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Abstract: The p x p matrix version of the r-KdV hierarchy has been recently
treated as the reduced system arising in a Drinfeld-Sokolov type Hamiltonian sym-
metry reduction applied to a Poisson submanifold in the dual of the Lie algebra
glpr ® C[A, A"1]. Here a series of extensions of this matrix Gelfand-Dickey system
is derived by means of a generalized Drinfeld-Sokolov reduction defined for the
Lie algebra glpr+s <8> C[J, A"1] using the natural embedding glpr c glpr+s for s any
positive integer. The hierarchies obtained admit a description in terms of a p x p
matrix pseudo-differential operator comprising an r-KdV type positive part and
a non-trivial negative part. This system has been investigated previously in the p — 1
case as a constrained KP system. In this paper the previous results are considerably
extended and a systematic study is presented on the basis of the Drinfeld-Sokolov
approach that has the advantage that it leads to local Poisson brackets and makes
clear the conformal (1^-algebra) structures related to the KdV type hierarchies.

0. Introduction

This paper is a continuation of [1], where it was shown how the matrix Gelfand-
Dickey hierarchy [2, 3] fits into the Drinfeld-Sokolov approach [4] (see also [ 5 -
9]) to generalized KdV hierarchies.

The phase space of the matrix Gelfand-Dickey hierarchy is the space of p x p
matrix Lax operators

LPir =Pdr + uxd
r-x + • • • + ur-xd + ur9 ut € C°°(S\glp), (0.1)

where P is a diagonal constant matrix with distinct, non-zero entries. This phase
space has two compatible Poisson brackets: the linear and quadratic matrix Gelfand-
Dickey Poisson brackets. The Hamiltonians generating a commuting hierarchy of
bihamiltonian flows are obtained from the residues of the componentwise fractional
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powers of the p x p diagonal matrix pseudo-differential operator LPtr determined
by diagonalizing LPtr in the algebra of matrix pseudo-differential operators. This
system arises from a Drinfeld-Sokolov type Hamiltonian symmetry reduction applied
to a Poisson submanifold in the dual of the Lie algebra glpr ® C[A, A"1] - where

glpr is the central extension of the loop algebra glpr = C°°(Sl
9glpr) - endowed with

the family of compatible Poisson brackets and commuting Hamiltonians provided by
the r-matrix (AKS) construction (see e.g. [10]). The corresponding reduced phase
space is identified with the set of first order matrix differential operators Stp^r of the
form

&p,r = Iprd +Jp,r + Ap9r , ( 0 . 2 )

where jPyr G C°°(Sl,glpr) and A P t r G glpr <8> C[A, X~l] are written a s r x r matrices
with p x p matrix entries as fo l lows:

jp,r =

/ o r o
o r

o
\xr o

o
r
0/

(0.3)

\pr is thewhere T is a p x p diagonal constant matrix for which P = (-F~lY;
pr x pr identity matrix. The correspondence between LPyr in (0.1) and l£Ptr in (0.2)
is established through the relation

where the fa are /^-component column vectors, yielding w, = AVjAr l with A :=

The purpose of the present paper is to derive a. series of extensions of the
above system using the natural embedding of the Lie algebra glpr into glpr+s for
any positive integer s. This embedding is given by writing the general element
m G glpr+s in the block form

'A B
Cm

( (0.5)

where A G glpr is written as an r x r matrix with p x p matrix entries, D is an
s x s matrix and B (respectively C) is an r-component column (row) vector with
p x s (s x p) matrix entries. In particular, the image of Ap>r under this embedding

1

p>r>s o
(0.6)

A generalized Drinfeld-Sokolov reduction based on the Lie algebra glpr+s <8>
C[A,A~!] will be defined in such a way that the matrix Gelfand-Dickey system
is recovered when setting all fields outside the gl c glpr+s block to zero. The
corresponding reduced phase space will turn out to be the set of first order matrix
differential operators S£p^s of the form

i Jp,r,s • (0.7)
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where y ^ * reads

/o o o\

o o o
vr V\ f+
C- 0 ••• 0 w

(0.8)

The dynamical variables encoded in j P y n s reduce to those in j P t r (0.3) upon setting
the fields C±,H> to zero. The phase space whose points are the operators £?Pyr,s
carries two compatible local Poisson brackets, which are naturally induced by the
reduction procedure, and an infinite family of commuting local Hamiltonians defined
by the local monodromy invariants of S£PyTyS. The "second" Poisson bracket can be
identified as a classical ^-algebra (see e.g. [11]). This phase space can be mapped
into the space ofpxp matrix pseudo-differential operators with the aid of the usual
elimination procedure:

^ 1 = Aft, (0.9)
which yields

Lprs ur +z+(lsd + w)~lz- , (0.10)

where ut is related to vt as in (0.4) and z+ = F~x^z- = C_. In contrast to the
standard case, the operator LPyryS attached to <&p,r,s is now not a differential opera-
tor but contains a non-trivial negative part, and the mapping S£PyryS i-+ LPtrtS is not
a one-to-one mapping. In fact, this mapping corresponds to factoring out a resid-
ual gls symmetry of the hierarchy resulting from the generalized Drinfeld-Sokokov
reduction, which is generated by the current w e C°°(Sl

9gls) through the second
Poisson bracket.

Our main results are the following:
First, we shall prove that the set of operators LPyTyS is a Poisson submani-

fold in the space of p x p matrix pseudo-differential operators with respect to the
compatible Gelfand-Dickey Poisson brackets, and that the mapping &p,rjS

 h-*> LPyryS

is a Poisson mapping from the bihamiltonian manifold obtained as the reduced
phase space in the Drinfeld-Sokolov reduction onto this Poisson submanifold. We
shall also present the explicit form of the Poisson brackets on the reduced phase
space.

Second, we shall show that the mapping S£PyTyS •—• LPyTyS converts the commut-
ing Hamiltonians determined by the local monpdromy invariants of Z£p,r,s into the
Hamiltonians generated by the residues of the componentwise fractional powers of
the diagonalized form LPiryS of Lp^s.

Third, we shall derive a "modified" version of the generalized KdV hierarchy
carried by the manifold of operators ^>,r,s, which via the mapping S£p^s»—• Lp^s

corresponds to an interesting factorization of LPtryS (given in Eq. (4.18)). One of the
factors in this factorization (the factor AK in (4.18)) arises also independently in
the r = 1 case of our construction, when there is no Drinfeld-Sokolov reduction
and we are dealing with a generalized AKNS hierarchy.

In the p = 1, s = 1 special case, the system based on the Lax operator LPfns

(0.10) has been considered in several recent papers (see [12-14] and references
therein) from the point of view of constrained KP hierarchies. Specifically, the sys-
tem considered in the literature may be obtained from (0.10) by setting w = 0.
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Setting w = 0 is consistent with the flows of the hierarchy, but has the inconvenient
feature that the resulting Dirac brackets turn out to be non-local for the second
Hamiltonian structure. It is interesting that one can in this way recover the sec-
ond Hamiltonian structure postulated by Oevel and Strampp [13], for p = s = 1,
as a non-local reduction of the local second Hamiltonian structure that automati-
cally results from the Hamiltonian reduction in the Drinfeld-Sokolov approach. The
Drinfeld-Sokolov approach to these systems that we shall present leads to a sys-
tematic understanding and for this reason we think it is of interest in its own right.
This approach has clear advantages in that it leads to local Poisson brackets and
it incorporates the construction of Miura maps. The construction also makes clear
the conformal, ^-algebra structures related to these hierarchies (see e.g. [9, 11]).
It is worth noting that in the p = 1 case the quantum mechanical versions of these
^-algebras have been recently found to have interesting applications in conformal
field theory [15].

The paper is organized as follows. Section 1 is a brief review of the ver-
sion of the Drinfeld-Sokolov approach that will be used. In Sect. 2 the general-
ized Drinfeld-Sokolov reduction relevant in our case is defined and the resulting
reduced system is analyzed in terms of convenient gauge slices. In Sect. 3 the resid-
ual symmetries of the reduced system are pointed out. Section 4 is devoted to
describing the mapping of the reduced system into the space of matrix pseudo-
differential operators and to deriving the form of the Poisson brackets in terms of
the reduced space variables. This mapping will be considered both in the "Drinfeld-
Sokolov gauge" (0.8) and in a "block-diagonal gauge" which gives rise to a fac-
torization of the Lax operator LPtrtS and to a modified version of the generalized
KdV hierarchy. Section 5 contains the pseudo-differential operator description of
the local monodromy invariants that in the first order matrix differential opera-
tor setting generate the natural family of commuting Hamiltonians. There are two
appendices, Appendix A and Appendix B, containing the technical details of certain
proofs.

Those readers who are more interested in the concrete description of the reduced
system than in its derivation by means of the Hamiltonian reduction could directly
turn to look at Theorem 4.4 in Sect. 4 and Theorem 5.2 together with Corollary 5.3
in Sect. 5, which give the form of the reduced Poisson brackets and the commuting
Hamiltonians together with the compatible evolution equations.

Notational conventions. Throughout the paper, N = C°°{SX,N) will denote the
space of smooth loops in N for N a Lie group, a Lie algebra, a vector space,
or mat(/w x n): the algebra ofmxn matrices over the field of complex numbers C
All algebraic operations such as addition, multiplication, Lie bracket, are extended
to N in the standard pointwise fashion. For a finite dimensional vector space Vt (or
for V a finite or infinite direct sum of such vector spaces) if we write / : iS1 —• Vj it
is understood that ft e Vt (or so for the components of / : S1 —> V). The symbol
etk will stand for the element of mat(m x n) containing a single non-zero entry 1
at the ik position; 0n and ln G gln = mat(n x ri) will denote the zero and identity
matrices, respectively. The (smooth) dual of the vector space_mat(/w x n)^vn\\ be
identified with mat(/i x m) by means of the pairing ( , ) : mat(w x m) x mat(/w x
n) —> C given by

(a,t>) := Jtr(oiv) for a € mat(/i x m), v £ mat(m x n) . (0.11)
sl
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For a ̂ suitably smooth) complex function F on mat(m x n), the functional derivative
|£ G mat(/i x m) at u £ mat(m x ri) is defined by

2? SF

(0.12)
For F depending on several arguments we shall use partial functional derivatives
defined by extending the above formula in a natural manner. For instance, if
F depends on u £ gln for n = n\ + ni and u = ("*[ "12) with «,y £ mat(n, x nj),
then we have |£ = (*̂ J ^ ) in terms of the partial functional derivatives j£- = ayl.

