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REMOVING THE CELL RESONANCE ERROR IN THE
MULTISCALE FINITE ELEMENT METHOD VIA A

PETROV-GALERKIN FORMULATION∗

THOMAS Y. HOU† , XIAO-HUI WU‡ , AND YU ZHANG§

Abstract. We continue the study of the nonconforming multiscale finite element method (Ms-
FEM) introduced in [17, 14] for second order elliptic equations with highly oscillatory coefficients.
The main difficulty in MsFEM, as well as other numerical upscaling methods, is the scale resonance
effect. It has been show that the leading order resonance error can be effectively removed by using
an over-sampling technique. Nonetheless, there is still a secondary cell resonance error of O(ε2/h2).
Here, we introduce a Petrov-Galerkin MsFEM formulation with nonconforming multiscale trial func-
tions and linear test functions. We show that the cell resonance error is eliminated in this formulation
and hence the convergence rate is greatly improved. Moreover, we show that a similar formulation
can be used to enhance the convergence of an immersed-interface finite element method for elliptic
interface problems.
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1. Introduction
A multiscale finite element method has been developed in [19, 17]. The method

is designed to capture accurately the averaged effect of differential operators with
highly oscillatory coefficients on the large scale solutions. These solutions are typically
computed on grids that are coarser than the scale of oscillations. In practice, the
oscillatory coefficients are often representations of random media, e.g., in porous media
flows. The general idea of MsFEM is to construct finite element base functions that
capture the small scale information of the leading order differential operator. This
requires solving a homogeneous equation of the differential operator. A similar method
commonly used in the industry is numerical upscaling, where a random medium is
first modeled by an effective medium on a coarse grid, and then the effective solution
is computed. See [13, 24] and references cited therein. In MsFEM, the first step is
bypassed and the focus is on the final solution.

The greatest challenge for MsFEM and numerical upscaling is the error due to
scale resonance (cf. [25]), which is characterized by the ratio between the small scale
of the media and the grid scale (size). Thus, numerical error becomes large when the
grid size is close to the heterogeneity scale of the media. Moreover, most practical
simulations are performed under this scenario. Therefore, it is highly desirable to
eliminate the resonance error.

Two origins of scale resonance have been revealed in the study of MsFEM for
second order elliptic equations [19, 14]. One is the mismatch between the artificial
local boundary conditions imposed on the base functions and the global nature of the
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oscillatory solution of the differential operator. It induces boundary layers in the
first order correctors of the base functions. It was found that the error due to the
boundary layers is most significant and can be effectively removed by using an over-
sampling technique [17, 14]. The other origin is the mismatch between the grid size
and the “perfect” sample size (e.g., for periodic structures, the “perfect” sample size
would be integer multiples of the period). The resonance thus created is called “cell
resonance”. Though cell resonance cannot be removed by over-sampling, its effect is
of lower order [14]. Both types of error exist in the upscaling methods and they are
of the same order [25].

In this paper, we modify the nonconforming MsFEM formulation of [14] to remove
the cell resonance error. Our main finding is that additional error cancellation can be
achieved by choosing piecewise linear test functions while keeping the construction of
the multiscale trial functions in the original method. In particular, over-sampling is
used in the construction of the trial functions to remove the effect of the boundary
layers. As a result, the trial space is non-conforming. Thus, our new resonance-free
method is a Petrov-Galerkin [21], nonconforming, multiscale finite element method
(P-G MsFEM).

We show that this error cancellation mechanism is quite subtle. It does not
exist for the original Galerkin method, nor does it occur if the trial space and the test
space are exchanged. Furthermore, we compare P-G MsFEM with a typical numerical
upscaling method. It turns out that, although the error cancellation does exist for
the upscaling method, the cell resonance is brought back by another error term.

The effect of the piecewise linear test space can be understood from another
point of view. It was shown in [14] that the cell resonance error comes from the
nonconforming error in the Galerkin formulation. Here, we show that P-G MsFEM
has no non-conforming error due to the conforming piecewise linear test space. As a
result, the cell resonance error vanishes. This idea of removing nonconforming error
has been used in developing an MsFEM (by the authors, see [23]) for solving multiscale
transport problems (cf. [15]). In this case, the nonconforming error is much larger
compared to that in the present elliptic problem due to singular perturbation. The
same idea can also be used to improve the convergence rate of a nonconforming finite
element method for solving elliptic interface problems on non-interface-fitting grids.
See Section 5.

Note that the idea of combining a nonconforming trial space and conforming test
space has been used in [1] to construct a special finite element method for second order
elliptic problems with rough coefficients that are constant along straight lines. The
one-dimensional structure of the rough coefficients was utilized in the proof of the sta-
bility of the method. The analysis, however, is not applicable to the two-dimensional
problems we are interested in. See Sections 3 and 5 for further details. The use of
different test spaces to improve the solutions represented by given trial spaces has
been widely used in the finite element solution of the convection-diffusion equation.
See, e.g., [11, 16, 12, 3, 8] and references cited therein. The current technique is dif-
ferent in that the test space is chosen to eliminate the nonconforming error and bring
about additional error cancellation. The cited methods for the convection-diffusion
equation often lead to symmetrized discrete systems of equations for asymmetric dif-
ferential operators; the present technique asymmetrizes the discrete equations for a
symmetric differential operator. Thus, as a trade off for improving the convergence
of the numerical solution, the coercive condition for the discrete formulation becomes
nontrivial to analyze and sometimes it may be more restrictive. See Lemma 3.2 and
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discussions in Remark 3.6 below. A similar observation was also made in [1].
The rest of the paper is organized as follows: In Section 2, we review the elliptic

model problem, relevant homogenization results, and the over-sampling technique.
We also introduce the formulation for P-G MsFEM. Next, in Section 3 we prove
the convergence of the method. We first prove an energy norm estimate using the
conventional approach and show the removal of the nonconforming error. Then we
analyze the subtle cancellation of the cell resonance error and derive more estimates
in both the energy and L2 norms. In Section 4 we present supporting numerical
results for our theory. Removing nonconforming error in other related problems is
summarized in Section 5.

2. Model problem, over-sampling, and P-G MsFEM
In this section we introduce the model problem and the Petrov-Galerkin non-

conforming multiscale finite element method (P-G MsFEM). First, we fix some no-
tations and conventions to be used in this paper. In the following, the Einstein
summation convention is used: summation is taken over repeated indices. L2(Ω) de-
notes the space of square integrable functions defined in domain Ω. We use the L2(Ω)
based Sobolev spaces Hk(Ω) equipped with norms and seminorms given by:

‖u‖2
k,Ω =

∫
Ω

∑
|α|≤k

|Dαu|2, |u|2k,Ω =
∫

Ω

∑
|α|=k

|Dαu|2.

