Classification of \boldsymbol{N}-(Super)-Extended Poincaré Algebras and Bilinear Invariants of the Spinor Representation of $\operatorname{Spin}(p, q)$

D.V. Alekseevsky ${ }^{1, \star}$, V. Cortés ${ }^{2, \star \star}$
${ }_{1}^{1}$ Max-Planck-Institut für Mathematik, Gottfried-Claren-Str. 26, D-53225 Bonn, Germany
2 Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, CA 94720-5070, USA

Received: 4 December 1995 / Accepted: 16 May 1996

Abstract

We classify extended Poincaré Lie super algebras and Lie algebras of any signature (p, q), that is Lie super algebras (resp. Z_{2}-graded Lie algebras) $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$, where $\mathfrak{g}_{0}=\mathbf{5 0}(V)+V$ is the (generalized) Poincaré Lie algebra of the pseudo-Euclidean vector space $V=\mathbb{R}^{p, q}$ of signature (p, q) and $\mathfrak{g}_{1}=S$ is the spinor $\mathfrak{s o}(V)$-module extended to a \mathfrak{g}_{0}-module with kernel V. The remaining super commutators $\left\{\mathfrak{g}_{1}, \mathfrak{g}_{1}\right\}$ (respectively, commutators $\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right]$) are defined by an $\mathfrak{5 0}(V)$-equivariant linear mapping

$$
V^{2} \mathfrak{g}_{1} \rightarrow V \quad\left(\text { respectively }, \quad \wedge^{2} \mathfrak{g}_{1} \rightarrow V\right)
$$

Denote by $\mathcal{P}^{+}(n, s)$ (respectively, $\mathcal{P}^{-}(n, s)$) the vector space of all such Lie super algebras (respectively, Lie algebras), where $n=p+q=\operatorname{dim} V$ and $s=p-q$ is the classical signature. The description of $\mathcal{P}^{ \pm}(n, s)$ reduces to the construction of all $\mathfrak{s o}(V)$-invariant bilinear forms on S and to the calculation of three \mathbb{Z}_{2}-valued invariants for some of them.

This calculation is based on a simple explicit model of an irreducible Clifford module S for the Clifford algebra $C l_{p, q}$ of arbitrary signature (p, q). As a result of the classification, we obtain the numbers $L^{ \pm}(n, s)=\operatorname{dim} \mathcal{P}^{ \pm}(n, s)$ of independent Lie super algebras and algebras, which take values $0,1,2,3,4$ or 6 . Due to Bott periodicity, $L^{ \pm}(n, s)$ may be considered as periodic functions with period 8 in each argument. They are invariant under the group Γ generated by the four reflections with respect to the axes $n=-2, n=2, s-1=-2$ and $s-1=2$. Moreover, the reflection $(n, s) \rightarrow(-n, s)$ with respect to the axis $n=0$ interchanges L^{+}and L^{-}:

$$
L^{+}(-n, s)=L^{-}(n, s)
$$

[^0]Contents
Introduction 478
1 (Super) Extensions of the Poincaré Algebra $\mathfrak{p}(p, q)$ and $\operatorname{Spin}(p, q)$ - Equivariant Embeddings $\mathbb{R}^{p, q} \hookrightarrow S^{*} \otimes S^{*}$ 482
1.1 Extending the Poincaré algebra. 482
1.2 Internal symmetries and charges. 483
1.3 Reduction of the classification of N-extended Poincaré alge- bras to the cases $N= \pm 1, \pm 2$. 485
1.4 Equivariant embeddings $V^{*} \hookrightarrow S^{*} \otimes S^{*}$, modified Clifford multiplications and Dirac operators. 486
$1.5 \quad \mathbb{Z}_{2}$-graded type and Schur algebra C. 489
2 Fundamental Invariants τ, σ and ι and Reduction to the Basic Signa- tures $(m, m),(k, 0)$ and $(0, k)$ 491
2.1 Fundamental invariants. 491
2.2 Reduction to the basic signatures. 492
3 Case of Signature (m, m) and Complex Case 495
3.1 Signature (m, m) 495
3.2 Complex case. 498
4 Case of Signature $(k, 0)$ 499
4.1 Case of even dimension. 499
4.2 Case of odd dimension 502
5 Case of Signature ($0, k$) 503
5.1 Case of even dimension. 503
5.2 Case of odd dimension. 506
6 Complete Classification 507

Introduction

General relativity is a gauge theory with the Poincaré group $P(1,3)=\mathbb{R}^{1,3} \rtimes \operatorname{Lor}(1,3)$ of Minkowski space $\mathbb{R}^{1,3}$ as gauge group. In N-extended supergravity the N-extended Poincaré supergroup plays the role of (super) gauge group.

The Lie super algebra of this super group for $N=1$ is defined as follows: $\mathfrak{p}^{(1)}(1,3)=$ $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}=\mathfrak{p}(1,3)+S$, where $\mathfrak{p}(1,3)=\mathbb{R}^{1,3}+\mathfrak{s o}(1,3)$ is the Poincare Lie algebra and $S=\mathbb{C}^{2}$ is the spinor module of the Lorentz algebra $\mathfrak{s o}(1,3) \cong \mathfrak{s l}(2, \mathbb{C})$ trivially extended to a $\mathfrak{p}(1,3)$-module. The supercommutator $\{\cdot, \cdot\}: S \otimes S \rightarrow \mathbb{R}^{1,3}$ is defined as projection onto the unique vector submodule $V \cong \mathbb{R}^{1,3}$ in the symmetric square $V^{2} S$.

We remark that in this case there exists also a unique vector submodule in $\wedge^{2} S$, which defines on $\mathfrak{p}(1,3)+S$ the structure of a \mathbb{Z}_{2}-graded Lie algebra $\mathfrak{p}^{(-1)}(1,3)$.

Our goal is to classify for any pseudo-Euclidean space $V=\mathbb{R}^{p, q}$ all similar extensions of the (generalized) Poincaré algebra $\mathfrak{p}(V)=\mathfrak{p}(p, q)=\mathbb{R}^{p, q}+\mathfrak{s o}(p, q)$ to a super Lie algebra or to a \mathbb{Z}_{2}-graded Lie algebra. The super Lie algebra extensions of the Poincaré algebra $\mathfrak{p}(p, q)$ are the natural gauge algebras for supergravity theories over space times of signature (p, q). Since the time when the classical (i.e. $(p, q)=(1,3))$ super Poincaré algebra was discovered [G-L] these (generalized) super Poincaré algebras play a mayor role in many super symmetric field theories, see e.g [O-S and F] for further reference. However, despite the various realizations of particular super Poincaré algebras as infinitesimal symmetries of supergravity theories (for special dimensions and signatures of the space time), a systematic classification, as given in our paper, was missing.

Another motivation to study such extensions is that extended Poincaré Lie algebras are closely related to the full isometry algebra $\mathfrak{i s o m}(M)$ of homogeneous quaternionic Kähler manifolds M (see [dW-V-VP, A-C1]). In fact, isom $(M)=\mathfrak{p}+\mathbb{R} A$, where \mathfrak{p} is an extension of the Poincaré algebra $\mathfrak{p}(3,3+k)$ of the pseudo-Euclidean space $\mathbb{R}^{3,3+k}$ of signature $(3,3+k), k=-1,0,1, \ldots$, and A is a derivation of \mathfrak{p} defining a natural gradation.

Definition 1. A super Lie algebra (respectively a \mathbb{Z}_{2}-graded Lie algebra) $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$ is called an N-extended (respectively $-N$-extended) Poincaré algebra of $V=\mathbb{R}^{p, q}$ if the following conditions hold

1) $\mathfrak{g}_{0} \cong \mathfrak{p}(V)$.
2) \mathfrak{g}_{1} is a sum of N irreducible spinor or semi spinor modules of $\mathfrak{p}(V)=V+\mathfrak{s o}(V)$ with trivial action of the vector group V.
3) The super bracket $\{S, S\} \subset V$ (respectively Lie bracket $[S, S] \subset V)$.

Let S be a $\mathfrak{p}(V)$-module with trivial action of the vector group V. Then defining on $\mathfrak{g}=\mathfrak{p}(V)+S$ the structure of a super Lie algebra (respectively of a \mathbb{Z}_{2}-graded Lie algebra) such that $\mathfrak{g}_{0} \cong \mathfrak{p}(V), \mathfrak{g}_{1}=S$ and $\{S, S\} \subset V$ (respectively $[S, S] \subset V$) is equivalent to defining an $\mathfrak{s o}(V)$-equivariant mapping $j: V^{*} \rightarrow V^{2} S^{*}$ (respectively $j: V^{*} \rightarrow \wedge^{2} S^{*}$). The super bracket (respectively the Lie bracket) is given by j^{*} : $\vee^{2} S \rightarrow V$ (respectively $j^{*}: \wedge^{2} S \rightarrow V$). Remark that under these assumptions the Jacobi identities are automatically satisfied since $[[x, y], z]=0$ for $x, y, z \in \mathfrak{g}_{1}$.

We show that the classification of N-extended $(N \in \mathbb{Z})$ Poincaré algebras easily reduces to the classification of equivariant embeddings $V^{*} \hookrightarrow \bigvee^{2} S^{*}$ if $N>0$ and $V^{*} \hookrightarrow \wedge^{2} S^{*}$ if $N<0$, where V is the vector module and S the spinor module of $\mathfrak{s o}(V)$. In other words, we reduce the classification to the cases $N= \pm 1, \pm 2$.

We prove that the following three vector spaces are isomorphic:

1) the space \mathcal{J} of $\mathfrak{s o}(V)$-equivariant mappings $j: V^{*} \rightarrow S^{*} \otimes S^{*}$,
2) the space \mathcal{M} of $\mathfrak{s o}(V)$-equivariant multiplications $\mu: V^{*} \otimes S \rightarrow S$, and
3) the space \mathcal{B} of $\mathfrak{s o}(V)$-invariant bilinear forms β on S.

Let $\rho: V^{*} \otimes S \rightarrow S$ be the (standard) Clifford multiplication, where we have identified $V \cong V^{*}$ using the scalar product on $V=\mathbb{R}^{p, q}$. Then an isomorphism $j_{\rho}: \mathcal{B} \rightarrow \mathcal{J}$ is given by

$$
j_{\rho}(\beta): v^{*} \in V^{*} \mapsto \beta \circ \rho\left(v^{*}\right)=\beta\left(\rho\left(v^{*}\right) \cdot, \cdot\right) \in S^{*} \otimes S^{*}
$$

In particular, the classification of $\mathbf{5 0}(V)$-equivariant mappings $V^{*} \rightarrow S^{*} \otimes S^{*}$ is equivalent to the classification of $\mathfrak{5 0}(V)$-invariant bilinear forms on the spinor module S. The latter amounts to the description of the Schur algebra \mathcal{C} of $\mathfrak{s o}(\mathrm{V})$-invariant endomorphisms of S. The structure of \mathcal{C} as abstract algebra depends only on the signature $s=p-q$ of $\mathbb{R}^{p, q}$ modulo 8 ; it is a simple real, complex or quaternionic matrix algebra of rank 1 or 2 or a sum of two isomorphic such algebras.

To construct equivariant embeddings of the vector module V^{*} into the symmetric square $\vee^{2} S^{*}$ (or into the exterior square $\wedge^{2} S^{*}$) we introduce the notion of an admissible bilinear form β on S and also the corresponding notion of an admissible endomorphism of S, which depends on the choice of an admissible bilinear form β.

Definition 2. An $\mathbf{5 0}(V)$-invariant bilinear form β on the spinor module S is called admissible if it has the following properties:

1) Clifford multiplication $\rho(v)$ is either β-symmetric or β-skew symmetric. We define the type τ of β to be $\tau(\beta)=+1$ in the first case and $\tau(\beta)=-1$ in the second.
2) β is symmetric or skew symmetric. Accordingly, we define the symmetry σ of β to be $\sigma(\beta)= \pm 1$.
3) If the spinor module is reducible, $S=S^{+}+S^{-}$, then $S^{ \pm}$are either mutually orthogonal or isotropic. We put $\iota(\beta)=+1$ in the first case, $\iota(\beta)=-1$ in the second and call $\iota(\beta)$ the isotropy of β.

Every admissible form β defines an $\mathfrak{s o}(V)$-equivariant embedding $j_{\rho}(\beta): V^{*} \rightarrow \vee^{2} S^{*}$ if $\tau(\beta) \sigma(\beta)=+1$ or $j_{\rho}(\beta): V^{*} \rightarrow \wedge^{2} S^{*}$ if $\tau(\beta) \sigma(\beta)=-1$. Moreover, if $S=S^{+}+S^{-}$, then either $S^{ \pm}$are orthogonal or isotropic for every bilinear form in the image of $j_{\rho}(\beta)$.

The main part of the paper is the construction of an admissible basis for the space \mathcal{J} of equivariant mappings $V^{*} \rightarrow S^{*} \otimes S^{*}$, i.e. a basis consisting of embeddings $j_{\rho}(\beta)$, where β are admissible bilinear forms on S.

To describe all admissible forms β we make use of very simple explicit models of the irreducible Clifford modules inspired by Raševskiir [R]. We prove that the problem reduces to the three fundamental cases $V=\mathbb{R}^{m, m}, \mathbb{R}^{k, 0}$ and $\mathbb{R}^{0, k}$ using the isomorphisms $C \ell_{m+k, m} \cong C \ell_{m, m} \hat{\otimes} C \ell_{k}$ and $C \ell_{m, m+k} \cong C \ell_{m, m} \hat{\otimes} C \ell_{0, k}$ and the algebraic properties of the fundamental invariants τ, σ and ι with respect to \mathbb{Z}_{2}-graded tensor products.

Moreover, we establish that for every pseudo-Euclidean vector space $V=\mathbb{R}^{p, q}$ there is a preferred non-degenerate $\mathbf{5 0}(V)$-invariant bilinear form h on the spinor module S. This allows us to define canonically the notion of an admissible endomorphism of S and the invariants τ, σ and ι for such endomorphisms. They are multiplicative with respect to the composition $h \circ A=h(A \cdot, \cdot), A \in \mathcal{C}$ admissible.

Finally, we explicitly construct in all the cases an admissible basis for the Schur algebra \mathcal{C}. This canonically yields admissible bases for the space \mathcal{B} of invariant bilinear forms and the space \mathcal{J} of equivariant mappings.

This gives an explicit description of all extended Poincaré algebras $\mathfrak{g}=\mathfrak{p}(V)+$ S, where S is the spinor module. The super (respectively Lie) brackets $\vee^{2} S \rightarrow V$ (respectively $\wedge^{2} S \rightarrow V$) are given as linear combinations of mappings j_{i}^{*}, where the $j_{i}: V^{*} \rightarrow V^{2} S^{*}$ (respectively $V^{*} \rightarrow \wedge^{2} S^{*}$) form an admissible basis for the space of $\mathfrak{s o}(V)$-equivariant mappings $V^{*} \rightarrow \mathrm{~V}^{2} S^{*}$ (respectively $V^{*} \rightarrow \wedge^{2} S^{*}$).

If the spinor module S is an irreducible $\mathfrak{s o}(V)$-module, we obtain all $N= \pm 1$ extended Poincaré algebras. If S is reducible, then we obtain all $N= \pm 2$ extended Poincaré algebras and using the invariant ι we can determine all $N= \pm 1$ extended Poincaré algebras. Sometimes there exist only trivial $N=1$ (or $N=-1$) extended Poincaré algebras, i.e. $\{S, S\}=0$ (or $[S, S]=0$).

Given a pseudo-Euclidean vector space $V=\mathbb{R}^{p, q}$, let $|N|=1$ or 2 denote the number of irreducible summands of the spinor module S of $\mathfrak{s o}(V)$. For fixed $N=+|N|$ or $N=-|N|$ we give now the dimension d_{N} of the vector space of N-extended Poincaré algebra structures on $\mathfrak{g}=\mathfrak{p}(V)+S$.

The function d_{N}, which depends only on the signature (p, q), admits a symmetry group Γ generated by reflections. Moreover, there is an additional supersymmetry which relates the dimension $L^{+}:=d_{+|N|}$ of the space of super algebras to the dimension $L^{-}:=d_{-|N|}$ of the space of Lie algebras.

More precisely: Denote by $n=p+q$ the dimension and by $s=p-q$ the signature of $V=\mathbb{R}^{p, q}$ and let $L^{+}=L^{+}(n, s)$ (respectively $L^{-}(n, s)$) be the maximal number of linearly independent super algebra structures $V^{2} S \rightarrow V$ (respectively Lie algebra structures $\left.\wedge^{2} S \rightarrow V\right)$ on $\mathfrak{g}=\mathfrak{p}(V)+S$. The functions L^{+}and L^{-}are periodic with
period 8 in each argument, hence we may consider them as functions on $\mathbb{Z}^{2}=\mathbb{Z} \times \mathbb{Z}$. The value of the pair $\left(L^{+}, L^{-}\right)$is given in Table 1.

Table 1. The numbers L^{+}of super algebras and L^{-}of Lie algebras $\mathfrak{g}=\mathfrak{p}(V)+S$ are given as functions of the dimension n and signature s of V. A fundamental domain for the reflection group Γ is emphasized in boldface. The supersymmetry axis is given by the equation $n=0$.

$s:$	$\left(L^{+}(n, s), L^{-}(n, s)\right)$									
5		1,3		1,3		3,1		3,1		
4	4,4		2,6		4,4		6,2		4,4	
3		1,3		1,3		3,1		3,1		
2	4,4		2,6		4,4		6,2		4,4	
1		1,3		1,3		3,1		3,1		
0	1,1		0,2		1,1		2,0		1,1	
-1		0,1		0,1		1,0		1,0		
-2	1,1		0,2		1,1		2,0		1,1	
-3		1,3		1,3		3,1		3,1		
$n:$	-4	-3	-2	-1	0	1	2	3	4	

It follows from the inspection of this table, that the function (L^{+}, L^{-}) is invariant under the group Γ generated by the reflections with respect to the 4 axes defined by the equations $n=-2, n=2, s^{\prime}:=s-1=-2$ and $s^{\prime}=2$. A fundamental domain F for Γ is

$$
\begin{gathered}
F=\left\{(n, s) \in \mathbb{Z}^{2} \mid-2 \leq n \leq 2, \quad-2 \leq s^{\prime}=s-1 \leq 2\right\} \cap G \\
G=\left\{(n, s) \mid \exists(p, q) \in \mathbb{Z}^{2}: n=p+q, \quad s=p-q\right\}=\left\{(n, s) \in \mathbb{Z}^{2} \mid n+s \text { even }\right\}
\end{gathered}
$$

and consists of 12 points. The values of the pair $\left(L^{+}, L^{-}\right)$at these points are typed in boldface in Table 1.

Moreover, the reflection θ with respect to the axis $\{n=0\}, \theta:(n, s) \mapsto(-n, s)$, is a supersymmetry of the pair $\left(L^{+}, L^{-}\right)$, that is it interchanges the number of Lie algebras and Lie super algebras:

$$
\left(L^{+}(+n, s), L^{-}(+n, s)\right)=\left(L^{-}(-n, s), L^{+}(-n, s)\right)
$$

In short:

$$
L^{ \pm}=L^{\mp} \circ \theta
$$

A fundamental domain \tilde{F} for the group $\tilde{\Gamma}=\langle\Gamma, \theta\rangle$ is given by

$$
\tilde{F}=\{(n, s)=(0,0),(0,2),(1,-1),(1,1),(1,3),(2,0),(2,2)\}
$$

In terms of the coordinates (p, q) a fundamental domain with $p \geq 0$ and $q \geq 0$ is given by

$$
\tilde{D}=\{(p, q)=(2,0),(1,1),(3,0),(2,1),(1,2),(3,1),(2,2)\}
$$

1. (Super) Extensions of the Poincaré Algebra $\mathfrak{p}(p, q)$ and $\operatorname{Spin}(p, q)$-Equivariant Embeddings $\mathbb{R}^{p, q} \hookrightarrow S^{*} \otimes S^{*}$

1.1. Extending the Poincaré algebra. Let $V=\mathbb{R}^{p, q}$ be the pseudo-Euclidean space with the metric $\langle x, y\rangle=\sum_{i=1}^{p} x^{i} y^{i}-\sum_{j=p+1}^{p+q} x^{j} y^{j}$. We denote by $\mathfrak{s o}(V)=\mathfrak{s o}(p, q)$ the pseudo-orthogonal Lie algebra and by $\mathfrak{p}(V)=\mathfrak{p}(p, q)=\mathfrak{s o}(V)+V$ the semidirect sum of $\mathfrak{s o}(V)$ and the Abelian ideal V, it is the Lie algebra of the isometry group of $(V,<\cdot, \cdot>)$. We call $\mathfrak{p}(V)$ the Poincaré algebra of the space V.
Definition 1.1. $A \mathbb{Z}_{2}$-graded Lie algebra (respectively a super algebra) $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$ is called an extension (respectively a super extension) of $\mathfrak{p}(V)$ if $\mathfrak{g}_{0}=\mathfrak{p}(V), V$ is in the kernel of the representation of \mathfrak{g}_{0} on \mathfrak{g}_{1} and $\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right] \subset V$ (respectively $\left.\left\{\mathfrak{g}_{1}, \mathfrak{g}_{1}\right\} \subset V\right)$.
Remark 1. Sometimes, for unification, we will refer to \mathbb{Z}_{2}-graded Lie algebras and to super algebras as ϵ-algebras, where $\epsilon=-1$ or +1 respectively. Correspondingly, we will speak of ϵ-extensions.