Finally, for a Lie algebra ^ , we let <f(^) := ^<8>C[A,A~!] denote the space
of Laurent polynomials in the spectral parameter A with coefficients in ^ . The Lie
bracket is extended to £(&) in the standard way. The reason why / ( ^ ) has to be
carefully distinguished from# = C°°(Sl

99) is that x £ [0,2n] parametrizing Sl has
the role of the physical space variable (we adopt the periodic boundary condition
for definiteness), while X will appear essentially as a bookkeeping device.

1. Hamiltonian Reduction Approach to KdV Type Hierarchies

To make the paper self-contained, we here present a review of the Drinfeld-Sokolov
approach to KdV type hierarchies concentrating on the special case that will be used.
From our viewpoint, the main idea of this approach is to combine Hamiltonian
symmetry reduction with the Adler-Kostant-Symes approach to constructing com-
muting Hamiltonian flows. Since in general one can define many reductions once
the symmetries of a system are understood, the Hamiltonian reduction approach to
constructing KdV systems is in principle more flexible than the algebraic approach
described in [6-8] (see also [9]) and it may eventually prove more general. Al-
though the concrete systems studied later in this paper are in fact special cases of
the class of systems defined in [6-8], we found it more convenient to base our an-
alysis of them on the Hamiltonian reduction viewpoint. The reader may consult [16]
for a review where the full class of KdV systems of [6-8] is interpreted in the
framework of Hamiltonian reduction.

Let ^ be a finite dimensional Lie algebra with an invariant scalar product "tr."
(For most of this paper it may be assumed that ^ = gln for some n9 in which case
tr really is the standard matrix trace.) For C_ £ <& arbitrarily fixed, consider the
manifold _

M := {<£ = d + J + AC_ \J £ &} (1.1)

of first order differential operators for which A is a free parameter, the so-called
spectral parameter. As is well known (see e.g. [10]), Jt can be identified with
a subspace of the dual of the Lie algebra ^ <g> <C[A, A"1], where # is the central
extension of the loop algebra ^ = C o o (5 1 ,^) , and there are two compatible Poisson
brackets (PBs) on M defined by the following formulae. The current algebra PB,
or affine Kac-Moody algebra PB, is given by

(1.2)
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This PB (or its reduction) is often referred to as the second PB. The first PB
reads

Notice that the first PB { , }i is minus the Lie derivative of the second PB { , } 2

along translations of J in the direction of C_. The Hamiltonians of special interest
here are provided by evaluation of the invariants ("eigenvalues") of the monodromy
matrix T(J9 X) of J&f, given by the path ordered exponential

7V,A) = ^exp (-Jdx(J(x) + AC-)) , (1.4)

where x € [0,2TT] parametrizes the space Sl. The corresponding Hamiltonian flows
commute as a special case of the Adler-Kostant-Symes (r-matrix) construction (see
eg. [10]). We call the hierarchy of these bihamiltonian flows on Jt the "AKS
hierarchy." The AKS hierarchy on M is non-local in general since the invariants
of the monodromy matrix (1.4) are non-local functionals of J. However, in some
circumstances it is possible to perform a Hamiltonian reduction of the AKS hierarchy
to obtain a local hierarchy. The locality refers both to the commuting Hamiltonians
and the reduced PBs.

The standard method [4-8] to obtain commuting local Hamiltonians relies on
a perturbative procedure that uses some graded, semisimple element A of the
Lie algebra ^ ) = ^ O C [ ^ " ! ] . The grading in which A is supposed to be
homogeneous with a non-zero grade, say grade k > 0, is defined by the eigenspaces
of a linear operator d^n ' S(9) —* S(9)9

dN,H=NXll?+8dH9 (1.5)
aA

where N is a non-zero integer and H G ̂  is diagonalizable with (usually) integer
eigenvalues in the adjoint representation. Note that ad/ / defines a grading of ^,

9 = @9h [9i99i]C9i+i. (1.6)
i

In the cases of our interest the grade of A is small (usually 1) and hence A takes
the form

A = (C+ + AC_) with some C± e & . (1.7)

The requirement that A is semisimple means that it defines a direct sum decompo-
sition

= Ker(adyl) + Im(adyl), Ker(ad^l)nIm(adTl) = {0} , (1.8)

where the centralizer Ker(ad^l) of A is a subalgebra of / ( ^ ) . Having chosen
A of the form given by (1.7), thereby defining C_ in (1.1); and having chosen
also a compatible grading operator dN,H, the construction then involves imposing
constraints on Ji so that the constrained manifold Jic C Ji consists of operators
<£ of the form

il wi thers 1 -* Y,Vi- (1-9)
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That is to say, in addition to the semisimple leading term A , S£ contains only terms
of strictly smaller grade than the grade of A . In concrete applications there might be
further constraints on i f € Mc> but the above grading and semisimplicity assump-
tions are already sufficient to obtain local Hamiltonians by the subsequent procedure.
The crucial step is to transform S£ in (1.9) as follows:

(5 +j + A) *-> eads(d +j + A) := (d + h + A), (1.10a)

where 2 = 53/<o »̂ an(^ * = S /<* ̂  are (formal) infinite series consisting of terms
that take their values in homogeneous subspaces in the decomposition (1.8) accord-
ing to

E : Sl -> (Im(ad^))< 0 , h : Sl -> (Ker(adyl))<* , (1.10b)

with the subscripts referring to the grading (1.5). The above grading and semisim-
plicity assumptions ensure that (1.10) can be solved recursively, grade by grade, for
both 2 = S(j) and h = h(j) and the solution is uniquely given by differential poly-
nomials in the components of j . The Hamiltonians of interest are associated to the
grade larger than —k subspace in the centre of the subalgebra Ker(adyt) C / ( ^ )
as follows. Suppose that {Xt} is a basis of this linear space. The corresponding
Hamiltonians are defined by

HxAJ) := / dx(Xi9h(J(x))) , (1.11)
o

where we use the canonical scalar product

(* Y) := ^ § y tr(X{X)r(X)) (1.12)

for any X, Y E t{^\ As we shall see in examples, the local functional HxXJ)
can be interpreted as the coefficients in an asymptotic expansion of eigenvalues of
the monodromy matrix of j£? (1.9) for X « oo. They will inherit the property of
the monodromy invariants that they commute among themselves with respect to
the PBs (1.2—3) on Jt if the restriction to Jic C Jt is implemented by means of
an appropriate Hamiltonian symmetry reduction.

Let G be a finite dimensional Lie group corresponding to ^ and let Stab(CL)
C G be the subgroup which stabilizes the element C_ € ^ appearing in the
definition (1.1) of M. Let Stab(C_) be the loop group based on Stab(C_). Consider
the action of Stab(C_) on M given by

(1.13)
The action defined by (1.13) is a symmetry of the AKS hierarchy on Jt. That is
it leaves invariant the compatible PBs (1.2-3) and the monodromy invariants. If
{ r } C ^ is a basis of the centralizer of C_ in ^, [T\C~] = 0, then the current
components •/' = tr(7V) serve as the generators of this symmetry (components of
the appropriate momentum map) with respect to the second PB (1.2). The same
current components are Casimir functions with respect to the first PB (1.3).

The possibility to apply Hamiltonian reduction to the AKS hierarchy on
M rests on the action (1.13) of the symmetry group Stab(C_). The aim is to
perform a symmetry reduction using an appropriate subgroup of this group in such
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a way to ensure the locality of the reduced AKS hierarchy. In a Hamiltonian sym-
metry reduction the first step is to introduce constraints (e.g. by restricting to the
inverse image of a value of the momentum map). To get local Hamiltonians, the
constrained manifold should consist of operators satisfying the conditions in (1.9).
Typically, the constraints also bring a gauge freedom into the system, which is to be
factored out to obtain the reduced system. Another requirement on the constraints is
that the reduced PBs inherited from (1.2) and (1.3) should be given by local, differ-
ential polynomial formulae. This is automatically ensured if i) the reduced PBs are
given by the original PBs of the gauge invariant differential polynomials on Jlc and
ii) these invariants form a freely generated differential ring. In practice, property
ii) is satisfied if the gauge orbits admit a global cross section for which the compo-
nents of the gauge fixed current (regarded as a function of j in (1.9)) define a free
generating set of the gauge invariant differential polynomials on J(c. The existence
of such gauges is a very strong condition on the constraints and the gauge group.
Gauge slices of this type have been used by Drinfeld and Sokolov [4], and we refer
to such gauges as DS gauges. A detailed description of the notion of DS gauges
can be found in [11].

We end this overview by recalling that in the original Drinfeldr-Sokolov case
A was chosen to be a grade 1 regular semisimple element from the principal
Heisenberg subalgebra of £(&) for ^ a complex simple Lie algebra [4, 17]. Requir-
ing A to be a regular semisimple element means by definition that the centralizer
Ker(ad/l) C £{&) appearing in the decomposition (1.8) is an abelian subalgebra.
In the original case this centralizer is the principal Heisenberg subalgebra (disre-
garding the central extension). For ^ a complex simple Lie algebra or gln, the
graded regular semisimple elements taken from the other Heisenberg subalgebras
(graded, maximal abelian subalgebras) of <f(^) [18] can be classified using the
results of Springer [19] on the regular conjugacy classes of the Weyl group of
^ (see also [20]). One may associate constraints to any graded regular A in such
a way that DS gauges are available [6-9]. More generally, if one implements the
generalized Drinfeld-Sokolov reduction procedure proposed in [6, 7] using a graded
semisimple but non-regular element A, then the existence of a DS gauge must be
separately imposed as a condition on A.

