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Abstract: For each irrational number, 0 <a <1, we consider the space of one
dimensional almost periodic tilings obtained by the projection method using a line
of slope a. On this space we put the relation generated by translation and the iden-
tification of the “singular pairs.” We represent this as a topological space X, with
an equivalence relation R,. On R, there is a natural locally Hausdorff topology from
which we obtain a topological groupoid with a Haar system. We then construct the
C*-algebra of this groupoid and show that it is the irrational rotation C*-algebra, 4,.

Given a topological space X and an equivalence relation R on X, one can form
the quotient space X/R and give it the quotient topology. It frequently happens
however that the quotient topology has very few open sets. For example let X
be the unit circle, which we shall write as [0,1] with the endpoints identified and
the group law given by addition modulo 1. Fix «, irrational, 0 <& <1, and let
R={(x,y)|x — y € Z + oZ}. Since each equivalence class of R is dense in X, the
only open sets in X/R are §) and X/R.

However the equivalence relation R has the structure of a groupoid and if we
can put a topology on R, (usually not the product topology of X x X'), so that
R becomes a topological groupoid:

(i) R> (x,y) — (»,x) € R is continuous, and
(ii) R? 3 ((x,),(3,2)) = (x,2) € R is continuous,

and we can find a compatible family {y*} of measures (4* is a measure on R* =
{(x,y)|x ~ y}), called a Haar system (see Renault [7, Definition 1.2.2]), one can
construct a C*-algebra, C*(R, 1), by completing C,,(R), the continuous functions on
R with compact support in a suitable norm.

In the example above of the relation R on the unit circle S, suppose (x, y) € R,
so there is n € Z such that (x + ne) — y € Z and let % C S' be a neighbourhood
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of x, then a basic neighbourhood of (x,y) in R is given by {(a,a + na)|a € %}.
On R* = {(x,x + na)|n € Z} we put the counting measure. With this information
one can construct the C*-algebra of this topological groupoid by completing C,o(R)
in a C*-norm; see Renault [7, Definition II.1.12].

In this paper we shall show how this same C*-algebra arises as the “non-
commutative” space of a set of one dimensional almost periodic tilings of R.

For each irrational number a, 0 < a < 1, let T, be the space of tilings obtained
from the projection method using a line of slope a. We shall classify the tilings in 7,
as follows. Given T € T, we choose a tile ¢ in T and construct in an explicit way a
sequence (x;) in X, = {(x;)|x; € {0,1,2,3,...,a;} and x;+; = 0 whenever x; = a;},
where a = [0;a;,a,,a3,...] is the continued fraction expansion of a. The sequence
of X, constructed from (¢, T) depends on the choice of the tile z. So we put on X, the
smallest equivalence relation so that the sequence obtained from (¢, T) is equivalent
to the sequence obtained from (¢, T) for any other tile ¢ € T. By putting a topology
and a Haar system on this relation we construct a C*-algebra and show that it is
the irrational rotation C*-algebra 4,.

A number of authors have considered C*-algebras associated with almost peri-
odic tilings. This paper was motivated by the observation of Connes [3, 11.3] that the
space of Penrose tilings are classified by the space {(x;)|x; € {0,1} and x;4; =0
whenever x; = 1} (=X,_, in our notation) modulo the equivalence relation of

tail equivalence. Connes then shows that the C*-algebra of this equivalence rela-
tion is the simple AF C*-algebra AF 5., with Ko =Z + 3@1 (as an additive
2

subgroup of R) and positive cone (Z + 3552’—‘Z)+. In [5] J. Kellendonk considers
C*-algebras associated with almost periodic tilings, however the algebras constructed
are the C*-crossed products associated with an action of Z on a Cantor set and thus
have Ky = Z. In [1] Anderson and Putnam consider C*-algebras associated with
substitution tilings. While our tilings are also substitution tilings, the substitution
rule will (in general) change at each iteration; thus the tilings considered here are
different from those analysed by Anderson and Putnam.

