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Abstract: The Laplace operator acting on antisymmetric tensor fields in a D-
dimensional Euclidean ball is studied. Gauge-invariant local boundary conditions (ab-
solute and relative ones, in the language of Gilkey) are considered. The eigenfuctions of
the operator are found explicitly for all values of D. Using in a row a number of basic
techniques, as Mellin transforms, deformation and shifting of the complex integration
contour and pole compensation, the zeta function of the operator is obtained. From its
expression, in particular, £(0) and £'(0) are evaluated exactly. A table is given in the
paper for D = 3,4,..., 8.The functional determinants and Casimir energies are obtained

1. Introduction

In this paper we obtain the zeta function of the Laplace operator acting on antisymmetric
tensor fields defined in a D-dimensional ball with gauge-invariant boundary conditions.
Mathematically this computation is quite an imposing challenge, as is proven by the
number of erroneous results reported in the literature on this and related computations
(details will be given later). The physical motivations for such a study are to be found in
quantum cosmology, where the C function of the Laplacian describes the contribution
of antisymmetric tensor fields and ghosts to the pre-factor of the wave function of the
universe (see e.g. [1]). An intriguing problem in this context is the non-compensation
of the boundary contributions to the one-loop divergences between different members
of the supergravity supermultiplet [2]. Another motivation is to provide the numerical
material needed to extend previous analysis of die heat kernel asymptotics [3] to the
case of mixed boundary conditions.
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There are two admissible sets of gauge-invariant local boundary conditions - which
have been called by Gilkey, respectively, absolute and relative boundary conditions [4],
These sets are dual to each other and are becoming highly interesting in connection with
recent developments in string theory. Hence one can study p-forms with p < [^-]
for both types of boundary conditions. Due to duality, the determinant of the Laplacian
for p-forms with absolute boundary conditions is the same as the one for (D — p)-
forms with relative boundary conditions. Furthermore, owing to gauge-invariance we
can restrict ourselves to transversal p-forms. The complete result will just be a sum
of the contributions corresponding to transversal p- and (p — l)-forms, provided zero
modes are properly taken into account. To find the spectrum of the Laplace operator on
transversal p-forms we use the method proposed in [5,6]. To obtain the zeta function we
use the powerful procedures developed in [7,8] (see also [9,10]). They involve integral
representations of the spectral sums, Mellin transformations, non-trivial commutation of
series and integrals and skillful analytic continuation of zeta functions on the complex
plane. Here we will focus again on a class of situations for which the eigenvalues
of the differential operator, A, are not known explicitly but where, nevertheless, the
exact calculation of In det A is possible. The method is applicable whenever an implicit
equation satisfied by the eigenvalues is at hand and some asymptoticity properties of
the equation are known too.

More specifically, we will find here explicit solutions of the D-dimensional transver-
sality condition in terms of p- and (p — l)-forms obeying a (D — l)-dimensional
transversality condition. These forms will satisfy now pure Dirichlet or Robin boundary
conditions, instead of mixed absolute or relative boundary conditions. Such a clever
procedure will enable us to find exact eigenfunctions and to express the eigenvalues of
the Laplace operator in terms of Bessel functions and their derivatives. After this, we
will be able to perform explicitly the evaluation of the zeta function at the origin, and that
of the determinant of the Laplacian as well. We will also calculate the Casimir energy.
A table of results will be given in the paper for D = 3 , . . . , 8, which cover the situations
that appear in the usual supersymmetric theories. However, our final expressions are
actually valid (and can be used) for any dimension D and yield explicit, exact values in
a reasonable amount of algebraic computation time. Usual methods for the acceleration
of the series convergence improve performance considerably.

In connection with previous results, we should point out that for some scattered
values of D = 4 and p = 1,2, several first heat-kernel coefficients have been calculated
in [5,6,11]. These results agree with the analytical formulas in [12] once the corrections
that were found in [5] are taken into account (see also [2]). For D = 4, p = 1, the one-
loop effective action has been evaluated in [13] for a specific choice of gauge and of
boundary conditions.

