and Y (t,s,a) be admissible
for definition (2.1), which means that X and Y have the same law

p(t, s, x) = /5(3: - X(t,s,a))da = /5(3: -Y(t,s,a))da (8.15)

and
/(|5th(75,5,@))|2 F10,Y (L, 5, 0))|)dtdsda < +oo. (8.16)
Let us introduce
c(t,s,z,a) = d(x — X(¢t,s,a)), (8.17)
Q(t,s,z,a) = 0; X(t,s,a)d(x — X(t,s,a)) (8.18)
E(t,s,z) = /83Y(t, 5,0)8(z — (1, 5,a))da. (8.19)

As in the proof of Theorem 3.1, in Section 8.1 E is absolutely continuous with respect
to p and its density, e(t, s, z), satisfies

1 1
/§|e(t,s,m)|2dp(t,s,a:) < /§|83Y(t,s,a)|2dadtds. (8.20)

The left-hand side can be written as a convex function of (p, e), because of the following
(elementary) lemma (see [Brl]):

LeEMMA 8.3. Let (o,m) be a pair of measures on some compact space M, respectively
valued in R and R?. Define

K(o,m) = sup{/a(y)dﬂ(y) + B(y).dm(y), a(y)+ %Iﬂ(y)lz’ <0, Vy e M}, (8.21)
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where the supremum is performed over all continuous functions on M «, [, respec-
tively valued in R and RY. Then K = 400 unless o is nonnegative, m is absolutely
continuous with respect to o with a vector-valued density v which is square integrable
with respect to o. In addition, as K < +o00,

K(oym) =5 [ 1ow)Pdoy) (5.22)
Thus we can write (8.20) as:
K(p,E) < /%|65Y(t, s,a)|*dtdsda. (8.23)
More simply, @ is also absolutely continuous with respect to ¢ and
K(c,Q) < / %th(t, s,a)|*dtdsda. (8.24)

(As a matter of fact, we have an equality, but we need it not.) Let us now observe
that the pairs (¢, @) and (p, E) satisfy the following integral identities for all smooth
functions (¢, s, z,a) and ¢(t, s, x):

/ (0¢fdc + V0.dQ) = (8.25)
UxDxA
/ 0(t,s, X (t,s,a),a)n:(t,s)dH" (t,s)da,

OUXA

/ (0s¢pdp + Vo.dE) = / B(t,s, X (t,s,a))ns(t, s)dH* (t,s)da (8.26)
UxD OUxA

(where we use that ¢ does not depend on a and Y has the same law as X). Also
notice that (8.15) can be expressed by

| attsodpttsn) = [ alts,)dett,sz0) (8.27)
UxD

OUXA

for all test function g. Combining all these properties, we finally deduce that
J(X) > J(X|ov),
where we define
J(X]ov) = inf K(c, Q) + K(p, E),

with (¢, @) and (p, E) subject to constraints (8.25), (8.26), and (8.27). Notice that
these constraints only involve the values of X (¢,s,a) for (¢t,z) € OU which justifies
our notation for J. Equivalently, we can write

i(X|t9U) = inf sup [d(t,s,m) _as¢(tasax) +q(t,8,1‘))dp(t,5,l‘) (828)
©@E g6.4,0,6.8,5
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+(B(t,s,x) — Vo(t,s,x)).dE(t, s, z)] + /[(a(t,s,x,a) — 040(t,s,z,a)
—q(t, s,x))de(t, s,z,a) + (B(t, s,z,a) — VO(t, s,2,a)).dQ(t, s,x,a)]

[ 1005, X 5,000 (8,5) + 0005 X (1 5,0))m 1, ) 1, 5)a,
OUx A
where «, 3, &, § are subject to
1 1 -
a(t,s,z,a) + §|ﬂ(t,s,m,a)|2 <0, aft,s,x)+ §|ﬂ(t,s,m)|2 <0. (8.29)

This is the saddle-point formulation of a convex minimization problem with convex
constraints.

Proving Proposition 8.1 is now very easy. Let us set
Oé:at0+q, B:vea d:88¢_q7 B:v¢

and define ¢ by (8.12) where (0, ¢) are assumed to satisfy (6.3). This provides a bound
from below for J(X|arr). This bound is exactly J(X|arr), as defined by (6.2). Thus
the proof of Proposition 8.1 is complete.

REMARK. By using Rockafellar’s duality theorem (as stated in [Brz], Chapter 1, for
instance), we could show that .J(X|srr) = J(X|sr), which means that there is no
“duality gap.”

8.5. Proof of Proposition 8.2. Let (p, ¢, X) satisfy the assumptions of
Theorem 6.1. Let us first introduce Y (¢,s,a) € D = T¢ defined or (t,s) € U, a € A,
by

0:Y (t,s,a) = (VP)(t,s,Y(t,s,a)), Y(t,s=0,a)=X(t0,a). (8.30)

As in the proof of Theorem 3.1, the law of Y is p. Next, introduce

i "L 2 _q(r,s,2(r)))dr + z s,a
s = it [ QRO = alrs )i +20) 950,50, (631

where the infimum is performed over all smooth paths 7 € [0,¢{] = z(r) € D such
that z(t) = z. Let us state two lemmata

LEMMA 8.4. The following identity is true (under the assumptions of Theorem 6.1)