H1
0 (Ω) consists of those functions in H1(Ω) that vanish on ∂Ω. ‖u‖∞,Ω is the L∞

norm of u in Ω. Throughout, C denotes a generic constant, which is independent of
ε and h unless otherwise stated. By 〈·〉Y we denote the mean value of a function in
the domain Y , i.e.,

〈f〉Y =
1
|Y |

∫
Y

f(x)dx.

2.1. Model problem and the multiscale expansion. We consider solving
the second order elliptic equation:

Lεuε = f, in Ω, (2.1)

where Lε = −∇ · aε∇ = − ∂

∂xi
aijε

∂

∂xj
is the linear elliptic operator, f ∈ L2(Ω), aijε is

a symmetric positive definite matrix satisfying α|ξ|2 ≤ ξia
ijξj ≤ β|ξ|2, for all ξ ∈ R2

and with 0 < α < β <∞, ε is a small parameter characterizing the small scale in the
physical problem. To simplify the presentation of the finite element formulation, we
assume u = 0, on ∂Ω and that the solution domain is a unit square Ω = [0, 1]× [0, 1].

The multiscale finite element method is designed mainly for physical problems
that do not have scale separation or periodic structure. On the other hand, for prob-
lems that have scale separation and periodic structure, one can take advantage of such
structure to construct the multiscale basis semi-analytically. To better understand the
source of resonance error, we restrict ourselves to the special case when the coefficient
has a periodic structure, i.e. aijε = aij(x/ε). Furthermore, we assume that aij(y) are
C3 periodic functions in y in a unit cube Y . For this special class of coeffiicients,
the homogenization theory can be applied to analyze the structure of the solution for
problem (2.1). It is known [5] that the solution of (2.1) can be expanded as:

uε = u0 + εχi(
x

ε
)
∂u0

∂xi
+ εθuε . (2.2)
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In expansion (2.2), u0 ∈ H2(Ω) is the solution of the homogenized equation

−∇ · a0∇u0 = f, in Ω,

satisfying u0 = 0, on ∂Ω. The constant homogenized coefficient matrix a0 is given by

aij0 =
1
|Y |

∫
Y

aik(y)
(
δkj +

∂χj(y)
∂yk

)
dy. (2.3)

And χk is the periodic solution of

− ∂

∂yi
aij(y)

∂

∂yj
χk(y) =

∂aik(y)
∂yi

(2.4)

in the unit cell Y and 〈χk〉Y = 0. For the correction term θuε , we have

Lεθ
u
ε =

1
ε
Lε

(
uε − u0 − εχi(

x

ε
)
∂u0

∂xi

)
, in Ω,

θuε = −χi(x
ε
)
∂u0

∂xi
, on ∂Ω.

(2.5)

It is known that uε converges to u0 under the L∞ norm when ε approaches 0.

2.2. Multiscale basis and over-sampling method. For 0 ≤ h ≤ 1, let Kh
be a partition of Ω of triangles K with diameter less than h. In each element K ∈ Kh,
we define a set of nodal basis {φiε,K}, i = 1, · · · , d with d (= 3) being the number of
nodes of the element. We will neglect the subscript K when working in one element.
The multiscale base function φiε satisfies

Lεφ
i
ε = 0, in K ∈ Kh. (2.6)

Let xj ∈ K(j = 1, · · · , d) be the nodal points of K. In [19], the multiscale base
function satisfies φiε(xj) = δij and some boundary conditions on ∂K so that (2.6) is
well-posed. Similar to (2.2), φiε can be expanded as:

φiε = φi0 + εχj(
x

ε
)
∂φi0
∂xj

+ εθφ
i

ε . (2.7)

If φiε is linear along ∂K, since the homogenized coefficient a0 is a constant matrix; φi0
must be linear; and φi0(xj) = δij [19]. Thus, by (2.4), (2.5), and (2.6) the equation
for θφ

i

ε can be further simplified:

Lεθ
φi

ε =
1
ε
Lε

(
φiε − φi0 − εχj(

x

ε
)
∂φi0
∂xj

)

= −1
ε
∇ · aε∇

(
φi0 + εχj(

x

ε
)
∂φi0
∂xj

)

= −
(

1
ε

∂akjε
∂xk

+
∂

∂xk
aklε

∂χj

∂xl
(
x

ε
)
)
∂φi0
∂xj

= 0.

As mentioned in the introduction, the multiscale finite element method using the
multiscale basis discussed above suffers from the resonance error. The main cause
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of the resonance error is that the first order corrector, θφ
i

ε , has a boundary layer
(see [19]). In [17] and [14], an over-sampling method was introduced to remove the
boundary layer effect.

Since the boundary layer is thin, we can sample in a domain with size larger than
h and use only the interior data to construct the base function. Specifically, we first
construct the base functions ψiε in a sampling domain S ⊃ K with diam(S) = H > h
and ∂S is away from ∂K at some distance dS (to be specified below). In doing so, we
let ψiε to satisfy the linear boundary conditions on ∂S. Then, the base functions ψiε
on K are constructed from the linear superposition of ψiε:

φiε =
d∑
j=1

cijψ
j
ε.

The constants cij are determined by the condition φi0(xj) =
∑d

l=1 cilψ
l
0(xj) = δij .

Here, xj are the nodal points of K and ψl0 are the homogenized part of ψlε (see (2.7))
which are linear. Note that this construction follows that in [14]; it is slightly different
from the original construction given in [17], where φiε(xj) = δij was used to determine
cij .