The paper is organized as follows. In Sect. 2 we use the Hodge-de Rham decom-
position of p-forms in order to simplify the structure of the spectrum of the Laplacian
operator in the D-dimensional ball and, subsequently, of the corresponding determinant.
After writing the absolute and relative boundary conditions as Dirichlet and Robin ones,
a convenient analytical continuation of the associated zeta function is performed in Sect.
3, in some detail, what leaves us in a position wherefrom we can find the heat-kernel
coefficients, the determinant, Casimir energies, and so on. The calculation of the zeta
function at the origin is undertaken in Sect. 4, that of the determinant in Sect. 5, and the
Casimir energy is obtained in Sect. 6. Finally, in an Appendix we give an exhaustive list
of all the determinants explicitly calculated, both for the case of absolute and relative
boundary conditions.
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2. Spectrum of the Laplace Operator in a Bail

Consider the D = d + 1 dimensional unit disk with the metric

ds2 = dr2 + r2dQ2, 0 < r < 1, (1)

where dQ2 is the metric on the unit sphere Sd. Throughout this paper we shall use
the notations {Xf,}= {XQ, X , } , a;0 = r, /i = 0 ,1 , . . . , d. The (d + l)-dimensional Laplace
operator, A = V V P , acting on a p-form, B, can be written as

o . . .
* , . . . < - . * . (2)

..,, = (d2
 + ^ f l b + P - ^ + « ^ ) 5 , . ,p

-Bti...ta_i0»a+i...*pJ (3)
' a=l

where (d) V and (d)Zl are the covariant derivative and Laplace operator corresponding
to the d-dimensional metric #,*.

Any p-form Bp admits the Hodge-de Rham decomposition:

where BpL denotes a transversal p-form. The decomposition (4) commutes with the
Laplace operator. Thus, in order to define the spectrum of the Laplacian on the space of
all antisymmetric forms, it is enough to study the case of transversal forms only.

There are two sets of local boundary conditions consistent with the decomposi-
tion (4). They are the so-called absolute and relative boundary conditions [4]. In the
coordinate system (1) the absolute boundary conditions read

u...tip\dM = O9 Boiiu...tip_l\aM =0 , (5)

while the relative boundary conditions have the form

( do+d ~*-~\ B0,iu...,i._,\dM = 0 . (6)

Consider the (d + l)-dimensional transversality condition

VJV..,=0. (7)

On a disk it can be written as

^ , , V 2 0 = 0, (8)

~ 2* + 2)ff0M.«P-i + ^V 'B , - , . , . . . ^ = 0 . (9)

According to the general method developed in the papers [5, 6], the solutions of Eqs.
(8) and (9) can be expressed in terms of d-dimensional transversal forms:
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Bp± = BpT + BpL{^l)T\ (10)

where such d-dimensional transversal forms satisfy the equations:

( d )VM^ , p _ i = 0 , <„. . . , , ,_ , =0. (ID

Here AT denotes either BT or V>T. The second term in (10) has the form:

= (do + ̂ ) r \ C . . i p l , (12)

n=l

One can prove that the Laplace operator (2), (3), commutes with the decomposition
(10):

ABpL = ABpT + BpL(Atl>(p-l)T). (13)

The determinant of the Laplace operator on the space of (d +1 )-dimensional transversal
p forms can be represented as a product of two determinants, taken over d-dimensional
transversal p- and (p — l)-forms:

det(-A)p± = det(-A)pT x deK-^i^^DT. (14)

Moreover, the fields BT and ij? satisfy pure boundary conditions. The boundary con-
ditions for BT are defined by the first equations in (5) and (6), for absolute and relative
boundary conditions, respectively. For absolute boundary conditions on the field BpL,
the form V>T(p~1} satisfies Dirichlet boundary conditions,

V>T|SM = 0 . (15)

For relative boundary conditions we have, for the (p — l)-form tfj>T,

that is, Robin boundary conditions. We thus see that the initial eigenvalue problem for
the (d + l)-dimensional transversal p-forms with mixed boundary conditions is reduced
to two eigenvalue problems, for d-dimensional transversal p- and (p — l)-forms with
pure boundary conditions (Dirichlet and Robin).