An interesting feature of our construction is that there is a sub-relation £, C R,.
Ry = {(x, y) € Xy X X, | x is tail equivalent to y}. The topology of R, restricted to
R, is a Hausdorff topology and %, is a principal r-discrete groupoid. We shall
show that C*(&,) is a s1mple AF-algebra with the same ordered K, group as A,.

Let us now describe in detail the plan of the paper. In Sect. 1 we give a brief
overview of the tilings under consideration; full details will be published sepa-
rately [6].

In Sect.2 we put a topology on the relation %,, of tail equivalence on X,,
and show that it yields a principal r-discrete groupoid whose C*-algebra is AF and
we show that its ordered Ky is (Z + aZ,(Z + aZ). ) with the class of the identity
equal to 1.

In Sect.3 we describe an isomorphism ¢ between SNa and X,, where SNa is
the Cantor set obtained by dlsconnectmg the circle S' along the forward orbit of
0: {0,2,2a,3a,...}. On the space Sk, there is the partial homeomorphism of adding
o modulo 1 with domain S \{—a}. We construct a partial homeomorphxsm © on
X,, such that ¢ intertwines ® and the partial homeomorphism on S},. The relation
x ~ O(x) on X, is exactly tail equivalence.

In Sect. 4 we put a topology on the relation R, and construct a continuous onto
map @ : R, — S' ><, Z such that @* : Cpy(S! >, Z) — C,o(R;) is an isomorphism



C*-Algebras Associated With 1D Almost Periodic Tilings 309

of vector spaces, where C,,(R,) is the space of functions whose support is the
closure of a compact set.

In Sect. 5 we construct a Haar system {u*} on R, and use this to put the structure
of a x-algebra on C,,(R,). Then we show that &* is a *-homomorphism. This then
implies that C*(R,, 1) is isomorphic to A4,.

1. The Tilings

The tilings we consider are doubly infinite sequences {t}°__,, where ¢ € {a,b}
and which satisfy three axioms.

(A1): the letter a is isolated: if , =a then #,_; =, =b.
(A;): there is an integer n such that between a’s there are either n or n+ 1 b’s.

A sequence which satisfies (A;) and (A;) is composable. Given a composable
sequence T we can produce a new sequence T' by composition: each segment
beginning with an a and followed by n b’s gets replaced by a b, and each segment
beginning with an a and followed by n 4+ 1 b’s gets replaced by ba.

abbb...b—b and abbb...b+— ba
Nt N e

n n+1

Axioms (A;) and (A;) are exactly what are needed in order to compose a
sequence. The third axiom is then:

(A3): each composition of the sequence produces a composable sequence.

We shall call a sequence satisfying axioms (A;), (Az), and (A3) a cutting sequence,
following C. Series [6].

A cutting sequence may be constructed by choosing a slope a and a y-intercept
B for a line L : y = ax + f. We mark by an a each intersection of the line L with
the horizontal lines y = i for i € Z and by a b the intersection of L with the vertical
line x = j for j € Z. This produces along L a sequence of a’s and b’s.

If a line L passes through a point (m,n) in Z2 we call it singular for at (m,n) an
a and a b coincide. Such a line produces a singular pair: two cutting sequences T+
and T~. In the upper sequence T+ all coinciding a’s and b’s are written with the
a preceding the b; in T~ all coinciding a’s and b’s are written with the a following
the b.

Via composition we may associate with a cutting sequence a real number
0 < a < 1 which we call the slope of the tiling. Let T be a cutting sequence. Let T,

Fig. 1.
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Fig. 2.

be the cutting sequence obtained from T; = T by composition. In general, let Ty
be the cutting sequence obtained from T; by composition. For each i there is, by
axiom (A;), an integer n; such that in T; there are between adjacent a’s either »n; or
n;i1 b’s. This produces a sequence of non-negative integers {ny,n,ns,...}. Let a
be the real number with continued fraction expansion [0; ny,n;,n3,...], adopting the
convention that a trailing sequence of 0’s is dropped. Let T, be the set of cutting
sequences of slope a. v

A line of slope a will produce a cutting sequence of slope o, moreover for each
cutting sequence of slope a there is a § (not unique) such that the line y = ax + §
will produce the given cutting sequence.

