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Abstract: Let Gn = {A~9A+)9 n g: 1, denote the gaps, Mf be the effective masses
and En = [A+_l9A~]9A% = 0, be the spectral bands of the Hill operator T =
-d2/dx2-{-V(x) in L2(R)9 where V is a 1-periodic real potential from L2(0,l).
Let the length gap Ln = \Gn\9 hn be the height of the corresponding slit on the
quasimomentum domain and An = n2(2n — 1) — \Zn\ > 0 be the band reduction. Let
ln = -y/A+ — y/A^y n ^ 1, denote the gap length for the operator \ff ^ 0. Intro-
duce the sequences L = {Ln}, h = {hn}9 I = {/„}, A = {An}9 M± = {M±} and
the norms ||/| |^ = Z)n>o(27C/|)2m/«' m = °- ^ following results are obtained:
i) The estimates of ||K||jZ||,||/i||i,||/||i,||,d|| in terms of \\M±\\2 , ii) identities for
the Dirichlet integral of quasimomentum and integral of potentials and so on,
iii) the generation of i), ii) for more general potentials.

1. Introduction

Let us consider the Hill operator T = -d2/dx2 + V(x) in I2(R), where V is
a 1-periodic real potential from Ll(0,1). It is well known that the spectrum
of T is absolutely continuous and consists of intervals T i , ^ Here In =
[A+_VA~],...9A+_X <A~ ^ A+, n ^ 1, and let A% = 0. These intervals are sepa-
rated by the gaps Gi,G2,..., where Gn = (A~9A+). If a gap degenerates, i.e. Gn = 0,
then the corresponding segments Zn,Zn+\ merge. Let <p(*, 2s), #(*,£) be the solu-
tions of the equation

~ / / / + F / = £ / , EeC, (1.1)

satisfying q>'(0>E) = #(0,£) = 1 and (p(09E) = i?'(0,£) = 0. We define the Lyapunov
function F{E) = ((p'(l,E) + tf(l,£))/2. The sequence A% < A~[ ̂  A\ < • • • is the
spectrum of Eq. (1.1) with the periodic boundary conditions of period 2, i.e.
f(x + 2) = /(JC), x £ R. Here the equality means that A~ = A+ is the double eigen-
value. We note that F(A^) = (—1)", /i ^ 1. The lowest eigenvalue A$ is simple,

j = 1, and the corresponding eigenfunction has period 1. The eigenfunctions
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corresponding to Af have period 1 when n is even and they are antiperiodic, / ( J C + 1 )
= — / (x ) , x £ R, when n is odd. Define a quasimomentum function (see [F,MO])

k ( w ) = a r c c o s F ( w 2 ) , w e W = C\\Jgn.

Here gn = (a~,a+) = -gm n ^ 1, and a± = \ /^F > 0. The function k(w) is ana-
lytic and moreover k(w) is a conformal mapping from FT onto a quasimomentum
domain ^ = C\(Jyn, where yn = (nn + ihn,nn — ihn) is an excised slit with the
height hn = h-n ^ 0, n G Z, and /io = 0. Any non-degenerate (degenerate) slit y±n

is connected in some way with the non-degenerate (degenerate) gap g±n and the
non-degenerate (degenerate) energy gap Gn. Let w(k) be the inverse function for
k(w) and E(k) = w(k)2. With an edge of the gap Gn with the length Ln we asso-
ciate the effective masses M* = 0 if Ln = 0 and M± = l/E"(k(a±)) if Ln + 0 and
let A/b = l/E"(0) be the effective mass for the point zero. It is well known that if
Ln +0 , then ±M± > 0 and moreover

as

We rewrite a potential V in the form V=V0+Vu where Fo = /J V(x)dx. The
value Ko is an important parameter for the Hill operator. For example for the Hill
operator T\ = -d2/dx2 + V\(x) in I2(R) the value Vo is the distance between the
zero and the beginning of the spectrum of T\.

For a potential V we introduce the sequences L — {£n}f\ h = {hn}i°, I =
Un}\°> where /„ = \gn\. If a potential F = 0 then the corresponding spectral band
Z2 = [^(n - l)2,n2n2], n > 0, with the band length |Zj| = n2(2n - 1). It is well
known that if V+0, then |Zj| > \In\, i.e. the band lengths are contracted [Mos].
We introduce the band reduction An = |rj}| - |ZW|, the sequence A = {An}^9 the
real Hilbert spaces 4 ( 0 , 1 ) with the norm ||F||2 = /J V(xfdx and

with the norm

ll/lli = E
We define the maps V^h(V) = {/*„}, V-+ l(V) = {/„}, V-+M(V) = {Mn},

= {Ln}, V^A{V) = {An}.
Let us describe the main results of the present paper.

i) Estimates \\V\\9 \\L\\, \\l\\u \\h\\u \\A\\ in terms ofWM*^ are obtained
ii) Estimates hn, Ln in terms of the effective mass M^ at fixed n ^ 1 are

obtained.
iii) New identities are found.
iv) There is the extension of i)-iii) for other cases {finite band potentials,

limit periodic potentials, etc.).