Proposition 1.1. There exists a natural one-to-one correspondence between extensions (respectively super extensions) of $\mathfrak{p}(V)$ up to isomorphisms and equivalence classes of pairs (ρ, π), where

$$
\rho: \mathfrak{s o}(V) \rightarrow \mathfrak{g l}(W)
$$

is a representation and

$$
\pi: \wedge^{2} W \rightarrow V \quad\left(\text { resp. } \quad \vee^{2} W \rightarrow V\right)
$$

is a $\mathbf{5 0}(V)$-equivariant linear map from the space of skew symmetric (respectively symmetric) bilinear forms on W^{*} to the vector module V. Two pairs (ρ, π) and ($\rho^{\prime}, \pi^{\prime}$) $\left(\rho^{\prime}: \mathfrak{s o}(V) \rightarrow \mathfrak{g l}\left(W^{\prime}\right)\right)$ are equivalent if there exists an automorphism $\phi: \mathfrak{p}(V) \rightarrow$ $\mathfrak{p}(V)$ and a linear map $\psi: W \rightarrow W^{\prime}$ such that the following diagrams are commutative (for pairs of skew symmetric type):

where $\bar{\phi}$ is the induced automorphism of $\mathfrak{s o}(V)=\mathfrak{p}(V) / V$. For pairs of symmetric type \wedge^{2} must be replaced by \vee^{2}.
Proof. Given a pair (ρ, π) of skew symmetric type, we define a \mathbb{Z}_{2}-graded Lie algebra $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}, \mathfrak{g}_{0}=\mathfrak{p}(V)=\mathfrak{s o}(V)+V, \mathfrak{g}_{1}=W$ by

$$
\begin{aligned}
{[A, w] } & =\rho(A) w \\
{\left[w_{1}, w_{2}\right] } & =\pi\left(w_{1} \wedge w_{2}\right) \\
{[v, w] } & =0
\end{aligned}
$$

where $A \in \mathfrak{s o}(V), v \in V$ and $w, w_{1}, w_{2} \in W$. For a pair of symmetric type we define a super algebra $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$ by the same formulas replacing only the middle equation by

$$
\left\{w_{1}, w_{2}\right\}=\pi\left(w_{1} \vee w_{2}\right)
$$

The Jacobi identity is satisfied because ρ is a representation, π is equivariant and the (anti)commutator of W with W is contained in V and hence commutes with W. The other statements can be checked easily.

Recall that the spinor representation is the representation of $\mathbf{5 0}(V)$ on an irreducible module S of the Clifford algebra $C \ell(V)$. It is either irreducible or a sum of two irreducible semi spinor modules $S^{ \pm}$.

Definition 1.2. (cf. Def. 1) Let $\mathfrak{g}=\mathfrak{g}(\rho, \pi)$ be an ϵ-extension of $\mathfrak{p}(V)$ associated with a pair (ρ, π). We say that \mathfrak{g} is an ϵN-extended Poincaré algebra if ρ is a sum of $N=0,1,2, \ldots$ irreducible spin $1 / 2$ representations, i.e. irreducible spinor or semispinor representations.

The purpose of this paper is to classify all N-extended $(N \in \mathbb{Z})$ Poincaré algebras. Before starting this classification we explain how, given a (super) extension of the Poincaré algebra, we can construct more complicated ϵ-algebras.

1.2. Internal symmetries and charges.

Definition 1.3. Let $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$ be an ϵ-algebra. An internal symmetry of \mathfrak{g} is an automorphism of \mathfrak{g} which acts trivially on \mathfrak{g}_{0}.
Now we give a simple construction which associates with an ϵ-extension $\mathfrak{g}=\mathfrak{g}(\rho, \pi)$ of the Poincaré algebra $\mathfrak{p}(V)$ and $l \in \mathbb{N}$ an ϵ-extension $\mathfrak{g}^{(+)}$and also a - ϵ-extension $\mathfrak{g}^{(-2 l)}$ which admit $O(l)$, respectively, $S p(2 l, \mathbb{R})$ as internal symmetry groups. We define $\mathfrak{g}^{(+l)}=\boldsymbol{g}\left(\rho^{(+l)}, \pi^{(+l)}\right)$, where

$$
\begin{gathered}
\rho^{(+l)}=l \rho: \mathfrak{s o}(V) \rightarrow l W=W \otimes \mathbb{R}^{l} \\
\pi^{(+l)}\left(w_{1} \otimes v_{1}, w_{2} \otimes v_{2}\right)=\pi\left(w_{1}, w_{2}\right)<v_{1}, v_{2}>
\end{gathered}
$$

$<\cdot, \cdot\rangle$ is the standard Euclidean scalar product on \mathbb{R}^{l}. Similarly, we define

$$
\begin{gathered}
\mathfrak{g}^{(-2 l)}=2 l \rho: \mathfrak{s o}(V) \rightarrow 2 l W=W \otimes \mathbb{R}^{2 l} \\
\pi^{(-2 l)}\left(w_{1} \otimes v_{1}, w_{2} \otimes v_{2}\right)=\pi\left(w_{1}, w_{2}\right) \omega\left(v_{1}, v_{2}\right)
\end{gathered}
$$

where ω is the standard symplectic form on $\mathbb{R}^{2 l}$. Here we have used the convention that $\pi\left(w_{1}, w_{2}\right)=\pi\left(w_{1} \vee w_{2}\right)$ if $\epsilon=+1$ and $\pi\left(w_{1}, w_{2}\right)=\pi\left(w_{1} \wedge w_{2}\right)$ if $\epsilon=-1$.
Proposition 1.2. If \mathfrak{g} is an ϵ-extension of the Poincaré algebra $\mathfrak{p}(V)$, then $\mathfrak{g}^{(+l)}$ is an ϵ-extension and $\mathfrak{g}^{(-2 l)}$ is a-є-extension. The standard actions of $O(l)$ (respectively $S p(2 l, \mathbb{R})$) on $\mathbb{R}^{l}\left(\right.$ respectively $\left.\mathbb{R}^{2 l}\right)$ are naturally extended to actions on $\mathfrak{g}^{(+l)}$ (respectively $\mathfrak{g}^{(-2 l)}$) by internal symmetries.

Proof. The first statement follows immediately from Prop. 1.1 and the remark that the bilinear map $\pi^{(+l)}$ (respectively $\pi^{(-2 l)}$) has the same (respectively the opposite) symmetry as π. The last statement is immediate.

Example 1: Applying this construction to an ϵ-extended (see Def. 1.2) Poincaré algebra, we obtain an ϵl-extended Poincaré algebra and also an $-\epsilon 2 l$-extended Poincaré algebra with internal symmetry groups $O(l)$ and $S p(2 l, \mathbb{R})$ respectively.

Definition 1.4. $A \mathbb{Z}_{2}$-graded Lie algebra (respectively a super algebra) $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$ is called a charged extension (respectively a charged super extension) of the Poincaré algebra $\mathfrak{p}(V)$ if

1) $\mathfrak{g}_{0}=\mathfrak{p}(V)+C$ is a trivial extension of $\mathfrak{p}(V)$, i.e. $[C, C]=0$.
2) The action of $V+C$ on the \mathfrak{g}_{0}-module $W=\mathfrak{g}_{1}$ is trivial.
3) The Lie (respectively super) bracket $\pi: \wedge^{2} W \rightarrow \mathfrak{g}_{0}$ (respectively $\vee^{2} W \rightarrow \boldsymbol{g}_{0}$) is a sum $\pi=\pi_{V}+\pi_{C}$, where $\pi_{V}: \wedge^{2} W \rightarrow V$ and $\pi_{C}: \wedge^{2} W \rightarrow C$ (respectively $\pi_{V}: \mathrm{V}^{2} W \rightarrow V$ and $\left.\pi_{C}: \mathrm{V}^{2} W \rightarrow C\right)$. In particular, $\left(\mathfrak{p}(V)+W, \pi_{V}\right)$ is an extension (respectively super extension) of $\mathfrak{p}(V)$.
If moreover, $[\mathfrak{s o}(V), C]=0$, and hence $[C, \mathfrak{g}]=0$, then \mathfrak{g} is called a central charge extension (respectively a central charge super extension) of $\mathfrak{p}(V)$.

Let an extension (respectively super extension) $\mathfrak{p}(V)+W$ admitting a connected Lie group H of internal symmetries be given. Without restriction of generality we can assume that H is simply connected and we denote the Lie algebra of H by \mathfrak{h}. To construct a charged extension (respectively super extension) $(\mathfrak{p}(V)+C)+W$ preserving the internal symmetry group H it is necessary and sufficient to define an $(\mathbf{5 0}(V)+\mathfrak{h})$ equivariant map π_{C} from the exterior (respectively symmetric) square of W to an $(50(V)+\mathfrak{h})$-module C.
Example 2. Let $\mathfrak{p}(V)+W$ be an extension of $\mathfrak{p}(V)$. Consider the extension $\mathfrak{g}^{(+\downarrow)}=\mathfrak{p}(V)+$ $W \otimes \mathbb{R}^{l}$ with internal symmetry group $H=O(l)$ defined above. Let $h \in V^{2} W^{*} \otimes \mathbb{R}^{r}$ be a symmetric $\mathfrak{s o}(V)$-invariant (possibly trivial) vector valued bilinear form on W and $\eta \in \wedge^{2} W^{*} \otimes \mathbb{R}^{s}$ a skew symmetric such form. Define

$$
\begin{gathered}
\pi_{C}: \wedge^{2}\left(W \otimes \mathbb{R}^{l}\right) \rightarrow C=\mathbb{R}^{r} \otimes \wedge^{2} \mathbb{R}^{l}+\mathbb{R}^{s} \otimes \vee^{2} \mathbb{R}^{l} \\
\pi_{C}\left(w_{1} \otimes x_{1}, w_{2} \otimes x_{2}\right)=h\left(w_{1}, w_{2}\right) x_{1} \wedge x_{2}+\eta\left(w_{1}, w_{2}\right) x_{1} \vee x_{2}
\end{gathered}
$$

where $w_{1}, w_{2} \in W$ and $x_{1}, x_{2} \in \mathbb{R}^{l}$. Then π_{C} defines on $(\mathfrak{p}(V)+C)+W \otimes \mathbb{R}^{l}$ the structure of central charge extension of $\mathfrak{p}(V)$ with symmetry group $O(l)$.

Analogously, we can define on $(\mathfrak{p}(V)+C)+W \otimes \mathbb{R}^{2 l}, C=\mathbb{R}^{r} \otimes \mathrm{~V}^{2} \mathbb{R}^{2 l}+\mathbb{R}^{s} \otimes \wedge^{2} \mathbb{R}^{2 l}$, the structure of central charge super extension of $\mathfrak{p}(V)$ with symmetry group $S p(2 l, \mathbb{R})$ by

$$
\begin{gathered}
\pi_{C}: \vee^{2}\left(W \otimes \mathbb{R}^{2 l}\right) \rightarrow C \\
\pi_{C}\left(w_{1} \otimes x_{1}, w_{2} \otimes x_{2}\right)=h\left(w_{1}, w_{2}\right) x_{1} \vee x_{2}+\eta\left(w_{1}, w_{2}\right) x_{1} \wedge x_{2}
\end{gathered}
$$

Example 3. Let $\mathfrak{p}(V)+W$ be a super extension of $\mathfrak{p}(V)$. Consider the super extension $\mathfrak{g}^{(+l)}=\mathfrak{p}(V)+W \otimes \mathbb{R}^{l}$ with internal symmetry group $H=O(l)$ and let h be a symmetric and η a skew symmetric vector valued $\mathbf{5 0}(V)$-invariant bilinear form on W, as above. Define

$$
\begin{gathered}
\pi_{C}: \vee^{2}\left(W \otimes \mathbb{R}^{l}\right) \rightarrow C=\mathbb{R}^{r} \otimes \vee^{2} \mathbb{R}^{l}+\mathbb{R}^{s} \otimes \wedge^{2} \mathbb{R}^{l}, \\
\pi_{C}\left(w_{1} \otimes x_{1}, w_{2} \otimes x_{2}\right)=h\left(w_{1}, w_{2}\right) x_{1} \vee x_{2}+\eta\left(w_{1}, w_{2}\right) x_{1} \wedge x_{2} .
\end{gathered}
$$

Then π_{C} defines on $(\mathfrak{p}(V)+C)+W \otimes \mathbb{R}^{l}$ the structure of central charge super extension of $\mathfrak{p}(V)$ with symmetry group $O(l)$.

Analogously, we can define on $(\mathfrak{p}(V)+C)+W \otimes \mathbb{R}^{2 J}, C=\mathbb{R}^{r} \otimes \wedge^{2} \mathbb{R}^{2 J}+\mathbb{R}^{s} \otimes V^{2} \mathbb{R}^{2 l}$ the structure of central charge extension of $\mathfrak{p}(V)$ with symmetry group $S p(2 l, \mathbb{R})$ by

$$
\begin{gathered}
\pi_{C}: \wedge^{2}\left(W \otimes \mathbb{R}^{2 l}\right) \rightarrow C \\
\pi_{C}\left(w_{1} \otimes x_{1}, w_{2} \otimes x_{2}\right)=h\left(w_{1}, w_{2}\right) x_{1} \wedge x_{2}+\eta\left(w_{1}, w_{2}\right) x_{1} \vee x_{2}
\end{gathered}
$$

In the physical literature (see [F]) the expression "central charges" is used for a special case of Example 3.
1.3. Reduction of the classification of N-extended Poincaré algebras to the cases $N=$ $\pm 1, \pm 2$. Let $\mathfrak{g}=\mathfrak{g}(\rho, \pi)=\mathfrak{p}(V)+W$ be a $\pm N$-extended Poincaré algebra, $N=$ $1,2, \ldots$. Then either the spinor representation $\rho_{0}: \mathfrak{5 0}(V) \rightarrow \mathfrak{g l}(S)$ is irreducible and $\rho=N \rho_{0}, W=N S=S \otimes \mathbb{R}^{N}$, or it decomposes into two irreducible subrepresentations $\rho_{0}=\rho_{+}+\rho_{-}, S=S^{+}+S^{-}$and $\rho=N_{+} \rho_{+}+N_{-} \rho_{-}, W=N_{+} S^{+}+N_{-} S^{-}=S^{+} \otimes \mathbb{R}^{N_{+}}+$ $S^{-} \otimes \mathbb{R}^{N_{-}}, N=N_{+}+N_{-}$. The description of all ϵN-extended Poincaré algebras $\mathfrak{g}(\rho, \pi)$ reduces to the description of all $\mathfrak{s o}(V)$-equivariant mappings $\pi: \wedge^{2} W \rightarrow V$ if $\epsilon=-1$ and $\pi: V^{2} W \rightarrow V$ if $\epsilon=+1$. If $\pi \neq 0$, the dual mapping defines an $\mathfrak{s o}(V)$-equivariant embedding $\pi^{*}: V^{*} \hookrightarrow \wedge^{2} W^{*}$ if $\epsilon=-1$ or $\pi^{*}: V^{*} \hookrightarrow V^{2} W^{*}$ if $\epsilon=+1$. To find all such embeddings it is sufficient to determine all submodules isomorphic to V^{*} in $\wedge^{2} W^{*}$ and $\vee^{2} W^{*}$ or, equivalently, all vector submodules V in $\wedge^{2} W$ and $\vee^{2} W$. Tables 2 and 3 reduce this problem to the cases $N=1$ or 2 .

Table 2. Decomposition of the symmetric square of W

$\rho:$	$N \rho_{0}$	$N_{+} \rho_{+}+N_{-} \rho_{-}$
$W:$	$N S=S \otimes \mathbb{R}^{N}$	$N_{+} S^{+}+N_{-} S^{-}=$
		$S^{+} \otimes \mathbb{R}^{N_{+}+S} S^{-} \otimes \mathbb{R}^{N_{-}}$
$\vee^{2} W$	$\vee^{2} S \otimes \vee^{2} \mathbb{R}^{N}+\wedge^{2} S \otimes \wedge^{2} \mathbb{R}^{N}$	$\vee^{2} S^{+} \otimes \vee^{2} \mathbb{R}^{N_{+}+v^{2} S^{-} \otimes \vee^{2} \mathbb{R}^{N_{-+}}}$
		$\wedge^{2} S^{+} \otimes \wedge^{2} \mathbb{R}^{N_{+}+\wedge^{2} S^{-} \otimes \wedge^{2} \mathbb{R}^{N_{-+}}}$
	$S^{+} \otimes S^{-} \otimes \mathbb{R}^{N_{+} N_{-}}$	

Table 3. Decomposition of the exterior square of W

$\rho:$	$N \rho_{0}$	$N_{+} \rho_{+}+N_{-} \rho_{-}$
$W:$	$N S=S \otimes \mathbb{R}^{N}$	$N_{+} S^{+}+N_{-} S^{-}=$
		$S^{+} \otimes \mathbb{R}^{N_{+}+S^{-} \otimes \mathbb{R}^{N_{-}}}$
$\wedge^{2} W$	$\wedge^{2} S \otimes \vee^{2} \mathbb{R}^{N}+\vee^{2} S \otimes \wedge^{2} \mathbb{R}^{N}$	$\wedge^{2} S^{+} \otimes \vee^{2} \mathbb{R}^{N_{+}+\wedge^{2} S^{-} \otimes \vee^{2} \mathbb{R}^{N_{-+}}}$
		$\vee^{2} S^{+} \otimes \wedge^{2} \mathbb{R}^{N_{+}+\vee^{2} S^{-} \otimes \wedge^{2} \mathbb{R}^{N_{-+}}}$
	$S^{+} \otimes S^{-} \otimes \mathbb{R}^{N_{+} N_{-}}$	

If ρ_{+}and ρ_{-}are equivalent then $\rho=N_{+} \rho_{+}+N_{-} \rho_{-} \cong N \rho_{0}, \rho_{0} \cong \rho_{ \pm}$,

$$
\begin{aligned}
V^{2} W & \cong V^{2} S_{0} \otimes V^{2} \mathbb{R}^{N}+\Lambda^{2} S_{0} \otimes \wedge^{2} \mathbb{R}^{N} \\
\Lambda^{2} W & \cong V^{2} S_{0} \otimes \wedge^{2} \mathbb{R}^{N}+\Lambda^{2} S_{0} \otimes \vee^{2} \mathbb{R}^{N}
\end{aligned}
$$

where $S_{0} \cong S^{ \pm}$and $N=N_{+}+N_{-}$. Table 2 shows that the classification of all equivariant embeddings $V \hookrightarrow \vee^{2} W$ (case $\epsilon=+1$) reduces to finding all equivariant embeddings $V \hookrightarrow \vee^{2} S$ and $V \hookrightarrow \wedge^{2} S$ if S is irreducible and equivariant embeddings $V \hookrightarrow \vee^{2} S^{ \pm}$, $V \hookrightarrow \wedge^{2} S^{ \pm}$and $V \hookrightarrow S^{+} \otimes S^{-}$if $S=S^{+}+S^{-}$. Table 3 shows that the same reduction applies to the case $\epsilon=-1$, i.e. to the problem of finding all equivariant embeddings $V \hookrightarrow \wedge^{2} S$. We see that e.g. the classification of N-extended Poincaré algebras for $N>0$ (i.e. super algebra extensions) reduces to the classification of $N= \pm 1$-extended Poincaré algebras in case there is only one irreducible spin $1 / 2$ representation of $\mathfrak{s o}(\mathrm{V})$. The same is true for $N<0$, i.e. for Lie algebra extensions.