In the particular cases when p = 1,2, the boundary conditions (IS) and (16) agree
with the corresponding expressions in [5, 6]. Note that the / = 0 scalar mode generates
a zero mode of the mapping ^ —>• Bl L. Hence this mode should be excluded when one
considers the path integral over transversal 1-forms and from the second determinant
on the r.h.s. of Eq. (14).

Let us introduce the set of d-dimensional spherical harmonics, Y^p
 i (XJ\ cor-

responding to transversal p-forms on Sd. They are eigenmodes of the d-dimensional
Laplacian. The associated eigenvalues and degeneracies Df are found to be [14,15]
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If = (V + d-l)(l + d-l)l
' p\(d-p-iy.(i-i)\(i+Pxi+d-p-iy K }

We can represent the eigenfunctions of the complete (D = d + l)-dimensional Laplace
operator as a Fourier series in the harmonics (17):

(18)

Here we need to sum over (/), what means summation over the index / from 1 to
oo and over another index, from 1 to Df, which describes the different harmonics
with degenerate eigenvalues of the Laplacian (<f) A This last summation is not shown
explicitly.

We can now substitute the decomposition (18) in the eigenvalue equation

*$?,*,...,?, = -A2<!«,...,,., (19)

for the (d + l)-dimensional Laplacian (2), (3). Let us recall the fact that for the fields
BpT the zerot/l components vanish identically: B$[x A = 0. The equation for the
components (2) reduces to the trivial identity 0 = 0. The other components (3) lead to
an equation of Bessel type for f^l\r). After a rather lengthy algebra, one finds that the
eigenfunctions of the Laplace operator (3) have the following form:

P.,i,(*j)> <2°)

where Jn denote Bessel functions. The eigenvalues \f are defined by boundary condi-
tions and their degeneracies Df are given by (17).

From the preceding expressions, we are able to evaluate the determinant of the
Laplace operator on the space of transversal p-forms. We obtain

OO °° _i

p 1 1 ' 1 1 ^
/=1 k=\

where for absolute boundary conditions the eigenvalues A and K are defined by (5) and
(15), namely

| d M = 0, </«*-i)/2+*(K*r)|0M = 0. (22)

For relative boundary conditions we have, from (6) and (16),

= 0, (ao+d-2p+l)r (1-d>/2^-1 J(d_i)/2+*(K*r)|sM = 0. (23)

One can easily check that the eigenfunctions defined in this section satisfy all necessary
orthogonality properties.
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3. Analytical Continuation of the Zeta Function

Both the absolute and the relative boundary conditions can be written as Dirichlet and
Robin boundary conditions, in the form

^ ( A / r ) | a M = 0 , (24)

ti(d,p)Jv(Air) + XiJl{\ir)\dM = 0. (25)

For the absolute boundary conditions we have u(d, p) = (1 — d)/2 + p, while for the
relative boundary condition, u(d,p) = (l+d)/2—p. The boundary dM is here described
by r = a. The zeta function is

W * . (26)
Z = l

The decomposition described in the last section will, at the level of zeta functions,
manifest itself as a sum of the different zeta functions belonging to each term of the
decomposition. Thus we can write

00 . (27)

The zeta function is in general convergent for s > 4*r only, but it can be analytically
continued in the complex plane to all values of s, in particular to the vicinity of s =
0. Several authors have considered zeta functions corresponding to operators whose
eigenvalues are not given explicitly. In particular, they have investigated in detail the case
when they are given under the form of roots of equations involving Bessel functions (see,
for example [7]). In [7, 8] it has been shown explicitly how this analytical continuation
can be carried out for zeta functions of this kind, and we will follow this path closely. The
reader may resort to those papers for all particularities skipped in the present calculation.