The estimates of type i) are important for the inverse problems of the Hill
operator. First estimates (||K|| in terms of ||A||i) were obtained in the paper
[MO] and in the book [M]. In the paper [GT2] (devoted to the inverse prob-
lem V-+L(V) = {Ln}, by the direct method) the needed estimates ||Fi|| in terms
of ||L|| were absent. Some estimates were found in the papers [KK1,KK2]. In
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[KK2] the inverse problems by the direct method for the mappings F—»/i, F—• /,
V-+L, V^M± were studied. The needed estimates for ||*||, J / l l i j z y j l / * ^ in
terms of || V\ || and an inverse were obtained, with the exception of two estimates
||Fi|| both in terms of p / ^ l k and ||/,||. The various (and more precise) estimates
in terms of ||Fi|| and an inverse were obtained in the paper [K3] both for pe-
riodic potentials and for more general ones. For example, the following double-
sided estimates hold: max{||£||9||/||i9||A||i} ^ 611^(1(1 + ||Fi||1/3) and an inverse
||Fi|| ^ 20co(l+co), where © = min{||L||,||/||i,||A||i}. In [K4] the author obtains
similar estimates for the Dirac operator. There are a lot of identities associated with
the Hill operator, for example, the very useful identity is obtained in the paper [MO]:

/ w2 lmk(u)du/n = f V2(x)dx/S9 w = u + iv9 k = p + iq.
R 0

Some identities were found in the papers [KK1,K2]. A few new identities are
found in the present paper and the more interesting identities are presented in
Theorem 2.3 (see (2.12)). This result is very useful for the Hill operator since
we have the equalities for the norm of V\9 the Dirichlet integral, some moments and
so on. The possibilities of these identities are shown in [K3], where the estimates
of | |I | | , ||A||i, ||/||i in terms of f* V(x)]dx and an inverse are obtained.

Let us shortly describe the proof. In order to prove i)-iv) we use and study
conformal mappings ("effective energy") r(E) = k(y/E)2, E G C+, where k is the
quasimomentum of the Hill operator. The function r(E) has the analytical continua-
tion on the domain E = C\ (J Gn. It is important that the function r is the conformal
mapping from E onto the domain ^ = C\F, where F = \J Fn and a parabolic slit
Fn = {r = (nn + iq)2

9 —hn <q<hn}, n ^ 1. That makes it possible to reformulate
the problems for the differential operator as the problems of the conformal mapping
theory. Then we should study the geometry properties of the conformal mapping
from E onto a "parabolic comb" 0t. In this case we use the methods, estimates from
[KK1,K1] and the identities from [K2]. First we shall get local estimates in Sect. 3.
Then we obtain some identities and inequalities for the effective energy in Sect 4.
In the last Sect. 5 we shall get the main estimates for the conformal mappings and
the main results for the Hill operator.

2. The Main Results

In this section we introduce the concepts and the facts needed to formulate the
theorems and recall some results for the Hill operator. Recall that the potential
F has the form V =V0 + Vu where / J V\{x)dx = 0 and Fo ^ 0 is a constant
since AQ = 0. We introduce the sequence M = {Mn}^°9 where Mn — min \M^\. We
present the main estimates on L,h, V9A.

Theorem 2.1. Let V e L2(0,1). Then the following estimates:

\\h\\i £ nnMo\\M\\2 , (2.1)

^M 0
I / 2 p | | , ^ (24)2A/0

3/2||M||2 , (2.2)
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\\L\\ n

\\y\\ i

Mil

fo||A||i g 2(24)2il/2||M||2 ,

g v/2(24)2M2||M||2 ,

^ (72)2A/2||M||2 ,
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(2.3)

(2.4)

(2.5)

hold.

Let us note that by (2.10) we have Mo - 1/2 = - S»>o(AC + M»~ )• T^11 Mo -
1/2 ^ (l/\/6)||Af+ +Af-||i, since En>o"~2 = *?/6- H e n c e bv . (2-l-5) we estimate
IM||,||Fi||,||L||,||A||i in terms of ||Af*||2. Remark that these estimates are nonlinear.
Now we present the main "linear" and local estimates. We define the sequence
M+ -M- = {M+ -A/ -} f , where M+ -M~ ^ 0 for all n ^ 1.