To illustrate this reduction we consider the case $\epsilon=+1$ and $\rho=N \rho_{0}$ in more detail.
Lemma 1.1. Assume $\epsilon=+1$ and $\rho=N \rho_{0}$, where ρ_{0} is an irreducible spin $1 / 2$ representation on S_{0}. Then any $50(V)$-equivariant embedding

$$
j: V \hookrightarrow \vee^{2} W=\vee^{2} S_{0} \otimes \vee^{2} \mathbb{R}^{N}+\wedge^{2} S_{0} \otimes \wedge^{2} \mathbb{R}^{N}
$$

is given by

$$
j(v)=\sum_{a} \phi_{a}(v) \otimes A_{a}+\sum_{b} \psi_{b}(v) \otimes B_{b}
$$

where $\phi_{a}: V \rightarrow \vee^{2} S_{0}$ and $\psi_{b}: V \rightarrow \wedge^{2} S_{0}$ are equivariant embeddings, $A_{a} \in \vee^{2} \mathbb{R}^{N}$ and $B_{b} \in \wedge^{2} \mathbb{R}^{N}$.

Proof. Choose bases $\left(A_{a}\right)$ and $\left(B_{b}\right)$ of $\vee^{2} \mathbb{R}^{N}$ and $\wedge^{2} \mathbb{R}^{N}$ respectively. Then $j(v)$ can be decomposed as above and the coefficients ϕ_{a} and ψ_{b} are equivariant embeddings or zero.
1.4. Equivariant embeddings $V^{*} \hookrightarrow S^{*} \otimes S^{*}$, modified Clifford multiplications and Dirac operators. We reduced the problem of the classification of N-extended Poincaré algebras to the description of $\mathfrak{s o}(V)$-equivariant mappings $V^{*} \rightarrow S^{*} \otimes S^{*}$, where S is the spinor module of $\mathfrak{s o}(V)$. We will denote by \mathcal{J} the vector space of all such mappings.

Now we will show that this space is closely related to two other vector spaces:

- the space \mathcal{B} of all $\mathfrak{s o}(V)$-invariant bilinear forms on S, and
- the space \mathcal{M} of $\mathfrak{s o}(V)$-equivariant multiplications $\mu: V^{*} \otimes S \rightarrow S$.

Denote by \mathcal{C} the Schur algebra of $\mathfrak{s o}(V)$-invariant endomorphisms of S. We define two natural anti-representations of \mathcal{C} on \mathcal{B} and \mathcal{J} and also a representation and an anti-representation of \mathcal{C} on \mathcal{M} by:

$$
\begin{aligned}
\xi_{A}^{\mathcal{B}} \beta & =\beta(A \cdot, \cdot) \\
\eta_{A}^{\mathcal{B}} \beta & =\beta(\cdot, A \cdot) \\
\left(\xi_{A}^{\mathcal{J}} j\right)\left(v^{*}\right) & =\xi_{A}^{\mathcal{B}}\left(j\left(v^{*}\right)\right) \\
\left(\eta_{A}^{\mathcal{J}} j\right)\left(v^{*}\right) & =\eta_{A}^{\mathcal{B}}\left(j\left(v^{*}\right)\right) \\
\left(\xi_{A}^{\mathcal{M}} \mu\right)\left(v^{*}\right) & =A \circ \mu\left(v^{*}\right) \\
\left(\eta_{A}^{\mathcal{M}} \mu\right)\left(v^{*}\right) & =\mu\left(v^{*}\right) \circ A,
\end{aligned}
$$

where $A \in \mathcal{C}, v^{*} \in V^{*}, \beta \in \mathcal{B}, j \in \mathcal{J}$ and $\mu \in \mathcal{M} \subset \operatorname{Hom}\left(V^{*}, E n d S\right)$. Remark that a non zero equivariant mapping $j: V^{*} \rightarrow S^{*} \otimes S^{*}$ is automatically an embedding.

Definition 1.5. An equivariant embedding $j: V^{*} \rightarrow S^{*} \otimes S^{*}$ is called non-degenerate, if $j\left(V^{*}\right) S=S^{*}$ and $j(S) \cong S$, where we consider j as mapping $j: S \rightarrow V \otimes S^{*}$. An equivariant multiplication $\mu: V^{*} \otimes S \rightarrow S$ is called non-degenerate, if $\mu\left(V^{*}\right) S=S$.

Using the following identifications, we define mappings from two of the spaces \mathcal{B}, \mathcal{J} and \mathcal{M} into the third:

$$
\begin{aligned}
\mathcal{B} & =\left(S^{*} \otimes S^{*}\right)^{\mathfrak{s o}(V)} \\
\mathcal{J} & =\operatorname{Hom}\left(V^{*}, S^{*} \otimes S^{*}\right)^{\mathbf{5 0}(V)} \stackrel{(*)}{\cong} \operatorname{Hom}\left(S, V^{*} \otimes S^{*}\right)^{\mathbf{s o}(V)} \\
\mathcal{M} & =\operatorname{Hom}\left(V^{*} \otimes S, S\right)^{\mathfrak{s o}(V)} \cong \operatorname{Hom}\left(V^{*}, E n d S\right)^{\mathbf{s o}(V)} \\
& \cong \operatorname{Hom}\left(V^{*} \otimes S^{*}, S^{*}\right)^{\mathbf{s o}(V)}
\end{aligned}
$$

At (*) we used the metric identification $V^{*} \cong V$. The mappings are defined as follows:

$$
\begin{aligned}
\mathcal{B} \times \mathcal{M} & \rightarrow \mathcal{J} \\
(\beta, \mu) & \mapsto j(\beta, \mu)=\beta \circ \mu \\
j(\beta, \mu)\left(v^{*}\right) & =\beta\left(\mu\left(v^{*}\right) \cdot, \cdot\right), \quad v^{*} \in V^{*} ; \\
\mathcal{M} \times \mathcal{J} & \rightarrow \mathcal{B} \\
(\mu, j) & \mapsto \beta(\mu, j)=\mu \circ j, \\
\beta(\mu, j)(s, t) & =<\mu(j(s)), t>, \quad s, t \in S \\
\mathcal{B} \times \mathcal{J} & \rightarrow \mathcal{M} \\
(\beta, j) & \mapsto \mu(\beta, j)=\beta \circ j \\
\mu(\beta, j)\left(v^{*}\right) & =\beta\left(j\left(v^{*}\right) \cdot, \cdot\right) \in S \otimes S^{*} \cong E n d S
\end{aligned}
$$

where $<\cdot, \cdot>$ denotes the natural duality pairing $S^{*} \times S \rightarrow \mathbb{R}$ and for the last mapping we have used that $j\left(v^{*}\right) \in S^{*} \otimes S^{*} \cong \operatorname{Hom}\left(S^{*}, S\right)$.

Theorem 1.1. The choice of a non-degenerate element β_{0}, j_{0} or μ_{0} in any of the spaces \mathcal{B}, \mathcal{J} and \mathcal{M} defines vector space isomorphisms between the two others:

$$
\begin{aligned}
j_{\beta_{0}}: \mathcal{M} & \rightarrow \mathcal{J} \\
\mu & \mapsto j\left(\beta_{0}, \mu\right)=\beta_{0} \circ \mu \\
\mu_{\beta_{0}}: \mathcal{J} & \rightarrow \mathcal{M} \\
j & \mapsto \mu\left(\beta_{0}, j\right)=\beta_{0} \circ j \\
\beta_{j_{0}}: \mathcal{M} & \rightarrow \mathcal{B} \\
\mu & \mapsto \beta\left(\mu, j_{0}\right)=\mu \circ j_{0} \\
\mu_{j_{0}}: \mathcal{B} & \rightarrow \mathcal{M} \\
\beta & \mapsto \mu\left(\beta, j_{0}\right)=\beta \circ j_{0} \\
j_{\mu_{0}}: \mathcal{B} & \rightarrow \mathcal{J} \\
\beta & \mapsto j\left(\beta, \mu_{0}\right)=\beta \circ \mu_{0} \\
\beta_{\mu_{0}}: \mathcal{J} & \rightarrow \mathcal{B} \\
j & \mapsto \beta\left(\mu_{0}, j\right)=\mu_{0} \circ j
\end{aligned}
$$

Proof. The statement is trivial for $j_{\beta_{0}}$ and $\mu_{\beta_{0}}$, because these mappings amount to "raising and lowering" indices of tensors via the non-degenerate form β_{0}.

It is clear that $\mu_{j_{0}}$ and $j_{\mu_{0}}$ are injective, since j_{0} and μ_{0} are non-degenerate. Hence, it is sufficient to prove that $\beta_{j_{0}}$ and $\beta_{\mu_{0}}$ are injective.

Consider first $\beta_{\mu_{0}}(j)=\mu_{0} \circ j$, where $j: S \rightarrow V^{*} \otimes S^{*}$ and $\mu_{0}: V^{*} \otimes S^{*} \rightarrow S^{*}$. The kernel of $\beta_{\mu_{0}}$ equals

$$
\operatorname{ker} \beta_{\mu_{0}}=\left\{j \in \mathcal{J} \mid j(S) \subset \operatorname{ker} \mu_{0}\right\}
$$

If $0 \neq j \in \operatorname{ker} \beta_{\mu_{0}}$, then $\operatorname{ker} \mu_{0}$ contains the non-trivial submodule $j(S)$. This is impossible, because ker μ_{0} does not contain spin $1 / 2$ submodules. Indeed, after complexification the $\mathfrak{s o}\left(V^{\mathbb{C}}\right)$-module $\left(V^{*}\right)^{\mathbb{C}} \otimes\left(S^{*}\right)^{\mathbb{C}}$ has the decomposition

$$
\left(V^{*}\right)^{\mathbb{C}} \otimes\left(S^{*}\right)^{\mathbb{C}}=\Sigma \oplus\left(S^{*}\right)^{\mathbb{C}}=\left(\operatorname{ker} \mu_{0}^{\mathbb{C}}\right) \oplus\left(S^{*}\right)^{\mathbb{C}}
$$

where $\Sigma=\operatorname{ker} \mu_{0}^{\mathbb{C}}$ contains only spin $3 / 2$ modules, i.e. Kronecker product of the vector module $V^{\mathbb{C}} \cong\left(V^{*}\right)^{\mathbb{C}}($ spin 1$)$ and an irreducible spin $1 / 2$ module.

Consider now $\beta_{j_{0}}(\mu)=\mu \circ j_{0}$, where $j_{0}: S \rightarrow V^{*} \otimes S^{*}$ and $\mu: V^{*} \otimes S^{*} \rightarrow S^{*}$. As before we have the decomposition $\left(V^{*}\right)^{\mathbb{C}} \otimes\left(S^{*}\right)^{\mathbb{C}}=\Sigma \oplus\left(S^{*}\right)^{\mathbb{C}}$, where Σ has no submodules isomorphic to submodules of $\left(S^{*}\right)^{\mathbb{C}}$. If $\mu \neq 0$, $\operatorname{ker} \mu^{\mathbb{C}}=\Sigma \oplus S_{1}^{\mathbb{C}}$, where $S_{1}^{\mathbb{C}} \neq\left(S^{*}\right)^{\mathbb{C}}$ is a proper submodule of $\left(S^{*}\right)^{\mathbb{C}}$. Since j_{0} is non-degenerate $j_{0}(S) \cong S$ cannot be contained in $k e r \mu$.

Lemma 1.2. Let S be the spinor module of $50(V)$. There always exists a non-degenerate $\mathfrak{s o}(V)$-invariant bilinear form β on S.

Proof. The existence of β is equivalent to the self duality of S, i.e. to the condition $S^{*} \cong S$ as $\mathfrak{s o}(V)$-modules.

The self duality of the complex $\mathfrak{s o}\left(V^{\mathbb{C}}\right)$ spinor module \mathbb{S} follows from the criterion of self duality given in [O-V], p. 195.

Now we discuss the real case. Assume first $S^{\mathbb{C}}$ has the same number of irreducible summands as S. Then the self duality of S follows from that of $S^{\mathbb{C}}$, see [O-V], p. 291. In the opposite case S admits an invariant complex structure J and $(S, J) \cong \mathbb{S}$ (complex spinor module of $\mathfrak{s o}\left(V^{\mathbb{C}}\right)$). Then the real part of a non-degenerate complex $\mathfrak{s o}\left(V^{\mathbb{C}}\right)$-invariant bilinear form on $S=\mathbb{S}$ gives a real $\mathfrak{s o}(V)$-invariant bilinear form on S and it is easy to check that this form is non-degenerate.

From Theorem 1.1 and this lemma we now derive an important consequence. Recall that by definition the spinor module S is an irreducible module over the Clifford algebra $C \ell(V)$. The restriction of the multiplication mapping $C \ell(V) \times S \rightarrow S$ to $V \times S$ defines a non-degenerate $\mathfrak{s o}(V)$-equivariant multiplication $\rho: V \otimes S \cong V^{*} \otimes S \rightarrow S$, which is called Clifford multiplication (as above V and V^{*} are identified using the pseudoEuclidean scalar product of V). The composition $j(\beta, \rho)=\beta \circ \rho$ with a non-degenerate $\mathfrak{s o}(V)$-invariant form β gives a non-degenerate $\mathfrak{s o}(V)$-equivariant embedding $V^{*} \hookrightarrow$ $S^{*} \otimes S^{*}$. Using the lemma and this remark, we obtain the following corollary from Theorem 1.1.

Corollary 1.1. The spaces \mathcal{B} of $\mathfrak{s o}(V)$-invariant bilinear forms on S, \mathcal{J} of $\mathfrak{s o}(V)$ equivariant mappings $V^{*} \rightarrow S^{*} \otimes S^{*}$ and \mathcal{M} of $\mathfrak{s o}(V)$-equivariant multiplications $V^{*} \otimes$ $S \rightarrow S$ are isomorphic. In particular, Clifford multiplication ρ defines the isomorphism $j_{\rho}: \mathcal{B} \rightarrow \mathcal{J}$ and hence any $\mathfrak{s o}(V)$-equivariant embedding $V^{*} \hookrightarrow S^{*} \otimes S^{*}$ is of the form

$$
j=j_{\rho}(\beta): v^{*} \mapsto \beta\left(\rho\left(v^{*}\right) \cdot, \cdot\right), \quad \beta \in \mathcal{B}, \quad v^{*} \in V^{*}
$$

Remark 2. Using an $\mathfrak{s o}(V)$-equivariant multiplication $\mu: V^{*} \otimes S \rightarrow S$ one can define a Dirac type operator D^{μ} on a pseudo-Riemannian spin manifold M as follows. Let $\mu_{x}: T_{x}^{*} M \otimes S_{x} \rightarrow S_{x}$ be a field of equivariant multiplications, where $S(M)=$ $\cup_{x \in M} S_{x} \rightarrow M$ is the spinor bundle. Then

$$
\left(D^{\mu} s\right)_{x}=\mu_{x}(\nabla s)=\mu_{x}\left(\sum_{i} e^{i} \otimes \nabla_{e_{i}} s\right)
$$

where $\left(e_{i}\right)$ is a basis of $T_{x} M,\left(e^{i}\right)$ the dual basis of $T_{x}^{*} M$ and ∇ is the spinor connection induced by the Levi Civita connection.
1.5. $\mathbb{Z}_{2-\text { graded type }}$ and Schur algebra \mathcal{C}. It is well known (see [L-M]), that every Clifford algebra $C \ell(V), V=\mathbb{R}^{p, q}$, is isomorphic to $\mathbb{K}(l)$ or to $2 \mathbb{K}(l)=\mathbb{K}(l) \oplus \mathbb{K}(l)$, where $\mathbb{K}(l)$ is the full matrix algebra over \mathbb{K} of rank l depending on (p, q) and where $\mathbb{K}=\mathbb{R}, \mathbb{C}$ or \mathbb{H}

Definition 1.6. We say that a Clifford algebra $C \ell(V)$ has type $r \mathbb{K}, r=1$ or 2 , if $C l(V) \cong r \mathbb{K}(l)$ for some $l \in \mathbb{N}$.

Recall that the Clifford algebra $C \ell(V)$ has a natural \mathbb{Z}_{2}-grading $C \ell(V)=C \ell^{0}(V)+$ $C \ell^{1}(V)$. If $V=\mathbb{R}^{p, q}(\neq 0)$, then the even part $C \ell^{0}(V)$ is isomorphic to the Clifford algebra $C \ell\left(V^{\prime}\right)$ of $V^{\prime}=\mathbb{R}^{p-1, q}$ if $p \geq 1$ and $V^{\prime}=\mathbb{R}^{q-1}$ if $p=0$. Remark that $\operatorname{dim} C \ell^{0}(V)=\operatorname{dim} C \ell(V) / 2$. By the preceding remarks, the following definition makes sense.

Definition 1.7. The pair $t(C \ell(V))=\left(r_{0} \mathbb{K}_{0}, r \mathbb{K}\right)=\left(\right.$ type $C \ell^{0}(V)$, type $\left.C \ell(V)\right)$ is called the \mathbb{Z}_{2}-graded type of the Clifford algebra $C \ell(V)$.

The following proposition describes the periodicity of the type t of the \mathbb{Z}_{2}-graded Clifford algebras $C \ell_{p, q}=C \ell\left(\mathbb{R}^{p, q}\right)$.

Proposition 1.3. The $\mathbb{Z}_{2^{-}}$graded type $t_{p, q}=t\left(C \ell_{p, q}\right)$ depends only on the signature $s=p-q$ modulo 8 and $t(s)=t(p-q)=t_{p, q}$ is given in the table.

s	1	2	3	4	5	6	7	8
$t(s)$	\mathbb{R}, \mathbb{C}	\mathbb{C}, \mathbb{H}	$\mathbb{H}, 2 \mathbb{H}$	$2 \mathbb{H}, \mathbb{H}$	\mathbb{H}, \mathbb{C}	\mathbb{C}, \mathbb{R}	$\mathbb{R}, 2 \mathbb{R}$	$2 \mathbb{R}, \mathbb{R}$

Proof. The proof reduces to the investigation of [L-M], Table II.
Corollary 1.2. The \mathbb{Z}_{2}-graded type $t_{p, q}=t(s=p-q)$ is mirror symmetric with respect to the diagonal $\{p+q=0\}: t_{p, q}=t_{-q,-p} ;$ in other words, $t\left(C \ell_{p, q}\right)=t\left(C \ell_{8 k-q, 8 k-p}\right)$, $8 k \geq p, q$.

Moreover, the \mathbb{Z}_{2}-graded type $t_{p, q}=t(s)=\left(t^{0}(s), t^{1}(s)\right)$ is mirror super symmetric with respect to the axis $\{s=p-q=3.5\}$, i.e.

$$
\left(t^{0}(7-s), t^{1}(7-s)\right)=\left(t^{1}(s), t^{0}(s)\right) .
$$

The type $r \mathbb{C}$ and \mathbb{Z}_{2}-graded type $t_{m}=\left(r_{0} \mathbb{C}, r \mathbb{C}\right)$ of a complex Clifford algebra $C \ell_{m}=$ $C \ell\left(\mathbb{C}^{m}\right)$ are defined by putting $V=\mathbb{C}^{m}$ in Definition 1.6 and 1.7 , where \mathbb{C}^{m} is equipped with a non-degenerate (complex) bilinear form, e.g. the standard one: $\langle z, w\rangle=$ $\sum_{j=1}^{m} z_{j} w_{j}, z, w \in \mathbb{C}^{m}$.

Proposition 1.4. The \mathbb{Z}_{2}-graded type $t_{m}=t\left(\mathbb{Q}_{m}\right)$ depends only on the parity of m :

$$
t_{m}= \begin{cases}(2 \mathbb{C}, \mathbb{C}) & \text { if } m \text { is even } \\ (\mathbb{C}, 2 \mathbb{C}) & \text { if } m \text { is odd }\end{cases}
$$

Let $S=S_{p, q}$ be an irreducible $C \ell_{p, q}$-module. Recall that by definition the Schur algebra $\mathcal{C}=\mathcal{C}_{p, q}$ of S is the algebra of all its $\mathbf{5 0}(V)$-invariant endomorphisms; it is the algebra of endomorphisms which commute with $C \ell_{p, q}^{0}$. Analogously, we define the Schur algebra \mathcal{C}_{m}^{c} of the complex spinor module \mathbb{S}; it is the algebra of endomorphism of \mathbb{S} commuting with \mathbb{X}_{m}^{0}.

Corollary 1.3. The Schur algebra $\mathcal{C}_{p, q}=\mathcal{C}(p-q)$ depends only on $s=p-q$ modulo 8 and is given in the table. In particular, it admits the mirror symmetry $(p, q) \mapsto(-q,-p)$.

s	1	2	3	4	5	6	7	8
$\mathcal{C}(s)$	$\mathbb{R}(2)$	$\mathbb{C}(2)$	\mathbb{H}	$\mathbb{H} \oplus \mathbb{H}$	\mathbb{H}	\mathbb{C}	\mathbb{R}	$\mathbb{R} \oplus \mathbb{R}$

Proof. Remark that if $t\left(C \ell_{p, q}\right)=\left(r_{0} \mathbb{K}_{0}, r \mathbb{K}\right)$, and hence $C X_{p, q}^{0} \cong r_{0} \mathbb{K}_{0}\left(l_{0}\right), C \ell_{p, q} \cong$ $r \mathbb{K}(l)$, then l is completely determined by l_{0} and vice versa; $l=l_{0}$ or $2 l_{0}$. This follows from $\operatorname{dim} C \ell_{p, q}=2 \operatorname{dim} C \ell_{p, q}^{0}$.