Motivated by the classification (see [3]) of Penrose tilings by sequences of 0’s
and 1’s where a 1 must be followed by a 0, modulo tail equivalence, we can classify
the cutting sequences of slope a by sequences of integers. If « is rational then there
is up to translation only one cutting sequence and it is periodic.

Suppose that 0 <a <1 and a is irrational. Let [0;a;,a3,as3,...] be the con-
tinued fraction expansion of a. Let X, = {(x;)72, |x; € {0,1,2,...,a;} and x; = a;
implies that x;;; = 0}. We give X, the topology it inherits as a subspace of
[1:2,{0,1,2,...,a;} with the product topology. X, becomes a separable totally dis-
connected metrizable space, i.e. a Cantor set. When a = 352‘—1, X, is the space which
classifies the Penrose tilings.

Suppose T € T,, is a cutting sequence of slope a and ¢ is a letter in T. Let
T, =T, and T; be the sequence of cutting sequences obtained by composition. The
letter ¢t € T will be absorbed into a letter £, of T,, this letter £, will be absorbed
into a letter 73 of Ts.

abbp..b € T;
e

! .
bablb 4y € Ty

Letting #, =t we obtain a sequence {t}X, with 4 € T;. The sequence (x;) € X,
associated with the pair (T,¢) is constructed as follows. If #; = a then x; =0, if
t; = b then x; is the number of b’s between ¢; and the first a to the left of #;. In the
example above x; = 1 and x;;; = 0. This describes a map from {(T,?)|t € T € T,}
to X,. If ¢t and ¢’ are in T then we will obtain two sequences (x;) and (x]) in X,
which will be in general different. If T is not singular then (x;) and (x!) will be
tail equivalent, i.e. there is an integer k such that x; = x] for i > k. If a is irrational
and T is singular, this may not happen.

Let us denote by 0" = (0,42,0,44,...), 0~ = (a1,0,a3,0,...), and —a = (a; — 1,
ay — 1,a3 — 1,a4 — 1,...) three sequences in X,. If T is a T* then each (x;) will be
tail equivalent to either 0" or —a. If T is a T~ then each (x;) will be tail equivalent
to either 0~ or —a.
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Suppose now that on the set of cutting sequences with slope a, T, we say that
T, is equivalent to T,, if by shifting T, a finite number of letters to the left or
right it agrees with T, and that we decree that the upper and lower sequences for
a singular line are equivalent (as in fact they only differ by a single transposition of
an a and a b at the one singular point). Transferring this relation to X, it becomes
the relation R, generated by tail equivalence and 0" ~ 0~ ~ —a.

In [6] we prove that the map from T, to X, is onto and tail equivalence plus
0" ~ 0~ ~ —a classifies the tilings of slope a.

2. Ko(C*(92)

In this section we calculate Ky of the AF C*-algebra C*(2) and show that it is equal
to (Z+ aZ,(Z + aZ),, [1]). The equivalence relation # defines an AF groupoid,
and thus this C*-algebra is AF (see Renault [7, Proposition I11.1.5]). We shall follow
the construction given by Connes [3, I1.3].

Let 0 <a <1 be irrational and [0;a;,a,,as3,...] be its continued fraction ex-
pansion. Let X, = {(x;)2, |x; € {0,1,2,3,...,a;} and x; = a; implies x;;; = 0} and
Ry = {(x, y) € X, X X, | there is k such that x; = y; for i > k}. To simplify the no-
tation we shall write X for X, and # for #,, as a will be fixed throughout this
section. ,

We construct a topology on % as follows. Suppose (x, y) € # for each k such
that x; = y; for i >k we construct a basic neighbourhood #(x,y,k) = {(a,b) €
.Q|a,-=x,- and bi=y,' for 1 <i §k anda,-=b,~ fOl'i>k}.

