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Abstract: We construct all 5(7(2) Yang-Mills instantons on S4 that admit a certain
symmetry ("quadrupole symmetry"). This is accomplished by an equivariant version
of the "ADHM monad" classification of instantons. This work is part of an attempt
to better understand the structure of non-self-dual Yang-Mills connections with the
same symmetry.

1. Introduction

A. Statement of Results. An instanton, in this paper, refers to a unitary connection
with anti-self-dual curvature on a rank-two hennitian vector bundle over the standard
four-sphere S4. Such a bundle is determined, up to an isomorphism, by its second
Chern number C2, and admits instantons if and only if C2 ̂  0. For a detailed account
of the theory of instantons on S4, see for example the book [5].

This article is devoted to the study of instantons with "quadrupole symmetry"
[4]. To define these, let the orthogonal group SO(3) act on S4 C R 5 via its irre-
ducible linear representation on R 5 (conjugation of traceless symmetric 3 x 3 real
"quadrupole" matrices). Then a bundle with quadrupole symmetry consists of a
rank-two hennitian vector bundle over S4 together with a lift of the 5O(3)-action
on S4 to a unitary action on the bundle. In general, to construct such lifts, one needs
to pass from SO(3) to its double-cover Spin(3) = SU(2). Finally, an instanton with
quadrupole symmetry, or simply a symmetric instanton, consists of a bundle with
quadrupole symmetry together with an instanton connection which is invariant under
the S*7(2)-action on the bundle.

The classification of bundles with quadrupole symmetry is quite simple, given
by a pair of odd positive integers (n+,/i_). The significance of these integers is the
following: the singular locus of the SC/(2)-action on S4 consists of exactly two or-
bits; for a point on one of these orbits the identity component of the stabilizer
subgroup is a circle group which acts on the fiber with weights {«+,— n+} or
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{w_,—/*_}, depending on the orbit. In terms of these invariants, the second Chern
number of the corresponding bundle is

c2 = (nl-nL)/S. (1.1)

More details on "quadrupole symmetry" can be found in the Appendix at the end of
this article or in the articles [20] and [10]. In these two articles it was also shown
that there are no symmetric instantons on bundles with n_ ^ 3.

Here, we address the question for the remaining cases of symmetry type (w+, 1).
We obtain a constructive classification of all instantons with quadrupole symmetry.
The main result is the following:

Theorem 1.1. There exists exactly one symmetric instanton on each of the bundles
over S4 with quadrupole symmetry of type («+, 1), where n+ is an odd positive in-
teger. Furthermore, the corresponding symmetric ADHM monads can be explicitly
constructed {see below).

To explain the method of our proof, let us recall that the classification of instantons
was accomplished in two steps. First, a "twistor transform" provided a bijective
correspondence between instantons and a class of holomorphic bundles over CP3

[24], and second, the Atiyah-Drinfeld-Hitchin-Manin construction [2] provided a
bijective correspondence between this class of holomorphic bundles and "ADHM
monads" (see Sect. 3 for a review). We summarize these correspondences in the
following diagram:

Instantons on S4

i
Holomorphic bundles over <CP3 (1.2)

i
ADHM monads

Now, the functorial nature of these correspondences implies that the ADHM
monads corresponding to instantons with quadrupole symmetry naturally admit
an S£/(2)-action, so the proof of Theorem 1.1 amounts to the construction of
all "ADHM monads with quadrupole symmetry." To construct these, we use an
equivariant index theorem to determine the 5(7(2)-action on these ADHM monads
(Sect. 4), and then construct all these ADHM monads with quadrupole symmetry
(Sects. 5 and 6).

Some technical aspects of our proof, such as Proposition 5.3, may be of in-
dependent interest for the theory of 5C/(2)-representations and Clebsch-Gordan
coefficients.

The results in this paper can be obtained by different methods. Dimensional re-
duction and ordinary differential equations techniques yield an alternate proof [18]
of the existence statement of Theorem 1.1, but do not provide an explicit con-
struction of the symmetric instantons. For any n+, an equivariant version of the
twistor transform provides a bijective correspondence between symmetric instantons
and solutions of a certain system of algebraic equations [19]. For n+ small, the
algebraic equations can be readily solved, yielding an explicit construction of the
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corresponding symmetric instanton. Other authors have previously considered equiv-
ariant ADHM constructions for certain Abelian symmetry groups [6, 7, 8, 12, 13].