Theorem 2.2. Let V & L2(0,1). Then the following estimates:

g Sn\\M+ -M~||2 , (2.6)

- A / - | | 2 , (2.7)

g 3ny/Ln\M±\/2 g 6i?n{M+-M~\ for all n ^ 1 , (2.8)

- Mfl~), /or a// n £ 1 , (2.9)

hold. Suppose that Gm is the first non-degenerate gap for some m ^ 1. Then
Mo ^ -M-.

The estimates (2.1-9) are new. It is interesting that some of them are linear. In
the paper [KK2] there are the inverse estimates. For example,

Then we are able to estimate ||ri|| in terms of ||A/±||2 and the inverse. Let us note
that in the proof of [KK2] the Bernstein inequality was used. Hence the last estimate
is "exponentially overstated." Unfortunately it is not clear how to get a more exact
estimate (without exponent).

Let us consider the more general case. At first we give some definitions and facts
from the conformal mapping theory. We call the set K+ = C+\ \Jyn the comb where
yn = (pn + ihn,pn — ihn) is an excised slit with the height hn ^ 0, n 6 Z, ho = 0.
Here pn is a strongly increasing sequence of real numbers such that pn —• ±oo as
n —> ±oo. We call a conformal mapping k(w) from the upper halfplane C+ onto
some comb K+ a general quasimomentum (GQ) if k(0) = 0 and k(iv) = iv(\J-
o(l)) as v —> oo. It is well known that GQ A: is a continuous function of w € C+
[L]. In this case we introduce the sets

On = [<-i,a;T] = k-\[pn-UPn]% « € Z .

We call the variable w the momentum and a = (J an the spectrum of the momentum.
We also denote by gn = (a~,a+) a gap in the spectrum of the momentum and let
g =z \Jgn. It is well known that the set a can not be the spectrum of two different
momentum (see [L]). Let us note that the function k(w) has the analytical contin-
uation onto the domain W = C\g by the formula k(w) = k(w\w e W. We denote
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the length of the gap gn by /„. We call GQ symmetric if k(—w) = — k(w% w € W,
For a symmetric GQ (SGQ) k we define the energy E = E(k) = w(k)2, where w(k)
is the inverse function for k(w). Ifk runs from pn-\ to /?„,/* ^ 1, then E(k) runs the
segment In = [A+_VA~], where Af — (a^)2,n ^ 1. These segments are separated
by the gap Gn = (A~,AZln ^ 1, and let G = \jGn,K = C\\Jyn. The function
E(k) is the conformal mapping from K D {Re it > 0} onto the energy domain E =
C\G. With an edge of the gap Gn having the length Ln we associate the effective
masses

o, ifi^o,

and for the beginning of the energy spectrum we define the effective mass Mo =
l/ls"(0).

For SGQ k we introduce "an effective energy" r(E) = k{y/E)2
9E e C+. The

function r{E) has the analytical continuation on the domain E. The function r is
the conformal mapping from E onto the domain ^ = C \ r , where T = (J Fn and a
parabolic slit Fn = {r = (/?„ -f /#)2, -An < # < /*n},fl ^ 1. Let k = /> + iq, r — t +
w and remark that s(E) > 0,E e C+. We introduce the moments

1 1
Qn = - J w"q(w)dw9 Sn = - jEns(E)dE, n ^ - 2 ,

the real Hilbert spaces

the integrals

P2
+ = - / p(t)2q(t)dt, P2~ = — fq(tfdt,

and the Dirichlet integral for the function / and the domain C

hif) = - JJ | / ' (w) | 2 dudv, w = u 4- it>.

Here and below an integral with no limits indicated denotes the integration over
Rd

9d ^ 1. Second, when we consider the functions q(w),s(E) on the real line
we take the functions q(w) = q(w + I'O), s(E) = s(E -h 16). We have the following
theorem about identities.

Theorem 2.3. Let V £Ll(0,1). Then the following identities:

ID (-) = S-2 = 2MQ - 1 = 20_2 + QL2 = -2 ^ (M+ +M~) , (2.10)
\ w / /i>0

ID(k -w) = 5_! =2Qo = J V(x)dx = 2 £ (^M+ H-^-Af-) (2.11)
o
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hold. Let V Gl2(0,1) . Then the following identities:

\lD{k2 - E{k)) = So = 2Q2 - Q> = J Vx{xf ^

\ E UAtfK + WrfM-) (2.12)
* n>0

hold All series converge absolutely.