Writing the boundary conditions (24) and (25) symbolically as #i/(A/r)|ajw- = 0, the
first idea is to express the zeta function as a contour integral along a path 7 enclosing
all positive solutions of the boundary condition equation, namely

f ^ ^ (28)

Here we have introduced the constant rn in order to simplify the treatment of the
problem. It is, however, not essential in order to obtain the final result and we shall let
this constant vanish later in the calculation. To start, we expand the degeneracy as

Di(p,d) = ]£Ci(d,p)(/ + ̂ y . (29)
j=o ^ ^

The zeta function reads then

)• (30)
\ /. I I /IT 11IC i.

j=0 /=0
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Now we are already in the position of performing the analytic continuation. This involves
subtraction and addition of the leading asymptotic terms of the uniform expansion of
the Bessel function /„(*) and its derivative. For v -> oo and z = k/v being fixed, these
terms are [16]

and

rv(yz) ~ / - — 1 + > —r- , (32)

respectively. Here Uk and Vk are functions obtained in a recursive way in [16], while
t = 1/Vl +2 2 and /i = \/T+n? + ln[z/(l + Vl + z2)]. Furthermore, we define the
coefficients Dn(t) and Mn(0 by

L Ar=l J n = l

and

L *=1 \ *=1 / J n=l
Then, by adding and subtracting the first N terms of these last two expansions, we can
write the zeta function for Dirichlet boundary conditions as

N

where, with v = / + Q± and m = 0, we have

•l-j,^), (36)
7 i=o

d-1 , .

• ̂  6j(^) P)(H(2S — j, 2 ^ ( ^
i=o

and

i=o

The coefficients x^, in Eq. (38) are obtained from the polynomial expansion of Di(t):
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Similarly, denoting by z,^ the coefficients in the expansion of M, (

2»

Mi(p, d)(t) =

we can write the zeta function for Robin boundary conditions as

N

d - l

n j=o /=o

x f d -

where

* (43)

(44)

, 2 . d~1 J M 2i

(45)
and

It can be shown that both zeta functions, (35) and (42), are well defined for d~l^~N <
s. Both ZN(S) and Z§(s) are analytic here, so that all the poles are contained in the A's.
The analytical continuation can therefore reach the desired range of s, by just changing
the value of N. We are thus in a position where we can find the heat kernel coefficients,
the zeta function determinant and also the Casimir energy.

In the following we shall work in the unit sphere. Since the only change we have to
do on this zeta function in order to include an arbitrary radius is to multiply by a2s, the
results that we will obtain for the unit sphere can be easily converted into corresponding
ones for the general case.



Zeta function for the Laplace operator acting on forms 653

4. Calculation of the Zeta Function at s = 0

From the zeta functions we have defined above, we can now calculate the heat kernel
coefficients, using the relations that exist between them. From a physical (and maybe
also from a mathematical) point of view the most interesting coefficient is the one of
C(0), namely

C(O)=^£r, (47)

where the numerator Bd+i is the corresponding coefficient that comes from the short
time expansion of the integrated heat kernel:

K{t) ~ (47rt)^ J2 Bf.t*. (48)
m=0

Note that Zd(0) = 0 and Zjf(O) = 0, since the sum over Z and integral over z is convergent
here for N = d. Therefore, we need only consider ^4,(0), i = — 1,0,.. .d. Using the
expansions

^ .. (49)
n\e

and

Cd+e^-i-W, (50)

we find the expressions

^ ^ ^ l - i , ^ - ) , (51)
2

rf + 1
J2ejV,P)CH(J, - y - ) , (52)

5 > k j j - , (53)

and

^f(0) = -^_, X: z,,i(P) ̂ ^ ^ y . (54)

The numerical values obtained from these expressions are given in Tables 1 and
2. Only those values that are independent have been given (the rest are obtained using
duality). For absolute boundary conditions and p = 1, the scalar field Bo± has a zero
mode satisfying the boundary condition doBOL = 0. But this mode does not contribute
in the Hodge-de Rham decomposition. The scalar field is treated by constructing the
zeta function for Neumann boundary conditions. From the definition of the integrated
heat kernel
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Table 1. Values of C(0) for absolute boundary conditions, transversal p-forms