2. A Generalized Drinfeld-Sokolov Reduction

We wish to apply the above formalism to ^ \— gln. The graded Heisenberg sub-
algebras of £(gln) are classified by the partitions of n [18]. We shall choose A to be
a graded semisimple element of minimal positive grade from a Heisenberg subalge-
bra of t(gln) associated to a partition of n into "equal blocks plus singlets"

p times s times

n = pr + s = r-\ h r + H h i for some p ^ l , r > l , s ^ l . (2.1)

It was explained in [1] that a graded regular semisimple element only exists for
the partitions into equal blocks n — prox equal blocks plus one singlet n = pr + 1.
When continuing our previous study of the equal blocks case [1] with the equal
blocks plus singlet case, it was realized that DS gauge fixing is possible also when
the partition contains an arbitrary number of singlets ( l ' s ) . This is the motivation
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for the study of the more general case s ^ 1 here; and actually the analysis will be
the same for any s ^ 1.

Next we introduce the necessary notation. Adapted to the partition in (2.1), an
element m G gln will often be presented in the following ( r + l ) x ( r + l ) block
form:

m = eUj
l

eUr+\

where the e,j € #/r+1 are the usual elementary matrices, Atj €
mat(p x s) and C, G mat(.s x p). Alternatively, we may write

Z) G

m =

(2.2)

, Bi-e

(2.3)

Introduce the r x r "DS matrix" Ar € f(glr) given by

/ 0 1 0 ••• 0 \

o i ••.
Ar:=

0
VA 0

0

1
oy

(2.4)

Recall that the Heisenberg subalgebra, 2£p,r,s C S(gln), associated to the partition
(2.1) is the linear span of the elements

1®YP 0\ W|
0 O j ' V / G

together with the elements

V / G Z ,

(2.5)

. (2.6)

^p,r,5 is a graded maximal abelian subalgebra of £(gln) if we choose the grading
defined by

d:=drtH = r}.— +3AH
ak

(see (1.5) and (1.6)), where we take

( diag (/nip, (m - 1 ) l p , . . . , -mlp, 0s), if = ( 2 m + l ) o d d ;

(2.7a)

(2.7b)
[, diag(mlp,(m — l)lp,...,—(m — l)lp,05) if r = 2m even .

We choose a grade 1 element yl := Ap^s (0.6) from the Heisenberg subalgebra,

A=fAr®T 0 \ w i t h r . = d i a g ( r f l j ^ ) 9 (dtYHdjY* dt + O. (2.8)
\ u W j /

For generic A, all of the eigenvalues of A except for the eigenvalue 0 are distinct.
The eigenvalue 0 has multiplicity s. It follows that A is a regular element of
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if and only if s = 1. In addition to the linear span of the elements given in (2.5), the
centralizer Ker(adv4) C /(#/„) of A contains the algebra £(gls) C £(gln) spanned
by the elements

V/€Z, VDegls. (2.9)% 0 \

Hence the centre of the centralizer of A is spanned by the elements given in (2.5)
together with the set of elements of the form

° ), V / G Z . (2.10)

Now we consider the generalized Drinfeld-Sokolov reduction of the AKS hier-
archy on the manifold Ji defined in (1.1), with C_ and C+ given by writing A as
A = XC- + C+, i.e., from now on

r-\

C- = er,i ® T and C+ = £ eUM ® T . (2.11)
i=i

Using the grading of the Lie algebra ^ = gln defined by the eigenvalues of ad//,

^ = «- ( r - l ) + « ' ' + «- l + ^0 + «l + ' • • + %-\ = ^<0 + ^0 + ^>0 , (2.12)

we first write the current / as

J=J<o+Jo+J>o, (2.13)

and impose the constraint
= C+ , (2.14)

which restricts the system to the submanifold J(c<zJ( given by

\ (2.15)

Then we factorize the constrained manifold J(c by the group Jf of gauge trans-
formations e? acting according to

ef : & »-•> ef&e-f, f € Coo(51,^<0) . (2.16)

The Hamiltonian interpretation of this reduction procedure is the same as in the case
of the standard Drinfeld-Sokolov reduction for gln. Briefly, from the point of view
of the second PB (1.2), it is a Marsden-Weinstein type reduction with Jf being
the symmetry group and C+ a character of Jf (which means that the constraints
defining Mc C M are first class). From the point of view of the first PB (1.3),
the reduction amounts to fixing the values of Casimir functions and subsequently
factoring by the group of Poisson maps Jf. It follows that the compatible PBs
on M induce compatible PBs on the space of the gauge invariant functions on
Mc, identified as the space of functions on the reduced space M^^ := J?C/JV. The
reduced first PB is the Lie derivative of the reduced second PB with respect to
the one parameter group action on the reduced space induced by the following one
parameter group action on Jic\

<£ i-> <£ - TC_, V T G R . (2.17)

This follows by combining the fact that these translations commute with the action
of JV on Mc with the fact that the first PB (1.3) is the Lie derivative of the second
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PB (1.2) with respect to the respective one parameter group action on M. It is clear
from (2.16) that the invariants (eigenvalues) of the monodromy matrix of 5£ € Mc

define gauge invariant functions on Mc. In conclusion, we have a local hierarchy
of bihamiltonian flows on the reduced phase space Ji^, which is generated by
the Hamiltonians provided by the local monodromy invariants of S£ defined by the
procedure in (1.10) and (1.11).

In order to describe the reduced system in more detail, one reverts to gauge
slices. We wish to mention two important gauges. The first is the DS gauge whose
gauge section is the manifold ^ D S C MC given by

JDS = Z) er, i ® *V-i+l + *r,r+l ® C+ + *r+l, l ® f-

with vt e glp9 wegls, C+ € mat(p x s)9 C- €mat(5 x p)\ . (2.18)

In explicit matrix notation y'os := jPir,s is given in (0.8). The space ^ D S is a
to-one model of Jtc/Jf with the property that, when regarded as functions on Jtc,
the components of the gauge fixed current yDS = 7DSO* ) provide a basis of the gauge
invariant differential polynomials on Jlc. This follows from a standard argument on
DS gauge fixing (see e.g. [21]), which relies on the grading and the non-degeneracy
condition

Ker(adC+ )n^< 0 = {0} , (2.19)

which is satisfied in our case. The reduced AKS hierarchy on the phase space
M^A — «^DS is a generalization of the well-known r-KdV hierarchy, as we shall
see in Sects. 4 and 5.

The other important gauge is what we call the "©-gauge" (also called block-
diagonal gauge), which is defined by the following submanifold 0 c J(C9

O:={& = d + jo + A \j0 € C°°(Sl,%)} . (2.20)

Correspondingly to the grading operator H in (2.7), we parametrize jo as

(2.21a)

where [ ^ ] is the integral part of ^ , m = [§]. The variables on 0 are 0, £ glp

for /=t=0 and

a e glp9 b e mat(/? x s), c€ mat(^ x p), d e gls, (2.21b)

which we collect into the matrix

( ) » W (222)

In the 0-gauge, in terms of the variables 0,, the reduced second PB becomes just
the direct sum of free current algebra PBs given by
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for / , h smooth functions on 0. In fact, the restriction of the second PB of arbitrary
gauge invariant functions / , h on Jic to 0 has the form (2.23) with / = f\&,
h = h\&. This can be proved in the same way as Lemma 2.1 in [1], which is of
course essentially the same as the proof found in [4] in the scalar r-KdV case. Using
DS gauge fixing we obtain a local, differential polynomial mapping \i\® —± Jtjys
yielding a generalized Miura transformation from the modified KdV type hierarchy
on 0 to the KdV type hierarchy on ^ D S - AS is expected from a Miura map, the
inverse of \i is non-local and is not single valued. In other words, 0 cannot be
reached by a local gauge fixing procedure and the intersection of 0 C Mc with
a gauge orbit of Jf in Mc is not unique.

Remark 2.1. The construction presented in the above is a straightforward general-
ization of the construction of the /i-KdV hierarchy due to Drinfeld and Sokolov [4].
In particular, the DS gauge in (2.18) and the 0-gauge in (2.20) that parametrize the
KdV and modified KdV type systems are quite similar to respective gauges in [4].
Following further the spirit of [4], our aim in Sects. 4 and 5 will be to find pseudo-
differential operator models of these systems. This question was not addressed in
[6-8] where an algebraic generalization of the Drinfeld-Sokolov construction of
KdV and modified KdV type systems was given (for a review, see e.g. [16]). The
systems that are defined rather abstractly in these papers include our systems as
special cases1, but our presentation is different in that we proceed consistently from
the viewpoint of Hamiltonian reduction, since this proves advantageous in develop-
ing concrete models of the systems obtained.

Remark 2.2. In the case r = 1 it is natural to define the element A to be the
diagonal matrix A := APtr=\tS given by

. . . ,^,0,.. . ,0), (2.24)

which contains s zeros and distinct, non-zero dt e C for i = l , . . . , /? . This is
a grade 1 semisimple element of t(gln\ n = /? + $, with respect to the homo-
geneous grading. In this case the Drinfeld-Sokolov reduction becomes trivial, i.e.,
J( — Mc = Jtv$ = 0- For this reason the assumption has been made so far that
r > 1. All considerations in the rest of this paper apply to the r — 1 case too and
all of the results follow through. There are interesting consequences for r = 1 as
well as for r > 1.