Suppose (x, y) € &, and x; = y; for i > k, also (x',y’) € Rand x| = y/ for i > k/,
and k' > k. Then either %(x,y,k) and %(x',y',k’') are disjoint or #(x’,y’,k') C
A(x, y, k). For suppose (a,b) € U(x, y,k)NU(x',y',k'). Thena; =x; for 1 <i <k
and a; =x] for 1 <i S k’. Hence x; =x] for 1 < i < k. Similarly y; = y] for
1 <i <k Since a;=»b; for i >k, we have x, = y/ for i>k. Thus (x',y') €
U(x, y,k), so Ux',y',k') C U(x,y,k). Thus the set {#(x, y,k)} forms a base for
a topology of .

By defining r(x, y) = (x,x) and d(x, y) = (,y), R becomes an r-discrete prin-
cipal groupoid in the sense of Renault [7, I.Sect. 1 and I.Sect. 2]. The sets #(x, y,k)
are compact open #-sets in that both » and d are one-to-one when restricted to
U(x, y, k).

C*(#) will be the completion of the space of continuous functions on R with
compact support with respect to a norm that we will presently construct.

Let #%) = {(x,y) € X x X |x; = y; for i >k}. Then & =J, #P. If (x,y) €
R®) then %(x; y,k') C R#® for some k' < k. So #*) is an open subset of #. If
x; % y; for some i >k then %(x, y,k’) is disjoint from %#*), where k' ( > k) is such
that x; = y; for i > k’. Hence #® is also closed in #. Since ¥(x, y,k) C #® we
see that # has the inductive limit topology associated with the sequence

ROCaVcCcaxVCc...Ccx.

Let us show that each 2¥) is compact. In doing so we shall see that Z*) is an el-
ementary groupoid in the terminology of Renault [7, p. 123]. First we develop some
notation. Let X® = {(x;),,, |x € {0,1,2,3,...,4;} and x; = a; implies x;;; = 0},
and X® be the subset of X®) consisting of those sequences which begin with
0: X® = {x € X® | xp1 = 0}, X© = X. Give X® and X® the product topology.
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Each X® and each X® is compact. Let Xy = {(x1,...,%)|% € {0,1,...,a;} and
x;iy1 = 0 whenever x; = a;}. Let &) = {(x,y) € Xy X Xty | xx = yx}. Give X
and %) the discrete topology. Write %, as the disjoint union of two groupoids
RURY: R ={(x,y) € Bpy|xx +ar} and R~ = {(x,y)|xx = ax}. We shall
next show that #*) is homeomorphic to the Cartesian product of a finite set and
X®_ In the following lemma we put the product topology on each of 2~ x X*) and
A~ x X®, and denote by B~ x X® U R~ x X®) their topological disjoint sum.

Lemma 2.1. The map

(*) 6, ) = (155X ), (V15 -5 Yi))s Okt 15 Xk425 - )
is a homeomorphism from &® to R~ x X® U R~ x X®. So #*®) is compact.

Proof. The map is one-to-one as, for (x,y) € #X) we have xpy1 = Yis1, Xps2 =
Vkt+2s---. If (x,¥) € R~ and z € X) then (x1,...,%k, Zk+1,...) and (yi,...,
Zk4+1,--.) are in X as neither x; nor y; is equal to a;. Also given (x, y) € £~ and
z€X® the sequences (X1,...,Xk»Zk+1>Zk+25---) = (X1,..-Xk—1,8k;0,2k42,...) and
P1seeos Vs Zktls---) = (X15- o+ » Vi—1,Gk, 0,2k +2,...) are in X. Thus the map is onto.
The map also takes the basic open sets %(x, y,k’) (for k' > k) for the topology
of #®) to basic open sets in &~ x X® U R~ x X®), Hence (x) is a homeo-
morphism.

