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G-NORM PROPERTIES OF BOUNDED VARIATION
REGULARIZATION∗

STANLEY OSHER† AND OTMAR SCHERZER‡

Abstract. Recently Y. Meyer derived a characterization of the minimizer of the Rudin-Osher-
Fatemi functional in a functional analytical framework. In statistics the discrete version of this
functional is used to analyze one dimensional data and belongs to the class of nonparametric regres-
sion models. In this work we generalize the functional analytical results of Meyer and apply them to
a class of regression models, such as quantile, robust, logistic regression, for the analysis of multi–
dimensional data. The characterization of Y. Meyer and our generalization is based on G-norm
properties of the data and the minimizer. A geometric point of view of regression minimization is
provided.

1. Introduction
For given data f : R

n → R representing image intensity values, we consider recon-
struction (denoising/decomposition) methods, where the reconstruction u : R

n → R
satisfies

u− f ∈ Gs(α) := {v = ∇·�v : ‖|�v|ls‖L∞ ≤ α} = {v : ‖v‖Gs ≤ α} .
Here

‖v‖Gs := inf{‖|�v|ls‖L∞ : v = ∇·�v}
is called G-norm (cf. Meyer [11, p. 30]).

One motivation for this paper arises from the statistical literature where an equiv-
alence relation between the minimizer of the discretized Rudin-Osher-Fatemi (ROF)
model [19] (see also [13]) and the solution of the taut-string algorithm has been estab-
lished (see Mammen & Geer [10] and Davies & Kovac [2]). The ROF-model consists
in minimization of the functional

FROF (u) :=
1
2

∫
(u − f)2 + α‖Du‖ ,

where ‖Du‖ denotes the total variation semi-norm of u and α > 0. The minimizer is
called the bounded variation regularized solution. The taut-string algorithm consists
in finding a string of minimal length in a tube (with radius α) around the primitive
of f . The differentiated string is the taut-string reconstruction and corresponds to
the minimizer of the ROF-model. Generalizing these ideas to higher dimensions is
complicated by the fact that there is no obvious analog to primitives in higher space
dimensions. We overcome this difficulty by solving Laplace’s equation with right hand
side f (i.e. integrate twice), and differentiating. The tube with radius α around the
derivative of the potential specifies all functions u which satisfy ‖u − f‖Gs ≤ α (see
also [21]). In this paper we show that the bounded variation regularized solutions (in
any number of space dimensions) are contained in a tube of radius α. For several
other regression models in statistics, such as robust, quantile, and logistic regression
(reformulated in a Banach space setting for analyzing multi-dimensional data) the
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238 G-NORM PROPERTIES OF BOUNDED VARIATION REGULARIZATION

tube property can be verified as well (cf. Subsection 3.1). Moreover, following [11]
characterizations of minimizers of general regression models are derived. This work
provides some geometrical insight into the structure of bounded variation minimiza-
tion and establishes a link between statistics and image processing. The results of
this paper can be applied to limit the well–known stair casing effects in numerical
minimization of the ROF-functional. We observe that this undesirable effect occurs if
the regularized solution has contact with the tube. Using higher order discretization
schemes in contact zones limits the effect of staircasing. This topic will be discussed
in a forthcoming paper, together with numerical studies. The ideas of the present
paper can also be applied to bounded variation regularization models designed for
filtering of multiplicative noise (see e.g. [17, 20]), but that is not within the scope
of this paper. We note that a variety of image denoising algorithms based on the
G-norm have been developed recently (see e.g. [16, 23, 1, 8, 21]).

2. Prerequisites

2.1. G-Norm. The set

G := {v : ‖v‖Gs <∞}
associated with the norm ‖ · ‖Gs is a Banach space, which is the dual of the Sobolev
space

W̃ 1,1
0 := {w ∈ C∞

0 := C∞
0 (Rn)} ,

where the closure is taken with respect to the norm

‖w‖W 1,1,r :=
∫

|∇w|lr for 1 ≤ r ≤ ∞

(see [11]). We note that W̃ 1,1
0 = W 1,1,r

0 , independently of 1 ≤ r ≤ ∞ and note that
W̃ 1,1

0 is not the standard Sobolev space W 1,1
0 , where in its definition the closure of

C∞
0 is taken with respect to the norm

‖w‖W 1,1 = ‖w‖L1 + ‖∇w‖L1 .

In fact from the Gagliardo-Nirenberg-Sobolev inequality (cf. [6, Formula *, p 140]) it
follows that

‖w‖Lpn ≤
∫

|∇w|lr for every w ∈ W̃ 1,1
0 , (2.1)

where

pn :=
n

n− 1
for space dimension n ≥ 2 and pn := ∞ for n = 1 . (2.2)

Actually in [6] (2.1) is proven for r = 2. The proof of the general case is along the
lines of the proof there: for a function f ∈ C1(Rn) with compact support we have

f(x1, . . . , xi, . . . , xn) =
∫ xi

−∞

∂f

∂xi
(x1, . . . , ti, . . . , xn) dti .