By this procedure, the boundary layer structure near ∂S can be avoided if dS is
sufficiently large. Noting that θψ

i

ε = −χj(x/ε)∂ψi0/∂xj on ∂S, φiε can be expressed
as:

φiε = φi0 + εχj(
x

ε
)
∂φi0
∂xj

+ εη(x)j
∂φi0
∂xj

, (2.8)

with ηj being the solution of

∇ · aε∇ηj = 0 in S, ηj(x) = −χj(x
ε
) on ∂S. (2.9)

Thus, dS is determined by the thickness of the boundary layer of ηj . Numerically,
it has been observed that the boundary layer is about O(ε) thick [17, 18]. It was
also observed that dS = h(> ε) is usually sufficient for eliminating the boundary
layer effect. These findings are consistent with those in [4], where the boundary layer
structure of the half-plane problem was analyzed. However, the boundary layer is not
well understood for domains with corners. Noting that each S may contain multiple
elements (which in fact has advantage in practical computations [17]) and that the
shape of S can be flexible (i.e., it does not have to be triangular or rectangular), we
make the following assumption:

Assumption 2.1. The over-sampling domain S is chosen such that for any element
K in S

‖∇ηi‖L∞(K) ≤ C, (2.10)

where C is a constant that is independent of ε and h.
We remark that Assumption 2.1 has not been found to be necessary in practice,

see, e.g., [17, 14] and the numerical tests given later in this paper. On the other hand,
the assumption can be satisfied by taking a sample domain S so that the distance
from the boundary of S to K, denoted by dist(K, ∂S), is large enough. In particular,
using an estimate for ∇χ from [9], we obtain that ‖∇ηi‖L∞(K) ≤ c/dist(K, ∂S) with
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c independent of ε and h. So if there is enough separation from ∂S to K, the above
assumption is satisfied.

We define two finite element spaces as follows:

Φhε = span{φiε,K ; i = 1, · · · , d, K ⊂ Kh};
Φh0 = span{φi0,K ; i = 1, · · · , d, K ⊂ Kh} ⊂ H1

0 (Ω).

Note that in general Φhε 
⊂ H1
0 (Ω), since the multiscale base functions constructed by

the over-sampling method are no longer continuous across the internal boundaries of
the elements.

We remark that when the periodic fine-scale structure is known, one can construct
the multiscale basis functions by using the first two terms of (2.7), that is:

φiε = φi0 + εχj(
x

ε
)
∂φi0
∂xj

. (2.11)

This avoids the boundary layer effect completely. Numerical experiments by An-
drew Westhead demonstrate a clear first order convergence of this method without
suffering from resonance error. For more details, see www.ama.caltech.edu/ west-
head/MSFEM.

2.3. Petrov-Galerkin nonconforming multiscale finite element method.
The variational problem of (2.1) is to seek uε ∈ H1

0 (Ω) such that

a(uε, v) = f(v), ∀v ∈ H1
0 (Ω), (2.12)

where

a(u, v) =
∫

Ω

aijε
∂u

∂xi

∂v

∂xj
dx, f(v) =

∫
Ω

fvdx.

A Petrov-Galerkin finite element method is obtained by restricting the weak for-
mulation (2.12) to some finite dimensional subspaces of H1

0 (Ω). We define two sub-
spaces of H1

0 (Ω), namely Uh and V h, on Kh. The finite element solution uhε ∈ Uh is
obtained by solving the following variational problem

a(uhε , v) = f(v), ∀v ∈ V h.

The subspaces Uh and V h are the trial space and the test space, respectively. Gen-
erally, they need not be the same. Different choices of Uh and V h lead to different
methods (cf. [16]).

For the classical finite element method, Uh = V h = Φh0 . In Appendix A, we prove
that fixing h� 1 and letting ε go to 0, the solution of this finite element method, uh,
is an approximation to u, the solution of the equation

−∇ · (〈a〉Y )∇u = f in Ω and u = 0 on ∂Ω.

Since 〈a〉Y 
= a0 in general, we have u 
= u0 and hence the classical finite element
method gives a wrong solution for problem (2.1) when h
 ε. See Theorem A.1.

In [17], a multiscale finite element was developed where Φhε was used instead of
Φh0 . The method is nonconforming because Φhε is not a subspace of H1

0 (Ω). The
bilinear form a(·, ·) needs to be modified as

ah(u, v) =
∑
K∈Kh

∫
K

∇v · aε∇udx.
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We seek uhε ∈ Φhε such that

ah(uhε , v) = f(v), ∀v ∈ Φhε .

Following the proof of Theorem 3.1 of [14] and using Assumption 2.1, it can be
shown that uhε converges to uε when h
 ε, i.e.,

‖uhε − uε‖h,Ω ≤ C1
ε

h
+ C2

√
ε+ C3h, (2.13)

where ‖ · ‖h,Ω is the energy norm defined as

‖v‖h,Ω =

⎛
⎝ ∑
K∈Kh

∫
K

|∇v|2dx
⎞
⎠

1
2

.

(This is indeed a norm in Φhε , see Remark 3.1 of [14].) Note that estimate (2.13)
obtained with Assumption 2.1 is identical to that derived in [14] without using the
assumption. However, here the O(ε/h) term contains solely the cell resonance effect,
whereas the same term in (3.4) of [14] contains the contribution of the first order
corrector (see the last term in (2.8)).

The goal is to eliminate the O(ε/h) error in (2.13). We propose the following
Petrov-Galerkin formulation–seek uhε ∈ Φhε such that:

ah(uhε , v) = f(v), ∀v ∈ Φh0 ⊂ H1
0 (Ω). (2.14)

Note that the trial space is oscillatory and nonconforming while the test space is
piecewise linear and conforming. We will prove that the O(ε/h) resonance error
vanishes in this new method.

3. Convergence of P-G MsFEM
In this section we prove the convergence of P-G MsFEM. Let the finite element

solution uhε ∈ Φhε be expressed as

uhε =
d∑
i=1

uiφ
i
ε,K in K ∈ Kh,

and set

uh0 =
d∑
i=1

uiφ
i
0,K in K ∈ Kh.

Thus, by (2.8) uhε has the following expansion

uhε = uh0 + εχ(x/ε) · ∇uh0 + εθh (3.1)

on each element K, where θh = ηi∂uh0/∂xi.

Lemma 3.1. Under assumption 2.1, the following estimates are valid:

‖θh‖0,Ω ≤ C‖∇uh0‖0,Ω, ‖θh‖h,Ω ≤ C‖∇uh0‖0,Ω. (3.2)
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Proof. Since a(y) is a smooth function, so is χi. Thus, by (2.9) ‖ηi‖∞,S ≤
‖χi‖∞,S ≤ C. Therefore, the first estimate holds. The second estimate can be
obtained from (2.10) and the fact that uh0 is piecewise linear.

It follows immediately that

‖uhε‖h,Ω ≤ ‖∇uh0‖0,Ω + ε‖∇χ · ∇uh0‖h,Ω + ε‖θh‖h,Ω ≤ C‖∇uh0‖0,Ω. (3.3)

Define

ãij(y) = aik(y)
(
δkj +

∂χj(y)
∂yk

)
.