Let us show the relation SGQ with the differential operator (see [PT]). We
consider the Schrodinger operator TB = -d2/dx2 + V(x) in L2(R), where V is a
real potential from the Besikovitch space ^ ( R ) . Suppose that the spectrum of TB
is absolute continuous and consists of the intervals En = [A+_l9A~], where A+_x <
A~ g A+,n ^ 1, and let A J = 0. In the spectrum there are the gaps Gn = (A~9A+)
with the length Ln = \Gn\. We introduce the domain W = C\\Jgn, where the

interval gn = (a~,a+) = -#_„,/* ^ 1, and af = \ / A ^ > 0. Note that SGQ A: is
defined uniquely as a conformal mapping from W onto some domain (a comb) K
if £(0) = 0 and k(iv) = iv(l + o(l)) as v —• CXD. Let (•, •)# be the scalar product in
B2(R). Then (see [S])

2Q0 = V0 = (V,1)B = lim / V(x)p, a - . oo , (2.13)

l im/K(x)2^, a ^ o o . (2.14)
—a ^^

Let V\ = V - Vo, then || V\ | | | = SQ2 - 4gg. For GQ we define the function wi =
and let h+ = sup/in. We have the following theorem on the identities.

Theorem 2.4. Let k be SGQ. Then

ID (£\ = S-2 = 2M0 - 1 = 2g_2 + QL2 . (2.15)

Let Qo < oo.
(2.16)

g 2 < oo. Then
ID(E - k2) = So , (2.17)

2Q2 - So + $ = / D ( W I ) - ^ = |(/D(w,) + 5b) = 2(P2
+ + Qo-Pz~) , (2.18)

(2-19)

^ / j + ^ 2£/o = *>-i ^ 2y/2Q2 . (2.20)

Now we consider the estimates for GQ. We have the theorem.
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Theorem 2.5. Let k be SGQ and Q2 < oo. Then

\\L\\ ^ m i n | ^ M o p | | , , 279M0
2||M||2, 4||M+ -Jlf~| |2 | , (2.21)

2p||2^97r2 | |Z| | | |A/| |2 , (2.22)

So S l\\h\U\\L\\ ^ min{4592A/0
3||M||2 , 12V2\\M+-M~\\2

2} , (2.23)

Qi ^ M0S0 . (2.24)

Let us present the following "local estimates."

Theorem 2.6. i) Let k be SGQ and a cut (p — ih, p + ih), p> 0, correspond to
the energy gap G = (A~,A+)9 L = \G\, with the effective masses M±. Then

< 2I|M±|min j ?£, j | ^ { } , E G G , (2.25)

2H2 ^ 97t2Z,|A/±|, (2.26)

H ^ L S S^iVAF+VM)2(2.27)
2|M-A/+|'/2

ii) Let kV\kV\ be two SGQ and y^ C y(P for all n ^ 1. 7%e«
|Z?>|, \M^\ < \M^\ for all n Z 1, and # > < S0

2), ^> < 5<2>.
iii) Suppose that 4 2 ) c r i 0 /or a// n>0, and A%)+=A%)+ for some m>0

(or 4 ! ) - = 4 2 ) - ) . Then JWi1)+ ^ Mi,2)+ (or \Mil)~\ ^ \M™-\).
iv) Let (0,Ax ) te /Ae first energy spectral band and M^MX be the corre-

sponding effective masses. Then Mo ^ —A/f.

By ii) of this theorem we see that if some height hn increases then all spectral
bands decrease, all effective masses and two moments increase.

3. The Local Properties of the Effective Energy

We shall consider the symmetric GQ, i.e. k(—w) — — k(w\w G W. Let E = £ 4- iff,
k = p + iq, w = u + /», £ = w2, r = r(£) = £(\/£)2 = r + is. We have

if k = p + iq, q > 0, /? > 0 .

We have .?(£) = ^(1 + o(l)) as ^ - • oo. Hence by the Herglotz theorem we obtain
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By (3.1) we get

4 ( £ 0 ) = 1 + - / J ^ = r'(E) > 1, E = i&I = JL\G. (3.2)

Hence

0> { e r > M ^ 0 , (3.4)

and the function r'(^), <!; € £„, is convex upward. We present the following result.