Using this remark, Proposition 1.3 shows that the pair $\left(C l_{p, q}^{0}, C l_{p, q}\right)$ is isomorphic to one of the following:

$$
\begin{array}{rll}
\left(\mathbb{K}(l), \mathbb{K}^{\prime}(l)\right) & , & S=\mathbb{K}^{\prime l} \\
(\mathbb{K}(l), 2 \mathbb{K}(l)), & S=\mathbb{K}^{\prime}, \\
\left(\mathbb{K}^{\prime}(l), \mathbb{K}(2 l)\right), & S=\mathbb{K}^{2 l}, \\
(2 \mathbb{K}(l), \mathbb{K}(2 l)), & S=\mathbb{K}^{2 l},
\end{array}
$$

where $\mathbb{K}=\mathbb{R}, \mathbb{C}$ or \mathbb{H} and $\mathbb{R}^{\prime}=\mathbb{C}, \mathbb{C}=\mathbb{H}$
In the first case the $\mathbb{K}(l)$-module $S=\mathbb{K}^{\prime \prime}$ is a sum of two irreducible equivalent modules $S^{ \pm} \cong \mathbb{K}^{l}$ and hence the Schur algebra $\mathcal{C} \cong \mathbb{K}(2)$.

In the second (respectively third) case $S=\mathbb{K}^{4}$ (respectively $\mathbb{K}^{2 l}$) is irreducible as $\mathbb{K}(l)$ - (respectively $\mathbb{K}^{\prime}(l)$-) module and hence $\mathcal{C} \cong \mathbb{K}$ (respectively \mathbb{K}^{\prime}).

In the last case $\mathcal{C} \cong \mathbb{K} \oplus \mathbb{K}$, which follows from the next lemma.
Lemma 1.3. Let $S=\mathbb{K}^{2}$ be the irreducible module of the algebra $\mathbb{K}(2 l)$ and $\mathcal{A} \cong$ $2 \mathbb{K}(l)$ a subalgebra of $\mathbb{K}(2 l)$, then the \mathcal{A}-module S is decomposed into a sum of two nonequivalent submodules $S^{ \pm}$.

Proof. It is clear that the \mathcal{A}-module S is the sum of two irreducible submodules S^{+}and S^{-}. They are not equivalent because $\mathcal{A} \mid S^{+}$and $\mathcal{A} \mid S^{-}$have different kernels, namely the two ideals $\mathbb{K}(l) \subset \mathcal{A}$.

Remark that the algebras $\mathbb{C} \oplus \mathbb{C}$ and $\mathbb{H}(2)$ do not occur as Schur algebras of the real spinor module S.

Corollary 1.4. The Schur algebra \mathcal{C}_{m}^{c} of the complex spinor module \mathbb{S} depends only on the parity of m :

$$
\mathcal{C}_{m}^{c}=\left\{\begin{aligned}
\mathbb{C} \oplus \mathbb{C} & \text { if } m \text { is even } \\
\mathbb{C} & \text { if } m \text { is odd }
\end{aligned}\right.
$$

The proof of Corollary 1.3 shows that the structure of the matrix algebra \mathcal{C} contains the following information about the $C \ell^{0}(V)$-module S.

Proposition 1.5. \mathcal{C} is a simple \mathbb{K}-matrix algebra (respectively a sum of two isomorphic \mathbb{K}-matrix algebras) if and only if $C^{0}(V)$ is a simple \mathbb{K}-matrix algebra (respectively a sum of two isomorphic such algebras). S is an irreducible $C^{0}(V)$-module if and only if $\mathcal{C} \cong \mathbb{K}(=\mathbb{R}, \mathbb{C}$ or $\mathbb{H}) . S$ is decomposed into a sum of two equivalent (respectively inequivalent) $C \ell^{0}(V)$-modules if and only if $\mathcal{C} \cong \mathbb{K}(2)$ (respectively $\left.\mathcal{C} \cong \mathbb{K} \oplus \mathbb{K}\right)$.

The corresponding statement in the complex case is given for the sake of completeness:

Proposition 1.6. If m is even, then the spinor module $\mathbb{S}=\mathbb{S}_{m}$ is the sum $\mathbb{S}=\mathbb{S}^{+}+\mathbb{S}^{-}$ of two inequivalent irreducible \mathbb{Q}_{m}^{0}-modules. In this case, \mathbb{C}_{m}^{0} and the Schur algebra \mathcal{C}_{m}^{c} are the direct sum of two isomorphic simple (complex) matrix algebras.

If m is odd, then the spinor module is an irreducible module of the simple matrix algebra \mathbb{Q}_{m}^{0} and its Schur algebra is also simple.

Since, due to Lemma 1.2, S admits a non-degenerate $\mathfrak{s o}(p, q)$-invariant bilinear form, by Schur's Lemma the dimension $b_{p, q}$ of the space $\mathcal{B}=\mathcal{B}_{p, q}$ of $\mathfrak{s o}(p, q)$-invariant bilinear forms on S equals

$$
b_{p, q}=\operatorname{dim} \mathcal{B}_{p, q}=\operatorname{dim} \mathcal{C}_{p, q}
$$

Hence we have:
Corollary 1.5. $b_{p, q}=b(p-q)$ is a periodic function of $s=p-q$ with period 8. In particular, it admits the mirror symmetry $(p, q) \mapsto(-q,-p)$. Its values are given in the following table:

s	1	2	3	4	5	6	7	8
$b(s)$	4	8	4	8	4	2	1	2

Denote by b_{m} the (complex) dimension of the space of $\mathfrak{s o l}(m, \mathbb{C}$)-invariant bilinear forms on the complex spinor module \mathbb{S}, then $b_{m}=\operatorname{dim}_{\mathbb{C}} \mathcal{C}_{m}^{c}$ and we have:

$$
b_{m}=\left\{\begin{array}{lll}
2 & \text { if } & m \text { is even } \\
1 & \text { if } & m \text { is odd }
\end{array}\right.
$$

2. Fundamental Invariants τ, σ and ι and Reduction to the Basic Signatures (m, m), $(k, 0)$ and $(0, k)$

2.1. Fundamental invariants. As before let V denote a pseudo-Euclidean vector space and S its spinor module. In Corollary 1.1 we have established that every $\mathfrak{s o}(V)$ equivariant embedding $j: V^{*} \hookrightarrow S^{*} \otimes S^{*}$ is of the form

$$
j=j_{\rho}(\beta): v^{*} \mapsto \beta\left(\rho\left(v^{*}\right) \cdot, \cdot\right), \quad v^{*} \in V^{*}
$$

where ρ is Clifford multiplication and $\beta \in \mathcal{B}$. The dimension of the space \mathcal{B} of $\mathfrak{s o l}(V)$ invariant bilinear forms on S was given in Corollary 1.5.

Now we will concentrate on a class of bilinear forms $\beta \in \mathcal{B}$ for which $j_{\rho}(\beta) V^{*} \subset$ $\vee^{2} S^{*}$ or $j_{\rho}(\beta) V^{*} \subset \wedge^{2} S^{*}$ and define fundamental invariants τ, σ and ι for this class.

Definition 2.1. A bilinear form β on the spinor module S is called admissible if it has the following properties:

1) Clifford multiplication $\rho(v), v \in V$, is either β-symmetric or β-skew symmetric. We define the type τ of β to be $\tau(\beta)=+1$ in the first case and $\tau(\beta)=-1$ in the second.
2) The bilinear form β is symmetric or skew symmetric. Accordingly, we define the symmetry σ of β to be $\sigma(\beta)= \pm 1$.
3) If the spinor module is reducible, $S=S^{+}+S^{-}$, then $S^{ \pm}$are either mutually orthogonal or isotropic. We put $\iota(\beta)=+1$ in the first case, $\iota(\beta)=-1$ in the second and call $\iota(\beta)$ the isotropy of β.

Due to 1) every admissible form β is $\mathfrak{s o}(V)$-invariant and hence defines an $\mathfrak{s o}(V)$ equivariant embedding $j_{\rho}(\beta): V \cong V^{*} \hookrightarrow S^{*} \otimes S^{*}$. In addition, $j_{\rho}(\beta) V \subset \vee^{2} S^{*}$ if $\tau(\beta) \sigma(\beta)=+1$ and $j_{\rho}(\beta) V \subset \wedge^{2} S^{*}$ if $\tau(\beta) \sigma(\beta)=-1$. If $S=S^{+}+S^{-}$, then for every bilinear form $\gamma \in j_{\rho}(\beta) V$ the semi spinor modules $S^{ \pm}$are either γ-isotropic (if $\iota(\gamma)=-\iota(\beta)=-1$) or mutually γ-orthogonal (if $\iota(\gamma)=-\iota(\beta)=+1$).

Given an admissible form $\beta \in \mathcal{B}$ and $A \in \mathcal{C}$, the composition $\beta \circ A=\beta(A \cdot, \cdot) \in \mathcal{B}$ is in general not admissible. However, if A is β-admissible (see Definition 2.2 below) then $\beta \circ A$ is admissible.

Definition 2.2. Let $\beta \in \mathcal{B}$ be admissible. An endomorphism A of S is called β admissible if it has the following properties:

1) Clifford multiplication $\rho(v), v \in V$, either commutes or anticommutes with A. We define the type τ of A to be $\tau(A)=+1$ in the first case and $\tau(A)=-1$ in the second.
2) A is β-symmetric or β-skew symmetric. Accordingly, we define the β-symmetry σ of A to be $\sigma_{\beta}(A)= \pm 1$.
3) If the spinor module is reducible, $S=S^{+}+S^{-}$, then either $A S^{ \pm} \subset S^{ \pm}$or $A S^{ \pm} \subset$ S^{\mp}. We put $\iota(A)=+1$ in the first case, $\iota(A)=-1$ in the second and call $\iota(A)$ the isotropy of A.

Due to 1) every β-admissible endomorphism A is $50(V)$-invariant and hence $\beta \circ A \in \mathcal{B}$. Moreover, $\beta \circ A$ is admissible and the fundamental invariants are multiplicative:

$$
\begin{aligned}
\tau(\beta \circ A) & =\tau(\beta) \tau(A) \\
\sigma(\beta \circ A) & =\sigma(\beta) \sigma(A), \\
\iota(\beta \circ A) & =\iota(\beta) \iota(A)
\end{aligned}
$$

In Sect. 3.1 (see Definition 3.1), for every pseudo-Euclidean space V, we will construct a canonical non-degenerate $\mathbf{5 0}(V)$-invariant bilinear form h on the spinor module S. We will define that an endomorphism A of S is admissible of symmetry $\sigma(A)= \pm 1$, if A is h-admissible and $\sigma_{h}(A)= \pm 1$.

Remark 3. The complete classification of admissible forms $\beta \in \mathcal{B}$, which we will give in this paper, implies the following. Let $\gamma \in \mathcal{B}$ be non-degenerate and admissible. Then a γ-admissible endomorphism $A \in \mathcal{C}$ is β-admissible for every admissible $\beta \in \mathcal{B}$. In particular, admissibility (i.e. h-admissibility) implies β-admissibility.
2.2. Reduction to the basic signatures. Let V_{1} and V_{2} be pseudo-Euclidean spaces and $V=V_{1}+V_{2}$ their orthogonal sum. We recall (see [L-M] I. Prop. 1.5) that there is a canonical isomorphism of \mathbb{Z}_{2}-graded algebras

$$
C l(V) \cong C l\left(V_{1}\right) \hat{\otimes} C l\left(V_{2}\right)
$$

where $\hat{\otimes}$ denotes the \mathbb{Z}_{2}-graded tensor product of \mathbb{Z}_{2}-graded algebras.

Proposition 2.1. Let $M_{1}=M_{1}^{0}+M_{1}^{1}$ be a \mathbb{Z}_{2}-graded $C l\left(V_{1}\right)$-module and M_{2} a (not necessarily \mathbb{Z}_{2}-graded) $C \ell\left(V_{2}\right)$-module. Then $M=M_{1} \otimes M_{2}$ carries a natural structure of $C \ell(V)$-module, $V=V_{1}+V_{2}$, given by:

$$
\left(a_{1} \otimes a_{2}\right)\left(m_{1} \otimes m_{2}\right)=(-1)^{\operatorname{deg}\left(a_{2}\right) \operatorname{deg}\left(m_{1}\right)} a_{1} m_{1} \otimes a_{2} m_{2}
$$

where $a_{i} \in C \ell\left(V_{i}\right), m_{i} \in M_{i}, i=1$, 2. If $M_{2}=M_{2}^{0}+M_{2}^{1}$ is a \mathbb{Z}_{2}-graded $C \ell\left(V_{2}\right)$ module, then this formula defines on M the structure of \mathbb{Z}_{2}-graded $C l(V)$-module: $M^{0}=M_{1}^{0} \otimes M_{2}^{0}+M_{1}^{1} \otimes M_{2}^{1}, M^{1}=M_{1}^{0} \otimes M_{2}^{1}+M_{1}^{1} \otimes M_{2}^{0}$.

Corollary 2.1. Let S_{i} be an irreducible $C \ell\left(V_{i}\right)$-module, $i=1,2$, and assume that $S_{1}=S_{1}^{+}+S_{1}^{-}$is reducible as $C \ell^{0}\left(V_{1}\right)$-module. Then $S=S_{1} \otimes S_{2}$ is an irreducible $\left(C \ell(V)=C \ell\left(V_{1}\right) \hat{\otimes} C \ell\left(V_{2}\right)\right)$-module. The $C \ell^{0}(V)$-module S is reducible, $S=S^{+}+S^{-}$, if and only if S_{2} is reducible as $C \ell^{0}\left(V_{2}\right)$-module, $S_{2}=S_{2}^{+}+S_{2}^{-}$.

Proof. Let S_{1} be an irreducible $C \ell\left(V_{1}\right)$-module which is reducible as $C \ell^{0}\left(V_{1}\right)$-module and let S_{1}^{+}be an irreducible $C \ell^{0}\left(V_{1}\right)$-submodule. Then

$$
S_{1}^{\prime}:=C \ell\left(V_{1}\right) \otimes_{C \ell^{0}\left(V_{1}\right)} S_{1}^{+}
$$

is an irreducible $C \ell\left(V_{1}\right)$-module, hence without restriction of generality $S_{1} \cong S_{1}^{\prime}$ as $C \ell\left(V_{1}\right)$-modules. Moreover, S_{1}^{\prime} is a \mathbb{Z}_{2}-graded $C \ell\left(V_{1}\right)$-module (see [L-M] I. Prop. 5.20): $S_{1}^{\prime}=S_{1}^{\prime 0}+S_{1}^{\prime 1}, S_{1}^{\prime 0}=C \ell^{0}\left(V_{1}\right) \otimes_{C \ell^{0}\left(V_{1}\right)} S_{1}^{+} \cong S_{1}^{+}$and $S_{1}^{\prime 1}=C \ell^{1}\left(V_{1}\right) S_{1}^{\prime 0}=C \ell^{1}\left(V_{1}\right) \otimes_{C \ell^{0}\left(V_{1}\right)}$ S_{1}^{+}.

Therefore, we may assume (as usual) that $S_{1}=S_{1}^{+}+S_{1}^{-}$is a \mathbb{Z}_{2}-graded $C \ell\left(V_{1}\right)$ module: $S_{1}^{0}=S_{1}^{+}, S_{1}^{1}=S_{1}^{-}=C \ell^{1}\left(V_{1}\right) S_{1}^{+}$, reducing the first statement to Proposition 2.1. The remaining statements also follow from the structure of \mathbb{Z}_{2}-graded Clifford module on S_{1} and on S_{2} (in the reducible case).

Now we investigate the algebraic properties of the fundamental invariants with respect to \mathbb{Z}_{2}-graded tensor products.

Proposition 2.2. Under the assumptions of Corollary 2.1 let β_{i} be admissible bilinear forms on $S_{i}, i=1,2$.

If $\tau\left(\beta_{1}\right)=\iota\left(\beta_{1}\right) \tau\left(\beta_{2}\right)$, then $\beta=\beta_{1} \otimes \beta_{2}$ is admissible and

$$
\begin{aligned}
\tau(\beta) & =\tau\left(\beta_{1}\right)=\iota\left(\beta_{1}\right) \tau\left(\beta_{2}\right) \\
\sigma(\beta) & =\sigma\left(\beta_{1}\right) \sigma\left(\beta_{2}\right) \\
\iota(\beta) & =\iota\left(\beta_{1}\right) \iota\left(\beta_{2}\right)
\end{aligned}
$$

where $\iota(\beta)$ and $\iota\left(\beta_{2}\right)$ are defined if and only if S_{2} (and hence S) is reducible as a module of the even part of the corresponding Clifford algebra.

Let A_{i} be β_{i}-admissible endomorphisms of $S_{i}, i=1$, 2. If $\tau\left(A_{1}\right)=\iota\left(A_{1}\right) \tau\left(A_{2}\right)$, then $A=A_{1} \otimes A_{2}$ is admissible and

$$
\begin{aligned}
\tau(A) & =\tau\left(A_{1}\right)=\iota\left(A_{1}\right) \tau\left(A_{2}\right) \\
\sigma_{\beta}(A) & =\sigma_{\beta_{1}}\left(A_{1}\right) \sigma_{\beta_{2}}\left(A_{2}\right), \\
\iota(A) & =\iota\left(A_{1}\right) \iota\left(A_{2}\right)
\end{aligned}
$$

where $\iota(A)$ and $\iota\left(A_{2}\right)$ are defined if and only if S_{2} is reducible as $C \ell^{0}\left(V_{2}\right)$-module.

Proof. The only non-trivial statements are the ones concerning the type τ. For $s_{i}, t_{i} \in S_{i}$ and $v_{i} \in V_{i}$ we compute:

$$
\begin{aligned}
\beta\left(\left(v_{1} \otimes 1\right)\left(s_{1} \otimes s_{2}\right), t_{1} \otimes t_{2}\right) & =\beta\left(v_{1} s_{1} \otimes s_{2}, t_{1} \otimes t_{2}\right)= \\
\beta_{1}\left(v_{1} s_{1}, t_{1}\right) \beta_{2}\left(s_{2}, t_{2}\right) & =\tau\left(\beta_{1}\right) \beta_{1}\left(s_{1}, v_{1} t_{1}\right) \beta_{2}\left(s_{2}, t_{2}\right)= \\
\tau\left(\beta_{1}\right) \beta\left(s_{1} \otimes s_{2}, v_{1} t_{1} \otimes t_{2}\right) & =\tau\left(\beta_{1}\right) \beta\left(s_{1} \otimes s_{2},\left(v_{1} \otimes 1\right)\left(t_{1} \otimes t_{2}\right)\right)
\end{aligned}
$$

and

$$
\begin{gathered}
\beta\left(\left(1 \otimes v_{2}\right)\left(s_{1} \otimes s_{2}\right), t_{1} \otimes t_{2}\right)=(-1)^{\operatorname{deg} s_{1}} \beta\left(s_{1} \otimes v_{2} s_{2}, t_{1} \otimes t_{2}\right)= \\
(-1)^{\operatorname{deg} s_{1}} \beta_{1}\left(s_{1}, t_{1}\right) \beta_{2}\left(v_{2} s_{2}, t_{2}\right)=(-1)^{\operatorname{deg} s_{1}} \tau\left(\beta_{2}\right) \beta_{1}\left(s_{1}, t_{1}\right) \beta_{2}\left(s_{2}, v_{2} t_{2}\right)= \\
(-1)^{\operatorname{deg} s_{1}} \tau\left(\beta_{2}\right) \beta\left(s_{1} \otimes s_{2}, t_{1} \otimes v_{2} t_{2}\right)= \\
(-1)^{\operatorname{deg} s_{1}+\operatorname{deg} t_{1}} \tau\left(\beta_{2}\right) \beta\left(s_{1} \otimes s_{2},\left(1 \otimes v_{2}\right)\left(t_{1} \otimes t_{2}\right)\right) .
\end{gathered}
$$

If $\iota\left(\beta_{1}\right)=(-1)^{\operatorname{deg} s_{1}+\operatorname{deg} t_{1}}$ we obtain

$$
\begin{equation*}
\beta\left(\left(1 \otimes v_{2}\right)\left(s_{1} \otimes s_{2}\right), t_{1} \otimes t_{2}\right)=\iota\left(\beta_{1}\right) \tau\left(\beta_{2}\right) \beta\left(s_{1} \otimes s_{2},\left(1 \otimes v_{2}\right)\left(t_{1} \otimes t_{2}\right)\right) \tag{1}
\end{equation*}
$$

Otherwise, both sides of (1) vanish. Hence, Eq. (1) is always true.
Similarly we have:

$$
\left(v_{1} \otimes 1\right)\left(\left(A_{1} \otimes A_{2}\right)\left(s_{1} \otimes s_{2}\right)\right)=\tau\left(A_{1}\right)\left(A_{1} \otimes A_{2}\right)\left(\left(v_{1} \otimes 1\right)\left(s_{1} \otimes s_{2}\right)\right)
$$

and

$$
\begin{gathered}
\left(1 \otimes v_{2}\right)\left(\left(A_{1} \otimes A_{2}\right)\left(s_{1} \otimes s_{2}\right)\right)=\left(1 \otimes v_{2}\right)\left(A_{1} s_{1} \otimes A_{2} s_{2}\right)= \\
(-1)^{\operatorname{deg}\left(A_{1} s_{1}\right)} A_{1} s_{1} \otimes v_{2} A_{2} s_{2}=(-1)^{\operatorname{deg}\left(A_{1} s_{1}\right)} \tau\left(A_{2}\right) A_{1} s_{1} \otimes A_{2} v_{2} s_{2}= \\
(-1)^{\operatorname{deg}\left(A_{1} s_{1}\right)} \tau\left(A_{2}\right)\left(A_{1} \otimes A_{2}\right)\left(s_{1} \otimes v_{2} s_{2}\right)= \\
(-1)^{\operatorname{deg}\left(A_{1} s_{1}\right)+\operatorname{deg} s_{1}} \tau\left(A_{2}\right)\left(A_{1} \otimes A_{2}\right)\left(\left(1 \otimes v_{2}\right)\left(s_{1} \otimes s_{2}\right)\right)= \\
\iota\left(A_{1}\right) \tau\left(A_{2}\right)\left(A_{1} \otimes A_{2}\right)\left(\left(1 \otimes v_{2}\right)\left(s_{1} \otimes s_{2}\right)\right) .
\end{gathered}
$$

Now we point out that every pseudo-Euclidean space V can be decomposed as the orthogonal sum $V=V_{1}+V_{2}$ such that the assumptions of Corollary 2.1 are satisfied, i.e. such that the spinor $C \ell^{0}\left(V_{1}\right)$-module S_{1} is reducible. In fact, we can decompose V into $V_{1}=\mathbb{R}^{m, m}$ and $V_{2}=\mathbb{R}^{k, 0}$ or $\mathbb{R}^{0, k}$.