R« is a finite equivalence relation. Let 4; be the C*-algebra of %,); i.e. 4y is
the complex vector space with basis {e,y) | (x, y) € %)}, with involution ef; , =
€(y,x) and product e y)e(,,) = €(x,y) if y =x’ and 0 otherwise. The product and
involution are extended to all of 4; by linearity. We shall also find it convenient
to think of e(,y) as the characteristic function of the set {(x, y)}. For each k¥ and
0 < i < a; let m* be the number of sequences of X*) ending in i.

Lemma 2.2.
A >~ Mmf,(c) &D--- QBM,,,:k(C) .

Proof. For each x € X®) we have a projection e, 5y € Ax. Moreover e xy ~ €y, ) if
and only if x; = yx. Hence e x) and €(,, ) are centrally disjoint if x; & yx. Hence A4
has 1 + a; central summands. Also for each j € {0,1,2,...,ax}, {exx) |xk =j} isa
set of pairwise orthogonal pairwise equivalent projections which sum to the central
supp;)rt for the jt* summand (0 < j < a;). Hence the size of the j® summand
is m}.

Define ¥ : 4¢ ® C(X®) — C(#®) by

Ye(a ® f)x,y) = a((x1,. 3%k )y (V1. - o5 V) K15 Xk425 ) -
By Lemma 2 yj is an isomorphism when restricted to the ideal
My (CXD) @ @ My (CX®)) @ My (CXM)) C 4 ® CX®) .
ag— i

Let C,(#) be the continuous functions on % with compact support. If
f € Coo(2R), then there is k such that the support of f is contained in %),
since {#®)}; is an open cover of #. Thus f is in the subspace C(#*). Hence
Coo(#) = U, C(2®)). Thus & is what Renault [7, p. 123] calls an AF groupoid.
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Next we shall recall the *-algebra structure on C,o(2). Suppose f and g are in
C(AP). We define f* € C(AD) by f*(x,y) = F(7,%) and f *g in C(AD) by
f*g(x,y)= Z(x,z)egv(k) f(x,2)g(z, y). The sum is finite because, for given x and k,

{z € X|(x,z) € #®} is finite. Each subspace C(#®)) is a *-subalgebra.
Ar ® C(X®) has a unique C*-norm, and thus so does

M"{&(C(X(k))) ®--- @M”‘:‘—‘(C(X(k))) eMmj‘(C(XU‘))) )

Hence C(#®)) has a unique C*-norm. Thus C,,(#%) has a unique C*-norm.

Definition 2.3. C*(), the C*-algebra of the equivalence relation R, is the com-
pletion of Coo(R) with respect to its unique norm.

To calculate the Ky group of C*(#) we have to carefully analyse the inclu-
sion maps i: C(#®) - C(#**D) in terms of the maps Y4. For (x,y) € Ry,
let S(x,y) = {(%,7)|(%,7) € Rg+1) and x; = %, y; = y; for 1 £ i < k}. Define
@k : A ® C(AP) — Apyy ® C(R*HD) by

or(er,y) ® fNaki2,ak43,-..) = 2 ez iSf(Fri1,Qr42,-..) .
(%,5)ES(x,y)

Lemma 2.4. The diagram .

C(#%)) .._'___, C(R%+D)

A4 ® CX®) —— 44 ® CXED)

N
is commutative.