3. Residual Symmetries

We have performed a Drinfeld-Sokolov type reduction on the system J( (1.1) using
the subgroup Jf (2.16) of the symmetry group Stab(C_) defined by the stabilizer
of the element C_ in (2.11). Here we wish to point out a residual symmetry of the
reduced system so obtained. Consider the following transformations on M\

(3.1a)

1 In the notation of [7] the DS gauge (2.18) represents the phase space of a "generalized KdV
hierarchy" while the 0-gauge (2.20) corresponds precisely to "generalized modified KdV."
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with a, GC^OS^C) for/= 1,...,/>, and

" widi D (V

_ _ _ ( 3 1 b )

The group generated by these transformations is a GL\ x • • • x GLi x GLS subgroup
of the symmetry group Stab(C_) acting on Ji according to (1.13). We call it
the group of residual symmetries and denote it by GR. It is easily verified that
these transformations map the constrained manifold Jic C Ji to itself. For grading
reasons, GR C Stab(C_) normalizes the gauge group JV C Stab(C_), which implies
that the transformations in (3.1) induce a corresponding action of GR on the space
of gauge orbits JicjN. By construction, this induced action leaves invariant the
commuting Hamiltonians as well as the compatible PBs of the hierarchy on

Let us write the current J £ glpr+s defining ££ = (d + J + kC- ) € Ji in the
block form

J=(JP JA , (3.2)
V ̂ 21 «/22 /

where J\\ £ glpr, J22 € gls, etc., similarly to the matrix m in (2.2),(2.3). With re-
spect to the current algebra PB (1.2), the infinitesimal generators (the momentum
map) of the transformations in (3.1a) and (3.1b) on M are provided by the current
components #, and w given by

i = l,...9p, (3.3a)

where en € glp is the usual elementary matrix, and

w(J):=J22, (3.3b)

respectively. The restrictions of these current components to Mc (by setting J = (jr +
C+) as in (2.15)) are gauge invariant. These gauge invariant current components
generate the induced action of the group of residual symmetries GR on Ji^ with
respect to the reduced second PB. Since the Hamiltonians and the compatible PBs
of the hierarchy on Ji^ are invariant under this group, it follows that the current
components #, and w are constants along the flows of the hierarchy. Of course this
also follows from the fact that *,- and w are Casimir functions with respect to the
first PB (1.3). Incidentally, these Casimir functions are examples of the centres of
the first Poisson bracket given by Proposition 1 in [9].

The residual symmetry (3.1) may be used to perform further reductions on the
hierarchy obtained from the generalized Drinfeld-Sokolov reduction. In fact, the
mapping to pseudo-differential operators studied in the next section corresponds to
such a reduction.

4. The Poisson Brackets on the Reduced Phase Space

In this section we shall find a Poisson mapping from the reduced phase space Jfc/jV9
endowed with the compatible PBs induced by the Drinfeld-Sokolov reduction, to the
space of pseudo-differential operators (PDOs) with glp valued coefficients endowed
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with the usual Gelfand-Dickey Poisson brackets [2, 3, 22, 23]. The image includes
the phase space of the matrix r-KdV hierarchy. The mapping will be defined by
means of the elimination procedure similarly to the r-KdV case [4, 1]. In the present
case the mapping will not be one-to-one, but we shall be able to present the explicit
form of the reduced PBs on McjN nonetheless.

Let stf be the space of pseudo-differential operators with p x p matrix coeffi-
cients:

= £ Lsd
s\Lseglp, Nez\. (4.1)

Multiplication of matrix pseudo-differential operators is defined in the usual way,
i.e., the product rule is given by matrix multiplication together with the formulae

dd~l = 1 and dF = Fd + F' for F e glp , (4.2a)

which engender the formula

d~lF = £ ( - l ) 1 ^ - ' - 1 for F e gl . (4.2b)
»=0

The Adler trace [22], T r : ^ -> <C, is given by

TrI := / trres (L) = / t r Z _ 1 , (4.3)

where tr is the ordinary matrix trace and res(Z) = Z,_i is the coefficient of d~l. Let
P± be the projectors on sf onto the subalgebras

jrLsd
5} , ^_:=U= Z Lsd

s\ , (4.4)
5=0 J I s=-oo )

respectively. Put L± := P±(L). The space stf is a bihamiltonian manifold. For / , h
smooth functions on s/9 the quadratic (second) Gelfand-Dickey PB is given by

where the gradient •£ € si of / at L € ja/ is defined by

The Lie derivative of the quadratic bracket (4.5) with respect to the one parameter
group of translations

L H+ (L + T1 P ) , Vt e R , (4.7)

is the linear (first) Gelfand-Dickey PB:

which is compatible (coordinated) with the quadratic PB.
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In order to relate the Drinfeld-Sokolov reduction to the above formalism, con-
sider the linear problem for JSf € Me (2.15):

2+ = 0, * = ( # , x & . . . , # , <£<)', (4.9)

where ^ is a (/?r + .s)-component column vector consisting of the /^-component
column vectors ifa (i = l , . . . ,r ) and the s-component column vector (f>. This system
of equations is covariant under the gauge transformation (2.16) accompanied by the
transformation

tfr •->*>>, / € C ° ° ( ^ < 0 ) . (4.10)

Observe that the component ifo is invariant under (4.10). This implies that if we
derive from (4.9) an equation on i//\, then the operator entering that equation will
be a gauge invariant object. The process of obtaining an equation on ^ from (4.9)
is what we refer to as the elimination procedure. This is particularly simple in the
DS gauge given by (2.18) and we obtain

^i=# l5 (4.11)

where

L = Ardr + uxd
r~x + u2d

r-2 + • • • + ur.Yd + ur + z+(lsd + w)~lz- , (4.12)

with A = — F~l for F defined in (2.8) and the variables being related to those in
(2.18) by

Ui = AvtA
r-\ z+ = -JC+, z - = C- . (4.13)

Let M C *£/ denote the manifold of "Lax operators" L of the form (4.12). As
discussed above, the elimination procedure gives rise to a mapping

n\J(c->M, n(&) = L, (4.14a)

which is constant along the gauge orbits in Jic. Thus we have a corresponding
induced mapping

*M. (4.14b)

Observe that L in (4.12) contains only quadratic combinations of the fields z± that
parametrize the manifold ^ D S — JtcJJf (2.18), but does not contain these fields
in a linear manner. This shows that (unlike in the usual r-KdV case) the mapping
ft is not one-to-one. This can be explained by the fact that the action of the group
GLS on MdJf defined by (3.1b) is a symmetry of the mapping TT, i.e., every GLS

orbit in JtdJf is mapped to a single point. To understand this, observe that the
original linear problem (4.9) is covariant not only with respect to the gauge group
Jf but also with respect to the group of residual symmetries GR acting according
to the formulae in (3.1a) and (3.1b) complemented with the formulae

and

I))
(4.15b)
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Since the component ifo is invariant under the GLS action (4.15b)^the operator L =
7c(if) entering (4.11) must be also invariant with respect to the GLS action (3.1b).
Correspondingly, for the infinitesimal generator w (3.3b) of the GLS symmetry and
for any function & of Z,, we have

=0. (4.16)

In particular, the expansion of L in powers of d contains only such J^-invariant
differential polynomials in the components of Z£ G J(c which commute with w under
the second PB.

The elimination procedure may be performed on the linear problem (4.9) in
the ©-gauge (2.20) analogously as was done above in the DS gauge (2.18). We
obtain

#i (4.17)

with the factorized Lax operator

L0 = (A(d + 0.1-ij)) • • • (A{d + 0_i ))(AK)(A(d + 0,)) • • • (A(d + 0m))9 (4.18)

where A — -T~x and the operator K is given by

K = (lpd + a) - b(lsd + d)~lc . (4.19)

Here 0,-, a,b,c,d are the fields parametrizing the ©-gauge according to (2.21). Since
\j/\ is gauge invariant, the operators L and LQ attached to such points of Jtvs and
0 that lie on the same gauge orbit are equal: That is LQ (4.18) is a factorized form
of L (4.12). In particular,

(4.20)

where Me : = { £ # } is the set of operators Le (4.18). Note that if r = 2m is even,
there appear (m - 1) factors before (AK) and m factors after (AK) in (4.18). The
factorization (4.18) (but not the results below) was derived previously in the case
p = s = 1 in [24].

We now consider the relationship between the set MK of operators K of the
form (4.19) and the space &o := glp+s. Parametrizing the general element 0o G 0Q

as 0o = (" ^) like in (2.22), we have the mapping

r\: 0O — M*, ?j(0o) := lpd + a - b(lsd + d)~lc . (4.21)

The natural PB on the space 0Q is given by the appropriate term in (2.23),

for / , h smooth functions on 0O. We have the following result.

Proposition 4.1. The set MK C s/ of operators K of the form (4.19) is a Poisson
submanifold of si with respect to the quadratic Gelfand-Dickey PB (4.5). The
mapping rj (4.21) is a Poisson mapping with respect to the free current algebra
PB (4.22) on 0Q and the quadratic Gelfand-Dickey PB on MK.
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Proof. Let / and h be arbitrary (smooth) functions on si. The statement of the
proposition is equivalent to the equality

{f,hf2)on={fo%hori\, (4.23)

where the l.h.s. is determined by the quadratic Gelfandr-Dickey PB (4.5) and the
r.h.s. is determined by the free current algebra PB (4.22). This equality can be
verified by a straightforward computation. Since the computation is rather long, we
have relegated it to Appendix A. •

Thanks to Proposition 4.1, we are now ready to describe the relationship between
the PBs on JidJf induced from the PBs (1.2-3) on M by the Drinfeld-Sokolov
reduction and the Gelfand-Dickey PBs on M C si.

Theorem 4.2. The set M C si of operators L (4.12) is a Poisson submanifold with
respect to the quadratic Gelfand-Dickey PB (4.5). The mapping n : McjJf —• M
(4.14b) defined by the elimination procedure is a Poisson mapping, where M is
endowed with the quadratic Gelfand-Dickey PB and JtcjJf is endowed with the
reduced second PB resulting from the current algebra PB (1.2) on M by means
of the Drinfeld-Sokolov reduction.