This gives the estimate

|f(x)| ≤
∫ ∞

−∞

∣∣∣∣ ∂f∂xi
(x1, . . . , ti, . . . , xn)

∣∣∣∣ dti ≤
∫ ∞

−∞
|∇f |lr
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(independent of r). The rest of the proof is analogous to the proof of [6, Theorem 1,
p. 139].

In particular from (2.1) it follows that W̃ 1,1
0 ⊆ Lpn .

For v ∈ G there exists �v such that

v = ∇ · �v and ‖v‖Gs = ‖|�v|ls‖L∞ (2.3)

(cf. [11]) and consequently for any w ∈ W̃ 1,1
0∫

vw =
∫

∇·�v w = −
∫
�v∇w ≤ ‖|�v|ls‖L∞‖w‖W 1,1,s∗ ,

where 1/s∗ + 1/s = 1 with 1 ≤ s∗, s ≤ ∞.

In the sequel we make use of the following lemma:
Lemma 2.1. Assume that there exists α > 0 such that for every v ∈ C∞

0∣∣∣∣
∫
wv

∣∣∣∣ ≤ α

∫
|∇v|ls∗ (2.4)

hold, then ‖w‖Gs ≤ α.
Proof. The linear operator

L : C∞
0 → R , v →

∫
wv

can be extended to a linear bounded operator on W̃ 1,1
0 . Note that by (2.4) for a

sequence {vn}n∈N converging to v, {Lvn}n∈N is a Cauchy sequence and thus conver-
gent with limit Lv.

In order to guarantee that L is well defined, it is required that Lv ∈ R for any v ∈ C∞
0 .

This is satisfied for instance if w ∈ Lp for some 1 ≤ p ≤ ∞.

2.2. Functions of bounded variation.
Definition 2.2. The space of functions of bounded variation (BV) consists of

functions u ∈ Lpn satisfying 1

‖Du‖s∗ := sup
{∫

u∇·�ϕ : �ϕ ∈ C1
0 (Rn; Rn) , |�ϕ(x)|ls ≤ 1 for x ∈ R

n

}
<∞ .

Note that for u ∈ W̃ 1,1
0

‖Du‖s∗ =
∫

|∇u|ls∗ = ‖u‖W 1,1,s∗ .

For more background on functions of bounded variation we refer to Evans & Gariepy
[6].

In the sequel we frequently make use of the following results:

1The definition of BV differs from the standard definition where it is assumed that u ∈ L1 and
not in Lpn .
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Lemma 2.3. Let 1 ≤ q < ∞ and h ∈ BV ∩ Lq. Then there exists a sequence {hl}l∈N

in C∞
0 satisfying

hl → h in Lq and ‖Dhl‖s∗ → ‖Dh‖s∗ .

Proof. The proof consists in a modification of the proof of [6, Theorem 2, p.172
ff] taking into account the results on mollification in Section 4.2.1 of this book. For
m ∈ N fixed, we follow [6, Theorem 2, p.172 ff] and define the open spheres with
radius k +m

Bk = B(0, k +m) (k = 1, . . .) .

For ε > 0 we fix m such that

‖Dh‖s∗(R
n\B1) =

∫
Rn\B1

|∇h|s∗ < ε and ‖h‖Lq(Rn\B1) < ε . (2.5)

Set B0 = ∅ and define Vk = Bk+1\Bk−1, k = 1, . . . Let {ζk}k=1,... be a sequence of
smooth functions satisfying

ζk ∈ C∞
0 (Vk) 0 ≤ ζk ≤ 1 (k = 1, . . .)

∞∑
k=1

ζk = 1 in R
n .

Fix a mollifier η (as in [6]) and for each k select εk > 0 such that

supp(ηεk
∗ (hζk)) ⊆ Vk∫

|ηεk
∗ (hζk) − hζk|q dx < ε

2k∫
|ηεk

∗ (h∇ζk) − h∇ζk| dx < ε

2k
.

(2.6)

Up to now, the only difference from the proof in [6, Theorem 2, p.172 ff] is the second
item. Since we assume that h ∈ Lq this item follows from properties of the mollifier
η [6, Theorem 1, p.122 ff]. Define

hε :=
∞∑

k=1

ηεk
∗ (hζk) ∈ C∞ and h(N)

ε :=
(N)∑
k=1

ηεk
∗ (hζk) ∈ C∞

0 .

To prove the assertion, taking into account the properties of hε in [6, Theorem 2,
p.172 ff] it is sufficient to prove that

‖h(2)
ε − hε‖Lq ≤ Kε and

∣∣∣∣
∫

(hε − h(2)
ε )∇·�φ

∣∣∣∣ ≤ Kε

for any �φ ∈ C∞
0 with |�φ(x)|ls ≤ 1. Using that ηεk

∗ (hζk) has support in Vk and Vk
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has only non-empty intersection with Vk−1 and Vk+1 we find that

‖h(2)
ε − hε‖q

Lq =
∫ ∣∣∣∣∣

∞∑
k=3

ηεk
∗ (hζk)

∣∣∣∣∣
q

=
∞∑

l=3

∫
Vl

∣∣∣∣∣
l+1∑

k=l−1

ηεk
∗ (hζk)

∣∣∣∣∣
q

≤ 3q
∞∑

l=3

∫
Vl

max
l−1≤k≤l+1

|ηεk
∗ (hζk)|q

≤ 3q
∞∑

l=3

[(∫
Vl

+
∫

Vl−1

+
∫

Vl+1

)
|ηεk

∗ (hζk)|q
]

≤ 3q+1
∞∑
l=2

∫
Vl

|ηεk
∗ (hζk)|q

≤ 2q3q+1
∞∑
l=2

[∫
Vl

|hζk|q + |hζk − ηεk
∗ (hζk)|q

]

≤ 2q3q+1

∫
Rn\B1

|h|q + 2q3q+1ε ≤ 6q+1ε .