Lemma 3.1. i) Let k be SGQ and E € C+. Then

1 f s{y)dy
c="n{wVf-y (3-6)

in addition S-\ < oo. 77ie«

l J ^ ECE. (3.7)

ii) L^/ k be SGQ a/w/ a cut (p + ih9p — ih) correspond to an energy gap
G = (A~,A+\L = \G\9 and M± be the corresponding effective masses. Then

y-A- A+-y

jhL < J q(VE)dE g Lmin i h, n\j^-^- \ . (3.10)

Proof, i) The similar formula of (3.5) for k(w) is proved in [MO]. The proof for
r(E) is the same. By (3.5) we get (3.7).

ii) By (3.5) we have

and by r(A+) = r(A~) we obtain (3.8).
In [KK1] there is the following estimate. Let a function / be harmonic and

positive in the domain D = C+ U C_ U G. Suppose that f(Ef = (A+ - E)(2B +
^ . Then

^ - ^ , A~<E<A+.
A"
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We take / = q{\fE). It is clear that q(y/E) > 0,E e D. By the definition of the
effective masses we have q(VE)2 = (A+ - E)(2M+ + o(l)) as E\A+. Hence we
get (3.9). The proof for M" is the same.

We integrate the estimate (3.9) on the interval G and we have

f dE = yj2L\M±\ ^ .
2

Jq(VE)dE ^ y/2L\M±\ J JJ
G G V E -A

Moreover we have a simple estimate JGq(y/E)dE ^ hL and then we get the sec-
ond estimate in (3.10). We have to show the first one. The function q{w\w G
(VA~, VA+) is convex (see [KKl]). Suppose that q(ao) — h for some a\ G G, and
let a2± = A±, q± = A/(ao — ^±)- Let us define the function

> — a_ ), if a_ <w
' — a+), if ao <w < a+ .

Then q(w) ^ q\(w\a- <w < a+. Hence

+ o +

— ~" / ^ICKO'W2 dw = — / ^-w 2 dw — f q+w1 dw
a- a_ ao

= ~ ( 4 - a2_ + ao(a+ - a_)) ^ -AI ,

and we get (3.10). D

By Lemma 3.1 we get the main local estimates for SGQ in the following

Corollary 3.2. Let k be GQ and a cut (p + ih, p — ih) correspond an energy gap
G = (A~,A+% L = |G|, and M± be the corresponding effective masses. Then

q(VE)2<2L\M-M+\l/2, A~ <E<A+ , (3.11)

-f V^M 3 ) 2 ^ 4(2/?)2(M+ -A/~) .

Proof. By (3.9) we get (3.11) and by (3.10) we obtain (3.12).
Let P = 2p(\/2LM+ -f y/-2LM~). Then by (3.8), (3.9) we have

L l P

(3.12)

(3.13)

and hence we get (3.13). D
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We prove the following main theorem.

Proof of Theorem 2.6. i) By (3.9), (3.12) we obtain (2.25), (2.26).
The estimate (2.27) follows from (3.11), (3.13).
ii) We introduce the function f(E) = lmE2(r\(E)),E G C+. This function is

harmonic, non-negative in C+ and continuous in C+. Suppose the inequality

f(E) = lmEx(r2(E)) ^ lmE2(r2(E)) = rj, £ = £ + *>j. (3.14)

Then we obtain lmE\ ^ I m ^ in the domain r2(C+). Moreover we have

Ei(r)' = j s lmEx{r) ^ ^ lmE2(r) = E2(r)\ r € R, r+rn = p2
n .

Hence we obtain

= f E[{r)dr > f E'2{r)dr = |X?>|, n > 1 .
rn-\ rn-x

Moreover we have for a = 1,2, that

Ex -4«>+ = ]Z(r)dr = {r~ ^"J (1+0(1)), as (r - rB) \0 ,

hence we get |A41)+| ^ |M42)+|. The proof for M^a)~ is the same.
Let us prove (3.14). By the representation (2.15) we obtain that

rm{E) = E{\ +o(l)), E e U(A) = {E :r\>A\t;\}, |£| - oo .

But for any A there exists a constant R = /?(̂ 4) > 0 such that

rm(U(A))D{E:\E\>R}nU(2A% w = l , 2 .

Hence £a(r) = r(l + o(l)), r e t/(Z4), |r| — oo, and

] -> 1, as f, -+ oo .

From this it follows that f(irj) = fy(l +0(1)) , as */ —> oo, and by the Herglotz
theorem we obtain (3.14).

Using (4.1-3) and the maximum principle we get the estimates for Qo9Q2,So.
iii) By the maximum principle we have the inequality si(is) ^ s2(E)9 E 6 R.