B. Background. Our interest in instantons with quadrupole symmetry stems from a
comparison of the theory of instantons with that of general solutions of the Yang-
Mills equations. The latter are the variational equations for the "Yang-Mills action"
(the Z,2-norm of the curvature), and the self-dual and anti-self-dual connections are
special solutions, corresponding to the minimal critical points of the action. The
general solutions to the Yang-Mills equations (not necessarily self-dual or anti-
self-dual) are rather poorly understood at present. For several years, a number of
results [9, 23] and similarity with other problems (e.g., harmonic maps S2 —> S2)
suggested that every solution of the Yang-Mills equations over S4 is either self-
dual or anti-self-dual. Then in 1989, L. Sibner, R. Sibner, and K. Uhlenbeck [22]
published a variational existence proof for non-self-dual solutions to the Yang-
Mills equations on the trivial bundle {ci = 0). After that discovery we looked
for other non-self-dual solutions and obtained the following result (compare with
Theorem 1.1):

Theorem 1.2 ([20, 10]), There exists a symmetric connection which is a solution
to the Yang-Mills equations but is neither self-dual nor anti-selfdual, on each of
the bundles over S4 with quadrupole symmetry of type ( /J+,W_), where n+ and n-
are odd positive integers ^ 3.

Thus, according to this theorem and Formula (1.1), non-self-dual solutions to the
Yang-Mills equations exist for all vector bundles over S4 except possibly for those
with C2 = ± 1 . (This last case remains open to date, to our knowledge). Unlike in
the self-dual case, no solutions have been constructed explicitly, although numerical
approximations to some of these solutions have been obtained [21].

Now, the twistor transform for instantons has a less familiar analogue for the
general solutions of the Yang-Mills equations. This so-called "ambitwistor trans-
form" provides a correspondence between Yang-Mills connections and a class of
holomorphic vector bundles over the variety F\y$ of (1, 3)-flags in C4. We refer to
[16] for details and references. One of the difficulties of this approach is the absence
of an analogue of ADHM monads, so there is no known method for constructing
the appropriate holomorphic bundles over F\t^. This is summarized in the following
diagram (to be compared with diagram 1.2):

YM connections on S4

t
Holomorphic bundles over F\^ (1.3)

I

It is plausible that an equivariant ambitwistor transform for the non-self-dual
Yang-Mills connections of Theorem 1.2 is simpler than the general ambitwistor
transform without symmetry. Our motivation for studying the analogous equivariant
ADHM construction in this paper is to develop an understanding of the type of
simplification that may occur in the equivariant ambitwistor setting.
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Instantons with quadrupole symmetry are also interesting from a rather different
and recent point of view. There is a link between such instantons and isomonodromic
deformations of linear ordinary differential equations, the Painleve transcendents, etc.
This will be expounded in an upcoming article by the first author. This circle of
ideas has also been recently used to study Einstein metrics with symmetry [14].

J.S. wishes to acknowledge helpful discussions or communications with
R.L. Bryant, A.D. Heifer, and L.A. Sadun.

2. S£/(2)-Representations

In this section we review some facts, mostly standard, pertaining to the representation
theory of the group SU(2).

Let SU(2) act on C2 via the fundamental representation. Then SU(2) acts in
the usual way on the vector space f := <C[x, >>] of polynomials on C2. The (d + 1)-
dimensional subspace % C *f of degree-rf homogeneous polynomials is invariant
and irreducible. Any complex irreducible finite-dimensional representation of SU(2)
is isomorphic to % for some non-negative integer d.

The subgroup of diagonal matrices in SU(2) consists of matrices with (z,z)
on the diagonal, where \z\ = 1. This subgroup acts on the monomials by x"1/1i->

whjch easily yields the character Xd of %:

-d+l zd+\

+...+z-" = ̂  zy_ . (2.D
Next, we consider real and quaternionic structures. These are induced on the

symmetric algebra Y = S*(^f) from the quaternionic representation ^f, i.e. T̂ i =
(<C2)* admits an 5t/(2)-equivariant anti-linear endomorphism a, satisfying G1 = — 1
(a "structure m^>"), given by

<r : ax + by *-+ Sx — ay .