Moreover, proceeding as in [6, Item 4, Theorem 2, p174] we find that

∣∣∣∣
∫

(hε − h(2)
ε )∇·�φ

∣∣∣∣ =

∣∣∣∣∣
∞∑

k=3

∫ (
ηεk

∗ (hζk)
)
∇·�φ

∣∣∣∣∣
≤
∣∣∣∣∣
∞∑

k=3

∫
h∇·

(
ζk(ηεk

∗ �φ)
)∣∣∣∣∣

+

∣∣∣∣∣
∞∑

k=3

∫
�φ

(
ηεk

∗ (h∇ζk) − h∇ζk
)∣∣∣∣∣

≤ ‖Dh‖r(Rn\B1) + ε

∞∑
k=3

1
2k

≤ 2ε .

This shows the assertion.

Corollary 2.4.

1. Assume n = 1 and 1 ≤ q <∞. Then for every h ∈ BV ∩ Lq

‖h‖Lpn ≤ ‖Dh‖s∗ . (2.7)

2. Assume n ≥ 2. Then for every h ∈ BV (2.7) holds.

Proof.
1. From Lemma 2.3 it follows that there exists a sequence {hl}l∈N in C∞

0 satis-
fying

hl → h in Lq and ‖Dhl‖s∗ → ‖Dh‖s∗ .
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From the Gagliardo-Nirenberg-Sobolev inequality it follows that

‖hl‖L∞ ≤
∫

|∇hl|ls∗ = ‖Dhl‖s∗ .

Since L∞ is isomorphic to the dual of L1 and C∞
0 is dense in L1 we have

‖h‖L∞ = sup
{v∈L1:‖v‖L1≤1}

∫
vh

= sup
{v∈C∞

0 :‖v‖L1≤1}

∫
vh

= sup
{v∈C∞

0 :‖v‖L1≤1}
lim
l→∞

∫
vhl

≤ lim inf
l→∞

‖hl‖L∞

≤ lim ‖Dhl‖s∗

= ‖Dh‖s∗ .

Note, that in order to prove the third identity we have used the fact that any
function v ∈ C∞

0 is in Lq∗ .
2. For n ≥ 2, since pn <∞ the proof follows with q = pn by using the Gagliardo-

Nirenberg-Sobolev inequality.

Lemma 2.5. Assume 1 ≤ q <∞ and w ∈ Lq∗ with ‖w‖Gs ≤ α, where 1/q∗ + 1/q = 1
(for q = 1, q∗ = ∞). Then for any h ∈ BV ∩ Lq∣∣∣∣

∫
wh

∣∣∣∣ ≤ α‖Dh‖s∗ . (2.8)

Proof. For h ∈ C∞
0 and w = ∇·�w satisfying ‖|�w|ls‖L∞ = ‖w‖Gs it follows that∣∣∣∣

∫
wh

∣∣∣∣ =
∣∣∣∣
∫

∇·�wh
∣∣∣∣ =

∣∣∣∣
∫
�w∇h

∣∣∣∣ ≤ ‖w‖Gs‖Dh‖s∗ . (2.9)

Let h ∈ BV ∩ Lq, then there exists a sequence {hl}l∈N in C∞
0 such that hl → h in Lq

and ‖Dhl‖s∗ → ‖Dh‖s∗ . Consequently, from (2.9) it follows that∣∣∣∣
∫
wh

∣∣∣∣ = lim
l→∞

∣∣∣∣
∫
whl

∣∣∣∣
≤ lim inf

l→∞
‖w‖Gs‖Dhl‖s∗

= ‖w‖Gs‖Dh‖s∗ .

3. Generalized Rudin-Osher-Fatemi Model
Total variation minimization was introduced into image restoration in [19, 18]

and for multiplicative denoising/deblurring in [17]. The original model consists in
minimization of the following functional

FROF (u) :=
1
2

∫
(u− f)2 + α‖Du‖s∗ with s∗ = 2 .
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More general equivalent norms, including the case s∗ �= 2, have been considered in
[15]. The unique minimizer uα of this functional is called bounded variation regularized
solution. In this work we consider minimization of functionals

FS(u) :=
∫
S(x, u(x)) dx + α‖Du‖s∗ (3.1)

over BV. We denote by

XS := {u ∈ BV : FS(u) <∞}

the domain of definition of the operator FS .
Several regression models from statistics can be embedded in this context (see

e.g. [4]). We impose the following assumption on S:
Assumption 3.1. S : R

n × R → R≥0 satisfies
1. S(x, ·) is convex for almost every x,
2. S(·, v) is measurable for each v ∈ R, and
3. S(x, 0) ∈ L1.