Proof. We have seen that MK C si is a Poisson submanifold with respect to the
PB (4.5). It is well-known (see [1] Sect. 2.2) that the other factors {A(d + 0,) | 0, G
glp } C si appearing in LQ (4.18) are also Poisson submanifolds with respect to the
PB (4.5), which coincides with the free current algebra on these submanifolds:

(

for fji smooth functions of 0,. Recall the "product property" of the quadratic
bracket according to which the product of Poisson submanifolds is also a Poisson
submanifold. The statement of the theorem follows from this on account of (4.20)
and the fact that in the 0-gauge (2.20) the reduced second PB is given by the
current algebra (2.23). •

So far we have dealt with the reduced second PB on the bihamiltonian manifold
McJJf. Remember that the reduced first PB on JidJf, which results from the PB
(1.3) on JC, is the Lie derivative of the reduced second PB with respect to the
infinitesimal generator of the one parameter group action on Md^ induced by the
one parameter group action (2.17) on Mc. The manifold M of Lax operators (4.12)
is also a bihamiltonian manifold since the linear Gelfand-Dickey PB { •, • } (1 ) (4.8)
on si can be restricted to M C i . To see this recall that the linear PB {•, • } (1)

(4.8) on si is the Lie derivative of the quadratic PB {•, • } (2 ) (4.5) on si with
respect to the infinitesimal generator of the one parameter group action (4.7) on
sf and notice that this group maps M C si to itself. This together with the first
statement of Theorem 4.2 implies that M C si is in fact a Poisson submanifold also
with respect to the linear PB (4.8). Theorem 4.2 and Theorem 4.3 below state that
the mapping n (4.14b) is a Poisson mapping of bihamiltonian manifolds.
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Theorem 4.3. The manifold M c stf is a Poisson submanifold with respect to the
linear Gelfand-Dickey PB (4.8) on $4 and the mapping n : JtdJf -+ M (4.14b)
is a Poisson mapping with respect to the reduced first PB (1.3) on McjN and the
linear Gelfand-Dickey PB (4.8) on M.

Proof Using the identification JicjJf ~ ^ D S > it is enough to show that the map-
ping n : JtDS —> Af (4.14) intertwines the one parameter group action (2.17) on
, ^ D S and the one parameter group action (4.7) on M. By (4.13), this follows from
the elimination procedure that converts S£ £ M\y§ appearing in (4.9) into L € M in
(4.11). •

The above results may be used to determine the reduced first and second PBs
between such functions on M^ — Jtd^V which are of the form 9> o % j f o n with
functions « ,̂ J f on M. We now wish to present the explicit formulae for the PBs
of arbitrary functions on «^re<i. We can parametrize M^A ~ M\y^ by the variables
WI>Z±,H> or equivalently by the variables S,z±,w, where £ is the positive part of L,

t = Ardr + J2 "idr~'> L = { + z+(lsd + w)~lz- . (4.25)
1=1

With the aid of the usual functional derivatives, the arbitrary variation SH of a func-
tion H on ^red may be written as

f(f | | f ) (4.26a)
51 V/=i Su dz bz Sw )

or equivalently as

m = Tr ( f u) +J« ( « * , + ^ f c . +
 S£S«) , (4.26b,

using the Adler trace (4.3) and the definition

§lr-f
We can write the reduced first and second PBs, denoted by {F,H}* (i = 1,2), of
the arbitrary functions F,H as follows:

{F,H}J =

(4.27)

where X^ is the corresponding Hamiltonian vector field associated to the function
H and Xj/(G) = (5G,Xjj) is the derivative of the function G with respect to Xjj.
For an arbitrary PDO A, we define

P0(A):=tes(Ad-1) and P$(A) := res (5"'^) . (4.28)
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Expanding A in the right form, A := Ylk^Sk
9 or in the left form, A :— Y

we have Po(A) = AQ and PQ(A) = Ao. It will be also convenient to rewrite the PDO
(d + w) as

(d + w)= W~ldW with w= W~XW\ (4.29)

where the GLS valued function W on R is uniquely associated to w by (4.29) and
the condition W(0) = ls. In terms of these notations we can now write down X!H.

Theorem 4.4. The Hamiltonian vector field X# associated to a function H on
JtcjJf by means of the reduced second PB is given by

Hamiltonian vector field X^ corresponding to the reduced first PB

= 0 . (4.31)

On account of Theorem 4.2, in order to verify (4.30) it is enough to com-
pute the Hamiltonian vector fields separately for functions on MdJf that have the
special form Jsl tr(f±z±) or /5, tr(aw) with some matrix valued test functions f±,
a. This computation is presented in Appendix B. After writing down the formula
of the reduced second PB from (4.30), it is easy to compute its Lie derivative with
respect to the vector field V on Ji^a, given by

= 1P9 V(z±) = V(w) = 0 . (4.32)

We know from (2.17) that this gives the formula of the reduced first PB and we
find

SF SH]\ f (6F5H SF SH\
J j ( ^ ^ j (4.33)

which is equivalent to (4.31). •
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Note that the introduction of the "integrating factor" W in the above is only
a notational trick which we used to get compact formulae. For instance,

(4.34a)

where for arbitrary s x p and /? x s matrix valued functions /? and /? on S1 we
define their covariant derivatives

SHfi) := tf + WO, Mfi) •= (P' - fa) • (4.34b)

All other terms containing W can be rewritten in terms of w in an analogous fashion.
Let us now consider a function H that depends on S,z±,w only through the Lax

operator L in (4.25),
(4.35)

i.e., H — 3tf o ii for some function 2tf on M. Naturally, in this case we have the
equality

(4.36)

Comparing (4.26b) with (4.36) using (4.25) leads to the relations

(£)_-£•

^ = -res ( i p - ' a - 1 * * - ( ^ ) z + ^ - ' a - 1 ^ . (4.37c)

The Hamiltonian vectors fields X^ of Theorem 4.4 can then be simplified to give
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and

(4.39)

X>0 = 0.

These formulae are consistent with the claims of Theorems 4.2 and 4.3. They will
be used at the end of Sect. 5 to determine the evolution equations of the KdV type
hierarchy that results from the Drinfeld-Sokolov reduction.

Remark 4.1. The compact presentation of the formulae for the PBs in (4.38), (4.39),
(4.30) and (4.31) was suggested by the formulae in [13]. It may be verified that
our PBs reduce to those in [13] in the scalar case p = s = 1 upon constraining
to w = 0.

Remark 4.2. Notice that for r = p = s = 1 the AKS hierarchy on M is the gl2

version of the well-known AKNS hierarchy. For r = 1 and arbitrary /?, s (see
Remark 2.2.), it is reasonable to call the system on M a generalized AKNS hier-
archy. For the generalized AKNS hierarchy the pseudo-differential Lax operator as-
sociated to S£ € M becomes just the operator AK (4.19). For this reason we can
call AK in the factorization (4.18) the "AKNS factor." (It is an easy exercise to
directly verify the equivalence between the respective formulae (1.2-3) and (4.30-
31) for r = 1.) In the simplest case r = p = s = I the connection between the
AKNS hierarchy on Ji and the constrained KP hierarchy on M was observed
in [12, 13, 25] too. The nonlinear Schrodinger (NLS) hierarchy results from con-
straining the AKNS hierarchy, and it has many generalizations [26]. The connection
between generalized AKNS and NLS systems and constrained (matrix) KP systems
given by the results in Sects. 4 and 5 can be extended to more general cases than
those treated in this paper.

5. Local Monodromy Invariants and Residues of Fractional Powers

In Sect. 4 we established a relationship between the Poisson brackets on the reduced
phase space Jt^ ~ Jtd^V and the Gelfand-Dickey Poisson brackets on M c «s/.
Our next task is to characterize the Hamiltonians generated by the local monodromy
invariants of i f G Jtc- These Hamiltonians, which define the commuting hierarchy
of evolution equations on ^red> turn out to admit a description purely in terms of
the Lax operator L EM attached to & by the elimination procedure, L = rc(i?).
Namely, the Hamiltonians defined by the local monodromy invariants of S£ can
be identified in terms of integrals of componentwise residues of fractional powers
of the diagonal PDO L obtained by diagonalizing L in the PDO algebra ja/. This
identification results from computing the local monodromy invariants of S£ E Jtv$
in two alternative ways: first using the procedure of (1.10-11) outlined in Sect. 1
and second using the diagonalization of L combined with a reverse of the elimination
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procedure. The same method was used in [1], but the presence of the singlets in
the partition (2.1) gives rise to complications requiring a non-trivial refinement of
the argument.