Proof. 1t is enough to check commutativity on the elementary tensors: ey, ) ® f €
A ® C(X®). For (a,b) € # we have

Ye+1(@r(e,y) ® f)Na,b)
26, esey) €& )@, @k1), (B, -, k1) Gk, Gk, )
= when a; = b; for i>k+ 1 and
0 otherwise
f(ik+1’ak+2"") a; = Xi, bi=J"i for 1 é i §k+l
= anda,-:b,-fori>k+1
0 otherwise
f(@rs1,ah42,...) ai=x;, b=y forl i<k
= and a; = b; for i >k

0 otherwise

= Yi(eq,y) ® fNa,b).
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Note that @ carries Ay ® 1 into 4;4; ® 1. It is these maps that will enable us to
calculate Ko(C*(4)). For we shall denote by A4 the limit of the inductive sequence

A2 dy Boay B

and show that 4 ~ C*(#) and then use the maps {¢;} to calculate Ky(4). So we
shall identify, where convenient, 4; with 4; ® 1. With this identification we have
a sequence of commutative diagrams:

c(2M) _'_, C(2D) ! > e » C*(R)
7] [ Wz[ 'PI
A4, — A NP |
(2] (2]

Lemma 2.5. ¢ is an isomorphism.

Proof. We shall show that the range of V¥ : |J, 4k — Coo(2R) is dense. Let f €
C(X®) and ¢ >0 be given. For each x € X*) choose j, such that on O(x,j,) =
{a€X®|a; =x; for k £i < k+j,— 1}, f varies by less than ¢, ie. |f(y)—
f(x)| <& for y € O(x, ji). Then by the compactness of X*), we may cover X*) by
a finite number of these sets {O(xi,jx,),..., O(xn,jxy)}; since these sets are open
and closed we may re-arrange them into a cover {O,...,Ox} of pairwise disjoint
open and closed sets, with O; C O(xy( ), jx, ;,)- Thus

Let jmax = max{jx,,...,j,,,}. Now Pjax—10 "+ O(pk(lA,‘ ®X0,) € Ajw ®1C
Ajpy ® C(XUn)). Thus @10 -+ © Pr(€z,y) ® X0(x,j,,)) is Within & of an ele-
ment of 4, ® 1. Hence for each element f € C(#*)) and &> 0 there is j and

f €4;®1 such that || f — y;(f)|| <e. Hence the range of ¥ is dense.
Each central projection in 4; produces one copy of Z in Ko(A4x). Thus Ko(4x) ~
Z'*% with positive cone Zf’“‘* = {(20,---,24, |zi 2 0}.

Lemma 2.6. Under the identification of Ko(Ax) with Z'**,
[ox] : Ko(4k) — Ko(Ak+1)

is represented by the 1 + ax+1 X 1 + ax matrix

<eE.

f= 2 fGigro,
1sjsK

1 - 11
1 -~ 10

Ty = 1
1 1 0

e T = 1 j<l4agrori=1
e =10 j=1+aandi>1.
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0 1 2 3 Iy

0 1 2 Ny
Fig. 3. The Bratteli diagram for the inclusion of A into Ay, ;.

Proof. We only have to show that there is a map of multiplicity one from each
central summand of 4; to each central summand of Ai,; with the exception of
the last summand M,,,;;k(C) of A;. In the latter case we must show that M,,,:k(dl’)
gets mapped only to the first summand M"{OH(C) of Aiy; and that this map has
multiplicity one.

Suppose x € /Y(k) and Xk *ak- Then S(X,X) = {((X,O), (xa 0))’ sy ((x, ak)’ (xs ak))};
i.e. the sequence x in Xy) can be extended to a sequence (x,i) in X441y by
adding any i € {0,1,...,ax+1} to the end of x. Hence in the sum @x(ex,x)) =
Z(i’i)es(x’x) e ) there is one term in each of the 1 + gz, summands of 4.

Suppose x € X(x) and x; = a;. Then x can be extended only by adding a 0, so
S(x,x) = {((x,0),(x,0))}. Thus the last summand of 4; only gets mapped into the
first of A¢4; and with multiplicity one.

The Bratteli diagram for the inclusion of A; into A4xy; can be described as
-follows. There are 1+ a; vertices on level k¥ and an edge between the i vertex of
the k™ level to the j® vertex of the k + 1 level if a sequence in X4 ending in i
can be extended to one in X(x+1) by appending a j.