Note that Item 3 guarantees that XS �= ∅ and thus FS is proper. Since a convex
function is continuous and Items 1, 2 are satisfied S is a Caratheodory function (see
[5, p.234]) and therefore normal (cf. [5, p.234, Proposition 1.1]). If S is normal and
non–negative, the functional

S : u→
∫
S(x, u(x)) dx

is lower semi-continuous on Lβ for every 1 ≤ β ≤ ∞ (cf. [5, Corollary 1.2, p.239]). By
[5, Corollary 2.2, p.11] every convex, lower semi-continuous operator is weakly lower
semi continuous on Lβ . This is called the compensated compactness theorem.

Occasionally we impose the additional assumption on S that there exist c > 0,
1 ≤ p0 <∞ and k ∈ L1 such that

c|v|p0 − k(x) ≤ S(x, v) . (3.2)

Theorem 3.2. Let S : R
n × R → R≥0 satisfy Assumption 3.1.

1. Assume n ≥ 2. Then there exists a minimizer uα ∈ BV of FS.
2. Let additionally (3.2) be satisfied, then uα ∈ BV ∩ Lp for all p ∈ [pmin :=

min{p0, pn}, pmax := max{p0, pn}].
Proof. To prove that the functional FS attains a minimizer, we take a sequence

{ul}l∈N in BV satisfying

FS(ul) → inf FS .

From Assumption 3.1 it follows that

0 ≤ inf FS ≤ FS(0) =
∫
S(x, 0) dx <∞ ,

and therefore {‖Dul‖s∗}l∈N is uniformly bounded.
1. We consider the case n ≥ 2. Since the embedding of BV into Lpn is bounded

(cf. Corollary 2.4), {ul}l∈N is uniformly bounded in Lpn as well. Then there
exists a weakly convergent subsequence, which is again denoted by {ul}l∈N
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and the weak limit is denoted by u. Since S is convex with respect to the
second component, it follows from the compensated compactness theorem
that

S(u) ≤ lim inf S(ul) <∞ . (3.3)

The weak lower semi-continuity of the BV-semi-norm gives
‖Du‖s∗ ≤ lim inf ‖Dul‖s∗ . This, together with (3.3), shows that F(u) =
inf FS . Or in other words uα = u.

2. From (3.2) we additionally find that

FS(ul) ≥ c

∫
|ul|p0 −

∫
k + α‖Dul‖s∗ ,

showing that
∫ |ul|p0 is uniformly bounded as well. From the compensated

compactness theorem it follows that uα ∈ BV ∩ Lpn ∩ Lp0 .

Example 3.3.
1. Let f ∈ L1. For S(x, v) = |v − f(x)| the functional FS attains a minimizer

in XS = L1 ∩ BV. This model is called robust regression.
2. Let f ∈ L1. For quantile regression (see [9]) we have

S(x, v) :=

{
(1 − β)(f(x) − v) for f(x) ≥ v

β(v − f(x)) for f(x) ≤ v

where 0 < β < 1. The associated functional FS attains a minimizer in
XS = L1 ∩ BV.

3. Let f ∈ L∞ satisfy 0 ≤ f ≤ 1. For β ≥ 0 and an open bounded set B the
generalized logistic regression is

S(x, v) =
β

2
(v − f(x))2 +

{
ln (1 + exp(v)) − vf(x) for x ∈ B ,

0 else.

β = 0 is the standard logistic regression; actually the restriction to the
bounded set B is never considered explicitly in statistical papers, but has
to be implemented in a functional analytical context. S is non-negative;
S(x, ·) is convex for almost all x; S(·, v) is measurable for each v ∈ R; and
S(·, 0) = ln(2)χB + β

2 f
2 ∈ L1, if β = 0 or β > 0 and f ∈ L2. According to

Theorem 3.2, the associated functional FS attains a minimizer in
(a) XS ⊆ BV if β = 0 and n ≥ 2;
(b) XS ⊆ BV ∩ L2 if β > 0 (for n = 1, 2, . . .).

4. Let f ∈ L2. For S(x, v) = 1
2 |v − f(x)|2, the Rudin-Osher-Fatemi functional

FS attains a minimizer in XS = L2 ∩ BV.
We summarize the results on smoothness of the regression models in the following
table:
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Method n uα ∈ Lp

Robust Regression 1 1 ≤ p ≤ ∞
+ 2 1 ≤ p ≤ 2

Quantile Regression 3 1 ≤ p ≤ 3/2
Logistic Regression 1 (2 ≤ p ≤ ∞), p = ∞

β > 0 2 p = 2,
β = 0, n ≥ 2 3 3/2 ≤ p ≤ 2 (p = 3/2)

ROF-Regularization 1 2 ≤ p ≤ ∞
2 p = 2
3 3/2 ≤ p ≤ 2

For the ROF-regularization and generalized logistic regression model (β > 0) the
functional FS is strictly convex and thus there exists a unique minimizer. For robust
and quantile regression the according functional FS is convex and thus in general
there cannot be expected a unique minimizer.