Proposition 2.3. Let $V=V_{1}+V_{2}$ be the orthogonal sum of the pseudo Euclidean spaces $V_{1}=\mathbb{R}^{m, m}$ and V_{2}. Let S_{1} be an irreducible $C \ell\left(V_{1}\right)$-module. Then $S_{1}=S_{1}^{+}+S_{1}^{-}$ is a sum of two inequivalent irreducible $C \ell^{0}\left(V_{1}\right)$-submodules $S_{1}^{ \pm}$and an irreducible $\left(C \ell(V)=C \ell\left(V_{1}\right) \hat{\otimes} C \ell\left(V_{2}\right)\right)$-module S is given by $S=S_{1} \otimes S_{2}$, where S_{2} is an irreducible $C \ell\left(V_{2}\right)$-module. S is reducible as $C^{0}(V)$-module if and only if S_{2} is reducible as $C \ell^{0}\left(V_{2}\right)$ module.

Proof. The first statement follows from the fact that the Schur algebra of S_{1} is $\mathcal{C}_{m, m}=$ $\mathcal{C}(s=m-m=0)=\mathbb{R} \oplus \mathbb{R}$. Now all other statements follow immediately from Corollary 2.1.

3. Case of Signature (m, m) and Complex Case

3.1. Signature (m, m) Let U and U^{*} denote two complementary isotropic subspaces of $V=\mathbb{R}^{m, m}$, so $V=U+U^{*}$. We denote by $<\cdot, \cdot>$ the scalar product of V and identify U^{*} with the dual space to U by

$$
u^{*}(u)=2<u, u^{*}>, \quad u^{*} \in U^{*}, u \in U
$$

Proposition 3.1. The following formulas define an irreducible $C \ell_{m, m}$-module on $S=$ $\wedge U$:

$$
\begin{aligned}
\rho(u) s & =u \wedge s \\
\rho\left(u^{*}\right) s & =-u^{*} \angle s, s \in \wedge U, u \in U, u^{*} \in U^{*}
\end{aligned}
$$

where \angle is the interior multiplication.
Proof. This follows from the obvious identities $\rho(u)^{2}=\rho\left(u^{*}\right)^{2}=0$ and $\rho(u) \rho\left(u^{*}\right)+$ $\rho\left(u^{*}\right) \rho(u)=-2<u, u^{*}>I d$.

For any $a \in \wedge U$ and $\alpha \in \wedge U^{*}$ we define nilpotent endomorphisms ϵ_{a} and ι_{α} of $S=\wedge U$ by:

$$
\begin{aligned}
\epsilon_{a} & =a \wedge s, \\
\iota_{\alpha} & =\alpha \angle s .
\end{aligned}
$$

Proposition 3.2. The Lie algebra $\mathfrak{s o}(m, m) \hookrightarrow$ End S of the spinor group admits the following graded decomposition:

$$
\mathfrak{s o l}(m, m)=\mathfrak{g}^{-2}+\mathfrak{g}^{0}+\mathfrak{g}^{2}=\iota_{\wedge^{2} U} \cdot+\mathfrak{s l}(U)+\epsilon_{\wedge^{2} U}
$$

$\mathfrak{s l}(U)=\left[\iota_{U} \cdot, \epsilon_{U}\right],\left[\mathfrak{g}^{i}, \mathfrak{g}^{j}\right] \subset \mathfrak{g}^{i+j}\left(\mathfrak{g}^{i+j}=0\right.$ for $\left.|i+j|>2\right)$. In particular, $\iota_{\wedge^{2} U}$. and $\epsilon_{\wedge^{2} U}$ are Abelian subalgebras.

It is very easy to describe the semi spinor modules $S^{ \pm}$in our model of the spinor module S.

Lemma 3.1. $S=\wedge U$ is the sum of the two inequivalent irreducible $\mathbf{5 0}(\mathrm{m}, \mathrm{m})$ submodules $S^{+}=\wedge^{e v} U$ and $S^{-}=\wedge^{\text {odd }} U$.
Proof. It is clear that $\wedge^{e v} U$ and $\wedge^{o d d} U$ are irreducible $\mathfrak{s o}(m, m)$-submodules and we already know that they are inequivalent, see e.g. Proposition 2.3.
Remark 4. The statement that $\wedge^{e v} U$ and $\wedge^{o d d} U$ are inequivalent $50(m, m)$-modules follows also from the fact that these are eigenspaces of the volume element $\omega_{m, m}=$ $e_{1} \cdots e_{2 m} \in C \ell_{m, m}^{0},\left(e_{i}\right)$ an orthonormal basis of $\mathbb{R}^{m, m}$.

We can define an $\mathbf{5 0}(m, m)$-invariant endomorphism E of S by

$$
E \mid S^{ \pm}= \pm I d
$$

To construct an admissible bilinear form f on $S=\wedge U$ we fix a volume form vol $\in \wedge^{m} U$ on U^{*} and define

$$
\begin{gathered}
f\left(\wedge^{i} U, \wedge^{j} U\right)=0, \quad \text { if } \quad i+j \neq m \\
f(s, t) v o l=\epsilon_{i} s \wedge t, \quad s \in \wedge^{i} U, t \in \wedge^{m-i} U
\end{gathered}
$$

where $\epsilon_{i}=(-1)^{i(i+1) / 2}$. Remark that $\epsilon_{i+1}=(-1)^{i+1} \epsilon_{i}$.

Proposition 3.3. The space \mathcal{B} of $\mathbf{s o}(m, m)$-invariant bilinear forms on $S=S_{m, m}$ is spanned by the admissible elements f and $f_{E}=f(E \cdot, \cdot)$. Their fundamental invariants (τ, σ, ι) depend only on $m \quad(\bmod 4)$ and are given in the next table:

f	---	--+	-+-	-++
f_{E}	++-	+-+	+--	+++
$m:$	1	2	3	4

An f-and f_{E}-admissible basis for the Schur algebra $\mathcal{C} \cong \mathbb{R} \oplus \mathbb{R}$ is given by the endomorphisms Id and E of S :

$$
\tau(E)=-1, \quad \sigma_{f}(E)=\sigma_{f_{E}}(E)=(-1)^{m}, \quad \iota(E)=+1
$$

Proof. We first check that $\rho(v), v \in U+U^{*}$, is f-skew symmetric. For $v=u \in U$, $s \in \wedge^{i} U, t \in \wedge^{m-i-1} U:$

$$
(f(\rho(u) s, t)+f(s, \rho(u) t)) v o l=\epsilon_{i+1}(u \wedge s) \wedge t+\epsilon_{i} s \wedge(u \wedge t)=0
$$

For $v=u^{*} \in U^{*}, s \in \wedge^{i} U, t \in \wedge^{m-i+1} U:$

$$
\begin{gathered}
-\left(f\left(\rho\left(u^{*}\right) s, t\right)+f\left(s, \rho\left(u^{*}\right) t\right)\right) v o l=\epsilon_{i-1}\left(u^{*} \angle s\right) \wedge t+\epsilon_{i} s \wedge\left(u^{*} \angle t\right)= \\
\epsilon_{i-1}\left(u^{*} \angle s\right) \wedge t+\epsilon_{i}(-1)^{i}\left(u^{*} \angle(s \wedge t)-\left(u^{*} \angle s\right) \wedge t\right)= \\
\left(\epsilon_{i-1}-(-1)^{i} \epsilon_{i}\right)\left(u^{*} \angle s\right) \wedge t=0
\end{gathered}
$$

The symmetry properties of f follow from the computation

$$
f(t, s) v o l=\epsilon_{j} t \wedge s=\epsilon_{j} \epsilon_{i}(-1)^{i j} f(s, t) \text { vol }=(-1)^{m(m+1) / 2} f(s, t) \text { vol }
$$

where $s \in \wedge^{i} U, t \in \wedge^{j} U$ and $i+j=m$.
Finally, $f\left(\wedge^{e v} U, \wedge^{\text {odd }} U\right)=0$ if m is even and $f\left(\wedge^{e v} U, \wedge^{e v}\right)=f\left(\wedge^{\text {odd }} U, \wedge^{\text {odd }} U\right)=0$ if m is odd. This proves all the statements about f. It is immediate to see that E is f-admissible with fundamental invariants given above. Since f is admissible and E is f-admissible, f_{E} is admissible and its fundamental invariants are computed by multiplicativity:

$$
\tau\left(f_{E}\right)=\tau(f) \tau(E), \quad \sigma\left(f_{E}\right)=\sigma(f) \sigma_{f}(E), \quad \iota\left(f_{E}\right)=\iota(f) \iota(E)
$$

This proves the proposition.
Proposition 3.3 implies the following theorem:
Theorem 3.1. Every $\mathfrak{s o}(m, m)$-equivariant embedding $V^{*} \hookrightarrow S^{*} \otimes S^{*}$, where $S=$ $S_{m, m}$ is the spinor $\mathfrak{s o}(m, m)$-module, is a linear combination of the embeddings $j_{\rho}(f)$ and $j_{\rho}\left(f_{E}\right)$. Their image is contained in the dual of the subspaces indicated in the table depending on $m \quad(\bmod 4)$.

$j_{\rho}(f)$	$\vee^{2} S^{+}+\vee^{2} S^{-}$	$S^{+} \vee S^{-}$	$\wedge^{2} S^{+}+\wedge^{2} S^{-}$	$S^{+} \wedge S^{-}$
$j_{\rho}\left(f_{E}\right)$	$\vee^{2} S^{+}+\vee^{2} S^{-}$	$S^{+} \wedge S^{-}$	$\wedge^{2} S^{+}+\wedge^{2} S^{-}$	$S^{+} \vee S^{-}$
m	1	2	3	4

Now put $V_{1}=\mathbb{R}^{m, m} \neq 0$ and let V_{2} be an arbitrary pseudo-Euclidean space. Denote the spinor module of $\mathfrak{s o}\left(V_{i}\right)$ by $S_{i}, i=1,2$.

Proposition 3.4. Let β_{2} be an admissible bilinear form on S_{2}. Then there is a unique (up to scaling) admissible form β_{1} on S_{1} such that $\tau\left(\beta_{2}\right)=\iota\left(\beta_{1}\right) \tau\left(\beta_{1}\right)$. In particular, $\beta_{1} \otimes \beta_{2}$ is an admissible bilinear form on the spinor $\mathfrak{s o}\left(V_{1}+V_{2}\right)$-module $S_{1} \otimes S_{2}$.

If moreover, A_{2} is a β_{2}-admissible endomorphism of S_{2}, then there is a unique β_{1}-admissible endomorphism A_{1} of S_{1} such that $\tau\left(A_{2}\right)=\iota\left(A_{1}\right) \tau\left(A_{1}\right)$, in particular, $A_{1} \otimes A_{2}$ is a $\beta_{1} \otimes \beta_{2}$-admissible endomorphism of $S_{1} \otimes S_{2}$.

The fundamental invariants of $\beta_{1} \otimes \beta_{2}$ and $A_{1} \otimes A_{2}$ are easily computed using the rules given in Proposition 2.2.

Proof. This follows from $\iota\left(f_{E}\right) \tau\left(f_{E}\right)=-\iota(f) \tau(f), \iota(E) \tau(E)=-\iota(I d) \tau(I d)$ and Sect. 2.2.

If we assume that V_{2} is of definite signature, i.e. $V_{2}=\mathbb{R}^{k, 0}$ or $\mathbb{R}^{0, k}$, then there is a unique (up to scaling) $\operatorname{Pin}\left(V_{2}\right)$-invariant symmetric bilinear form h_{2} on the irreducible module S_{2} of the compact group $\operatorname{Pin}\left(V_{2}\right)$.
Lemma 3.2. The Pin(V_{2})-invariant scalar product h_{2} is admissible: $\tau\left(h_{2}\right)=-1$ if $V_{2}=\mathbb{R}^{k, 0}$ and $\tau\left(h_{2}\right)=+1$ if $V_{2}=\mathbb{R}^{0, k} ; \sigma\left(h_{2}\right)=+1$ and if S_{2} is reducible, $S_{2}=S_{2}^{+}+S_{2}^{-}$, $S_{2}^{-}=C \ell^{1}\left(V_{2}\right) S_{2}^{+}$, then $\iota\left(h_{2}\right)=+1$.

Proof. Let $\rho(v)$ denote Clifford multiplication by a unit vector $v \in V_{2}$. Then h_{2} is $\rho(v)$-invariant and $\rho(v)^{2}=-I d$ if $V_{2}=\mathbb{R}^{k, 0}$ and $\rho(v)^{2}=+I d$ if $V_{2}=\mathbb{R}^{0, k}$. This implies $\tau\left(h_{2}\right)=\mp 1$.

To see that $\iota\left(h_{2}\right)=+1$ in the reducible case, consider the scalar product h_{2}^{\prime} on S_{2} defined by

$$
h_{2}^{\prime}\left(S_{2}^{+}, S_{2}^{-}\right)=0, \quad h_{2}^{\prime}\left|S_{2}^{ \pm}=h_{2}\right| S_{2}^{ \pm}(\neq 0)
$$

It is easy to check that h_{2}^{\prime} is invariant under Clifford multiplication by unit vectors $v \in V_{2}$ using that $S^{-}=v S^{+}$. This implies $h_{2}^{\prime}=h_{2}$.

By Proposition 3.4 for every $V_{1}=\mathbb{R}^{m, m} \neq 0$ there is a unique admissible bilinear form h_{1} on the spinor module S_{1} of $\mathfrak{s o}\left(V_{1}\right)$ such that $\tau\left(h_{2}\right)=\iota\left(h_{1}\right) \tau\left(h_{1}\right)$.

Definition 3.1. The canonical bilinear form on the spinor module $S=S_{1} \otimes S_{2}$ of $\mathfrak{s o}\left(V_{1}+V_{2}\right)$ is $h=h_{1} \otimes h_{2}$, where h_{2} is the canonical bilinear form on the spinor module S_{2} of $\mathfrak{s o}\left(V_{2}\right) \cong \mathbf{s o}(k)$, i.e. the Pin $\left(V_{2}\right)$-invariant scalar product. In line with this definition we say that an endomorphism A of S (respectively A_{2} of S_{2}) is admissible of symmetry $\sigma(A)= \pm 1$ (respectively $\sigma\left(A_{2}\right)= \pm 1$) if A is h-admissible (respectively h_{2}-admissible) and $\sigma_{h}(A)= \pm 1$ (respectively $\left.\sigma_{h_{2}}\left(A_{2}\right)= \pm 1\right)$.

Remark 5. For $V_{1}=\mathbb{R}^{m, m}$ we have two (non-degenerate) admissible bilinear forms f and f_{E} on $S_{1}=S_{m, m}$. If we want to choose a canonical one, which is not necessary for our purpose, we can consider on S_{1} the structure of irreducible $C \ell_{m, m+1}$-module defined in Sect. 3.2. Then only one of the forms remains admissible for the $C l_{m, m+1^{-}}$ module $S_{1}=S_{m, m+1}$, it is in fact the canonical bilinear form on this module. Moreover, its complex bilinear extension is the unique (up to scaling) $\mathfrak{s o}(2 m+1, \mathbb{C}$)-invariant complex bilinear form on the irreducible $\mathbb{C}_{2 m+1}$-module $\mathbb{S}_{2 m+1}=S_{m, m+1} \otimes \mathbb{C}$, s. Corollary 3.1.
3.2. Complex case. Case of even dimension. The following theorem follows immediately from the fact that an irreducible module $\mathbb{S}_{2 m}$ of $\mathbb{Q}_{2 m}$ can be obtained as $\mathbb{S}_{2 m}=S_{m, m} \otimes \mathbb{C}$ and that $\mathbb{S}_{2 m}$ splits as $\mathbb{X}_{2 m}^{0}$-module: $\mathbb{S}_{2 m}=\mathbb{S}_{2 m}^{+}+\mathbb{S}_{2 m}^{-}$, where $\mathbb{S}_{2 m}^{ \pm}=S_{m, m}^{ \pm} \otimes \mathbb{C}$.

Theorem 3.2. Every $50(2 m, \mathbb{C})$-equivariant embedding $\mathbb{C}^{2 m} \hookrightarrow \mathbb{S}_{2 m} \otimes \mathbb{S}_{2 m}$ is a linear combination of the embeddings $j_{\rho}(f)^{\mathbb{C}}$ and $j_{\rho}\left(f_{E}\right)^{\mathbb{C}}$. Their image is contained in the dual of the subspaces indicated in the table depending on $m(\bmod 4)$, where we have put $\mathbb{S}=\mathbb{S}_{2 m}$.

$j_{\rho}(f)^{\mathbb{C}}$	$\vee^{2} \mathbb{S}^{+}+\vee^{2} \mathbb{S}^{-}$	$\mathbb{S}^{+} \vee \mathbb{S}^{-}$	$\wedge^{2} \mathbb{S}^{+}+\wedge^{2} \mathbb{S}^{-}$	$\mathbb{S}^{+} \wedge \mathbb{S}^{-}$
$j_{\rho}\left(f_{E}\right)^{\mathbb{C}}$	$\vee^{2} \mathbb{S}^{+}+\vee^{2} \mathbb{S}^{-}$	$\mathbb{S}^{+} \wedge \mathbb{S}^{-}$	$\wedge^{2} \mathbb{S}^{+}+\wedge^{2} \mathbb{S}^{-}$	$\mathbb{S}^{+} \vee \mathbb{S}^{-}$
m	1	2	3	4

Case of odd dimension. The odd dimensional complex case can be obtained from the real case of signature $(m, m+1)$ by complexification.

We fix the orthogonal decomposition $\left(\mathbb{R}^{m, m+1},<\cdot, \cdot>\right)=\mathbb{R} e_{0}+\mathbb{R}^{m, m}$, where $\left.<e_{0}, e_{0}\right\rangle=-1$, and denote by ρ the irreducible representation of $C \ell_{m, m}$ on $S_{m, m}$ constructed in Proposition 3.1.
Proposition 3.5. An irreducible representation $\tilde{\rho}$ of $C \ell_{m, m+1}$ on $S_{m, m+1}=S_{m, m}$ is defined by

$$
\tilde{\rho}\left|\mathbb{R}^{m, m}=\rho\right| \mathbb{R}^{m, m}, \quad \tilde{\rho}\left(e_{0}\right)=\rho\left(\omega_{m, m}\right)
$$

where $\omega_{m, m}$ is the volume element of $C \ell_{m, m}$. The $C \ell_{m, m+1}^{0}$-module $S_{m, m+1}$ is irreducible and has Schur algebra $\mathcal{C}_{m, m+1}=\mathbb{R} I d$.
Proof. It is sufficient to check that $\left\{\tilde{\rho}\left(e_{0}\right), \rho(x)\right\}=0$ for $x \in \mathbb{R}^{m, m}$ and that $\tilde{\rho}\left(e_{0}\right)^{2}=I d$. This follows from the next lemma.