5.7. Local monodromy invariants and solutions of exponential type. We wish to
compute the local invariants of the monodromy matrix T associated to the linear
problem

= 09 (5.1)

where j(x + 2n) = j(x\ since S£ = (d +j + A) € Jtc. If V : R -> GL,, is a solution
of (5.1), which means that the columns of the matrix V are a complete set of
solutions, then the monodromy matrix is given by

T = ¥(2n)V-l(0) . (5.2)

Following the procedure outlined in Sect. 1, perform the transformation

S£>-+S£ = eE<£e~* = (d + h + A\ V = esV9 (5.3)

where
S e (Im(ad^))<0, h € (Ker(adi4))<1 , (5.4)

and the subscripts refer to the grading d in (2.7). The fact that 3 and h are uniquely
determined differential polynomial expressions in the components of j implies that
E(j(x)) and h(j(x)) are periodic functions of x G R. It follows that the invariants
of the monodromy matrix T that we are interested in are the same as the invariants
of the transformed monodromy matrix

f := Y(2n)V~l{0) = G"1(0)rG(0) , (5.5)

with the definition
£(7(;c))). (5.6)

Using the notation (2.2-3), h in (5.3) may be written as

where A(j) and D(j) are uniquely determined series of the form

A(j) = E E M7) *7k ® *<,/> at/) = E ^ W i ® AO'), (5.7b)
fc=0 i=\ k=0

with hKi{j{x)) € C and Dk(j(x)) € gls. A basis of the centre of Ker(adyl) C <%/„)
is given in (2.5) and (2.10). The Hamiltonians defined by the procedure in (1.10-
11) are then

HKi{j)-fdxhKi{j{x)\ i = l , . . . , p , k = 0 , 1 , 2 , . . . (5.8)
o

and

Ek(j) := Jdx*DkU(x)) . (5.9)
o
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Taking the trace of Eq. (5.3) using the identity A'** = A~*lr, we obtain the equality

) = ho JdxtrjXx) - r £ HkrJU) • (5.10)
o i=i

Since ; H fQ
ndxtxj(x) defines a Casimir function with respect to both Poisson

brackets on JV^d, this equality means that the complete set of independent Hamil-
tonians associated to the centre of Ker(ad^l) is given by the //*,,O) above. General
arguments that go back to the r-matrix (AKS) construction (see e.g. [10]) guarantee
that the Hamiltonians H^i are in involution (commute among themselves) since they
can be interpreted as particular monodromy invariants. To explain this interpretation,
notice that the transformed linear problem J !̂P = 0 has the solution

tW-f*"™ . « ) , (5.11)

where

Yn(x) = exp (-xAr 0 r - £ £ /<« **iO'«)Mr* ® **/) > (5.12)
\ Ar=O i=l 0 /

and

^22(A:) = ^exp (-fdl; g A-*ftO"({))) • (5.13)

The corresponding monodromy matrix is

. (Wu(2n) 0 \
T= „ I . (5.14)

V 0 ^22(27r);

To diagonalize f, let C be any r* root of A, £r = A, and define

Ca -= C<oa with co := exp(2/7c/r) . (5.15)

The matrix Ar is conjugate to

In fact, we

with

Using this

#ii(2«)

have

5a6 = -

conjugation the

= (5 0lp)exp

Ar:=

j

fr

diag(Ci,42,..

lr = SArS~l

\ (S~l)a

upper block ¥n(27r)

(~2nAr ®r-f: f

of f becomes diagonal,

(5.16)

(5.17a)

(5.17b)

® l p ) .

(5.18)

Hence, up to the constant -2nAr 0 T, the Hamiltonians H^j) can be identified as
expansion coefficients defining the expansions of logarithms of certain eigenvalues of
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the monodromy matrix around £ « oo. As usual, this expansion has to be interpreted
as an asymptotic - or formal - series. It is clear from (5.13) that the spectral
invariants determined by the "lower block" ^iCln) of the monodromy matrix are
in general, except the fiinctionals £*(./) given above, non-local functional of j .

We have seen that the local monodromy invariants //*,/(./) associated to the
centre of Ker(adyl) are determined purely in terms of the upper block !PII(2TT)
of the transformed monodromy matrix f. To see what this means in terms of the
original linear problem (5.1) consider the solution V given by

!P(JC) : = G(x)W(x) I

Using a block notation similar to (2.2-3),

0

we have

and

{GnVnSQlp'

G2\¥nS®lp(Z)-(
/ l 2 2 2

\G22f22)'

(5.19)

Gn(x)\
G22(x))'

(5.20)

(5.21a)

(5.21b)

It follows from (5.4) that the infinite series S(j(x)) contains only non-positive
powers of k and therefore the entries of the matrix G are given by similar series.
This together with (5.12-13),(5.17) implies that the column vector solutions of
the linear problem S£\\i = 0 comprising the matrices in (5.21a) and in (5.21b) are
qualitatively different. They are different in the sense that - apart from the constant
iS(C) ® \p that we included in the definition of W for later convenience - the columns
of the matrix in (5.21a) have the form of descending series in non-positive powers
of C multiplied by a leading term of the type e~x^r while the columns of the
matrix in (5.21b) do not contain such a leading term only a descending series in
non-positive powers of £. We refer to the series solutions containing a leading term
e~x^r as "solutions of exponential type." The solutions of exponential type contain
all information about the local monodromy invariants since the matrix W\\{2n) in
(5.18), whose eigenvalues generate the Hamiltonians /4,/(y), is conjugate to the
matrix

^1(27r)(^11(0)r1 = Gn(0)!Pn(2wXGii(0)r1 . (5.22)
It is convenient to write the (rp + s) x (rp) matrix in (5.21a) in the following
detailed form:

Vr
V)

ti € glp, <t>b e mat(s x p)). (5.23)
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Putting the above formulae together we have

b 1 V^ c-\
a y/r c=\ H

(5.24a)
1 r

~~ yfr c=i 21 X' b CXP

where G{c
x and Gfi are /? x /? and s x / ? matrices, respectively, and ̂ (x, 0 is the

p x p diagonal matrix series

oo x

@(x,C) = E C /^diag(^i(y(OX---,^,pO'(O)) • (5.24b)

Observe that all the gauge invariant components ft*(x,£) can be obtained from
^f(jt,C) simply replacing the argument £ = Cr by &,• Since the other components of
the solution in (5.23) are determined by the ft6 by means of (4.9), this means that
the complete set of solutions of exponential type can be recovered from ftr(x,Q.
In particular, the local monodromy invariants H^i in (5.8) can be read off from the
relation

# ( * + 2;r,0 = !A,r(x,C)exp (-2nCr - E r*diag(/ /M , . . . , / /* , , ) ) , (5.25)

which is a consequence of (5.24). This relation will play a crucial role in finding the
link between the local monodromy invariants and the residues of fractional powers,
which is the ultimate aim of the present section.

In this subsection we obtained the matrix solution (5.23) of exponential type
to the linear problem (5.1) by transforming $£ to & and imposing on the so-
lution V (5.11) of £"F = 0 the condition V = ln at x = 0, see (5.12-13). We
noticed that the matrix solution in (5.23) is determined completely by the block

f̂. We then observed that the block ^f(jt,0 directly encodes the Hamiltonians
of our interest, the Hamiltonians H^ given in (5.8), through the relation (5.25).
In the next subsection we will consider the consequence of looking at \j/\ from
a different point of view, namely as a solution of Eq. (4.11). The result will be
an explicit connection between the family {-//*,/} of local monodromy invariants
and the components of the residues of the fractional powers of the diagonalized
form of L.

5.2. Solutions of exponential type and residues of fractional powers. Consider the
p x p matrix PDO

L = Ardr + uidr'1 + u2d
r~2 + • • • + Ur-Xd + ur + z+(lsd + w)"1*., A = - F " 1 ,

(5.26)

attached to J£f € J(c by the elimination procedure. The strategy of this subsection
will be to determine ^f in (5.24) as a solution of the linear problem

Lij/x = Aft (5.27a)
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given by a (asymptotic or formal) series of the form

M*,0 = ( £ XkWCk) e~*T with Xk E C°°(R,^), det(»(*)) 4=0 .
\Ar=O /

(5.27b)
The elimination procedure implies that 0f(x,£) in (5.24) is a solution of (5.27a).
We shall see below that ^[(x,C) can be expanded in the fonn given in (5.27b) and
that the solution of (5.27a), (5.27b) is essentially unique.

That ij/{ in (5.24) can be expanded in the form given in (5.27b) can be seen
by inspection. The key step is to check that the series S defining G = e~3 = \n —
E + \E2 - i n (5.20) contains only negative powers of A in its first row due to the
grading condition (5.4), which implies that the leading term of i//[ comes from the
unit matrix contained in the c =1 contribution in the sum in (5.24a). Computing
the first term of the "abelianised current" h(j) in (5.7), one obtains

ho,iU)=l((-nr«i)u, (5.28a)

where u\ is the gauge invariant component of j entering the Lax operator L (5.26)
attached to S£ = (d+j + A). It follows that when rewritten as a series of the
form (5.27b), the leading term xo of \j/{ in (5.24) is given by

Xo(x) = exp —(-ry/d{(«i({))diag , (5.28b)
V r o /

and indeed has non-zero determinant. Incidentally, the constant factor S(£) was
inserted in the definition (5.19) to set the leading power of f in (5.27b), which
multiplies the product of Xo (5.28b) and e~*r

9 to be {°.
Below our aim is to determine ft(x,() from Eqs. (5.27a) and (5.27b). To make

precise the meaning of Eq. (5.27a), which has been derived by formally applying the
elimination procedure, we note that an arbitrary px p matrix PDO a = ] [ \ <tt(x)ff
acts on a series of the form ft(x,Q in (5.27b) as follows. Defining the action of
d* for any integer i on e~*r by (j?e~J*r) := (-^rye"*^ one first associates the
PDO x to ft (5.27b) by writing

ft(x, C) = (xe~xCr% i.e. Z(x, 3) = £ Z*(x)d-*S-* . (5.29a)
it=0

Then (aft)(x,C) := (fie~xl>r) with jS = &x being defined by the composition rule of
PDOs (as in (4.2)). To avoid confusion, we stress that here the coefficients of the
PDOs x> oi, P are not required to be periodic functions on R. When Eq. (5.27a) is
understood in this sense it is easily seen to be equivalent to the "dressing equation"

X~lLX = ArV . (5.29b)

This reformulation of (5.27) is well-known, see [27] and references therein. Using
the reformulation (5.29) and the fact that Ar has distinct, non-zero eigenvalues, it
is not hard to verify2 that (5.27a) uniquely determines the series solution ft(x,Q

2 A proof can be found in [28] for the case when (u\ )^a% = 0 and xo = lp, but these assumptions
can be dropped.
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of the form (5.27b) up to multiplication on the right by a constant (jt-independent)
series c(£) of the form

c(O = E CkC'k with det(co)*O , (5.30)

where all the c* are p x p diagonal matrices.
Thanks to the above uniqueness property, the following procedure may be used

to determine the series ^i(x,£). First we determine a p x p matrix PDO g of the
form

oo

(5.31)
1=1

with periodic coefficients, gt(x + 2n) = gt(x\ such that

9 (5.32)

where L is diagonal, i.e.,

L = Artir + Y, aibr-\ at: all diagonal. (5.33)
i=i

Since Ar is a diagonal matrix with distinct, non-zero entries, then if we require
the &'s to be off-diagonal matrices we can recursively determine both the #/'s and
the ai's by comparing the two sides of Lg = gt term-by-term, according to powers
of d. The solution is given by unique differential polynomial expressions in the
coefficients defining the expansion of L in d. For instance, we have

a\ =(wi)diag . (5.34)

Then we consider a p x p matrix series

feO = ( E rttto) e~xCF with det(*00t))=h0 , (5.35)
\A:=0 /

which satisfies the equation

(#,X*,0 = -#,(*,O. a = D - (5.36)

At the end of the procedure, we find the desired solution of (5.27) from

& * , C ) . (5.37)

We know that up to a diagonal constant matrix c(Q of the form (5.30) the series
solution of (5.27) determined by this procedure must coincide with ^[(x,0 given
by Eq. (5.24). To proceed further we need the following identity.
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Proposition 5.1. The operator lpd can be expressed as

lpd = -TVlr + £ &kA
k(Ll/r)-k , (5.38)

k=0

with L l/r being defined by

(Ll/r)r = U LVr = Ad + £ bid"' for some 6, , (5.39)

and uniquely determined p x p diagonal matrix valued functions ^ , which satisfy

-r)rax and
r * o

= -" \ i - r ) r a\ and f dx{k&k + (-r)*res(Z,*/r))(x) = 0 for k > 0 .