Then by the definition of the effective mass we obtain

- E)

< U m £ 2 ^ £

iv) In [Kl] there is the estimate Jt'(O) ^ A / - 2 A / , ~ and the equality k'(0)2 =

2M0. Then we get Mo ^ -A/f . D
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4. The Identities

In this section we find some identities which are basic for us. First we present the
identity about S-i,S0,Q2,Qo,---

Lemma 4.1. Let k be SGQ and g2m < oo, for some m ^ 0. Then

,r-\ i- o So S\ Sm-\ +£>(1) . . . .
r{E) = E-S-X----p — , as \E\ -» oo, \n\>d£,

(4.1)
for some 5>0 and here

S_, = 22o, So = 202 - Qo ,

5, = 2g4 - 20002,• • • ,4,-1 = 202m - " i ; 02m-2-2p02p • (4.2)
0

Proof. We have the asymptotics (see [KK1])

,, N 00 02 02m+Q(l) . . , | |
k(w) = w _ _ . . . ___— as w —• oo, w = u + w, u > et>,

w VV3 VV2™"1"1

for some e > 0. Hence we get

r-E = (k + w)(k-w) = -(2-Q0E-1-Q2E-2 QimE'"-1 - • • •)

X (00 + 0 2 ^ " ' + • • + Q2mE-m + •••)

= - 2 0 0 - (202 - 0o :)£-1 - 2(04 - 0o02)£~2

By (3.7) we get

S 02m-2-2p02p

So Si 5w-1+o(l)
= -E~W i=—' ^ H 0 0 -

If we compare these two asymptotics we get (4.2). •

Later on in this section we need the following result.

Lemma 4,2, Let k be SGQ and finite gap. Then for any m ^ 0 the following
asymptotics hold:

^ 0 0 ^ ^ - l * ^ 0 0 ' (4'3)
and here

Po = Qo, P2 = P?-Pi=Q2-Qlo,.... (4.4)
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Proof, We have the finite number of gaps. Then g = \Jgn c [—a, a] for some
large a. We take the function f(k) = w(k) - k and we get f(k) = o(k~l), as
|*| —> oo. The fiinction / is analytic in the domain |Ar| > a. Then for \k\ > a we
obtain

JK } klnij^l-t/k
f(t)dt

1*1=

Pi , Pi

where

Integrating by paths we obtain

Then

- l r
2ni \k\=a

and

Pi = ^z J k{w)2 dw=-±-J (k(w)2 - P(HO) rfw = - J p(w)q(w) dw .
ZUU \k\=a °t%l 9 K 9

Moreover by k3 = {p + iqf = (/?3 - 3/?^2) + /(3/T2^ - ^r3), we get

I

and so on. We get (4.3).
Now we find the asymptotics w(k) as \k\ —> oo in terms of 0W,« > — 1. Indeed

we have got the asymptotics in terms of Pn,n ^ 0,

w = k + Pok~l + P2k~3 + P4k~5 + • •. + (P2m + o(l))Jt"2w-1, as |*| -> oo ,
(4.5)

and there is the asymptotics in [KK1]

fc + «<>) . . H ^ o o . (4.6)

If we compare two asymptotics we get (4.4). •
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Remark that it is possible to get the asymptotics (4.3) for the more general case
than a finite gap case. But in the present paper it is enough to obtain the needed
identities (4.4).

We shall prove Theorem 2.4 in Lemma 4.3-5.

Lemma 4.3, Suppose that k be SGQ. Then we have (2.15), Le.

2M0 - 1 = S_2 = (2 + Q-2)Q-2 = IDCjrfi) • (4-7)

Let in addition Qo < oo. Then we have (2.16), Le.

lDik-w) = 2Qo = S-i. (4.8)

Moreover
Slx = 4gg £ S-2So = (2M0 - l)So • (4.9)

Proof. By (3.2) and by r'(0) = 2M0 at E = 0 we get

2Mo = 1 H— J ~— = 1 -f o_2 .
^ o y2

In [Kl] we get 2A/0 = (1 + Q-if- Then we have the next identity in (4.7). It is
well known (see [Koo]) that 7/>(w_i) = 5_2, and hence we get (4.7). In [KK1]
there is the equality ID(k - w) = 2Qo. By (4.2) we have 2Qo = S-\ and by the
Cauchy inequality we obtain Six ^ S0S-2 and by (4.7) we get (4.9). •

We shall prove the identities for the case Q2 < 00 in Theorem 2.4.

Lemma 4.4. Suppose that k be SGQ and Q2 < 00. Then we have (2.17-19), Le.

/ > + - / > - = & - < 2 o , (4.10)

P~ = # + g2-Sb = i f(p(t) - tfq{t)dt, (4.11)

7c50 = / / | r ( £ ) ' - l | 2 ^ ^ = i / / \(k2-w(k)2y\2dpdq=Js(E)dEy
C+

 Z Re*>0 0
(4.12)

202 = So + Qo = \ih(yv\) + So) = ID(wi) - 0g . (4.13)

Proof. We proved (4.10) for the finite gap GQ in (4.4). Let us consider the gen-
eral case. Introduce the set 0** = aU{—00, — N)U(N9oo) and the variable corre-
sponding to 0^ w e denote by the upper index N. It is well known (see [L]) that
<f(u)fq(u\ \pN{u)\ / \p{u% as N -+00, u € R. Then by Levy's Theorem we
obtain Q$ / Qo, Q% / Q2, P*'N /P^ as N -+ 00. Then we get (4.10) for GQ.