Lemma 3.3. The volume element $\omega=\omega_{m, m}=e_{1} e_{2} \cdots e_{2 m}\left(\left(e_{i}\right)\right.$ an orthonormal basis of $\left.\mathbb{R}^{m, m}\right)$ of $C \ell_{m, m}$ satisfies $\{\omega, x\}=0$ for all $x \in \mathbb{R}^{m, m}$ and $\omega^{2}=+1$.
Proposition 3.6. If m is even, then every $50(m, m+1)$-invariant bilinear form on $S=S_{m, m+1}$ is a multiple of the admissible (canonical) form f_{E} (see Proposition 3.3) and hence every $\mathbf{s 0}(m, m+1)$-equivariant embedding $\mathbb{R}^{m, m+1} \hookrightarrow(S \otimes S)^{*}$ is proportional to the embedding $j_{\bar{\rho}}\left(f_{E}\right)$, which maps $\mathbb{R}^{m, m+1}$ into $\vee^{2} S^{*}$ if $m \equiv 0(\bmod 4)$ and into $\wedge^{2} S^{*}$ if $m \equiv 2(\bmod 4)$. If m is odd, then every $\mathfrak{s o}(m, m+1)$-invariant bilinear form on $S=S_{m, m+1}$ is a multiple of the admissible (canonical)form f (see Proposition 3.3) and hence every $\mathfrak{s o}(m, m+1)$-equivariant embedding $\mathbb{R}^{m, m+1} \hookrightarrow(S \otimes S)^{*}$ is proportional to the embedding $j_{\tilde{\rho}}(f)$, which maps $\mathbb{R}^{m, m+1}$ into $\vee^{2} S^{*}$ if $m \equiv 1(\bmod 4)$ and into $\wedge^{2} S^{*}$ if $m \equiv 3(\bmod 4)$.
Proof. If m is even, then $\tilde{\rho}\left(e_{0}\right)=\rho\left(\omega_{m, m}\right)$ is f_{E}-symmetric and $\tau\left(f_{E}\right)=+1$. If m is odd, then $\tilde{\rho}\left(e_{0}\right)$ is f-skew symmetric and $\tau(f)=-1$.
Corollary 3.1. If m is even, then every $\mathfrak{s o}(2 m+1, \mathbb{C})$-invariant bilinear form on $\mathbb{S}=$ $\mathbb{S}_{2 m+1}=S_{m, m+1} \otimes \mathbb{C}$ is a multiple of the form $f_{E}^{\mathbb{C}}$ and every $\mathfrak{s o}(2 m+1, \mathbb{C})$-equivariant embedding $\mathbb{C}^{2 m+1} \hookrightarrow(\mathbb{S} \otimes \mathbb{S})^{*}$ is proportional to the embedding $j_{\tilde{\rho}}\left(f_{E}\right)^{\mathbb{C}}$. If m is odd, then every $\mathfrak{s o}(2 m+1, \mathbb{C})$-invariant bilinear form on $\mathbb{S}=\mathbb{S}_{2 m+1}=S_{m, m+1} \otimes \mathbb{C}$ is a multiple of the form $f^{\mathbb{C}}$ and every $\mathbf{s o}(2 m+1, \mathbb{C})$-equivariant embedding $\mathbb{C}^{2 m+1} \hookrightarrow$ $(\mathbb{S} \otimes \mathbb{S})^{*}$ is proportional to the embedding $j_{\tilde{\rho}}(f)^{\mathbb{C}}$.

4. Case of Signature $(\boldsymbol{k}, \mathbf{0})$

4.1. Case of even dimension. We fix the orthogonal decomposition $\mathbb{R}^{2 m}=\mathbb{R}^{m}+\widetilde{\mathbb{R}^{m}}$, where ${ }^{\sim}: \mathbb{R}^{m} \rightarrow \widetilde{\mathbb{R}^{m}}$ is an isometry. Denote by α the involution of $C \ell_{m}$ (respectively \mathbb{C}_{m}) extending $x \mapsto-x$ on \mathbb{R}^{m} (respectively \mathbb{C}^{m}).

Proposition 4.1. If $m \equiv 0$ or $3(\bmod 4)$ thefollowingformulas define on $S=S_{2 m, 0}=$ $C \ell_{m}$ the structure of irreducible $C_{2 m}$-module:

$$
\begin{aligned}
\rho(x) s & =x s \\
\rho(\tilde{x}) s & =\omega s x \quad \text { if } m \equiv 0 \quad(\bmod 4) \\
\rho(\tilde{x}) s & =\omega \alpha(s) x \quad \text { if } m \equiv 3(\bmod 4)
\end{aligned}
$$

where $x \in \mathbb{R}^{m}, s \in S$ and ω is the volume element of $C \ell_{m}$, i.e. $\omega=e_{1} \cdots e_{m}$ for an orthonormal basis $\left(e_{i}\right)$ of \mathbb{R}^{m}. The $\mathfrak{s o}(2 m)$-module S is the sum $S=S^{+}+S^{-}$of the two inequivalent irreducible modules $S^{+}=C \ell_{m}^{0}$ and $S^{-}=C \ell_{m}^{1}$ if $m \equiv 0 \quad(\bmod 4)$ and is irreducible if $m \equiv 3(\bmod 4)$.

If $m \equiv 1$ or $2(\bmod 4)$ the structure of irreducible $C \ell_{2 m}$-module on $S=S_{2 m, 0}=$ $\mathbb{S}_{2 m}=\mathbb{C}_{m}$ is given by:

$$
\begin{aligned}
\rho(x) s & =x s, \\
\rho(\tilde{x}) s & =i \alpha(s) x, \quad x \in \mathbb{R}^{m}, \quad s \in S .
\end{aligned}
$$

As $\mathfrak{s o}(2 m)$-module $S=S^{+}+S^{-}$is the sum of the two irreducible modules $S^{+}=\mathbb{0}_{m}^{0}$ and $S^{-}=\mathbb{X}_{m}^{1}$, which are equivalent for $m \equiv 1(\bmod 4)$ and inequivalent for $m \equiv 2$ $(\bmod 4)$.

Proof. It is sufficient to check the identities $\rho(x)^{2}=-<x, x>I d, \rho(\tilde{x})^{2}=-<x, x>I d$ and $\{\rho(x), \rho(\tilde{y})\}=0$ for $x, y \in \mathbb{R}^{m}$. This is straightforward using the following lemma.

Lemma 4.1. The volume element $\omega=\omega_{m}=e_{1} \cdots e_{m}$ of $C \ell_{m}$ satisfies $\{\omega, x\}=0$ if m is even and $[\omega, x]=0$ if m is odd, $x \in \mathbb{R}^{m} \subset C \ell_{m}$. Moreover,

$$
\omega^{2}=\left\{\begin{array}{llllll}
+1 & \text { if } & m \equiv 0 & \text { or } & 3 & (\bmod 4) \\
-1 & \text { if } & m \equiv 1 & \text { or } & 2 & (\bmod 4)
\end{array}\right.
$$

Now we describe the $\operatorname{Pin}(2 m)$-invariant symmetric bilinear form h on S using the canonical identification $\wedge \mathbb{R}^{m} \rightarrow C \ell_{m}$ of Z_{2}-graded vector spaces given by

$$
e_{i_{1}} \wedge \ldots \wedge e_{i_{k}} \mapsto e_{i_{1}} \cdots e_{i_{k}}
$$

with respect to an orthonormal basis $\left(e_{i}\right), i=1, \ldots, m$, of \mathbb{R}^{m}.
The standard scalar product $<\cdot, \cdot>$ on $\wedge \mathbb{R}^{m}$ induced by the scalar product on \mathbb{R}^{m} is invariant under exterior $x \wedge \cdot$ and interior $x \angle \cdot$ multiplication with unit vectors $x \in \mathbb{R}^{m}$.

Lemma 4.2. Using the identification $C \ell_{m}=\wedge \mathbb{R}^{m}$, Clifford multiplication of $x \in \mathbb{R}^{m}$ and $\phi \in C \ell_{m}$ is given by:

$$
\begin{aligned}
x \phi & =x \wedge \phi-x \angle \phi \\
\phi x & =x \wedge \alpha(\phi)+x \angle \alpha(\phi)
\end{aligned}
$$

Proof. The proof is similar to [L-M] I. Prop. 3.9.
Corollary 4.1. The standard scalar product $<\cdot, \cdot>$ on $\wedge \mathbb{R}^{m}=C l_{m}$ is invariant under left and right multiplications by unit vectors $x \in \mathbb{R}^{m}$. In particular, if $m \equiv 0$ or 3 (mod 4), $h=<\cdot, \cdot\rangle$ is the (admissible) Pin($2 m$)-invariant scalar product on the irreducible $C \ell_{2 m}$-module $S=C \ell_{m}$.

If $m \equiv 1$ or $2(\bmod 4)$, we extend the standard scalar product on $\wedge \mathbb{R}^{m}$ to a symmetric complex bilinear form $<\cdot, \cdot\rangle_{\mathbb{C}}$ on $S=\wedge \mathbb{C}^{m}$. Using the operator c of complex conjugation, we define a symmetric real bilinear form $h=R e<c \cdot, \cdot>_{\mathbb{C}}$ on S.

Lemma 4.3. Let $m \equiv 1$ or $2(\bmod 4)$. Then $h=R e<c \cdot, \cdot>_{\mathbb{C}}$ is the (admissible) $\operatorname{Pin}(2 m)$-invariant scalar product on the irreducible $\mathrm{Cl}_{2 m}$-module $S=\mathbb{C}_{m}$.

Proof. We check that $\rho(x)$ and $\rho(\tilde{x}), x \in \mathbb{R}^{m}$, are $<c \cdot, \cdot>_{\mathbb{C}^{-}}$-skew symmetric and hence h-skew symmetric. By Corollary 4.1 left and right multiplication, L_{x} and R_{x}, by $x \in \mathbb{R}^{m}$ are $<\cdot, \cdot>_{\mathbb{C}^{-}}$skew symmetric endomorphisms of $S=\mathbb{Q}_{m}$, in particular, $\rho(x)$ is $<\cdot, \cdot>_{\mathbb{C}^{-}}$-skew symmetric. It is easy to see that α and the operator I of multiplication by i are $<\cdot, \cdot>_{\mathbb{C}^{-s y m m e t r i c ~ e n d o m o r p h i s m s . ~ M o r e o v e r, ~}}$

$$
\left[I, R_{x}\right]=[I, \alpha]=\left\{\alpha, R_{x}\right\}=0
$$

and hence $\rho(\tilde{x})=I \circ R_{x} \circ \alpha$ is $<\cdot, \cdot>_{\mathbb{C}^{-s y m m e t r i c . ~ F r o m ~ t h e ~ r e l a t i o n s ~}}$

$$
\left[c, L_{x}\right]=\left[c, R_{x}\right]=[c, \alpha]=\{c, I\}=0
$$

we obtain that $[\rho(x), c]=\{\rho(\tilde{x}), c\}=0$, which implies that $\rho(x)$ and $\rho(\tilde{x})$ are $<c \cdot, \cdot>_{\mathbb{C}^{-}}$ skew symmetric.

Now we construct admissible, i.e. h-admissible, bases of the Schur algebra $\mathcal{C}=\mathcal{C}_{2 m, 0}$ for all the values of $m(\bmod 4)$.

Proposition 4.2. If $m \equiv 0(\bmod 4)$, an admissible basis of the Schur algebra $\mathcal{C}_{2 m, 0} \cong$ $\mathbb{R} \oplus \mathbb{R}$ is given by the endomorphisms $I d$ and $E=\alpha$ of $S=C \ell_{m}: \tau(E)=-1$, $\sigma(E)=\sigma_{h}(E)=+1, \iota(E)=+1$.

If $m \equiv 3(\bmod 4)$, an admissible basis of $\mathcal{C}_{2 m, 0} \cong \mathbb{C}$ is given by the endomorphisms Id and $J=L_{\omega} \circ \alpha$ of $S=C \ell_{m}: \tau(J)=-1, \sigma(J)=-1$.

The space \mathcal{B} of $\mathfrak{5 o (2 m)}$-invariant bilinear forms on S is spanned by admissible elements:

$$
\begin{array}{llll}
\mathcal{B}=\operatorname{span}\left\{h, h_{E}\right\} & \text { if } & m \equiv 0 & (\bmod 4) \\
\mathcal{B}=\operatorname{span}\left\{h, h_{J}\right\} & \text { if } & m \equiv 3 & (\bmod 4)
\end{array}
$$

The fundamental invariants (τ, σ, ι) are given by $(\tau, \sigma, \iota)(h)=(-1,+1,+1),(\tau, \sigma, \iota)\left(h_{E}\right)=$ $(+1,+1,+1)$ if $m \equiv 0 \quad(\bmod 4)$ and $(\tau, \sigma)(h)=(-1,+1),(\tau, \sigma)\left(h_{J}\right)=(+1,-1)$ if $m \equiv 3(\bmod 4)$.

Proof. We show that J is admissible and $\tau(J)=\sigma(J)=-1$. All other statements are immediate.

Let $m \equiv 3(\bmod 4)$. From $\left[L_{x}, L_{\omega}\right]=\left[R_{x}, L_{\omega}\right]=\left\{L_{x}, \alpha\right\}=\left\{R_{x}, \alpha\right\}=0$ (see Lemma 4.1) it follows that $\left\{L_{x}, J\right\}=\left\{R_{x}, J\right\}=0$. Since $\rho(x)=L_{x}$ and $\rho(\tilde{x})=R_{x} \circ J$, we conclude $\{\rho(x), J\}=\{\rho(\tilde{x}), J\}=0$.
The operator J is skew symmetric as the product of two anticommuting symmetric operators, namely L_{ω} and α (the scalar product is L_{ω}-invariant and $L_{\omega}^{2}=+I d$).

If $m \equiv 1$ or $2(\bmod 4)$, we consider the following operators on $S=\mathbb{C}_{m}$:

$$
I: s \mapsto i s, J=L_{\omega} \circ c, K=I J \quad \text { and } \quad E=\alpha
$$

where $\omega=e_{1} \cdots e_{m} \in C \ell_{m} \subset \mathbb{X}_{m}$ is the volume element.
Proposition 4.3. Let $m \equiv 1$ or $2(\bmod 4)$. The Schur algebra $\mathcal{C}_{2 m, 0}(\cong \mathbb{C}(2)$ if $m \equiv 1$ $(\bmod 4)$ and $\cong \mathbb{H} \oplus \mathbb{H}$ if $m \equiv 2(\bmod 4)$) is generated by the admissible operators I, J and E satisfying the following (anti) commutator relations:

$$
\begin{gathered}
I^{2}=J^{2}=L_{\omega}^{2}=-1, \quad E^{2}=c^{2}=+1, \\
\{I, J\}=[I, E]=\left[I, L_{\omega}\right]=\{I, c\}=0, \\
{\left[J, L_{\omega}\right]=[J, c]=[E, c]=\left[L_{\omega}, c\right]=0,} \\
\{J, E\}=\left\{L_{\omega}, E\right\}=0 \quad \text { if } m \equiv 1 \quad(\bmod 4), \\
{[J, E]=\left[L_{\omega}, E\right]=0 \quad \text { if } m \equiv 2 \quad(\bmod 4) .}
\end{gathered}
$$

An admissible basis of the Schur algebra is given by the endomorphisms Id, I, J, K, E, $E I, E J, E K$. Their fundamental invariants (τ, σ, ι) are given in the next table, where the value of m is modulo 4.

$m:$	$I d$	I	J	K	E	$E I$	$E J$	$E K$
1	+++	+-+	+--	+--	-++	--+	-+-	-+-
2	+++	+-+	--+	--+	-++	--+	+-+	+-+

The fundamental invariants of the corresponding admissible basis of \mathcal{B} are also listed for convenience:

$m:$	h	h_{I}	h_{J}	h_{K}	h_{E}	$h_{E I}$	$h_{E J}$	$h_{E K}$
1	-++	--+	---	---	+++	+-+	++-	++-
2	-++	--+	+-+	+-+	+++	+-+	--+	--+

Proof. The proof is similar to the proof of Proposition 3.3 and 4.2. One uses the multiplication rules for the invariants and also that L_{ω} is skew symmetric, c is symmetric and they commute.

Theorem 4.1. Every $\mathfrak{s o (2 m)}$-equivariant embedding $\mathbb{R}^{2 m} \hookrightarrow(S \otimes S)^{*}, S=S_{2 m, 0}$, is a linear combination of the embeddings

$$
j_{\rho}(h): \mathbb{R}^{2 m} \hookrightarrow\left(S^{+} \wedge S^{-}\right)^{*} \quad \text { and } \quad j_{\rho}\left(h_{E}\right): \mathbb{R}^{2 m} \hookrightarrow\left(S^{+} \vee S^{-}\right)^{*}
$$

if $m \equiv 0 \quad(\bmod 4)$ and a linear combination of

$$
j_{\rho}(h): \mathbb{R}^{2 m} \hookrightarrow \Lambda^{2} S^{*} \quad \text { and } \quad j_{\rho}\left(h_{J}\right): \mathbb{R}^{2 m} \hookrightarrow \Lambda^{2} S^{*}
$$

if $m \equiv 3(\bmod 4)$.
If $m \equiv 1$ or $2(\bmod 4)$ every $50(2 m)$-equivariant embedding $\mathbb{R}^{2 m} \hookrightarrow(S \otimes S)^{*}$ is a linear combination of the embeddings $j_{A}=j_{\rho}\left(h_{A}\right), A \in \mathcal{C}$ admissible, whose image is contained in the dual of the subspaces indicated in Table 4 depending on $m(\bmod 4)$.

Table 4. $50(2 m)$-equivariant embeddings $j_{A}=j_{\rho}\left(h_{A}\right): \mathbb{R}^{2 m} \hookrightarrow(S \otimes S)^{*}$

$j_{I d}$	$S^{+} \wedge S^{-}$	$S^{+} \wedge S^{-}$
j_{I}	$S^{+} \vee S^{-}$	$S^{+} \vee S^{-}$
j_{J}	$\vee^{2} S^{+}+\vee^{2} S^{-}$	$S^{+} \wedge S^{-}$
j_{K}	$\vee^{2} S^{+}+\vee^{2} S^{-}$	$S^{+} \wedge S^{-}$
j_{E}	$S^{+} \vee S^{-}$	$S^{+} \vee S^{-}$
$j_{E I}$	$S^{+} \wedge S^{-}$	$S^{+} \wedge S^{-}$
$j_{E J}$	$\vee^{2} S^{+}+\vee^{2} S^{-}$	$S^{+} \vee S^{-}$
$j_{E K}$	$\vee^{2} S^{+}+\vee^{2} S^{-}$	$S^{+} \vee S^{-}$
$m:$	1	2

4.2. Case of odd dimension. To reduce the odd dimensional case to the even dimensional, we consider the orthogonal decomposition $\mathbb{R}^{2 m+1}=\mathbb{R} e_{0}+\mathbb{R}^{2 m}$, where e_{0} is a unit vector. Let ρ denote the irreducible representation of $C_{2 m}$ on $S_{2 m, 0}$ defined in Sect. 4.1. We will extend ρ to an irreducible representation $\tilde{\rho}$ of $C \ell_{2 m+1}$ on $S=S_{2 m+1,0}$, where $S_{2 m+1,0}=S_{2 m, 0}$ if $m \equiv 1,2$ or $3(\bmod 4)$ and $S_{2 m+1,0}=S_{2 m, 0} \otimes \mathbb{C}=S_{2 m}$ if $m \equiv 0 \quad(\bmod 4)$. If $m \equiv 1$ or $2(\bmod 4), S_{2 m, 0}=\mathbb{S}_{2 m}$ admits the $C \ell_{2 m}$-invariant complex structure I. For $m \equiv 0(\bmod 4)$ multiplication by i is a $C l_{2 m}$-invariant complex structure on $S_{2 m, 0} \otimes \mathbb{C}$ and will also be denoted by I.