3.1. Characterization of minimizers. Since S is convex with respect to v

Sv(x, ·) :=
∂S

∂v
(x, ·) ∈ BVloc for almost every x .

In the following we differ between the two cases, that Sv is either continuous or it is
not. The later situation is more involved since the function Sv has to be considered
set-valued.

3.2. Sv is continuous. In order to derive characterizations for the minimizers
of FS we impose the following assumptions on S:
Assumption 3.3.

1. S satisfies Assumption 3.1.
2. For some 1 ≤ q <∞, C∞

0 ⊆ XS ⊆ Lq.
We assume that Sv satisfies

Assumption 3.4.

1. Sv(x, ·) is continuous for almost every x,
2. Sv(·, v) is measurable for each v ∈ R, and
3. for every ψ ∈ XS, Sv(·, ψ) ∈ Lq∗ .

Again, the first two items guarantee that Sv is normal.

Theorem 3.5. Let S, Sv satisfy Assumptions 3.3, 3.4, respectively. Moreover, we
assume that for every v, h ∈ XS

η(t, v, h) :=
∫

{S(x, v(x) + th(x)) − S(x, v(x)) − tSv(x, v(x))h(x)} dx

satisfies

η(t, v, h)
t

→ 0 as t→ 0 . (3.4)

Then, ‖Sv(·, 0)‖Gs ≤ α if and only if uα is zero.

Proof. In the first part we derive general properties of uα which are used later on
as well.
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1. From the definition of a minimizer uα of FS it follows that for every h ∈ XS ,
ε �= 0 ∫

S(x, uα(x)) dx + α‖Duα‖s∗

≤
∫
S(x, uα(x) + εh(x)) dx + α‖D(uα + εh)‖s∗

≤
∫
S(x, uα(x) + εh(x)) dx + α (‖Duα‖s∗ + |ε|‖Dh‖s∗)

≤
∫

{S(x, uα(x)) + εSv(x, uα(x))h(x)} dx + η(ε, uα, h)

+ α (‖Duα‖s∗ + |ε|‖Dh‖s∗) .

(3.5)

Consequently, it follows by dividing the terms in the inequality by |ε| and
taking ε→ 0± afterwards that∣∣∣∣

∫
Sv(x, uα)h(x) dx

∣∣∣∣ ≤ α‖Dh‖s∗ for h ∈ XS . (3.6)

2. The definition of uα implies that uα ≡ 0 if and only if for every function
h ∈ BV

FS(h) ≥ FS(0) =
∫
S(x, 0) dx . (3.7)

If uα ≡ 0, then, from (3.6) it follows that for every h ∈ XS∣∣∣∣
∫
Sv(x, 0)h(x) dx

∣∣∣∣ ≤ α‖Dh‖s∗ . (3.8)

Since S(x, ·) is convex and Sv(x, ·) is continuous, for every v, h ∈ R and almost
every x we have

S(x, v + h) − S(x, v) − Sv(x, v)h ≥ 0 . (3.9)

Therefore, from (3.8) it follows that for every h ∈ XS∫
(S(x, h(x)) − S(x, 0)) dx + α‖Dh‖s∗

≥
∫
Sv(x, 0)h(x) dx + α‖Dh‖s∗

≥0 .

Since FS(h) = ∞ for h /∈ XS and FS(0) <∞, we can write∫
(S(x, h(x)) − S(x, 0)) dx + α‖Dh‖s∗ ≥ 0 for every h ∈ BV .

In summary, we have shown that uα ≡ 0 if and only if (3.8) is satisfied for
any h ∈ XS .

3. Let uα ≡ 0, then from (3.8), the assumption Sv(·, 0) ∈ Lq∗ , and Lemma 2.1
it follows that ‖Sv(·, 0)‖Gs ≤ α.
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4. Let ‖Sv(·, 0)‖Gs ≤ α. Since by assumption Sv(·, 0) ∈ Lq∗ it follows from
Lemma 2.5 that for any h ∈ XS ⊆ Lq

∫
Sv(x, 0)h(x) dx ≤ α‖Dh‖s∗ .

Thus (3.8) holds for any h ∈ XS . Consequently uα ≡ 0.

We note that if (3.4) holds, then Sv(·, v(·)h(·) is the directional derivative of S
at v ∈ XS in direction h ∈ XS . For instance if the function S is twice Fréchet-
differentiable with respect to v, with uniformly bounded second derivative, then we
have η(t, v, h) ≤ t2h2 and thus (3.4) holds if XS ⊆ L2. This is for instance utilized in
Example ?? below.

Theorem 3.6. Let S, Sv satisfy Assumptions 3.3, 3.4, respectively. Moreover, we
assume that ‖Sv(., 0)‖Gs > α.

Then u = uα minimizes FS if and only if
1. u ∈ XS ,
2.

‖Sv(·, u(·))‖Gs = α , (3.10)

3. and

−
∫
Sv(x, u(x))u(x) dx = α‖Du‖s∗ . (3.11)

Proof. From the assumption ‖Sv(., 0)‖Gs > α it follows from Theorem 3.5 that
uα �= 0. From Theorem 3.2 it is evident that uα ∈ XS .