It is clear from (2.3) and (2.4) that

〈ã〉Y = a0 and ∇ · ã = 0. (3.4)

The following Lemma about ã will be useful:

Lemma 3.2. There exists a constant C, such that when the ratio
ε

h
< C , ã satisfies

the following inequalities

C1‖∇u‖2
0,K ≤

∫
K

∇u · ã(x/ε)∇udx ≤ C2‖∇u‖2
0,K , ∀u ∈ Φh0 , ∀K ∈ Kh. (3.5)

Proof. Since a0 is symmetric and (〈a−1〉Y )−1 ≤ a0 ≤ 〈a〉Y (see [20]), there exist
C1 and C2 such that

C1|ξ|2 ≤ ξia
ij
0 ξj ≤ C2|ξ|2. (3.6)

Moreover,∫
K

∇u · ã(x
ε
)∇udx =

∫
K

∇u · a0∇udx+
∫
K

∇u · (ã(x
ε
) − a0)∇udx. (3.7)

Dividing K into

K =

( ⋃
Yk⊂Ω

Yk

)⋃
K ′,

where Yk is a periodic cell of a(x/ε) and K ′ is the difference between K and the union
of all Yk in K. Since 〈ã− a0〉Yk

= 0, we have for the second term on the right-hand
side of (3.7) ∣∣∣∣

∫
K

∇u · (ã(x
ε
) − a0)∇udx

∣∣∣∣ =
∣∣∣∣
∫
K′

∇u · (ã(x
ε
) − a0)∇udx

∣∣∣∣
≤ max |ãij − aij0 |‖∇u‖2

0,K′ ≤ C
ε

h
max |ãij − aij0 |‖∇u‖2

0,K .

(3.8)

In deriving the last inequality, we have used the fact that ∇u is a constant in K ∈ Kh
since u ∈ Φh0 . From (3.6), (3.7) and (3.8), we see that when

ε

h
is sufficiently small,

(3.5) is valid.
The inequality (3.5) is crucial for proving theorems in the next subsections. In

the following, we always assume (3.5) is valid.

Remark 3.1. For some coefficients a, (3.5) is independent of h and ε. For example,
it is easy to prove that this is the case if aij(y) = δij(1+µb(y)), where b(y) is a smooth
periodic function and µ is small. Another example is that a = a(x1) only depends on
one variable.
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3.1. Removal of nonconforming error. The main consequence of using a
conforming test space is the following orthogonality result:

ah(uhε − uε, v) = 0, ∀v ∈ Φh0 . (3.9)

Eq. (3.9), together with the inf-sup condition (cf. [2]) proved below, enables one to
bound the solution error by the interpolation error. Denote

ã(u, v) =
∑
K∈Kh

∫
K

∇v · ã(x
ε
)∇udx, v ∈ Φh0 .

Thus, by (3.1) and the definition of ã we have

ah(uhε , v) = ã(uh0 , v) + εah(θh, v) = f(v), ∀v ∈ Φh0 . (3.10)

Theorem 3.3. Let uhε be the P-G MsFEM solution. Assume that (3.5) is valid and
Assumption 2.1 holds, if the homogenized part of uε, i.e. u0 is in H2(Ω), we have

‖uhε − uε‖h,Ω ≤ C1h+ C2ε+ C3

√
ε. (3.11)

Proof. To estimate ‖uhε−uε‖h,Ω, we first show that the following inf-sup condition
or coercive condition of the bilinear form ah(·, ·) holds for sufficiently small ε. There
exists C > 0, independent of ε and h such that

sup
v∈Φh

0

|ah(uhε , v)|
‖v‖1,Ω

≥ C‖uhε‖h,Ω, ∀uhε ∈ Φhε . (3.12)

Taking v = uh0 ∈ Φh0 in (2.14) and using (3.10), we get

ah(uhε , u
h
0) = ã(uh0 , u

h
0) + εah(θh, uh0 ). (3.13)

Moreover, we obtain using (3.2) that

|ah(θh, uh0 )| ≤ C|θh|h,Ω‖∇uh0‖0,Ω ≤ C‖∇uh0‖2
0,Ω. (3.14)

It follows from (3.3), (3.13), (3.14), and (3.5) that when ε is sufficiently small

|ah(uhε , uh0)| ≥ |ã(uh0 , uh0)| − ε|ah(θh, uh0 )| ≥ C‖∇uh0‖2
0,Ω ≥ C‖∇uh0‖0,Ω‖uhε‖h,Ω;

thus, (3.12) is valid.
Now, let uIε ∈ Φhε be the interpolation of uε. Using (3.12) we have

‖uhε − uε‖h,Ω ≤ ‖uIε − uε‖h,Ω + ‖uhε − uIε‖h,Ω
≤ ‖uIε − uε‖h,Ω + C sup

v∈Φh
0

|ah(uhε − uIε, v)|
‖v‖1,Ω

= ‖uIε − uε‖h,Ω + C sup
v∈Φh

0

|ah(uIε − uε, v)|
‖v‖1,Ω

≤ (1 + βC)‖uIε − uε‖h,Ω.

(3.15)

We have used (3.9) in the third step of above derivation.
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Following the derivation in [14] (page 924) and using (2.10), we can show that

‖uIε − uε‖h,Ω ≤ C1h+ C2ε+ C3

√
ε.

Therefore, (3.11) follows from (3.15).

Remark 3.2. The above proof shows that the error of the P-G MsFEM solution is
bounded by the interpolation error. In fact, (3.15) is true for any vhε ∈ Φhε . Therefore,
it can be viewed as a replacement of the classical Cea’s lemma.

Remark 3.3. The
√
ε term in (3.11) comes from the first order corrector for the

global solution. This term is unavoidable. In practice, its effect is localized near the
boundary; hence the solution in the interior is not affected.

As noted in [19], the conventional Aubin-Nitsche trick is not helpful in analyzing
the L2 convergence of MsFEM. A discrete method was introduced in [19] and was
followed by [14]. The advantage of the method is that it can reveal the subtle error
cancellations in the discrete solutions and hence gives a better convergence estimate.
In the following, we use a simpler approach to show the error cancellation.

3.2. Error cancellation and more estimates. From the discussion in
Section 2.1, we know that the homogenized solution u0 ∈ H1

0 (Ω) satisfies the following
variational formulation

a0(u0, v) = f(v), ∀v ∈ H1
0 (Ω), (3.16)

where

a0(u, v) =
∫

Ω

∇v · a0∇udx, u, v ∈ H1
0 (Ω).