Proposition 4.4. The following formulas define an irreducible representation $\tilde{\rho}$ of $C \ell_{2 m+1}$ on $S_{2 m+1,0}$.

$$
\begin{gathered}
\tilde{\rho}\left|\mathbb{R}^{2 m}=\rho\right| \mathbb{R}^{2 m} \\
\tilde{\rho}\left(e_{0}\right)=\left\{\begin{array}{rlll}
\rho\left(\omega_{2 m}\right) & \text { if } m \equiv 1 \quad \text { or } 3 \quad(\bmod 4) \\
I \circ \rho\left(\omega_{2 m}\right) & \text { if } m \equiv 0 \quad \text { or } 2 & (\bmod 4)
\end{array}\right.
\end{gathered}
$$

where, in the case $m \equiv 0(\bmod 4), \rho$ has been extended complex linearly to a representation on $S_{2 m, 0} \otimes \mathbb{C}$, denoted by the same symbol. $S=S_{2 m+1,0}$ is irreducible as $C \ell_{2 m+1}^{0}$ module if $m \not \equiv 0(\bmod 4)$ and the sum $S=S^{+}+S^{-}$of the two equivalent irreducible $C \ell_{2 m+1}^{0}-$ modules $S^{+}=S_{2 m, 0}^{+}+i S_{2 m, 0}^{-}=C \ell_{m}^{0}+i C \ell_{m}^{1}$ and $S^{-}=i S^{+}$ifm $\equiv 0$ $(\bmod 4)$.

Proof. It is sufficient to check that $\tilde{\rho}\left(e_{0}\right)^{2}=-I d$ and $\left\{\tilde{\rho}\left(e_{0}\right), \rho(x)\right\}=0$ for $x \in \mathbb{R}^{2 m}$, since all other information can be extracted from the Schur algebra, see Corollary 1.3. These identities follow immediately from Lemma 4.1 and the fact that I is a $C \ell_{2 m}$ invariant complex structure.

Now we describe the $\operatorname{Pin}(2 m+1)$-invariant scalar product h on $S=S_{2 m+1,0}$. Let $h_{2 m, 0}$ denote the $\operatorname{Pin}(2 m)$-invariant scalar product on $S_{2 m+1,0}=S_{2 m, 0}$ if $m \equiv 1,2$ or 3 $(\bmod 4)$ and by $h_{2 m, 0}^{\mathbb{C}}$ the complex bilinear extension of the $\operatorname{Pin}(2 m)$-invariant scalar product on $S_{2 m, 0}$ to a $\operatorname{Pin}(2 m)$-invariant complex bilinear form on $S_{2 m+1,0}=\mathbb{S}_{2 m}=$ $S_{2 m, 0} \otimes \mathbb{C}$ if $m \equiv 4 \quad(\bmod 4)$.

Lemma 4.4. The $\operatorname{Pin}(2 m+1)$-invariant scalar product $h=h_{2 m+1,0}$ on $S=S_{2 m+1,0}$ is given by $h=h_{2 m, 0}$ if $m \equiv 1,2$ or $3(\bmod 4)$ and by $h=R e h_{2 m, 0}^{\mathbb{C}}(c \cdot, \cdot)$ if $m \equiv 4$ $(\bmod 4)$, where c is complex conjugation with respect to $S_{2 m, 0} \subset S_{2 m, 0} \otimes \mathbb{C}$.

Proof. If $m \not \equiv 4(\bmod 4)$, the statement follows from Schur's Lemma, since $S_{2 m+1,0}=$ $S_{2 m, 0}$. If $m \equiv 4(\bmod 4)$, the Hermitian form $h_{2 m, 0}^{\mathbb{C}}(c \cdot, \cdot)$ is I-invariant and hence invariant under $\tilde{\rho}\left(e_{0}\right)=I \circ \rho\left(\omega_{2 m}\right)$ and the same is true for $h=\operatorname{Re} h_{2 m, 0}^{\mathbb{C}}(c \cdot, \cdot)$.

If $m \not \equiv 3(\bmod 4)$, we have on $S_{2 m+1,0}=\mathbb{Q}_{m}=C \ell_{m}+i C \ell_{m}$ the operator c of complex conjugation. Hence, we can define an endomorphism J of $S_{2 m+1,0}=\mathbb{Q}_{m}$ by the formulas

$$
J:=\left\{\begin{array}{rll}
L_{\omega} \circ c & \text { if } & m \equiv 1
\end{array} \quad \text { or } 2(\bmod 4)\right.
$$

where L_{ω} is left multiplication by the volume element $\omega=\omega_{m}$ of $C \ell_{m}$ and $\alpha \mid \mathbb{C}_{m}^{0}=+I d$, $\alpha \mid \mathbb{C}_{m}^{1}=-I d$.
Proposition 4.5. Let $m \not \equiv 3(\bmod 4)$. An admissible basis of the Schur algebra $\mathcal{C}=\mathcal{C}_{2 m+1,0}$ is given by the endomorphisms Id, I, J and $K=I J$ of $S_{2 m+1,0}=\mathbb{Q}_{m}$. If $m \equiv 1$ or $2(\bmod 4)$, then $I^{2}=J^{2}=-I d,\{I, J\}=0$ and $\mathcal{C}_{2 m+1,0} \cong \mathbb{H}$. If $m \equiv 0$ $(\bmod 4)$, then $I^{2}=-J^{2}=-I d,\{I, J\}=0$ and $\mathcal{C}_{2 m+1,0} \cong \mathbb{R}(2)$. The space \mathcal{B} of $\mathfrak{5 0}(2 m+1)$-invariant bilinearforms on $S_{2 m+1,0}$ has the admissible basis (h, h_{I}, h_{J}, h_{K}). If $m \equiv 3(\bmod 4)$, then the Schur algebra $\mathcal{C}_{2 m+1,0}=\mathbb{R}$ Id and $\mathcal{B}=\mathbb{R} h$.

Proof. Straightforward, cf. Proposition 4.2.

Theorem 4.2. Ifm $\equiv 3 \quad(\bmod 4)$, every $\mathfrak{s o}(2 m+1)$-equivariant embedding $\mathbb{R}^{2 m+1} \hookrightarrow$ $S^{*} \otimes S^{*}, S=S_{2 m+1,0}$, is a multiple of $j_{\rho}(h): \mathbb{R}^{2 m+1} \hookrightarrow \wedge^{2} S^{*}$. If $m \not \equiv 3(\bmod 4)$, every $\mathfrak{s o}(2 m+1)$-equivariant embedding $\mathbb{R}^{2 m+1} \hookrightarrow(S \otimes S)^{*}$ is a linear combination of the embeddings $j_{A}=j_{\rho}\left(h_{A}\right), A=I d, I, J$ or K, whose image is contained in the dual of the subspaces indicated in Table 5 depending on $m(\bmod 4)$.

Table 5. $50(2 m+1)$-equivariant embeddings $j_{A}: \mathbb{R}^{2 m+1} \hookrightarrow(S \otimes S)^{*}$

$m:$	$j_{I d}$	j_{I}	j_{J}	j_{K}
1	$\wedge^{2} S$	$\vee^{2} S$	$\vee^{2} S$	$\vee^{2} S$
2	$\wedge^{2} S$	$\vee^{2} S$	$\wedge^{2} S$	$\wedge^{2} S$
4	$S^{+} \wedge S^{-}$	$\vee^{2} S^{+}+\vee^{2} S^{-}$	$S^{+} \vee S^{-}$	$\vee^{2} S^{+}+\vee^{2} S^{-}$

5. Case of Signature ($0, k$)

Now we discuss the case of signature $(0, k)$. The proofs are similar to the proofs in the case of signature $(k, 0)$ and will mostly be omitted.
5.1. Case of even dimension. As in the positively defined case, we fix the orthogonal decomposition $\mathbb{R}^{0,2 m}=\mathbb{R}^{0, m}+\widetilde{\mathbb{R}^{0, m}}$, where $\sim: \mathbb{R}^{0, m} \rightarrow \widetilde{\mathbb{R}^{0, m}}$ is an isometry.
Lemma 5.1. The volume element $\omega=\omega_{0, m}=e_{1} \cdots e_{m}\left(\left(e_{i}\right)\right.$ an orthonormal basis of $\left.\mathbb{R}^{0, m}\right)$ of $C \ell_{0, m}$ satisfies $\{\omega, x\}=0$ if m is even and $[\omega, x]=0$ if m is odd, $x \in \mathbb{R}^{0, m} \subset$ $C \ell_{0, m}$. Moreover,

$$
\omega^{2}=\left\{\begin{array}{lllll}
+1 & \text { if } & m \equiv 0 & \text { or } & 1 \\
-1 & \text { if } & m \equiv 2 & \text { or } & 3
\end{array}(\bmod 4)\right.
$$

The next proposition is checked using Lemma 5.1.
Proposition 5.1. If $m \equiv 0$ or $1 \quad(\bmod 4)$ the followingformulas define on $S=S_{0,2 m}=$ $C \ell_{0, m}$ the structure of irreducible $C \ell_{0,2 m}$-module:

$$
\begin{aligned}
\rho(x) s & =x s \\
\rho(\tilde{x}) s & =\omega s x \quad \text { if } m \equiv 0 \quad(\bmod 4) \\
\rho(\tilde{x}) s & =\omega \alpha(s) x \quad \text { if } m \equiv 1 \quad(\bmod 4)
\end{aligned}
$$

where $x \in \mathbb{R}^{0, m}, s \in S$ and ω is the volume element of $C \ell_{0, m}$. The $\mathbf{5 0}(0,2 m)$-module S is the sum $S=S^{+}+S^{-}$of the two inequivalent irreducible modules $S^{+}=C \ell_{0, m}^{0}$ and $S^{-}=C \ell_{0, m}^{1}$ if $m \equiv 0 \quad(\bmod 4)$ and is irreducible if $m \equiv 1 \quad(\bmod 4)$.

If $m \equiv 2$ or $3(\bmod 4)$ the structure of irreducible $C \ell_{0,2 m}-$ module on $S=S_{0,2 m}=$ $\mathbb{S}_{2 m}=\mathbb{C}_{m}$ is given by:

$$
\begin{aligned}
& \rho(x) s=x s, \\
& \rho(\tilde{x}) s=i \alpha(s) x, \quad x \in \mathbb{R}^{0, m} \subset \mathbb{Q}_{m}=C \ell_{0, m} \otimes \mathbb{C}, s \in S=\mathbb{Q}_{m} .
\end{aligned}
$$

As $\mathfrak{s o}(0,2 m)$-module $S=S^{+}+S^{-}$is the sum of the two irreducible submodules $S^{+}=\mathbb{C}_{m}^{0}$ and $S^{-}=\mathbb{C}_{m}^{1}$, which are inequivalent for $m \equiv 2(\bmod 4)$ and equivalent for $m \equiv 3 \quad(\bmod 4)$.

Recall (see Corollary 4.1) that the standard scalar product on $\wedge \mathbb{R}^{m}=C \ell_{m}=C \ell_{m, 0}$ is invariant under left and right multiplications by unit vectors $x \in \mathbb{R}^{m}=\mathbb{R}^{m, 0}$. We can consider $\mathbb{R}^{0, m}$ as subspace

$$
\mathbb{R}^{0, m}=i \mathbb{R}^{m} \subset \mathbb{Q}_{m}=C \ell_{m} \otimes \mathbb{C}=C \ell_{m}+i C \ell_{m}
$$

Then $C \ell_{0, m}=C \ell_{0, m}^{0}+C \ell_{0, m}^{1}=C \ell_{m}^{0}+i C \ell_{m}^{1}$. We define an isomorphism of \mathbb{Z}_{2}-graded vector spaces $\varphi: C \ell_{m} \rightarrow C \ell_{0, m}$ on elements $a \in C \ell_{m}$ of pure degree $\operatorname{deg}(a)=0$ or 1 by:

$$
a \mapsto i^{\operatorname{deg}(a)} a
$$

A scalar product $<\cdot, \cdot>$ on $C \ell_{0, m}$ is defined by the condition that $\varphi: C \ell_{m} \rightarrow C \ell_{0, m}$ is an isometry for the standard scalar product on $\wedge \mathbb{R}^{m}=C \ell_{m}$. The following lemma is true by construction.

Lemma 5.2. The scalar product $<\cdot, \cdot>$ on $C l_{0, m}$ is invariant under left and right multiplications by unit vectors $x \in \mathbb{R}^{0, m}$. In particular, if $m \equiv 0$ or $1(\bmod 4)$, $h=\langle\cdot, \cdot\rangle$ is the (admissible) $\operatorname{Pin}(0,2 m)$-invariant scalar product on the irreducible $C \ell_{0,2 m}$-module $S=S_{0,2 m}=C \ell_{0, m}$.

If $m \equiv 2$ or $3(\bmod 4)$, we extend the scalar product $<\cdot, \cdot\rangle$ on $C \ell_{0, m}$ to a symmetric complex bilinear form $<\cdot, \cdot>_{\mathbb{C}}$ on $S=\wedge \mathbb{C}^{m}$. Using the operator $c=c_{0, m}$ of complex conjugation with respect to the real form $C \ell_{0, m}=C \ell_{m}^{0}+i C \ell_{m}^{1}$ of \mathbb{Q}_{m}, we define a (real) scalar product $h=R e<c \cdot, \cdot>_{\mathbb{C}}$ on S.

Lemma 5.3. Let $m \equiv 2$ or $3(\bmod 4)$. Then $h=R e<c \cdot, \cdot>_{\mathbb{C}}$ is the (admissible) $\operatorname{Pin}(0,2 m)$-invariant scalar product on the irreducible $C l_{0,2 m}$-module $S=\mathbb{C} \ell_{m}$.

Now we construct (h-)admissible bases of the Schur algebra $\mathcal{C}=\mathcal{C}_{0,2 m}$ for all the values of $m(\bmod 4)$.

Proposition 5.2. If $m \equiv 0(\bmod 4)$, an admissible basis of the Schur algebra $\mathcal{C}_{0,2 m} \cong$ $\mathbb{R} \oplus \mathbb{R}$ is given by the endomorphisms $I d$ and $E=\alpha$ of $S=C \ell_{0, m}: \tau(E)=-1$, $\sigma(E)=\sigma_{h}(E)=+1, \iota(E)=+1$.

If $m \equiv 1(\bmod 4)$, an admissible basis of $\mathcal{C}_{0,2 m} \cong \mathbb{C}$ is given by the endomorphisms Id and $J=L_{\omega} \circ \alpha$ of $S=C \ell_{0, m}$ (where ω is a volume element of $C \ell_{0, m}$): $\tau(J)=-1, \sigma(J)=-1$.

The space \mathcal{B} of $50(0,2 m)$-invariant bilinearforms on S is spanned by the admissible elements h and h_{E} if $m \equiv 0 \quad(\bmod 4)$ and by h and h_{J} if $m \equiv 1 \quad(\bmod 4)$. Their fundamental invariants (τ, σ, ι) are $(\tau, \sigma, \iota)(h)=(+1,+1,+1),(\tau, \sigma, \iota)\left(h_{E}\right)=(-1,+1,+1)$ if $m \equiv 0 \quad(\bmod 4)$ and $(\tau, \sigma)(h)=(+1,+1),(\tau, \sigma)\left(h_{J}\right)=(-1,-1)$ if $m \equiv 1 \quad(\bmod 4)$.

If $m \equiv 2$ or $3 \quad(\bmod 4)$, we consider the following operators on $S=\mathbb{Q}_{m}$:

$$
I: s \mapsto i s, J=L_{\omega} \circ c, K=I J \text { and } E=\alpha \quad\left(\omega=\omega_{0, m}\right) .
$$

Proposition 5.3. Let $m \equiv 2$ or $3(\bmod 4)$. The Schur algebra $\mathcal{C}_{0,2 m}(\cong \mathbb{H} \oplus \mathbb{H}$ if $m \equiv 2(\bmod 4)$ and $\cong \mathbb{C}(2)$ if $m \equiv 3(\bmod 4))$ is generated by the admissible operators I, J and E, which satisfy the following identities:

$$
\begin{gathered}
I^{2}=J^{2}=L_{\omega}^{2}=-1, \quad E^{2}=c^{2}=+1 \\
\{I, J\}=[I, E]=\left[I, L_{\omega}\right]=\{I, c\}=0 \\
{\left[J, L_{\omega}\right]=[J, c]=[E, c]=\left[L_{\omega}, c\right]=0} \\
{[J, E]=\left[L_{\omega}, E\right]=0 \quad \text { if } m \equiv 2 \quad(\bmod 4)} \\
\{J, E\}=\left\{L_{\omega}, E\right\}=0 \quad \text { if } m \equiv 3 \quad(\bmod 4) .
\end{gathered}
$$

An admissible basis of the Schur algebra is given by the endomorphisms Id, I, J, K, E, $E I, E J, E K$. Their fundamental invariants (τ, σ, ι) are given in the next table, where the value of m is modulo 4.

$m:$	$I d$	I	J	K	E	$E I$	$E J$	$E K$
2	+++	+-+	--+	--+	-++	--+	+-+	+-+
3	+++	+-+	+--	+--	-++	--+	-+-	-+-

The fundamental invariants of the corresponding admissible basis for the space $\mathcal{B}=\mathcal{B}_{0,2 m}$ (of $\mathfrak{s o}(0,2 m)$-invariant bilinear forms on $\left.S_{0,2 m}\right)$ are as follows:

$m:$	h	h_{I}	h_{J}	h_{K}	h_{E}	$h_{E I}$	$h_{E J}$	$h_{E K}$
2	+++	+-+	--+	--+	-++	--+	+-+	+-+
3	+++	+-+	+--	+--	-++	--+	-+-	-+-

Theorem 5.1. Every $\mathfrak{s o}(0,2 m)$-equivariant embedding $\mathbb{R}^{0,2 m} \hookrightarrow(S \otimes S)^{*}, S=S_{0,2 m}$, is a linear combination of the embeddings

$$
j_{\rho}(h): \mathbb{R}^{0,2 m} \hookrightarrow\left(S^{+} \vee S^{-}\right)^{*} \quad \text { and } \quad j_{\rho}\left(h_{E}\right): \mathbb{R}^{0,2 m} \hookrightarrow\left(S^{+} \wedge S^{-}\right)^{*}
$$

if $m \equiv 0 \quad(\bmod 4)$ and a linear combination of

$$
j_{\rho}(h) \text { and } j_{\rho}\left(h_{J}\right): \mathbb{R}^{0,2 m} \hookrightarrow V^{2} S^{*} \quad \text { if } m \equiv 1 \quad(\bmod 4) .
$$

If $m \equiv 2$ or $3 \quad(\bmod 4)$ every $\mathfrak{s o (0 , 2 m})$-equivariant embedding $\mathbb{R}^{0,2 m} \hookrightarrow(S \otimes S)^{*}$ is a linear combination of the embeddings $j_{A}=j_{\rho}\left(h_{A}\right), A \in \mathcal{C}=\mathcal{C}_{0,2 m}$ admissible, whose image is contained in the dual of the subspaces indicated in Table 6 depending on $m(\bmod 4)$.

Table 6.50(0,2m)-equivariant embeddings $j_{A}: \mathbb{R}^{0,2 m} \hookrightarrow(S \otimes S)^{*}$

$j_{I d}$	$S^{+} \vee S^{-}$	$S^{+} \vee S^{-}$	
j_{I}	$S^{+} \wedge S^{-}$	$S^{+} \wedge S^{-}$	
j_{J}	$S^{+} \vee S^{-}$	$\wedge^{2} S^{+}+\wedge^{2} S^{-}$	
j_{K}	$S^{+} \vee S^{-}$	$\wedge^{2} S^{+}+\wedge^{2} S^{-}$	
j_{E}	$S^{+} \wedge S^{-}$	$S^{+} \wedge S^{-}$	
$j_{E I}$	$S^{+} \vee S^{-}$	$S^{+} \vee S^{-}$	
$j_{E J}$	$S^{+} \wedge S^{-}$	$\wedge^{2} S^{+}+\wedge^{2} S^{-}$	
$j_{E K}$	$S^{+} \wedge S^{-}$	$\wedge^{2} S^{+}+\wedge^{2} S^{-}$	
$m:$	2	3	

5.2. Case of odd dimension. Consider the orthogonal decomposition
$\left(\mathbb{R}^{0,2 m+1},<\cdot, \cdot>\right)=\mathbb{R} e_{0}+\mathbb{R}^{0,2 m}$, where $<e_{0}, e_{0}>=-1$. Let ρ denote the irreducible representation of $C \ell_{0,2 m}$ on $S_{0,2 m}$ defined in Sect. 5.1. We will extend ρ to an irreducible representation $\tilde{\rho}$ of $C \ell_{0,2 m+1}$ on $S=S_{0,2 m+1}$, where $S_{0,2 m+1}=S_{0,2 m}$ if $m \equiv 0,2$ or 3 $(\bmod 4)$ and $S_{0,2 m+1}=S_{0,2 m} \otimes \mathbb{C}=\mathbb{S}_{2 m}$ if $m \equiv 1 \quad(\bmod 4)$. If $m \equiv 2 \operatorname{or} 3 \quad(\bmod 4)$, $S_{0,2 m}=\mathbb{S}_{2 m}$ admits the $C \ell_{0,2 m}$-invariant complex structure I. For $m \equiv 1(\bmod 4)$ multiplication by i is a $C \ell_{0,2 m}$-invariant complex structure on $S_{0,2 m} \otimes \mathbb{C}$ and will also be denoted by I.