p\d

4

3

i

Q

7
3559
9072

36583
45360
20467
25200

185449
226800
3629089
3628800

6

2929
4608
1624993
1935360
785567
967680
1934993
1935360

5

358
945
1531
1890

6199
7560
6379
7560

4

81
128

2429
2880
9647
11520

3

7
20

49
60
151
180

2

5
8
41
48

Table 2. Values of C(0) for relative boundary conditions, transversal p-forms

3559
"9072
4283
25200

2929
4608
416417

~ 1935360
81

-128
541
2880 "35

367 1 17 _
1935360 1512 11520 1

we see that omission of the zero mode corresponds to subtracting 1 from this sum.
Since the relationship (47) is still valid - also when the zero mode is projected out -
we conclude that in order to get the values of £(0) without the zero mode we actually
need to consider Cinci(0) — 1. In this way we have obtained the values also for p = 0,
by extracting the values of Cinci(0) from [7]. For absolute boundary conditions and
d = 3, all our values are in agreement with those calculated in [2]. For relative boundary
conditions and d = 3, p = 1, we have found the value given in [5]. In a subject where
discrepancies have been so common, this serves as a check of consistency of our whole
tables.

5. Calculation of the Determinants

We shall employ the zeta function definition of the determinant of an operator, A, namely

d A I

The determinant of our Laplacian is thus

(57)

The determinant in the case of the sphere of radius a is obtained by adding the terms
coming over from the derivation of a2s:

(58)

Differentiation can be carried out without difficulty. Following the same steps as in [8],
one obtains the formulas
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-(-iy'0' + l)!Cir(x - i ~ 1, ̂ y V d ? - j - l ) | , (59)

and

d - l

n=j+2

Jo

(60)

The parameter x is introduced in order to allow for the individual terms to be finite. In
the final answer this parameter will disappear. The determinants obtained in this way
are listed in the Appendix. We have also included the determinants for transversal p = 0
forms given in [8]. For Neumann boundary conditions the zero mode must be treated
specially, what yields an answer we will be able to use directly later on.

6. The Casimir Energy

As is well known, the Casimir energy (or vacuum energy) density can be written as a
(usually formal) sum over the eigenvalues of the energy equation, that is \ ]T^ uu . The
energy density difference gives rise to the Casimir force. However, this sum is usually
divergent and has to be regularized. A very simple and elegant way of performing the
regularization is to use the zeta function method (see [9,10] for extensive and updated
expositions of this procedure). But, sometimes, it happens that even after analytical
continuation the zeta function at the desired value still diverges. The normal procedure
consists then in resorting to the principal part prescription [17,18]. In [18] the physical
meaning of this prescription has been investigated in depth. A finite part of the vacuum
energy is found by separating off the pole. Obviously, from our zeta function, the vacuum
energy is obtained by computing its value at s = — 1 /2 . Writing the zeta function around
s = - 1 / 2 ,

we see that the vacuum energy is given by
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Ec = ^4 (62)

At s = —1/2 one observes that the poles come from the gamma function in A_i

Table 3. Values of <j> for (d + l)-dimensional transversal p-forms

d

2

3

4

5

P

0

1

0

1

2

0

1

2

0

1

2

3

absolute boundary conditions

0.008891 + 3§^1

0.1678+ " f f i

-0.001793

0.3462+ 133^go)

-0.04881 - 16^5jgo)

-0.000945 - § 5 ^

0.4677+ "jg^y
- 0 . 1 7 4 9 - ^ ^ 1

0.0002050

0.5249 + —g388606
fl ^4S0 1063379 ln(a)

0.05573+ 31
1

<^5^°^

relative boundary conditions

0.02806+ 2-jSfe2

0.1678+~j^l

- 0 . 0 3 5 3 7 - ^ ^ 2

- 0 . 0 4 8 8 1 - ^ ^ 1

0.03054+^^1

0.01881+"fj^y

- 0 . 1 7 4 9 - ^ ^ ^

0CT31'1 3118613 Wa)U.UZ312 5033!^

H 0*^0^7 1052991 ln(a)

0 . 0 5 5 7 3 . 2 2 ^

Table 4. Values of <f> for p-forms on the unit sphere with absolute boundary conditions

d/p

2

3

4

5

5

-0.04340

4

0.04935

0.03546

3

-0.08417

-0.1561

-0.2902

2

0.1959

0.2974

0.2928

0.1790

1

0.1767

0.3444

0.4668

0.5251

from the gamma function in Ai, for b = 0 and i = 1, and from the zeta function in
Ai, when i = m + 2. We perform a Laurent expansion around these poles and isolate
the corresponding finite parts. The rest of the functions will only contribute to the
finite part. The values Z&+\ (— ̂ ) and Zf+l (—5) have to be computed numerically. These
contributions are generally quite small compared with the finite part which comes from