Therefore, by (3.10) we get

ã(uh0 , v) + εah(θh, v) = a0(u0, v), ∀v ∈ Φh0 . (3.17)

Below, we first derive the error estimate for u0 − uh0 . Then we apply this result
to prove the L2 and H1 convergence of uhε .

Theorem 3.4. If u0 belongs to H3(Ω)
⋂
W 2,∞(Ω) and ∂Ω is C0,1, under (3.5) and

Assumptions 2.1, the following estimate holds:

‖uh0 − u0‖1,Ω ≤ C1ε+ C2h+ C3ε(lnh)1/2. (3.18)

Proof. Let uI0 ∈ Φh0 be the linear interpolant of u0 and set v = uh0 − uI0, (3.5) and
(3.17) give

C‖uh0 − uI0‖2
1,Ω ≤ ã(v, v) = ã(uh0 − u0, v) + ã(u0 − uI0, v)

= [a0(u0, v) − ã(u0, v)] − εah(θh, v) + ã(u0 − uI0, v).
(3.19)

For the second and the third terms on the right-hand side of the last equality, we have

|εah(θh, v)| ≤ Cε‖θh‖h,Ω‖v‖1,Ω ≤ Cε‖uh0‖1,Ω‖v‖1,Ω; (3.20)

|ã(u0 − uI0, v)| ≤ Ch|u0|2,Ω‖v‖1,Ω. (3.21)
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In the above derivation we have used (3.2) and the estimate of the interpolation

‖u0 − uI0‖1,Ω ≤ Ch|u0|2,Ω.

Furthermore, it follows from (3.5), (3.2) and (3.10) that

‖uh0‖2
1,Ω ≤ Cã(uh0 , u

h
0 ) = Cf(uh0) − Cεah(θh, uh0)

≤ C‖f‖0,Ω‖uh0‖1,Ω + Cε‖uh0‖2
1,Ω.

Since ε is small, we get

‖uh0‖1,Ω ≤ C‖f‖0,Ω. (3.22)

Thus, (3.20) becomes

|εah(θh, v)| ≤ Cε‖f‖0,Ω‖v‖1,Ω. (3.23)

For the first term on the right-hand side of (3.19), noting that ∇·ã = 0 (Eq. (3.4))
and using integration by parts, we obtain

ã(u0, v) − a0(u0, v) =
∫

Ω

∇v ·
(
ã(
x

ε
) − a0

)
∇u0dx

= −
∫

Ω

v∇ ·
(
(ã(

x

ε
) − a0)∇u0

)
dx

= −
∫

Ω

v
[
Hu0 ·

(
ã(
x

ε
) − a0

)]
dx

(3.24)

where

Hu0 =

(
(u0)xx (u0)yx

(u0)xy (u0)yy

)
.

Following the proof of Lemma 3.2 in [14], let

Ω =

( ⋃
Yk⊂Ω

Yk

)⋃
Ω′,

where Yk are small cells in Ω with length ε. Noting that 〈ã − a0〉Yk
= 0 and letting

gk = 〈g〉Yk
, for g ∈ H1(Ω) ∩ L∞(Ω), we have∣∣∣∣

∫
Yk

g(ãij − aij0 )dx
∣∣∣∣ =

∣∣∣∣
∫
Yk

(g − gi)(ãij − aij0 )dx
∣∣∣∣

≤ Cε‖∇g‖L2(Yk)‖ãij − aij0 ‖L2(Yk).

(3.25)

Thus using (3.25), (3.24) gives

|ã(u0, v) − a0(u0, v)|
≤

∣∣∣∣∣
∑
Yi∈Ω

∫
Yi

v
[
Hu0 ·

(
ã(
x

ε
) − a0

)]
dx

∣∣∣∣∣+
∣∣∣∣
∫

Ω′
v
[
Hu0 ·

(
ã(
x

ε
) − a0

)]
dx

∣∣∣∣
≤ Cε‖v‖∞,Ω|u0|3,Ω + C|Ω′|‖v‖∞,Ω′‖Hu0‖∞,Ω′.
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Clearly, the area of Ω′ is O(ε). Therefore

|ã(u0, v) − a0(u0, v)| ≤ Cε‖v‖∞,Ω(|u0|3,Ω + ‖Hu0‖∞,Ω)

≤ Cε| lnh| 12 ‖v‖1,Ω(|u0|3,Ω + ‖Hu0‖∞,Ω).
(3.26)

In the last step, we have used the following well-known inequality (see Lemma 2.3 of
[7] and also [6])

‖v‖∞,Ω ≤ C| ln h|1/2‖v‖1,Ω, v ∈ Φh0 .

Combining (3.23), (3.21), and (3.26) with (3.19), we get the desired estimate

‖uh0 − u0‖1,Ω ≤ C[ε(‖f‖0,Ω + (ln h)1/2‖Hu0‖∞,Ω + |u0|3,Ω) + h|u0|2,Ω].

Remark 3.4. In the above proof, the fact that ã is divergence free is the key to
the additional error cancellation. It enables the application of Lemma 3.2 of [14] in
Ω instead of K. Also, since ε| lnh|1/2 � ε1/2, (3.18) is a tighter bound than (3.11).

Remark 3.5. The estimate (3.18) can be used to derive the bound for ‖uhε−uε‖h,Ω
via the multiscale expansions. It is easy to check that the bound is essentially the
same as in (3.18) with an additional term of O(

√
ε) due to θu.

Theorem 3.5. Under the same assumptions in Theorem 3.4, we have the following
estimate

‖uhε − uε‖0,Ω ≤ C1ε+ C2h+ C3ε| lnh|1/2, (3.27)

Proof. Using Theorem 3.4 and the multiscale expansion of uhε , (3.1), we get

‖uhε − uε‖0,Ω ≤ ‖uhε − u0‖0,Ω + ‖u0 − uε‖0,Ω

≤ ‖uh0 − u0‖0,Ω + ε‖χ · ∇uh0‖0,Ω + ε‖θh‖0,Ω + Cε

≤ ‖uh0 − u0‖1,Ω + C1ε‖uh0‖1,Ω + C2ε

≤ C1ε+ C2h+ C3ε| lnh|1/2.

In the above derivation, we have used the classical estimate ‖uε − u0‖0,Ω ≤ Cε [5] as
well as (3.2), (3.22), and (3.18).