1

0 .
) and é;") = | - | be vectors in Z!*%, Then

0

1
For each k let ¢% = (
1

ar +1 1
ak k k .

L& =1 T | =ag"+ gD and ngP = | | =Y.
ag 1

So let 5% C Z'+ be the span of {¢X, &P}, Since the rank of T; is two, we see
that Z¢+! is the range of Ty and Z!*% = ke(Ty) @ E*. Let P = {(m,n) | m&® +
nég‘) € EX} = {(m,n)|m = 0 and m + n 2 0}. Define a map EZ* — Z? by méﬁ“ +
n&® s (m,n). The positive part of Z* gets mapped to P. Relative to the standard
basis {({), ()} of Z* we have Ty = (¥ ;). Hence we have a sequence

2 T 2 I 2 I
z z z .
) 1+a;

—
with positive cone P at each term. Recall that 4} =COC & --- ® € and so the
class of 1 in Ko(d;) is & € 5! C Z¥™. Under the map from Z! to 22 & is
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sent to ((',) We shall compute Ko(C*(£) using the following diagram — where

0 1
s°=( ) Si=8"'T . S=8 T T

1 0
Oerr 2 = 12>, ...
(**) &j S[‘ Sz'[
Z? 72 zZ2
Since Tg -+~ T1So = (,”* 2 ), where po =0, py =1,..., Pk+1 = @r+1 Pk + Pi-1
and go =1, g1 = a1, Gk+1 = Gk41Gk + Go—1, Sk = (=1 (21 TH) Let e =

Sk+1(p) =(—1)k(_q;,k) and px=Sk1( ) = (~1)k(_(z:i‘:,":,))- Let P, = {(m,n) €

Z?|am + n > 0}.
Lemma 2.7. For all k, n; and py are in P, and P, is generated by {n; }+.

Proof. Since % < a, we have agop +(— par) > 0; thus 1y € P,. Also since %:L >

o, we have a(—qa+1) + pax+1 > 0; thus nox4 € P,. We apply the same argument to
the inequalities % < Bt o P22 < g to conclude that py = (_ 920119 ) € P,

q%+1 +‘1212 lm+z) (P2k+1+ Pax)
. . — (- gau+qan—1 . . . o 41
The inclusion of ( Pt M_l) is proved using the inequalities a < P""—qm‘ <
Pt pak—1 < Pzt
92%+q2k—1 qu—1 "

Finally let us show that P, is generated by {m}s. Since (7)= (mpa+1 —
nqok+1 M2k + (mpax + nqax )41 it suffices to show that whenever (m,n) is in P,
there is large enough k so that mpyiy| + ngae+1 and mpay + ngy are positive. This
can always be done; for if m = 0 choose k so that =) < % <o, and if m<0

choose k so that o < £l < 2
G2k+1 m

Theorem 2.8.
(Ko(C*(R)Ko(C*(R))+, (1) 2 (Z + 2 Z,(Z + aZ)4,1) .

Proof. By the diagram (x*) Ko(4) ~ Z2. Under this mapping the positive cone gets
sent to | J; S(P). In Lemma 2.7 we have shown that this union is exactly P,. The
class of 1,(}) in the upper left-hand comner of (**) gets sent to ({) in Z2. Thus
(Ko(4),Ko(A4)4,[11) ~ (Z%,B,, (})). Now map Z2 to R by (m,n) — am + n. This
order isomorphism sends (Z2,P,, (%)) onto (Z + aZ,(Z + aZ),,1).

Remark 2.9. Let us conclude by showing how the Bratteli diagram for 4 may
be given an order making it an ordered Bratteli diagram in the sense of Herman,
Putnam, and Skau [4, Sect.2] so that X is homeomorphic to the path space X.
This ordered Bratteli diagram is not simple in that there are two minimal paths
and one maximal path. In this case the VerSik transformation is a partial home-
omorphism. Two paths are tail equivalent if and only if a power of the Versik