(5.40)

The above proposition, which was crucial in [1] for obtaining results analo-
gous to those under consideration here, is taken from [4] and is originally due to
Cherednik [29] (see also [27, 30]). Since \j/l is uniquely determined by (5.35-36)
up to multiplication by a diagonal constant matrix c(C) of the form given in (5.30),
Eq. (5.36) implies

( Z 1 / r ^ ) ( ^ O = C^(Jc,O. (5.41)

This together with (5.38) leads to

*=o

= exp (-xCr + £ AkrkjdZmZ)) &(0,C) , (5.42)

where ^(0,C) is an arbitrary diagonal matrix series of the form given in (5.30).
Combining this with (5.34) and (5.40) results in the crucial relation

^ = feOT(O (5.43a)

with

Observe

exp f -2nC

now that ij/i(j

(—ry 2n

r 0

c,0 defined in (5.37)

0i(x + 27C,C) =

))diag Z^t
k=\

satisfies

- £ ^— J dxves(Lk/r)(x) .
k=\ K 0 /

(5.43b)

(5.44)

with the same T(£), because the coefficients gt{x) defining the PDO g are periodic
functions of x. This immediately leads to the following result
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Theorem 5.2. The set of commuting Hamiltonians provided by the local mon-
odromy invariants //*,,(./) given in (5.8) is exhausted by the Hamiltonians Hoyi(j)
together with the Hamiltonians defined by the residues of componentwise frac-
tional powers of the PDO L (5.33) obtained by diagonalizing the Lax opera-
tor L (5.26) attached to S£ = (d+j -f A) by the elimination procedure. More
precisely,

o
(5.45)

...,//*,,) = \ 2Jdxres(Lk/r)(x), fork>0.
K 0

Proof. The statement follows by comparing (5.25) with (5.44) taking into ac-
count that ^i(x,0 = ^f(*>C)c(O> where c(Q is a diagonal constant matrix of the
form (5.30). •

Finally, we shall write down the evolution equations generated by the above
Hamiltonians on Jf^ = JtcjJf. For this it is convenient to consider an arbitrary
p x p diagonal constant matrix Q and associate to it the Hamiltonian

? K i . (5.46)

Observe that H% has the form (4.35) since

(5.47a)

with

(5.47b)

Using (4.36) the gradients of these functions are found to be

W-*", t i l , (5.48)

where g is the PDO (5.31) which diagonalizes L and

Lllr:=glllrg-\ V/. (5.49)

Note that Ll^r commutes with gQg~l. We let X^g denote the Hamiltonian vector
field associated to H% by means of the first and second PBs on Jt^ given in
Theorem 4.4. Inserting the gradients (5.48) into formulae (4.38) and (4.39) we
obtain the following result.
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Corollary 5.3. The Hamiltonian vector fields X^Q defining the local hierarchy of
compatible evolution equations on Jic/Jv take the form

\\Q{L) = Xi+r>e(L) = [(gQg-lLk<r)+,L],

-i)W,
(5.50)

z_) = X'+ r > e(z_) = -W-*

\\Q{w) = X{+r,e(W) = 0, V* = 0 ,1 , . . . .

In particular, the flows are bihamiltonian. In terms of the notation

(5.51)
1=0

and the covariant derivatives defined in (4.34b) the second and third equations in
(5.50) can be rewritten as

(5.52)

£

This completes our general analysis of the KdV type hierarchy resulting from the
generalized Drinfeld-Sokolov reduction defined in Sect. 2. The evolution equations
associated to the vector fields in (5.50) define natural "covariantized matrix gener-
alizations" of the constrained KP hierarchy considered previously in the literature
(see [12-14] and references therein) in the scalar case p = s = 1 with the constraint
w = 0. Notice that w and the diagonal components of u\ (the subleading term of
L in (5.26)) do not evolve with respect to the flows determined by the vector fields
in (5.50). The reason for this is the fact that (wi )„ for i = 1,...,/? and the compo-
nents of w are Casimir functions with respect to the reduced first PB, and generators
of residual symmetries with respect to the reduced second PB. Indeed, evaluating
the gauge invariant current component #,- given by (3.3a) in the DS gauge (2.18),
we see that 0/ is proportional with

6. Discussion

In this paper we derived a Gelfand-Dickey type PDO model of an integrable hierar-
chy resulting from generalized Drinfeld-Sokolov reduction. The reduction was based
on the grade 1 semisimple element Ap^s in (0.6), which belongs to the Heisenberg
subalgebra of £(gln) associated with the partion of n = pr + s in (2.1). The reduced
phase space Jix^ = Jtd^V turned out to be the space of quadruplets (^,Z+,Z_,H>),

where £ is a p x p matrix r-KdV type operator which is coupled to the fields z±,w.
The compatible PBs and the commuting Hamiltonians of the hierarchy on Jt^ are
given by Theorems 4.4 and 5.2 with the corresponding evolution equations being
determined in Corollary 5.3. These results extend the results of [1] on the matrix
r-KdV system for which s = 0.
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We wish to note that the above systems possess "discrete symmetries" given
by certain involutive Poisson maps aMyq on Ji^ according to

Jm,q
Lq'1mzLq (6.1)

where ^ = {-\JArdr + Z)/=i(~1)r~/^r~/«i for t = ^rdr + Z)/=i "i^"1* and t h e

matrices m G GLp, g G GL5 are constants determined by the requirements that om>q

must map Ji^ to itself and <% q = id must hold. Given an involutive symmetry
(7 := amq9 the commuting Hamiltonians in Theorem 5.2 admit a basis consisting
of invariant and anti-invariant (that change sign) linear combinations with respect
to a. Hence a "discrete reduced hierarchy" may be defined by restricting the flows
generated on Jt^A by the c-invariant Hamiltonians to the fixed point set J(%& C
Jit red of (7. These flows are bihamiltonian with respect to the restricted Hamiltonians
and the bihamiltonian structure on Jt^9 defined by restricting the original PBs of
functions of a-invariant linear combinations of the components of <f,z+,z_,w -
which may be regarded as coordinates on Jt^ - to Jt^.

As explained in particular cases in [20], the above discrete reductions are ac-
tually induced by the reductions of gln to a simple Lie algebra of B9 C or D
type. Correspondingly, many generalized KdV hierarchies that may be associated
with graded semisimple elements of tf(^) for ^ a classical simple Lie algebra
by Drinfeld-Sokolov reduction can be also obtained from discrete reduction applied
to the matrix r-KdV hierarchy or its extended version associated with gln.

We also dealt with the modified KdV type system related to the factorization of
the Lax operator L = £ + z+(lsd + w)~lz- in (4.18). Alternative factorizations of
L leading to isomorphic modified systems can be defined by simply changing the
position of the AKNS factor K in (4.18). A more interesting possibility is to obtain
a new modification by further factorizing K as

K = (lpd + a - b(lsd + d)~lc) = (lpd + i?)(lp - Ay(lsd + % + ZAy)~lO (6.2)

with £ G mat(5 x /?), y G mat(p x s), % G gls and # G glp. All these modified KdV
systems fit into the Drinfeld-Sokolov framework [4-8] in which modifications of
KdV systems correspond to special gauge fixings if one also considers versions
of the underlying Hamiltonian reduction. These can be defined by replacing H in the
grading operator in (2.7) by Hk : = / 0 + |diag(lp/.,05) with any
k = 0 , ± l , ± 2 , . . . , ± ( r - l ) , where 2/0 = d i a g ( ( r - l ) l l , , ( r - 3 ) l l , , . . . f - ( r - l ) l , , 0 , ) .
The element APtrtS in (0.6) has grade 1 with respect to dTyHk for any k. Using
any of these gradings in the definition of the reduction like in Sect. 2, the re-
duced phase space would be the same. In fact, ^ D S in (2.18) would still be a
global gauge slice. However, the elimination procedure applied in the analogues
of the 0-gauge (2.20) would give rise to alternative factorizations of the Lax
operator £.

The discrete reductions and modifications of generalized KdV and AKNS sys-
tems just mentioned will be further discussed elsewhere.

As a final remark, recall that there exists a ^"-algebra in correspondence with
each sh subalgebra of a simple Lie algebra or gln. It follows immediately from
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the definition of these ^-algebras [31, 21] that the second Poisson bracket of our
extended matrix r-KdV hierarchy is identical with the ^-algebra corresponding
to the 5/2 subalgebra of gln that contains IQ as its semisimple generator (see also
[9, 16]).