Remark 3.6. The divergence free structure of ã is a special feature of the above
Petrov-Galerkin formulation. It has an obvious variant with the trial space and the
test space switched. Thus, ãT plays the role of ã in the new formulation. Noting that
〈ãT 〉Y = a0, the solution of the variant formulation converges to u0. Nonetheless,
because ∇ · ãT 
= 0, the extra error cancellation does not occur, from which worse
convergence rates result. The same conclusion can be obtained by observing that
the non-conforming error is not zero. This observation has been confirmed by our
numerical tests.

Remark 3.7. It is also interesting to compare our P-G MsFEM formulation with
traditional numerical upscaling methods. In these methods, the discrete effective
coefficients are first computed on grid blocks or elements. Then standard finite volume
or finite element methods are used to obtain the effective equations at the discrete
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level. See [24] for an overview of the various formulations for computing the effective
coefficients. Here, on each element K we define

ah0 〈∇φε〉K = 〈aε∇φε〉K , (3.28)

where φε = (φiε) (i = 1, 2) and φiε ∈ Φhε are the multiscale base functions on K. Note
that the third base function on K is not used in (3.28) because its gradient depends
linearly on those of the other two base functions. Term ah0 is well defined if 〈∇φε〉−1

K

exists (see [25] and below). Eq. (3.28) is consistent with the effective permeability
defined in [24] and [25]. The effective finite element solution ûh ∈ Φh0 can be obtained
by solving

ah0 (ûh, v) ≡
∫

Ω

∇v · ah0∇ûhdx =
∫

Ω

fvdx, ∀v ∈ Φh0 .

Using the multiscale expansion of φε, it is easy to see that 〈∇φε〉−1
K exists when

ε/h is small. Moreover, it can be shown that, to the leading order, we have

ah0(ûh, v) = ã(ûh, v) − (ã〈∇yχ〉K · ∇ûh,∇v) + . . . = f(v).

The leading order term of this equation is identical to that of (3.10). However, there
is a O(ε/h) difference between the two formulations due to the term with 〈∇yχ〉K .
Therefore, although ã leads to the cancellation of resonance error, the 〈∇yχ〉K term
brings the error back. It can be shown that

‖ûh − u0‖1,Ω ≤ Cε/h.

Since 〈∇yχ〉K comes from the expansion of ∇φε, we may avoid this additional
source of error by defining ah0 as

ah0 = 〈aε∇φε〉K(∇φ0)−1.

Note that both definitions of ah0 given in this remark are O(ε/h) accurate approxima-
tions to a0 and yet they lead to different error in the solutions.

4. Numerical Test
In this section, we present some numerical examples to demonstrate the theo-

retical analysis. The resolved solutions are obtained by using standard FEM with
piecewise linear elements. Given ε, we solve the model problem twice on two meshes
with one mesh size being twice that of the other. Then the Richardson extrapolation
is used to approximate the exact solutions from the numerical solutions on the two
meshes. Since both of the mesh sizes used to compute the well-resolved solution are
less than ε/10, the error of the extrapolated solutions is less than 10−7.

We use the same periodic test problem as in [17] and [14]

aε =
(

2 + P sin(2πx/ε)
2 + P cos(2πy/ε)

+
2 + sin(2πy/ε)

2 + P sin(2πx/ε)

)
I

with P = 1.8, f = −1, and I being the identity matrix. It is easy to compute the
homogenized coefficient numerically from (2.4) and (2.3):

a0 ≈
(

3.946 0

0 3.342

)
.
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We have also performed numerical experiments with other forms of aε. The results
are similar and hence are not included.

The convergence of P-G MsFEM with different fixed parameters are shown in
Tables 4.1-4.4. Table 4.1 shows the first order convergence of the method for fixed
h/ε = 1.5. As shown in [14], MsFEM failed to converge for the same problem due
to the cell resonance. However, the cell resonance is not a problem here. In Table
4.2, the convergence of P-G MsFEM with respect to h with fixed ε is shown. The
convergence deteriorates slightly as h decreases. This is expected from Theorem 3.4.
In fact, the table indicates that the error constant of the O(ε) term (i.e., C1 in (3.18))
is smaller than that of the O(h) term.

The L2 and H1 convergence of uhε to uε are presented in Tables 4.3 and 4.4. The
convergence of the numerical solution for fixed h/ε in Table 4.3 is similar to that in
Table 4.1, which is consistent with Theorem 3.5. Numerical tests for smaller h could
not be carried out because the well-resolved solution of uε could not be obtained on
the computing resource (a 512-node Intel Paragon computer) available to us. The
results for fixed ε shown in Table 4.4 are also consistent with the theorem. However,
compared to Table 4.2, Table 4.4 indicates a stronger O(ε) term in ‖uhε − uε‖0,Ω than
in the ‖uh0 − u0‖1,Ω.

Table 4.1. ‖uh
0 − u0‖1,Ω. Keep h/ε = 1.5.

h ‖uh0 − u0‖1,Ω rate
1/16 5.69e− 3
1/32 2.88e− 3 0.98
1/64 1.43e− 3 1.01
1/128 7.08e− 4 1.01
1/256 3.54e− 4 1.00
1/512 1.98e− 4 0.84

Table 4.2. ‖uh
0 − u0‖1,Ω.

ε = 0.02 ε = 0.01
h ‖uh0 − u0‖1,Ω rate ‖uh0 − u0‖1,Ω rate

1/16 5.59e− 3 5.53e− 3
1/32 2.83e− 3 0.98 2.76e− 3 1.00
1/64 1.48e− 3 0.93 1.38e− 3 1.00
1/128 1.41e− 3 0.07 8.32e− 4 0.73

Table 4.3. ‖uh
ε − uε‖0,Ω. Keep h/ε = 1.5.

h ‖uhε − uε‖0,Ω rate
1/16 1.96e− 4
1/32 8.31e− 5 1.24
1/64 4.01e− 5 1.05
1/128 2.14e− 5 0.91
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Table 4.4. ‖uh
ε − uε‖1,Ω.