/ b(t, 5, X (£, 5,))na(t, 8))dH' (t, 5)da (8.32)
OUx A

1
:/§|6sY|2dtdsda+/qumdtds,

where q is defined by (8.12).
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LEMMA 8.5. Under condition (6.1), for all t € [0,T], the infimum in definition
(8.31) is achieved by a unique path z(7), 0 < 7 < t, unique solution of the two-point
mized-boundary value problem (half Dirichlet, half Neumann)

Z”(T) = (_Vq)(Ta S, Z(T))a Z(t) =7, 21(0) = atX(Oa Saa)' (833)

Let us postpone the proof of Lemma 8.4, Lemma 8.5, and continue the proof of
Proposition 8.2. It follows from classical theory of Hamilton-Jacobi equations (see
[Ba] for instance) that, under condition (6.1), é(t,s,z,a) is a smooth solution, for
0<t<T,tothe HJ equation

1
6t9 + §|V9|2 +q= 0. (834)

Thus, by definition (8.12) of ¢, 8 and ¢ satisfy constraint (8.29). In addition, using
(8.33) in the special case z = X (¢, s,a), we see that z(7) = X (7, s,a) because of (8.9)
and, therefore,

Ot X (ts,0)0) = [ GOX(sal —ars X(rsa)dre (339

+X(0,s,a).0:X(0,s,a).

Differentiating (8.35) with respect to ¢ gives
1
at(g(t7 S, X(t7 S, a)’ (1)) = 5 |atX(t7 S, (1)|2 - q(t7 S, X(ta S, a))
Integrating this expression with respect to (¢, s,a) over U x A leads to

1
/ O(t, s, X (¢, 5, ), a)ne(t, s)dH (1, s)da = /(—|8tX|2 _ gt 5, X))dtdsda.
AUX A 2

- / %|8tX|2dtdsda— / gpdadtds

(since p is the law of X). By adding this equality to identity (8.32), we have finally
obtained

/ (B(t,s, X (t,s,a),a)n(t,s) + o(t,s, X (t,5,a))ns(t,s))dH" (t,s)da
dUX A

1
-2 /(|6tX|2 + 10,Y|?)dtdsda.

From definition (6.2), we deduce (8.13) and the proof of Proposition 8.2 is completed.
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8.6. Proof of Lemma 8.4. We have

| ot Xt s 0t ) 5)da =
OUx A

| otts Y st )i 1, 5)da
OUx A
(because X and Y are equal up to rearrangement)
= / 0s(p(t,s,Y(t,s,a)))dtdsda
UxA
(by integration in s)

:/ (06(t,5,Y (1, 5,a)) + OsY (1, 5,a).Vo(t, 5, Y (¢, 5,)))dtdsda
UxA

= [ (0u(t.5,Y (t5.0) + IVo(t.5,Y (t,5,0) P dtdsda
UxA
(because of 8.30)

= /(63¢ + |V ¢|?) pdadtds

(since p is the law of V)
_ /(%IWF + q)pdadtds
(by definition (8.12). We also have
/ %|V¢|2pdmdtds _ / Vo(t,5,Y (L, 5, 0)) P dtdsda = /|83Y(t, s,0)2dtdsda

(using (8.30)). Thus, identity (8.32) follows and the proof of Lemma 8.4 is now
complete.

8.7. Proof of Lemma 8.5. Let us fix (¢t,5) € [0,T] x [0,S5], z € D = T¢,
a € A, and define

he) = [(GIEEF —ars 2O)dr + 200X 05a), (830)

for all path 7 € [0,¢] = 2(7) € D such that z(t) = z. The second derivative of h with
respect to z is given by

d

D?h(z)(%, 2) :/0 (12'(MF = D (85, 4,0) (7, 5,2(7))2:(7)Z (7)) dr.

ij=1

This quadratic form is positive definite, under condition (6.1), because of the following
(modified) Poincaré inequality:

t t
71'2/ |Z(7)|2dr < 4t2/ |Z'(1)|dr, (8.37)
0 0
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which holds true for all ¢ > 0 and for all smooth function Z such that z’(0) = 0 and
Z(t) = 0. (This Poincaré inequality can be established by using Fourier series, the
inequality being saturated by Z(7) = sin(g;7).) It follows that condition (6.1) on T' is
sufficient to enforce that, as long as ¢ < T', the infimum in definition (8.31) is achieved
by a unique path z(7), 0 < 7 < ¢, unique solution of the two-point mixed-boundary
value problem (half Dirichlet, half Neumann) (8.33). Thus, the proof of Lemma 8.5
is complete.

8.8. Appendix: A Proof of Moser’s Lemma. In the case where D is
the unit periodic cube, the proof is very easy. First solve the Laplace equation (with
periodic boundary conditions)

—Al=p-1
on D (by using Fourier series, for instance). Next define

IC) o(t,2) = (1 —7) +7p(x
or) = 25 i) = (1= 7) + 7o),

for 7 € [0,1] and = € D, so that
0-p+ V.(pv) = 0.
Then, for each a € D solve the initial value problem
0. Z(r,a) = v(r,Z(1,a)), Z(0,a)=a, Ya€ A =D.

Check that, for each 7 € [0,1], Z(t,.) is a smooth diffeomorphism of D with law
p(1,z)dx. Conclude by setting X (a) = Z(1,a).
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