The induced structure map on *K is then real (a2 = 1) on the even part

and quaternionic (a2 = —1) on the odd part

The structure map on monomials is given by

(2.2)

and on a general v € 'V by anti-linear extension.
The remaining structures on. f are conveniently described in terms of the

"transvectants" (Uberschiebungen) of classical invariant theory. We adopt the no-
tation of Bryant [11]. For a non-negative integer /?, the /7th transvectant is the
5(7(2)-equivariant C-bilinear map 'f x if —> K* defined by
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Remark. Here is a quick proof for the equivariance of the transvectants, as well as
an "explanation" of the origin of Formula (2.3). Consider the 5C/(2)-representation
<C2 0 C2 with linear coordinates x9y,x\)/. Then the differential operator

dx dyf dy dx'

is S"£/(2)-mvariant. This follows from the SL(2, C)-invariance of the area form Ĵ  A
Y on (C2)*. Now the /7th transvectant applied to a pair of polynomials u and
v in if is given by first applying Dp/p\ to u 0 v (thought of as the polynomial
u(x,y)v(xf,yf) on C2 0 C2) followed by polynomial multiplication f ® f -> f .

•
The transvectants induce a bilinear form and hermitian inner product on if as

follows. The restriction of the p * transvectant to i^ x ̂  is an invariant bilinear
form, and by taking direct sums we obtain an invariant bilinear form on if, denoted
by ( • , • ) . This form is symmetric on %. and anti-symmetric on iC; in fact, using
Formula (2.3), for any u,v e if*

u)p. (2.4)

The transvectants are compatible with the structure map a,

(T(U,V)P = (<ru,av)p (2.5)

for any w, v € if, hence the hermitian inner product on if defined by

(u,v):= {<ru,v)

is 5C/(2)-invariant. The monomials x*1/* form an orthogonal basis, and

H J ^ / H 2 := ( J C " 1 / 1 , * * / 1 ) = mini > 0 . (2.6)

This verifies the positive-definitiveness of the hermitian inner product ( • , • )> and
consequently, the non-degeneracy of the bilinear form (• , • ) .

Remark. The existence of a non-degenerate invariant bilinear form implies that
each of the irreducible St/(2^representations % is isomorphic to its dual, if& =

•
Tensor products of the irreducible representations % decompose according to

the Clebsch-Gordan formula,

V®il='K+j®iri+j-2®''-®*\i-j\- (2.7)

This can be verified using the character formula (2.1).
The purpose of introducing the transvectants here is to have a concrete choice

for the isomorphism in Formula (2.7).

Lemma 2.1. The vector space of <E-bilinear equivariant maps % x ifj —> if has
basis {(•, • )p}, where 0 ̂  p ̂  min(/,y).

Proof For p in said range, the map (•, • ) p : if{ x ifj —• ift+j-2p is non-zero. This
can be verified using Formula (2.3), by checking for example that (*/,<y-Op4sO. The
statement of the lemma now follows from Schur's lemma and the Clebsch-Gordan
formula (2.7). •
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3. ADHM Monads

We review here briefly the ADHM correspondence between instantons and monads.
We refer to the original paper [2] and the books [5, 16] for the detailed description
of the correspondence.

The first step, as outlined in the introduction, is to translate the problem about
instantons on S4 to one about holomorphic vector bundles over <CP3. This is done
using the twistor fibration. To fix our notation we shall quickly describe it now.

Let us denote by H the quatemionic numbers and consider H 2 as a right M
vector space. Restricting scalar multiplication to the complex numbers C c H makes
H 2 into a 4-dimensional complex vector space. Mapping a complex line in H 2 to
the unique H-line containing it defines the Penrose twistor fibration n : CP3 —>
HP1 , where HP1 is the quatemionic protective line (the space of 1-dimensional
quatemionic vector subspaces in H 2 ) . HP1 can be identified with S4 in a way which
preserves all relevant structures, see [5], and we shall henceforth assume such an
identification HP1 ^ S4.

Now, given an hermitian vector bundle E —• S4, the anti-self-duality for the cur-
vature of a connection on E is equivalent to its pull-back on <EP3 being of type
(1,1), i.e., defining a holomorphic structure on n*E. Conversely, given a holomor-
phic vector bundle over <EP3 satisfying certain conditions, one can show that it
comes from S4 in the manner just described.