ε = 0.02 ε = 0.01
h ‖uhε − uε‖1,Ω rate ‖uhε − uε‖1,Ω rate

1/16 1.79e− 4 1.89e− 4
1/32 9.56e− 5 0.90 9.35e− 5 1.01
1/64 8.21e− 5 0.22 7.20e− 5 0.37
1/128 7.94e− 5 0.05 6.74e− 5 0.10

5. Petrov-Galerkin formulation for interface problems
In this section, we apply the idea of combining non-conforming trial space and

conforming test space to solving elliptic interface problems. Let Ω be a convex domain
in R2 and Ω1 ⊂ Ω be an open domain with C2 boundary Γ = ∂Ω1. Let Ω2 = Ω−Ω1.
The elliptic interface problem is given by

−∇ · (κ∇u) = f in Ω, (5.1)

where κ(x) ≥ κ0 > 0 is a piecewise smooth scalar function, i.e., κ = κ1 and κ2,
respectively, in Ω1 and Ω2 (see Figure 5.1). The following jump condition is satisfied
on the interface Γ

[u] = 0,
[
κ
∂u

∂n

]
= g across Γ, (5.2)

where [v](x) = v1(x) − v2(x), x ∈ Γ, with v1 and v2 being the restrictions of v on Ω1

and Ω2, respectively. In the following we assume

u = 0 on ∂Ω. (5.3)

The weak formulation of the interface problem (5.1)-(5.3) is given as follows. Find
u ∈ H1

0 (Ω) such that

a(u, v) = (f, v) + 〈g, v〉, ∀v ∈ H1
0 (Ω), (5.4)

where

a(u, v) =
∫

Ω

κ(x)∇u · ∇vdx, ∀u, v ∈ H1(Ω),

and (·, ·) and 〈·, ·〉 are used to denote the inner products of the L2(Ω) space and the
L2(Γ) space, respectively. In the following, we consider the problem with κ being
a piecewise constant (i.e., κ1 and κ2 are constants). The extension to variable κ is
straightforward.

Here, we are interested in solving (5.1)-(5.3) using a finite element method on grids
that are not aligned with the interface (i.e., a non-interface-fitting), e.g., a Cartesian
grid. The method is very useful for solving problems with moving interfaces. See [22]
for a review of Cartesian grid methods and a discussion of their advantages.

Let Kh be a non-interface fitting triangulation of Ω. In the following we assume
that the triangulation is sufficiently fine so that the interface intersects with the
boundary of a triangle at either one vertex, two vertices, or two edges, each edge
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Ω

Ω

Γ

1

κ1

Ω 2
κ2

Fig. 5.1. A 2D domain Ω with a smooth interface Γ.

A B

A
B

Fig. 5.2. Possible intersections between the interface Γ and the triangles in a sufficiently fine
triangulation of Ω.

having one intersection point, as shown in Fig. 5.2. The interface Γ is approximated
by the line segment AB in the second and third triangles in the figure. The union of
such line segments form an approximate interface Γh, which divides Ω into Ωh1 and Ωh2 ,
approximations of Ω1 and Ω2, respectively. Furthermore, we denote the set of K ∈ Kh
with the third type of intersection (e.g., the right most triangle in Fig. 5.2) KhΓ. Note
that when the grid fits the interface, only the first two types of triangles exist, and the
standard finite element method with piecewise linear base functions works well (see
e.g., [10]). However, it is well-known that the linear base is not suitable for K ∈ KhΓ;
their use leads O(h) convergence of the finite element solution. The reason is that
the flux jump condition in (5.2) is not satisfied by the linear base functions. In [22],
special base functions were constructed for K ∈ KhΓ so that that they satisfy the jump
conditions approximately.

More specifically, let φiΓ (i = 1, 2, 3) be the base functions for an element K ∈ KhΓ
(see Fig. 5.3). We require φiΓ be piecewise linear on K1 and K2, φiΓ(xj) = δij , and
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Fig. 5.3. An element K = �123 ∈ Kh
Γ. Γ is approximated by the line segment AB, which splits

K into two pieces, K1 = �345 ⊂ K ∩ Ωh
1 and K2 = K − K1.

satisfy the following homogeneous jump condition:

[φiΓ] = 0,
[
κh
∂φiΓ
∂n

]
= 0 across Γh, (5.5)

where κh = κ1 and κ2 in Ωh1 and Ωh2 , respectively. This construction always exists
(Theorem 2.1 of [22]). Moreover, if u(x) is piecewise twice differentiable in Ω1 and Ω2,
then the maximum interpolation errors for u and ∇u using φiΓ are O(h2) and O(h),
respectively (Theorem 2.2 and 2.3 of [22]). Note that the O(h) estimate for ∇u was
obtained outside the small region K − (Ω1 ∩K1)− (Ω2 ∩K2) (see the region between
Γ and Γh in Fig. 5.3), whose size is O(h3). For a picture of the bases that satisfy
(5.5), see [22].

Note that the base functions φiΓ are non-conforming; they are discontinuous at the
element edges that intersect with Γ. Using these bases and linear bases for K 
∈ KhΓ
for both the trial and test spaces, one obtains a non-conforming Galerkin method
for the interface problem (5.4). This method is a significant improvement over the
traditional method without using the special base functions; see Tables 5.1 to 5.4
below. The method does suffer from the non-conforming error, which is localized
near the interface. Again, we use a conforming piecewise linear test space to remove
the non-conforming error and obtain a Petrov-Galerkin formulation with higher order
convergence rate.

Let Sh be the space spanned by φiΓ for K ∈ KhΓ and by linear base functions on
K ∈ Kh − KhΓ, and let Sh0 = {s ∈ Sh; s|∂Ω = 0}. Moreover, denote Φh0 ⊂ H1

0 (Ω) the
space of piecewise linear functions. We now have the non-conforming Petrov-Galerkin
finite element method for solving (5.4): find uh ∈ Sh0 such that

ah(uh, vh) = (f, vh), ∀vh ∈ Φh0 ,
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Table 5.1. Maximum error (κ1 = 1000, κ2 = 1)

h GFEM-L GFEM-J ratio PGFEM-JL ratio
1/32 3.55e-2 1.83e-3 3.75e-3
1/64 1.50e-2 6.40e-4 2.85 1.03e-3 3.66
1/128 7.86e-3 2.33e-4 2.74 2.26e-4 4.53
1/256 3.91e-3 8.84e-5 2.64 5.41e-5 4.13
1/512 1.97e-3 4.47e-5 1.98 1.35e-5 4.06
1/1024 9.92e-4 2.08e-5 2.14 3.58e-6 3.77

where

ah(u, v) =
∑
K∈Kh

∫
K

κh∇u · ∇vdx. (5.6)

This method can be analyzed in a way similar to analyzing the multiscale Petrov-
Galerkin method in Section 3.1. The main task is to establish the inf-sup condition,
i.e., ∀uh ∈ Sh0 , there exist vh ∈ Φh0 and C > 0, independent of h, such that

ah(uh, vh) ≥ C‖uh‖h,Ω‖vh‖1,Ω. (5.7)

We note that a similar method has been proposed and studied for problems with rough
coefficients that vary rapidly along a given direction [1]. The inf-sup condition was
proved under the assumption that all triangular elements have one edge perpendicular
to the direction in which the rough coefficient varies. This assumption is invalid in
the present case, and the inf-sup condition becomes difficult to obtain. We can prove
(5.7) when κh has a mild jump. The proof is not included because it is not general
and yet rather technical. On the other hand, our numerical experiments below show
that large jumps are handled by the method without a problem. A more general proof
is currently being studied.