Note added. The papers in [32-35] deal with particular cases and further reductions of the con-
strained KP hierarchies that we derived systematically from the Drinfeld-Sokolov approach. These
papers came to our attention after the completion of our work, and in them one can find fur-
ther references on the subject of constrained KP systems. A more detailed analysis of discrete
reductions, examples and the modified system given by (6.2) can be found in the original ver-
sion of the present paper in hep-th/9503217. The classical Wakimoto realizations of current al-
gebras described in [36] may be used to define a family of "second modifications" of the matrix
r-KdV hierarchies, their extended versions and discrete reductions. Many, if not all, of these second
modifications can be interpreted in terms of the generalized Drinfeld-Sokolov approach, and the
system given by (6.2) is a special case.
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Appendix A: The Poisson Submanifold MK<zrf

In this appendix we prove Eq. (4.23) of Proposition 4.1.
Let / and h be arbitrary linear functions on «s/. In other words, let X9Y € s#

and let / , h be given by

f(L) = TrLX9 h{L) = TrLY VI e si . (A.1)

It follows by a standard argument for Poisson vector spaces that if (4.23) is valid
for arbitrary linear functions / , h on s/9 then it is valid for any smooth functions
/ , h on s/. Let

*- ( :
(A.2)

denote an arbitrary element of the space 0Q = glp+s as in (2.21b), (2.22). Consider

fa + ta b + tp
\ d + a

(A3)

which gives

D«1 / X -XMd4-d^-x \
(A.4)
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We have

The following lemma is easy to prove.

Lemma. Let Le PDO(w x n) and let 0 eg^C PDO(« x n). Then

(i) [3, resL] = res [d,L],
(A.6)

(ii) [0,resZ,] = res[0,L].

Using the lemma and the ad-invariance of the inner product ( , ) we get

{/ ° Kh o r,}(00) = - (XfoniOo), ̂ ^ , (A.7)

where the Hamiltonian vector field X/o»; is given by

d+a bx (ft w«-X/o,(flo)-iw ^ c d+d){_(d+drcX (d+drcXbid+d)

(A.8)

From this we obtain

(A.9)

Hence we can write

+ d)~\ res(d + dylcY)

,*] res Y) - Tr((3 + dylcXKres(Yb(d + d)~1))

+Tr(KXb(d + J)"1 r

where in each of the above terms, (JC,J>) means Jtrxy for the appropriate size
of matrices, and we have used the identity (resA9B) = Tr AB, for A G «s/, B G g^.
Using the integrating factor, (d + rf) = W~xdW with </ = JF"1 FF', we simplify each
term as follows:

,*] res 7) = Tr(KX(dY-)+ -XK(Y-d)+)

= Tr (KX(KY-)+ -

= Tr(KX(KY)+ -XK(YK)+ -KX(KY+)+ +XK(Y+K)+) .

(A.11)



456 L. Feher, I. Marshall

Tt(KXb(d + d)'l l l l l

= -Tr\{KX)+KY+). (A.12)

Collecting terms we obtain the desired result.

Appendix B: The Formula of the Reduced PB in the DS Gauge

The purpose of this appendix is to present the computation leading to formula
(4.30) of Sect. 4 that describes the reduced ^urrent algebra PB on JtcjJf ~
We recall that the constrained current J G glpr+s defining a generic point of
has the form

r
J = jp^s + C+ = £ erJ ® Vr-i+l + er,r+i ® C+ + r̂+1,1 ® C-

i l

(B.la)
where the explicit matrix form of j p ^ s is given by Eq. (0.8) with the variables

Vi€glp9 wegls9 £+€ mai(p x s), £- € mat(.s x p) , (B.lb)

and C+ = $Z£={ e*,*+i ® ̂  is the constant matrix appearing in Ap^s = C+ + AC_ in
(0.6). We know already by Theorem 4.2 that the PBs of functions of the components
v\,...9vr are given by the standard quadratic Gelfand-EHckey PB on the space of
operators £9

S = L+ = Ardr 4- J2 *&'** ut = MAr~\ A = -T~x . (B.2)
1=1

We need then only to compute the other PB relations. We choose to do this
by computing the Hamiltonian vector field XH := X% for H = Q9P9R respectively
where

Q(J) = / tr(/C+), P(J) = / tr(<pC- ), R(J) = / tr(onv) (B.3)
0 0 0

with f9q>9OL being matrix valued test functions. It is not hard to see, for instance
from the theory of reduction by constraints, that X# takes the form

8H
= [KH,J] -K'H, KH = JJ+BH, (B.4)
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where [BH,J] — Bf
H is a linear combination of the Hamiltonian vector fields associ-

ated to the ("second class") constraints that define the above special form of J. The
polynomial nature of the DS gauge ensures (see e.g. [21]) that once J and JJ are
given one can uniquely solve (B.4) (where the form of X#(J) must be consistent
with that of J in (B.I)) for BH, XH in terms of differential polynomial expressions
in the components of J and | j .

Let us determine in turn XQ, Xp, XR. Inspecting the simplest examples leads us
to search for KQ in the form

r

= E*
1 = 1

+l,r+l-i ® fi
1°

\fr

... o

... o
••• A

1

o , with / , = / .

f

(B.5)

Substituting from (B.5) in (B.4) we get

XQ(W) = /C+ , XQ(U) = 0, XG(C-) = fvr - ®{fr\ XQ(vt) = -£+ / , ,

(B.6)
and the recursion relation

fM = fViA - 3(Jt)A , (B.7)

where 2{fl) is given by S>(P) = ff + wjS for any p € mat(.y x p). The solution of
this recursion relation is found to be

/, = ( - l y -^ ' -VK- 1 " E (-ly-*^-1"*^*)^'"* • (B.8)

Substitution from (B.8) in (B.6) gives XQ explicitly.
To do the analogous computation for H = P, it is advantageous to change vari-

ables by transforming to a different gauge section. In fact, there exists a unique
gauge transformation

= gJg l -g'g \ 0 = ( o i ) > (B.9)

where A is a block lower triangular matrix with p x p unit matrices along the
diagonal, for which / takes the form

J = £ eU\ ® vt + er,r+i (8) £+ -h er+h i ® C- + «r+ifr+i <8> w + C+ . (B.10)
1=1

The 5,'s in (B.10) are unique differential polynomials in the ty's in (B.I), which
may be determined from the equality

(B.ll)
with

z+ = -JC+, ^ - = C - , ui = AviA
r~i

9 Ui = Ar+l-%. (B.12)
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This equality results from the elimination procedure performed in the respective
gauges (B.I) and (B.10). In the latter gauge we have a formula for X/> analogous
to (A4),

Xp(J) = [KpJ]-%9 ,

and kP turns out to have the form

/0 ••• 0 (pi\

= S +BP ,
oJ

(B.13)

= J2 eUr+\ (g> (pi =
1=1 0 ••• 0 p,

\0 •" 0 0/

, with q>\ = cp . (B.14)

In fact, substituting from (B.14) in (B.13) leads to

(B.15)
with the recursion relation

ipM = J(^(<p,) + vt<p) , (B. 16)

where ®(/?) is given by ^(^) = ft - fSw for any ^ e mat(p x s). This yields

* = i
(B.17)

Plugging this back into (B.15) gives Xp explicitly.
In the case of H = R we find that Aĵ  equals | j , i.e., KR = er+i>r+i 0 a. There-

fore

X*(w) = [a,w] - a', XKC+) = -C+a, X^(C-) = «C-, X^fe) = 0 .

(B.18)

The remaining task is to find a neater form of the above formulae. First we
rewrite them in terms of the operator t in (B.2) as follows.

Claim Bl: Formula (B.6) with (B.8) is equivalent to

xe(o = (A£+(d + wrlfro+, xe(c+) = o,

Xe(C_) = -<*(/,) + fvr, Xe(w) = fU . (B.19)

Claim B2: Formula (B.15) with (B.17) is equivalent to

XP{C-) = 0, Xp(w) = -C-q>. (B.20)
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Claim B3: Formula (B.I8) is equivalent to

X*(O = 0, X*(C+) = -C+*. X R ( C - ) = «C-, X^(w) = [a,w] - a'.
(B.21)

Claim B3 is obvious from (B.18). To verify Claim Bl, we use (4.29) to get

)-lfrt = At+W-ld-lWfAr-ldr - A E t+W'^Wfrur-id .
(B.22)

Using ®(F) = W~l(WFY and 5~ !F = E S ^ - 1 ) ^ " " ' " 1 we then write the contri-
bution to non-negative powers of d in the right-hand side of (B.22) in the form

*=0 1=1 *=0

(B.23)

which simplifies to

= E ^C+Z*^-^-* = - E XtfukW~k , (B.24)

as required by Claim Bl. Similarly, one may check Claim B2 using the iden-
tity 2 (F) = (FW~l)'W and the expression of ( = L+ in the variables w, provided
by (B.I 1) and (B. 12).

Let us now consider the Hamiltonian H = H\+Q + P + R given by

H(J) = / trres(/O + / tr(C+/) + Jtr^-cp) + / tr(wa), (B.25)
0 0 0 0

where { is a p x p matrix PDO of the form f = E L i Zi&~r~l with arbitrarily
chosen ,̂ € gr̂ ,. We wish to present the Hamiltonian vector field X# associated to
H by means of the reduced current algebra PB in terms of the variables ,̂ w, and
z± in (B.12). To make contact with formula (4.30), we now substitute

6H A 5H SH SH
f = -j-A, <P = T~» a = 7 - ' ^=17' (R26)

OZ+ OZ- OW Of

Combining the above claims with Theorem 4.2 of Sect. 4 implies the following
formula:

^ r - ) r (^) £
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**->—ir-H (•*-£/)-(-^(g

Here the first term in X#(z±) has been found using the skew-symmetry property of
the PB, and the notations Po and p\ have been defined in (4.28). It is now easy to
convert (B.27) into formula (4.30), which completes the derivation.
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