By (4.2) and (4.10) we have (4.11).
By the Green formula we have

/ / |r(2f)' - ifdZdtf = - / (s - t,)(t - tydt = Js(l - fydZ = JsMdt,
c + —00 0 0

and by symmetry we obtain (4.12).
We have the first equality in (4.2). In [KK1] there is the formula //>(wi) + *Sb =

4Q2 and by (4.2) we obtain (4.13). •
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Now we obtain the estimates for general quasimomentum.

Lemma 4.5. i) Let k be GQ and QQ < oo. Then h\ ^ 2Q0. ii) Let in addition k
be SGQ and Q2 < oo. Then

^ SQ2 , (4.14)

P2 S \hlQ0 S \<& , (4.15)

= 5_i ^ 2y/2Q2 , (4.16)

(4.18)

i n. (4.19)

Proof. Let Qo < oo. First we consider the finite gap case. Suppose that /i+ = hm

for some m € Z. We have a simple domain J£(w) = C\ym. It is well known that in
the finite gap case for the corresponding moments there is an inequality Q^ ^ Qo
(see [J]). But we have exactly g£m) = h2j2. Then we get h\ = h2

m ^ 2g0 .
Let us consider the general case.
Suppose that A+ = /tm for some m 6 Z.
Introduce the set <7(iV) = <rU(—oo, — N)U(N9oo) and the variable correspond-

ing to <x(Ar) we denote by the upper index N. Then by the finite gap case we get
(h^)2 ^ 2Q{"\ It is well known (see [L]) that q^N\u)/q(u\ as N -> oo, u € R.
Then A(/} -> A+ and by Levy's Theorem we obtain Q^/Qo, as N -> oo. Then
/*2_ = limCA^V ^ I i m 2 e ^ } = 2^0, as N -> oo. Hence we get h\ ^

Let Q2 < oo. Then by (4.2) we have (4.14).
By (4.2), (4.11) we get

Then we get $} ^ 4 / ^ 2 2 . By (4.14) we have

and we get (4.15).
By (4.J5) we have 3QQ/Q2 ^ 4h2

+Qo and by (4.14) we get the second estimate
in (4.16). By (4.2) we have 2QQ = S-\ and by (4.14) we get the last estimate
in (4.16).

By (4.10),(4.15) we have / ^ + (?g = g 2 + P2 ^ Qi + (2/3)£?g and we get the
first estimate in (4.17) and by (4.10) we obtain the second one.
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By the definition of /$*" we have

Pi = I lm2qit) dt = i z I pfaO dt, (4.20)

and by Sjgmq(t)dt ^ nl2
n (see [KK1]) we get 16P+ ^ ||/||2.

By (4.11),(4.15) we have

then we have 2P2+ ^ So + \h\.
By (4.20) and by lnhn/2 ^ / ^ ^ (0 A ^ /„*„ (see [KK1]) we obtain (4.19). •

5. The Estimates for SGQ and the Hill Operator

We prove the estimates for GQ. Let us introduce the scalar product (•, •) in t1 and
a number Hn = 2pnhn, n ^ 1, and the sequence H = {Hn, n ^ 1}.

Theorem 5.1. Lef k be SGQ a/w/ (?2 < oo. Then

^\\L\\2 S Qi ^ M0S0 , (5.1)

S S o ^ ^ (52)

So ^ ^M0\\H\\2 ^ (4.72)2M0
3||M||2 , (5.3)

| |I | | ^ -M0\\H\\ ^ 2(24)2M2\\M\\2 , (5.4)

||//|| ^ i | | | I | | l / 2 | |M| | f ^ 72;rMo||Af ||2 . (5.5)

Proof. In [KK1] there is the first estimate of (5.1). By (4.2), (4.9) we have 2Q2 +
3Qo = So + 4gg g 50 + (2A/0 - l)50 = 2M050, and then we get (5.1).

We have

S0 = -

By (3.10) we get hnLn/3 ^ fGm qdE ^ hnLn and we obtain (5.2).

By (5.1) we have ||L||2 g \6Q2 ^ \6M0S0 ^ l6M0\\H\\\\L\\/n. Then we obtain
n\\L\\ ^ 16M0||^|| and by (3.12) we have H2 ^ 2(3n/2)2(2pn)

2MnLn. Hence we
get (5.3). Moreover we have the first estimate in (5.4) and by (5.3) we have (5.4).