In the following, we present numerical tests of the above Petrov-Galerkin formu-
lation using the exact solution of (5.1) as given by Eq. (2.40) of [22]:

u(x, y) =

{
ra/κ1, r ≤ r0,

ra/κ2 + (1/κ1 − 1/κ2)ra0 , r > r0,
(5.8)

where r =
√
x2 + y2, a = 3, r0 = π/6.28 is the radius of a circular interface centered

at the origin. The computational domain is the rectangle −1 ≤ x, y ≤ 1. The
triangulation of the computational domain is obtained by connecting the south-west
and north-east corners of the rectangular grid cells of a uniform Cartesian grid. Using
(5.8), we can obtain the source term f in (5.1) and the Dirichlet boundary condition.
We compare the performance of three different methods: traditional Galerkin finite
element method with linear trial and test spaces (GFEM-L), the non-conforming
Galerkin finite element method with base functions satisfying the jump conditions
(GFEM-J), and the above Petrov-Galerkin method (PGFEM-JL).
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Table 5.2. l2 error (κ1 = 1000, κ2 = 1)

h GFEM-L GFEM-J ratio PGFEM-JL ratio
1/32 1.33e-2 7.04e-4 5.84e-4
1/64 6.95e-3 1.77e-4 3.98 1.64e-4 3.57
1/128 3.60e-3 4.57e-5 3.86 3.37e-5 4.86
1/256 1.79e-3 1.19e-5 3.86 8.72e-6 3.86
1/512 8.98e-4 3.27e-6 3.62 2.18e-6 4.00
1/1024 4.51e-4 9.49e-7 3.45 5.51e-7 3.96

Table 5.3. Maximum error (κ1 = 1, κ2 = 1000)

h GFEM-L GFEM-J ratio PGFEM-JL ratio
1/32 4.12e-2 1.18e-3 2.03e-3
1/64 2.49e-2 3.65e-4 3.23 6.06e-4 3.36
1/128 1.31e-3 1.34e-4 2.72 2.03e-4 2.98
1/256 6.76e-3 5.81e-5 2.31 5.19e-5 3.90
1/512 3.46e-3 2.85e-5 2.04 1.41e-5 3.69
1/1024 1.74e-4 1.52e-5 1.88 3.81e-6 3.70

Table 5.4. l2 error (κ1 = 1, κ2 = 1000)

h GFEM-L GFEM-J ratio PGFEM-JL ratio
1/32 1.37e-2 1.87e-4 6.03e-4
1/64 7.44e-3 6.28e-5 2.98 1.93e-4 3.12
1/128 3.38e-3 1.57e-5 3.99 4.93e-5 3.92
1/256 1.74e-3 4.57e-6 3.44 1.29e-5 3.81
1/512 8.72e-4 1.42e-6 3.22 3.21e-6 4.04
1/1024 4.36e-4 5.11e-7 2.78 8.26e-7 3.88

In Tables 5.1 to 5.4, the maximum and discrete l2 norm errors are reported for
two test cases with different κ2/κ1 ratios. As shown by the tables, GFEM-L is about
first order accurate in both maximum and l2 norms. GFEM-J provides a significant
improvement over GFEM-L, especially in the l2 norm. This improvement is due to the
base functions that satisfy the jump conditions at the (discrete) interface. However,
the convergence of GFEM-J in the maximum norm decreases to about first order
as the grid refines. This behavior can be attributed to the non-conforming error
near the interface. Indeed, by plotting the error distribtion, we find that the error
along the interface is much larger than the error just slightly away from the interface.
By removing the non-conforming error with PGFEM-JL, the error becomes more
uniformly distributed and better convergence rates are obtained. We do notice that
the error constant for PGFEM-JL appears to be larger than that of GFEM-J, a trade-
off for using different trial and test spaces; a similar phenomenon has been observed
in [1]. Finally, we remark that the oscillatory behavior in the convergence rate of
PGFEM-JL is expected, since the intersection between the interface and the grid
(i.e., angle and position) changes as grid refines.
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Appendix A. Convergence of classical FEM for (2.1).
Theorem A.1. Suppose uh ∈ Φh0 and u are the solutions of the variational problem∫

Ω

∇uh · aε∇vdx =
∫

Ω

fvdx, v ∈ Φh0 , (A.1)

and ∫
Ω

∇u · a∇vdx =
∫

Ω

fvdx, v ∈ H1
0 (Ω), (A.2)

respectively, where a is the mean value of a, i.e., a = 〈a〉Y . Moreover, assume u ∈
H2(Ω) ∩W 1,∞(Ω), then we have the estimate

‖uh − u‖1,Ω ≤ C1
ε

h
+ C2h.

Proof. Let uI ∈ Φh0 be the interpolation of u. Assigning uh−uI to v in (A.1) and
(A.2), and subtracting (A.2) from (A.1), we obtain∫

Ω

∇(uh − u) · aε∇(uh − uI)dx = −
∫

Ω

∇u · (aε − a)∇(uh − uI)dx. (A.3)

We first examine the difference between uh and uI . Using (A.3), Lemma 3.2 in
[14], together with the Poincare-Friedrichs inequality, we get

‖uh − uI‖2
1,Ω ≤ C

∫
Ω

∇(uh − uI) · aε∇(uh − uI)dx

= C

(∫
Ω

∇(uh − u) · aε∇(uh − uI)dx+
∫

Ω

∇(u− uI) · aε∇(uh − uI)dx
)

= C

(
−
∫

Ω

∇u · (aε − a)∇(uh − uI)dx+
∫

Ω

∇(u − uI) · aε∇(uh − uI)dx
)

≤ C
( ε
h

(|u|2,Ω + ‖∇u‖∞,Ω) + ‖u− uI‖1,Ω

)
‖uh − uI‖1,Ω.

Combining with the classical result of the finite element theory

‖u− uI‖1,Ω ≤ Ch‖u‖2,Ω,

we get the desired result

‖uh − u‖1,Ω ≤ ‖uh − u‖1,Ω + ‖u− uI‖1,Ω ≤ C
( ε
h

+ h
)
.
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