!the sum X!t=-it i By adjusting N9 the values of Z^i— \) can be further improved,
allowing us to obtain the same accuracy with much less effort. For some values of d
and p the sum over / converges very slowly. Use of Richardson extrapolation leads
to a dramatical improvement of the convergence speed. This extrapolation is a general
procedure of numerical analysis. It is here valid because the partial sum has the following
asymptotic behavior:
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- 1 + Q 2 n - 2 + Q 3 n - 3 + . . . , n - + o o . (63)/

The finite contributions for the (d + l)-transversal forms are listed in Table 3. We have
included the scalar field, p = 0. When the argument of the zeta function is negative,
the constant term for Neumann boundary conditions does not contribute. Special care
of this term need therefore not be taken here. The coefficients belonging to ln(a) equal

the heat-kernel coefficient ^ — . Table 4 gives the vacuum energy for the unit

sphere for all p-forms, for absolute boundary condition. For p = 1 we see that the energy
increases with increasing d. For p = 2 there is a maximum at d = 3, while the energy
for p = 3 and p = 4 decreases with d. For constant d there are actually less systematic
trends.
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A. The Zeta Function Determinants

A.1 Absolute boundary conditions In this case, we have obtained

55120073 4 fl , - _ % 14 /**
" 3 / 064864800

291n2 215 In3 In4 C R ' ( ~ 5 ) CR'C-4)

3780 2 + 8 + 6 12

J 2 3 ^ R ^ '
-38814043 5179 In2 3 In4 C R ' ( - 5 )

^4864800- + ^ 7 8 0 " " " i T + S T ~
,CR'(-4) , 7CR'(-2) 4CR'( -D

75711793 8 r~l A r-\

,

3 1n(|) 11869 In 2 <R'(-5) <R ' ( -4)

2 3780 12 8
CR'(~3) 5 C R ( - 2 ) C R V D

3 8 4 '
7087979 1181 In2
32432400 3780

+ln3 + 60 +^4 24 60
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2 2

\jdy{y- 2)3lnr(y),

o

21CR(-2)

32 16

J
581 In 2 5<R'(-4) 7fr'(-3) 5CR ; ( -2) 13 ^ ( - 1

2880 16 24 82880 16 24 8 24
19261 713 In2 , . 5CR'( -4)
— - - 1 W - +ln5 - - ^ r -

7Cfl(-3) Cfi^-2) Cfl ;(-D
48 32 48

3/2 3/2 2

± j dy lnr(y) - j dy (y - |

5 9 8 9 8 3 1 n 2 3 1 n 4

10080 60 +

.CR^-2) 3CR'( -D
+ ,

= i? + 2 / ' dy l n r ( | + y) + | In2- | C R ( - 2 ) ,
16 Jo 2 4 2

_7_
"32~

1/2

dy In r(y). (64)

A.2 Relative boundary conditions In this case, the results are



Zeta function for the Laplace operator acting on fonns 659

291n2 215 In3 In4 CR'(-5) CR'(-4) ,
3780 2 + ~ 8 ~ + 6 12 ^R (~~ )

7CR ; ( -2 ) 4fr'( - l ) ,
+ 12 + 3 C R ( ° X

8341 In 2 <R'(-5) fr'(-4) Cn'(-3)
3780 12 8 3

3411 9 H 5 H 3 5 45 1n2
4 Jo 2 Jo 2 64

32 16 '

17021 1 /« , 5 + I / 5
d

 3 ^ ( - + x 2 5 6 1 1 1 1 2

2 3y0
 2 2880

-4) 7CR ; ( -3 )

2416 24 8 24

J L ln2 + *_ C'R(.4) + ̂  Ck(_3)+ l n 2 +

173 1

^ + 2 P dy\nnl + y) + \
16 Jo 2 4

1 - 1 in 2 - |&(-2)+ ^ ( - D - (65)
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