By (5.2-4) we obtain (5.5). •

We prove "linear estimates".
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Theorem 5.2. Let k be SGQ and Q2 < oo. Then

\\L\\^4\\M+-M-\\2, (5.6)

||i/||2gl8Jr
2||M||2||M+-M-||2) (5.7)

So ^ 12V2\\M\\1/2\\M+ - A / - | | f ^ 12\\M+ -M~\\l, (5.8)

Q2 ^ 12V2MO\\M\\1
2
/2\\M+ -M'Wl'2 g 12MO\\M+ -M~\\l. (5.9)

Proof. By (3.13) we have Ln ̂  4(2pB)2(M+ -M~). Then we get (5.6).
2 2 ^

f y ( ) ^ (p ) ( ) g ( )
By (5.4),(5.6) we get 2||#||2 g 9*2||Jt|||MW||2 ^ 36^\\M\\2\\M

+ -M~||2.
By (5.2), (5.6-7) we obtain

o ^ |

and by (5.1), (5.8) we have

Q2 g M050 g 12v/2M)l|M||2/2||A/+ -A/~ | |2 / 2 ^ 12M0||M+ -M~\\\ . D

Now we consider the case Qo < oo.

Theorem 5.3. Let k be SGQ and Qo < oo. Then

(5.10)

(5.11)

128 / \

0o ^ -^ ( n E (2pn)|Mn
+ - M-1J . (5.12)

Proo/. Let the integral nJ = j uq{u)du/p(u). By (4.2) we get 2Q0 = SLi, then

then we get Qo ^

QQ ^ J

By (2.26-27) we

J. Hence

uq(u)du

obtain

juq(u) lp(u)q(

Jq(u)du2

o np(u) n

du ^ J j

^ « q(u)du2

t L nPn

2Lnhn ^ 3nL3J2y/\M^\2 £ SnL*2 JM+ - Mn~ ^ 24n(2Pnf(M+-M-)2 .

Then by (5.10) we have

Qo ±i £ ^ ^ E 24(2/>n)
2(Mn

+ - M - ) 2 = 24||M+ - M - | | 2 .

Moreover by (5.10), (2.27) we obtain

2o ^ «+ 2-r —~ ̂  A+ 2^ — »
n^\ nPn n^\ nPn

and by h\ ^ 2g 0 we get (5.12). •
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Let us consider the case of the Hill operator H = -^/dx2 + V(x) in I2(R). In
this case pn = nn,n € Z. In [MO] there are identities

2Qo = f V(x)dx9 SQ2 = \\V\\2 = } V(x)2dx, (5.13)
0 0

and by (4.2) we obtain

& \ 2 \ } f (5.14)
4 4 o

We begin to prove the main theorems for the Hill operator.

Proof of Theorem 2.1. By (5.5) we get (2.1) and by (5.14), (5.3), (2.1) we
have (2.2).

By(5.4),(2.1)weget(2.3).
By (5.1),(5.13-14),(2.2) we get (2.4).
In [K3] there is the estimate ||J||2 ^ ^\\VX\\2 + 8||I||2. Then by (2.2),(2.3) we

obtain (2.5). •

Now we prove the next main theorem.

Proof of Theorem 2.2. By (5.6) we have ||I|| g 4||A/+ - M"||2.
By (5.8) we get \VX\\ ^ 4v/3||M+ -A/- | | 2 .
By (5.7) we get HAH! ̂  37r||M+ -M^ | | 2 .
In [K3] there is the estimate \Af ^ n2\\Vx\\

2 + 8||Z||2. Then by ||Fi|| ^Ay/l
\\M+ — AT—1|2 and ||£|| ^ 4||M+ - M " | | 2 we obtain \\A\\ ^ 8TT||A/+ -A/- | | 2 . Hence
we have (2.6).

By (5.9) we get ||F||2 ^ 96M0||M
+ - M~\\l and then we get (2.7).

By (2.26-27) and pn = nn we obtain (2.8-9).
By point iv) of Theorem 2.5 we obtain that Mo ^ — M~ for the first non-

degenerate gap Gm. •

Now we remark that the proof of Theorem 2.3 follows from Theorem 3.1.

Proof of Theorem 2.3. By (2.15) and the simple equality Mo + £JI>0(A/+ + M~) =
1/2 (see for example [KK1]) we have (2.10).

By (2.16) and Qo = E * > o O W + 4 T * C ) (** [K2]) we have (2.11).
By (2.17-18),(5.14) and 6Q2 = Qo + 2'EM>o«4ifK + (4rfM-) (see

[K2]) we have (2.12).
In [K2] there is the proof that all series converge absolutely. •
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