1. From the definition of a minimizer uα of FS it follows that for every 0 �= |ε| <
1 ∫

S(x, uα(x)) dx + α‖Duα‖s∗

≤
∫
S(x, (1 + ε)uα(x)) dx + α(1 + ε)‖Duα‖s∗

≤
∫

{S(x, uα(x)) + εSv(x, uα(x))uα(x)} dx + η(ε, uα, uα)

+ α(1 + ε)‖Duα‖s∗ .

Showing that

−ε
∫
Sv(x, uα(x))uα(x) ≤ αε‖Duα‖s∗ + η(ε, uα, uα) .

Dividing the inequality by |ε| and taking ε → 0± shows (3.11). Since
‖Duα‖s∗ �= 0, it follows from (3.6) that ‖Sv(·, uα(·))‖Gs = α.

2. To prove the converse direction we note that for u ∈ XS satisfying (3.10) it
follows from Lemma 2.5 that for any function h ∈ XS

‖D(u+ h)‖s∗ ≥ − 1
α

∫
(u(x) + h(x))Sv(x, u(x)) dx . (3.12)
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From (3.9), (3.12), and (3.11) it follows that for any function h ∈ XS∫
S(x, u(x) + h(x)) dx + α‖D(u + h)‖s∗

≥
∫
S(x, u(x)) dx +

∫
Sv(x, u(x))h(x) dx

−
∫

(u(x) + h(x))Sv(x, u(x)) dx

=
∫
S(x, u(x)) dx + α‖Du‖s∗ .

For h /∈ XS , we have F(u+ h) = ∞ and F(u) <∞, which finally shows that
for all h ∈ BV∫

S(x, u(x) + h(x)) dx + α‖D(u + h)‖s∗ ≥
∫
S(x, u(x)) dx + α‖Du‖s∗ ,

and u is a global minimizer.

Example 3.7.
• We consider the Rudin-Osher-Fatemi model. S : (x, v) �→ 1

2 (v − f(x))2 satis-
fies:

1. S(x, ·) is convex with respect to v for almost every x,
2. S(·, v) is measurable for each v ∈ R,
3. S(x, 0) = 1

2f
2(x) ∈ L1 if f ∈ L2 and

4.

v2

4
− f2(x)

2
≤ S(x, v) ≤ v2 + f2(x) .

Therefore (3.2), with p0 = 2 is satisfied, if f ∈ L2.
5. C∞

0 ⊆ XS = L2 ∩ BV ⊂ L2.
Sv(x, v) = v − f(x) satisfies:

1. Sv(x, ·) is continuous for almost every x,
2. Sv(·, v) is measurable for each v ∈ R.
3. For ψ ∈ XS , Sv(·, ψ(·)) = ψ(·) − f(·) ∈ L2.
4. For v, h ∈ XS we have

η(t, v, h) = |t|2
∫

|h|2 ,

and thus (3.4) holds.
From Theorem 3.2 it follows that uα ∈ XS = BV ∩ L2 . Theorem 3.5 shows
that uα ≡ 0 if and only if ‖f‖Gs ≤ α. Theorem 3.6 shows that for ‖f‖Gs > α,
uα is characterized by ‖uα − f‖Gs = α and∫
(f − uα)uα = α‖Duα‖s∗ . For s∗ = 2 this result is stated in [11].

• For logistic regression with β > 0, let f ∈ L∞ ∩ L2 satisfy 0 ≤ f ≤ 1.

S(x, v) =
β

2
(v − f(x))2 +

{
ln (1 + exp(v)) − vf(x) for x ∈ B ,

0 else

satisfies:
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1. S(x, v) ≥ 0,
2. S(x, ·) is convex for almost every x,
3. S(·, v) is measurable for each v ∈ R and
4. S(·, 0) = β

2 f
2(·) + ln(2)χB(·) ∈ L1.

5. C∞
0 ⊆ XS ⊆ L2.

Sv(x, v) = β(v − f(x)) +
(

exp(v)
1+exp(v) − f(x)

)
χB satisfies:

1. Sv(x, ·) is continuous for almost every x,
2. Sv(·, v) is measurable for each v ∈ R,
3. For ψ ∈ XS Sv(·, ψ(·)) ∈ L2.
4. For v, h ∈ XS we have

η(t, v, h) ≤
(

1
2

+ β

)
|t|2
∫

|h|2 .

Theorem 3.5 shows that uα ≡ 0 if and only if ‖Sv(·, 0)‖Gs ≤ α. Theorem 3.6
shows that for ‖Sv(·, 0)‖Gs > α, uα is characterized by
‖Sv(·, uα(·))‖Gs = α and − ∫ Sv(x, uα(x))uα(x) dx = α‖Duα‖s∗ .

The preceding results allow a geometrical interpretation of bounded variation mini-
mization and logistic regression.
ROF-model: Let Φ be measurable and satisfy ∆Φ = f with Ff := ∇Φ ∈ L∞

loc.
2 By

definition ‖ρ− f‖Gs ≤ α if and only if ρ− f = ∇·�v and ‖|�v|ls‖L∞ ≤ α. This
is equivalent to

ρ = ∇·(�v + Ff ) and ‖|�v|ls‖L∞ ≤ α .