Proposition 5.4. The following formulas define an irreducible representation $\tilde{\rho}$ of $C \ell_{0,2 m+1}$ on $S_{0,2 m+1}$.

$$
\begin{gathered}
\tilde{\rho}\left|\mathbb{R}^{0,2 m}=\rho\right| \mathbb{R}^{0,2 m} \\
\tilde{\rho}\left(e_{0}\right)=\left\{\begin{array}{rlll}
\rho\left(\omega_{0,2 m}\right) & \text { if } m \equiv 0 & \text { or } 2 & (\bmod 4) \\
I \circ \rho\left(\omega_{0,2 m}\right) & \text { if } & m \equiv 1 & \text { or } 3
\end{array}(\bmod 4),\right.
\end{gathered}
$$

where, in the case $m \equiv 1 \quad(\bmod 4), \rho$ has been extended complex linearly to a representation on $S_{0,2 m+1}=S_{0,2 m} \otimes \mathbb{C} . S=S_{0,2 m+1}$ is irreducible as a $C_{0,2 m+1}^{0}$-module if $m \not \equiv 3(\bmod 4)$ and the sum $S=S^{+}+S^{-}$of the two equivalent irreducible $C \ell_{0,2 m+1^{-}}^{0}$ modules $S^{+}=S^{\hat{j}}$ and $S^{-}=i S^{\hat{J}}$ if $m \equiv 3(\bmod 4)$, where $S^{\hat{j}}$ is the fixed point set of $a \mathbf{5 O}(0,2 m+1)$-invariant real structure \hat{J} on S (the explicit expression for \hat{J} will be given below).

Next we describe the $\operatorname{Pin}(0,2 m+1)$-invariant scalar product $h=h_{0,2 m+1}$ on $S=$ $S_{0,2 m+1}$. Let $h_{0,2 m}$ denote the $\operatorname{Pin}(0,2 m)$-invariant scalar product on $S_{0,2 m+1}=S_{0,2 m}$ if $m \equiv 0,2$ or $3(\bmod 4)$ and by $h_{0,2 m}^{\mathbb{C}}$ the complex bilinear extension of the $\operatorname{Pin}(0,2 m)$ invariant scalar product on $S_{0,2 m}$ to a $\operatorname{Pin}(0,2 m)$-invariant complex bilinear form on $S_{0,2 m+1}=\mathbb{S}_{2 m}=S_{0,2 m} \otimes \mathbb{C}$ if $m \equiv 1(\bmod 4)$.

Lemma 5.4. The $\operatorname{Pin}(0,2 m+1)$-invariant scalar product $h=h_{0,2 m+1}$ on $S=S_{0,2 m+1}$ is given by $h=h_{0,2 m}$ if $m \equiv 0,2$ or $3(\bmod 4)$ and by $h=\operatorname{Re} h_{0,2 m}^{\mathbb{C}}(c \cdot, \cdot)$ if $m \equiv 1$ $(\bmod 4)$, where c is complex conjugation with respect to $S_{0,2 m} \subset S_{0,2 m} \otimes \mathbb{C}$.

If $m \not \equiv 0 \quad(\bmod 4)$, we have on $S_{0,2 m+1}=\mathbb{C}_{m}=C \ell_{0, m}+i C \ell_{0, m}$ the operator $c=$ $c_{0, m}$ of complex conjugation. Using it we define an endomorphism \hat{J} of $S_{0,2 m+1}=\mathbb{Q}_{m}$ by

$$
\hat{J}:=L_{\omega} \circ \alpha \circ c
$$

where $\omega=\omega_{0, m}$ is a volume element of $C \ell_{0, m}$ and $\alpha\left|\mathbb{Q}_{m}^{0}=+I d, \alpha\right| \mathbb{Q}_{m}^{1}=-I d$.

Proposition 5.5. Let $m \not \equiv 0$ (mod 4). The Schur algebra $\mathcal{C}=\mathcal{C}_{0,2 m+1}$ is generated by the endomorphisms I and \hat{J} of $S=S_{0,2 m+1}=\mathbb{Q}_{m}$, which satisfy the following relations: $I^{2}=-1,\{I, \hat{J}\}=0$. Moreover, $\hat{J}^{2}=+I d$ and $\mathcal{C}_{0,2 m+1} \cong \mathbb{R}(2)$ if $m \equiv 3$ $(\bmod 4)$ and $\hat{J}^{2}=-I d$ and $\mathcal{C}_{0,2 m+1} \cong \mathbb{H}$ if $m \equiv 1$ or $2(\bmod 4)$. An admissible basis of $\mathcal{C}_{0,2 m+1}$ is given by the endomorphisms Id, I, \hat{J} and $\hat{K}=I \hat{J}$. Their fundamental invariants (τ, σ, ι) together with the invariants of the associated admissible basis for the space \mathcal{B} of $\mathfrak{s o}(0,2 m+1)$-invariant bilinearforms are given in Table $7(\iota$ is only defined if $m \equiv 3 \quad(\bmod 4))$. If $m \equiv 0 \quad(\bmod 4), \mathcal{C}_{0,2 m+1}=\mathbb{R} I d$.

Table 7. Fundamental invariants of admissible endomorphisms and bilinear forms of $S_{0,2 m+1}$

$m:$	$I d$	I	\hat{J}	\hat{K}	h	h_{I}	h_{j}	$h_{\hat{K}}$
1	++	+-	--	--	++	+-	--	--
2	++	+-	+-	+-	++	+-	+-	+-
3	+++	+--	-++	-+-	+++	+--	-++	-+-

 proportional to $j_{\rho}(h): \mathbb{R}^{0,2 m+} \hookrightarrow V^{2} S^{*}$ if $m \equiv 0(\bmod 4)$ and a linear combination of the embeddings $j_{A}=j_{\rho}\left(h_{A}\right), A=I d, I, \hat{J}$ and \hat{K} if $m \not \equiv 0(\bmod 4)$. The image of the j_{A} is contained in the dual of the subspaces indicated in Table 8.

Table 8. $\mathbf{5 0}(0,2 m+1)$-equivariant embeddings $j_{A}: \mathbb{R}^{0,2 m+1} \hookrightarrow(S \otimes S)^{*}$

$j_{I d}$	$\vee^{2} S$	$\vee^{2} S$	$S^{+} \vee S^{-}$
j_{J}	$\wedge^{2} S$	$\wedge^{2} S$	$S^{+} \wedge S^{-}$
j_{j}	$\vee^{2} S$	$\wedge^{2} S$	$\wedge^{2} S^{+}+\wedge^{2} S^{-}$
$j_{\hat{K}}$	$\vee^{2} S$	$\wedge^{2} S$	$\wedge^{2} S^{+}+\wedge^{2} S^{-}$
$m:$	1	2	3

6. Complete Classification

Every pseudo-Euclidean space V admits a (unique up to an isometry) orthogonal decomposition $V=V_{1}+V_{2}$, where $V_{1}=\mathbb{R}^{m, m}$ and the scalar product of V_{2} is positively or negatively defined. Now we consider the case when $V_{1} \neq 0$ and $V_{2} \neq 0$, the other cases were treated in Sects. 3.1, 4 and 5. We denote by $S_{i}, i=1,2$, the irreducible $C l\left(V_{i}\right)$-module constructed in Sects. 3.1 and 4, 5 respectively. Then $S=S_{1} \otimes S_{2}$ carries the structure of irreducible module for the Clifford algebra $C l(V)=C l\left(V_{1}\right) \hat{\otimes} C \ell\left(V_{2}\right)$, see Proposition 2.3. By Proposition 3.4, to every admissible bilinear form β_{2} (respectively endomorphism A_{2}) on S_{2} we associate an admissible bilinear form $\beta=\beta_{1} \otimes \beta_{2}$ (respectively endomorphism $A_{1} \otimes A_{2}$) on S. In Sects. 4 and 5 we have contructed admissible bases for the space \mathcal{B}_{2} of $\mathfrak{s o}\left(V_{2}\right)$-invariant bilinear forms on S_{2} and for the Schur algebra \mathcal{C}_{2} of S_{2}. Therefore, this explicit correspondence defines an injective linear mapping $\phi: \beta_{2} \mapsto \beta=\phi\left(\beta_{2}\right)$ (respectively $\psi: A_{2} \mapsto A=\psi\left(A_{2}\right)$) from \mathcal{B}_{2} into the space \mathcal{B} of $\mathfrak{s o}(V)$-invariant bilinear forms on S (respectively from \mathcal{C}_{2} into the Schur algebra \mathcal{C} of S). Moreover, ϕ and ψ are actually isomorphisms, because the Schur algebras of S and S_{2} are isomorphic, due to the fact that V and V_{2} have the same signature s, see Corollary 1.3. So we have essentially proved:

Theorem 6.1. There exist natural isomorphisms $\phi: \mathcal{B}_{2} \rightarrow \mathcal{B}$ of vector spaces and $\psi: \mathcal{C}_{2} \rightarrow \mathcal{C}$ of algebras mapping admissible elements onto admissible elements. Under these maps, the fundamental invariants of admissible elements transform according to the rules given in Proposition 2.2. In particular, if $m \equiv 0(\bmod 4)$, then ϕ and ψ preserve the fundamental invariants ($(4,4)$-periodicity).
Proof. We recall that by Proposition 3.3 the Schur algebra $\mathcal{C}_{m, m}$ of $S_{1}=S_{m, m}$ has the admissible basis $(I d, E)$ and $E^{2}=+I d$. This implies that the vector space isomorphism ψ is actually an isomorphism of algebras. The (4,4)-periodicity follows from

$$
\sigma\left(f_{E}\right)=\iota\left(f_{E}\right)=\sigma_{f}(E)=\sigma_{f_{E}}(E)=\iota(E)=+1 .
$$

Recall that $\mathcal{B}_{p, q}$ denotes the space of $\mathfrak{s o}(p, q)$-invariant bilinear forms on the $\mathfrak{s o}(p, q)$ spinor module $S_{p, q}$ and $\mathcal{C}_{p, q}$ is the Schur algebra of $S_{p, q}$.
Corollary 6.1. ($(\mathbf{8 , 0})$ - and ($\mathbf{(0 , 8)}$-periodicity) There exist natural isomorphisms

$$
\phi_{8,0}: \mathcal{B}_{p, q} \rightarrow \mathcal{B}_{p+8, q} \quad \text { and } \quad \phi_{0,8}: \mathcal{B}_{p, q} \rightarrow \mathcal{B}_{p, q+8}
$$

of vector spaces and

$$
\psi_{8,0}: \mathcal{C}_{p, q} \rightarrow \mathcal{C}_{p+8, q} \quad \text { and } \quad \psi_{0,8}: \mathcal{C}_{p, q} \rightarrow \mathcal{C}_{p, q+8}
$$

of algebras mapping the admissible elements onto admissible elements preserving their fundamental invariants.

Proof. By Theorem $6.1 \mathcal{B}_{p, q}$ and $\mathcal{C}_{p, q}$ have admissible bases. Now we recall from Sect. 4 and 5 that if $k \equiv 0(\bmod 8)$, then $\mathcal{C}_{k, 0} \cong \mathcal{C}_{0, k}$ has an admissible basis, which was denoted by $(I d, E)$, such that $(\tau, \sigma, \ell)(E)=(-1,+1,+1)$ and, of course, $(\tau, \sigma, \iota)(I d)=(+1,+1,+1)$. The existence of the maps $\psi_{8,0}$ and $\psi_{0,8}$ follows from $\tau(I d) \iota(I d)=-\tau(E) \iota(E)$. They preserve the fundamental invariants, because $\sigma(I d)=$ $\iota(I d)=\sigma(E)=\iota(E)=+1$. The existence and properties of $\phi_{8,0}$ and $\phi_{0,8}$ are proved similarly.
 combination of the embeddings $j_{A}=j_{\rho}\left(h_{A}\right)$, where h is the canonical bilinearform on the spinor module S of $\mathfrak{s o}(V)$ and A are admissible elements of the Schur algebra \mathcal{C} of S.

To obtain an overview over all possible N-extended Poincaré algebras $\mathfrak{p}(V)+S$, $N= \pm 1, \pm 2$, it is useful to define the invariants σ and ι for embeddings $j: V \hookrightarrow(S \otimes S)^{*}$ having special properties. More precisely, we put $\sigma(j)=+1$ if $j V \subset \vee^{2} S^{*}$ and $\sigma(j)=$ -1 if $j V \subset \wedge^{2} S^{*}$. If $S=S^{+}+S^{-}$, we define $\iota(j)=+1$ if $j V \subset\left(S^{+} \otimes S^{+}+S^{-} \otimes S^{-}\right)^{*}$ and $\iota(j)=-1$ if $j V \subset\left(S^{+} \otimes S^{-}\right)^{*}$.

Note that the fundamental invariants of $j_{A}=j_{\rho}\left(h_{A}\right), A \in \mathcal{C}$ admissible, are easily computable:

$$
\sigma\left(j_{A}\right)=\tau\left(h_{A}\right) \sigma\left(h_{A}\right)=\tau(h) \tau(A) \sigma(h) \sigma(A) \quad \text { and } \quad \iota\left(j_{A}\right)=-\iota\left(h_{A}\right)=-\iota(h) \iota(A) .
$$

Recall that \mathcal{J} denotes the space of $\mathfrak{s o}(V)$-equivariant mappings $j: V \rightarrow(S \otimes S)^{*}$. We define the subspaces

$$
\mathcal{J}^{\sigma_{0}}:=\left\{j \in \mathcal{J} \mid \sigma(j)=\sigma_{0}\right\} \cup\{0\} \quad \text { and }
$$

$$
\mathcal{J}^{\sigma_{0} \iota_{0}}:=\left\{j \in \mathcal{J}^{\sigma_{0}} \mid \iota(j)=\iota_{0}\right\} \cup\{0\}
$$

and put

$$
L^{\sigma_{0}}:=\operatorname{dim} \mathcal{J}^{\sigma_{0}}, \quad L^{\sigma_{0} \iota_{0}}:=\operatorname{dim} \mathcal{J}^{\sigma_{0} \iota_{0}}
$$

We shall write L^{+}, L^{+-}, \ldots instead of the more cumbersome L^{+1}, L^{+1-1}, \ldots.
Remark that $L^{+}\left(=L^{++}+L^{+-}\right.$if $\left.S=S^{+}+S^{-}\right)$is the maximal number of linearly independent super algebra structures on $\mathfrak{p}(V)+S$ and that $L^{-}\left(=L^{-+}+L^{--}\right)$is the number of \mathbb{Z}_{2}-graded Lie algebra structures on $\mathfrak{p}(V)+S$.

Theorem 6.2. The numbers (L^{+}, L^{-}) and ($L^{++}, L^{+-}, L^{-+}, L^{--}$) depend only on the dimension $n=\operatorname{dim} V=p+q$ and the signature $s=p-q$ of $V=\mathbb{R}^{p, q}$ modulo 8 . Moreover, they admit the mirror super symmetry $\boldsymbol{n} \mapsto-n$. More precisely,

$$
\begin{aligned}
L^{+}(-n, s) & =L^{-}(n, s) \quad \text { and } \\
L^{+\iota_{0}}(-n, s) & =L^{-\iota_{0}}(n, s), \quad \iota_{0}= \pm .
\end{aligned}
$$

Their values are given in Table 9.

Table 9. Numbers of extended Poincaré algebras $\mathfrak{p}(p, q)+S_{p, q}$ of different types depending on $n=p+q$ and $s=p-q$ modulo 8

$s:$	$\left(L^{++}, L^{+-}, L^{-+}, L^{--}\right)(n, s)$ or $\left(L^{+}, L^{-}\right)(n, s)$							
4		$2,0,6,0$		$0,4,0,4$		$6,0,2,0$		$0,4,0,4$
3	1,3		1,3		3,1		3,1	
2		$0,2,4,2$		$2,2,2,2$		$4,2,0,2$		$2,2,2,2$
1	$0,1,2,1$		$0,1,2,1$		$2,1,0,1$		$2,1,0,1$	
0		$0,0,2,0$		$0,1,0,1$		$2,0,0,0$		$0,1,0,1$
-1	0,1		0,1		1,0		1,0	
-2		0,2		1,1		2,0		1,1
-3	1,3		1,3		3,1		3,1	
$n:$	-3	-2	-1	0	1	2	3	4

Proof. This follows from Theorem 6.1 and the tables of Sects. 3.1, 4 and 5 by straightforward computation.

In the complex case we consider the space \mathcal{J}_{c} of $\mathfrak{s o}(m, \mathbb{C})$-equivariant mappings $\mathbb{C}^{m} \rightarrow\left(\mathbb{S}_{m} \otimes \mathbb{S}_{m}\right)^{*}$ and define the invariants σ, ι and the spaces $\mathcal{J}_{c}^{+}, \mathcal{J}_{c}^{+-}$, etc. as in the real case (ι is only defined if the complex $\mathfrak{s o}(m, \mathbb{C})$ spinor module \mathbb{S}_{m} is reducible $\mathbb{S}_{m}=\mathbb{S}_{m}^{+}+\mathbb{S}_{m}^{-}$). Their dimensions are denoted by L_{c}^{+}, L_{c}^{+-}, etc.

Theorem 6.3. The numbers $\left(L_{c}^{+}, L_{c}^{-}\right)$and ($L_{c}^{++}, L_{c}^{+-}, L_{c}^{-+}, L_{c}^{--}$) depend only on m (mod 8). Moreover, they admit the mirror super symmetry $m \mapsto-m$. More precisely,

$$
\begin{aligned}
L_{c}^{+}(-m) & =L_{c}^{-}(m) \quad \text { and } \\
L_{c}^{+\iota_{0}}(-m) & =L_{c}^{-\iota_{0}}(m), \quad \iota_{0}= \pm .
\end{aligned}
$$

Their values are given in the next table.

	0,1	$0,0,2,0$	0,1	$0,1,0,1$	1,0	$2,0,0,0$	1,0	$0,1,0,1$
$m:$	-3	-2	-1	0	1	2	3	4

Proof. Follows from Sect. 3.2.

Acknowledgement. The first author is very grateful to Max-Planck-Institut für Mathematik for financial support and hospitality. The second author would like to thank S.-S. Chern and R. Osserman for inviting him to MSRI, where he is now enjoying his stay; he would also like to thank W. Ballmann and U. Hamenstädt for encouragement and support.

References

[A-C1] Alekseevsky,D.V., Cortés, V.: Isometry Groupsof Homogeneous Quaternionic Kähler Manifolds (to appear); available as preprint Erwin Schrödinger Institut 230 (1995)
[dW-V-VP] de Wit, B., Vanderseypen, F., Van Proeyen, A.: Symmetry structure of special geometries. Nucl. Phys. B400 (1993), 463-521
[F] Freund, P.G.O.: Introduction to supersymmetry. New York, Cambridge University Press, 1986
[G-L] Gol'fand, T.A., Likhtman, E.P.: Extension of the Algebra of Poincaré Group Generators and Violation of P-Invariance. JETP Lett. 13, 323-326 (1971)
[H] Harvey, F.R.: Spinors and calibrations. Boston, Academic Press, 1989
[K] V. Kac: Lie Superalgebras. Adv. Math. 26, 8-96 (1977)
[L-M] Lawson, H.B., Michelson, M.L.: Spin geometry. Princeton, Princeton University Press, 1989
[O-S] Ogievetsky, V.I., Sokatchev, E.S.: Structure of Supergravity Group. Phys. Lett. 79B, 222-224 (1978)
[O-V] Onishchik, A.L., Vinberg, E.L.: Lie Groups and Algebraic Groups. Berlin, Heidelberg: Springer, 1990
[R] Rasevskir, P.A.: The Theory of Spinors. Uspehi Mat. Nauk (N.S.) 10, no 2 (64), 3-110 (1955); AMS Transl. (2) 6, 1-110 (1957)

Communicated by S.-T. Yau

[^0]: * E-mail: daleksee@mpim-bonn.mpg.de; supported by Max-Planck-Institut für Mathematik (Bonn)
 ** E-mail: vicente@rhein.iam.uni-bonn.de; supported by the Alexander von Humboldt Foundation, MSRI (Berkeley) and SFB 256 (Bonn University)