Or in other words, ρ is the divergence of a vector valued function �ρ which is
in a tube around the “primitive” (to be precise, we solve Laplacian’s equation
and differentiate) of f . The tube is a subset of R

2n around the vector valued
function Ff . We recall that uα is the divergence of a vector valued function
�uα and the distance between �uα and Ff is less than α, i.e.,
‖|Ff − �uα|ls‖L∞ ≤ α. Note that the tube geometry varies with s and has an
impact on the solution (cf. [15]). For s = 2 the tube has a cylindrical shape
and for s = 1,∞ the tube is a slot.
The following geometric interpretations of the bounded variation regularized
solutions uα are immediate: the associated vector field �uα does not have
contact with the tube if and only if ‖f‖Gs ≤ α.

Logistic Regression: Here we have

Sv(·, 0) = −(β + χB)f(x) +
1
2
χB

If ‖Sv(·, 0)‖Gs ≤ α, i.e., it is in a tube around the 0 manifold, then uα ≡ 0.
In all other situations Sv(·, uα(·)) has a contact with the tube of radius α.

2All along this paper we have been considering data filtering on Rn. If we consider data smoothing
on a bounded, smooth domain Ω, the existence of a solution of Laplace’s equation ∆Φ = f with
Neumann boundary data is guaranteed if

∫
f = 0. For Rn we assume the existence of a solution of

this equation, which imposes further requirements on the data f .
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3.3. Sv is not differentiable. This case is more involved, since Sv has to be
considered set-valued. The situation is even worse since the function h ∈ BV may be
discontinuous and has to be considered set-valued as well. In this situation a basic
assumption that S(·, v) is measurable for each v is satisfied if for instance

S(x, v) = S̃(v − f(x)) , (3.13)

where S̃ is convex. Note that the function S is convex for almost every x. For each
open set O the set S̃−1(O) is open (any convex function is continuous) and thus since
f is measurable

{x : S(x, v) ∈ O} = {x : f(x) ∈ v − S̃−1(O)} = f−1
(
v − S̃−1(O)

)
is measurable.

Moreover, we assume that

c|ρ| ≤ S̃(ρ) ≤ c|ρ| . (3.14)

From this it follows that

c{|v| − |f(x)|} ≤ S(x, v) = S̃(v − f(x)) ≤ c|v − f(x)| ≤ c{|v| + |f(x)|} .
Thus for f ∈ L1, S satisfies Assumption 3.1 and (3.2) (with p0 = 1). In particular

S(u) :=
∫
S̃(u(x) − f(x)) dx

is bounded and strongly continuous by the Nemytskii Theorem (see e.g. [22, Theorem
3.2]). Theorem 3.2 shows that there exists a minimizer in XS = BV ∩ L1.

We denote by ∂S̃(ρ) the subdifferential of S̃(ρ) at ρ ∈ R and by ∂s̃(ρ) a single
element of ∂S̃(ρ). Under these assumptions, from (3.14) and the convexity of S̃ it
follows that

|∂s̃(ρ)| ≤ c , (3.15)

for any ∂s̃(ρ) ∈ ∂S̃(ρ) and ρ ∈ R. Moreover, we assume that s̃ has only a finite
number of singularities

ρ1 < ρ2 < ρ3 < . . . < ρm . (3.16)

To represent this assumption, we write

∂s̃(ρ) = s̃′(ρ) for ρ ∈ (ρi, ρi+1) , i = 0, 1, . . . ,m ,

where we set ρ0 = −∞, ρm+1 = ∞. For v ∈ XS we introduce the measurable sets

Ωi(v) := (v − f)−1(ρi, ρi+1) , i = 0, 1, . . . ,m , Ω(v) :=
m⋃

i=0

Ωi(v) ,

Γi(v) := (v − f)−1(ρi) , i = 1, 2, . . . ,m , Γ(v) =
m⋃

i=1

Γi(v) .

Note that B := (ρi, ρi+1) is open and for a measurable function ṽ, ṽ−1(B) is measur-
able (cf. [6]).

In the sequel we impose the following assumptions:
Assumption 3.7.
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1. For v ∈ XS we define and assume

Ψv :=
{
ψ ∈ L∞ :ψ(x) = s̃′(v(x) − f(x)) for x in Ω(v) and

ψ(x) ∈ ∂s̃(ρi) for x ∈ Γi(v)
}

�= ∅ .

Any ψ ∈ Ψv is measurable, since by definition it is in L∞ (and thus in
particular measurable). Ψv �= ∅ follows from some abstract results in Deimling
[3, Prop 3.2., p 22 ff]. In order to apply this result several assumptions have to
be verified. For our applications it is more convenient to assume the existence
of a function since at a later stage we have to use one particular element of
Ψv where its measurability is obvious.

2. Moreover, we assume that for every v ∈ XS there exists ψv ∈ Ψv such that
for every h ∈ XS

η(t, v, h)

:=
∫ (

S̃(v(x) + th(x) − f(x)) − S̃(v(x) − f(x)) − tψv(x)h(x)
)
dx

(3.17)

satisfies (3.4).
Here again, as in the continuous case, the existence of a directional derivative.

Note, that at locations x ∈ Γ(v) we choose one element ψv of the subgradient. For
x ∈ Ω(v), ψv(x) is single valued.

We recall that since S̃(·) is convex, for every ψ ∈ Ψv and h ∈ XS

S̃(v(x) + h(x) − f(x)) − S̃(v(x) − f(x)) − ψ(x)h(x) ≥ 0 . (3.18)

Theorem 3.8. Assume that S̃ is convex and satisfies (3.14), the subgradient has only
a finite number of singularities, and for v ∈ XS, there exists ψv ∈ Ψv such that η
satisfies (3.4).

Let ψ0 ∈ Ψ0 satisfy (3.18). Then
1. ‖ψ0‖Gs ≤ α if and only if uα ≡ 0.
2. If ‖ψ0‖Gs > α, then

‖ψuα‖Gs = α and −
∫
ψuα(x)uα(x) dx = α‖Duα‖s∗ .

The proof is along the lines of proof of Theorems 3.5 and 3.6 and thus omitted.
Example 3.11. Let f ∈ L1.

• For the robust regression model S̃ = | · | and S(x, v) = |v−f(x)|. By Theorem
3.2 uα ∈ XS = BV ∩ L1.
S̃ is convex, satisfies (3.14) with c = c = 1, the subgradient has just one
singularity at 0.
We have

s̃′(z) = 1 if z = v − f(x) > 0 ,
s̃′(z) = −1 if z = v − f(x) < 0 ,

and set ψv(z) = 0 if v = f(x).
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For f ∈ L1 and v ∈ XS the function ψv(v(x) − f(x)) is measurable. Note
that ψv attains only three values −1, 0, 1 and thus for any open set O and
J = O ∩ {0,±1}

{x : ψv(v(x) − f(x)) ∈ O} =
⋃
j∈J

{x : ψv(v(x) − f(x)) = j}.

We have

{x : ψv(v(x) − f(x)) = 1} = {x : v(x) − f(x) > 0} ,
{x : ψv(v(x) − f(x)) = −1} = {x : v(x) − f(x) < 0} ,
{x : ψv(v(x) − f(x)) = 0} = {x : v(x) − f(x) = 0} ,

Therefore, since v and f are measurable, so are the sets {x : ψv(v(x)−f(x)) =
j}, j = 0,±1, and therefore the finite union is measurable as well. This shows
that ψv is measurable, and by its definition ψv ∈ L∞.
Moreover, we have

|η(t, v, h)|
|t| ≤2

∫
0<|v−f |≤|th|

|h(x)| dx +
∫

0=|v−f |
|ψv(x)|︸ ︷︷ ︸

=0

|h(x)| dx

=2
∫

|h(x)|χ0<|v−f |≤|th|(x) dx .

The family of functions g|t|(x) := |h(x)|χ|v−f |≤|t||h|(x) is monotonically de-
creasing in |t| and thus by the monotone convergence theorem

lim
|t|→0

g|t|(x) dx =
∫

|h(x)| lim
|t|→0

χ0<|v−f |≤|th|(x) dx

=
∫

|h(x)|χM0 (x) dx

= 0 ,

where M0 is a set of measure 0.
Theorem 3.8 shows that uα ≡ 0 if and only if ‖ψ0‖Gs ≤ α. Moreover, if
‖ψ0‖Gs > α, uα is characterized by ‖ψuα‖Gs = α and − ∫ ψuαuα(x) dx =
α‖Duα‖s∗ .

• For quantile regression the argument is similar. In this case we have

s̃′(z) = β if z = v − f(x) > 0 ,
s̃′(z) = β − 1 if z = v − f(x) < 0 ,

and set ψv(z) = 0 if v = f(x).
The geometrical interpretation of robust regression is rather different from the ROF-
model. Here, we have ψ0 = χf<0 − χf>0. For the sake of simplicity of illustration
we assume that f is one-dimensional with {f < 0} = (−a, a) and {f > 0} = ∅. A
primitive of ψ0 is continuous, constant with value c in (−∞,−a), linear in (−a, a),
and constant with value c+2a in (a,∞). Therefore ‖ψ0‖G = a. The general results of
this section show that uα ≡ 0 if and only if ‖ψ0‖G = a ≤ α. Thus robust regression is
capable of removing isolated sources of width 2α. Note that the ROF-model does not
remove isolated sources for small parameter values α, but dampens the amplitude.
This property of robust regression is well documented in statistics for filtering of one-
dimensional data. Here the result is in a functional analytic context and applies to
multi-dimensional data.
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4. Conclusion
In this paper we have investigated G-norm properties of a class of bounded varia-

tion filtering of multi-dimensional data in a functional analytical context. One moti-
vation for studying these filtering methods is due to their success in statistics for
analyzing one-dimensional data. Here we considered them in a multi-dimensional
space setting, thinking of possible applications to imaging. For characterization of
the minimizers of regression models we followed the analysis of Y. Meyer [11] for the
ROF-model. We made extensive use of the G-norm, for which we gave a geometrical
interpretation.
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