The next step consists of constructing all holomorphic vector bundles over CP3

that come from instantons on S4. They all turn out to arise from a certain monad
construction, the ADHM construction, which we now describe.

The monads corresponding to instantons on a rank-2 bundle E —* S4 with second
Chem number ci(E) = k ^ 0 are defined by the following data:

(1) A complex vector space W of dimension k equipped with a real structure.
This means that an anti-linear map a is defined on W such that a2 = 1.

(2) A complex vector space V of dimension 2k + 2 equipped with a quaternionic-
hermitian structure. This means that on V are defined an anti-linear map a such that
a2 = — 1, and an anti-symmetric C-bilinear form (•, •) such that (v9v

f) := (crvyv
f)

is a positive-definite hermitian inner product.
Thus we can identify W with <C* endowed with its standard real structure (conju-

gation), and V with H*+1 = <C2*+2 endowed with its standard quatemionic structure
(right multiplication by j) and hermitian inner product (v,v').

(3) A C-bilinear map

A: W xiE4 -+ V

satisfying the following three "ADHM conditions":

a) The "injectivity condition": A(w,z) = 0 only if w = 0 or z = 0.
b) The "isotropy condition": (A(w,z\A(w\z)}=0 for all z e C 4 and w,w'eW.
c) The "reality condition": <TA(W9Z) = A(GW,GZ\ where C4 = H 2 is

equipped with its standard quatemionic structure.

An ADHM monad A : W x C4 —> V defines a holomorphic vector bundle over
<EP3 and a corresponding instanton on S4 as follows: The injectivity condition means
that for every non-zero z £ C4 the image Uz of A( • ,z) : W —» V is a it-dimensional
subspace of V, and the isotropy condition means that Uz is an isotropic subspace
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of V with respect to the symplectic form ( • , • ) ; thus Uz C £//, where U? is the
annihilator of Uz with respect to the symplectic form, and E = U°/U is the required
rank-2 holomorphic vector bundle over CP3. Furthermore, the reality condition en-
sures that E —> <LP3 descends to a bundle E -+ S4 via the twistor fibration, and
the hermitian structure (•, • ) on V induces an hermitian connection on E which
turns out to be anti-self-dual. This is the instanton that corresponds to an ADHM
monad.

Two monads A : W x C4 —> V and A : W x C4 —• V are said to be equivalent if
there exist complex-linear isomorphisms W -* W and V —• F, respecting all struc-
tures, and taking A to A

The classification theorem of instantons according to ADHM is then:

Theorem 3.1 (ADHM). Every instanton on S4 (up to gauge equivalence) is
obtained by the ADHM construction from a unique ADHM monad (up to
equivalence).

The proof of this theorem relies on an "inverse construction" which associates
to each instanton an ADHM monad that gives rise to the instanton. This involves
pulling-back the instanton from S4 to CP3 (via the twistor fibration) and interpreting
the vector spaces W and V and the map A of the required ADHM monad in terms
of sheaf cohomology groups associated with the corresponding holomorphic vector
bundle on (CP3. One can then use twistor methods to interpret part of this data,
namely the vector spaces W and V, directly in terms of the differential geometry of
the instanton on S4:

Theorem 3.2 ([5], chapter 6; [15]). Given an instanton connection on an hermitian
vector bundle E —•> S4, the vector spaces W and V of the corresponding ADHM
monad can be identified with kernels of Dirac operators as follows'. Let us fix a
spin structure on S4 (there is a unique one up to isomorphism) and let S = S+ ® S~
be the corresponding spinor bundle. Then W can be naturally identified with the
dual space of E-valued negative harmonic spinors on S4

9

W* ̂ Ker[Di : T(E®S~)-^ T(E®S+)], (3.1)

where D\ is the Dirac operator F(S~) —• T(5+ ) coupled to the connection on E.
Similarly; V can be naturally identified with the space of E ^ S~-valued negative
harmonic spinors on S4

9

V a* Ker[£>2 : r((E 0 S~) 0 S~) -> r((E ®S~)®S+)], (3.2)

where Di is the Dirac operator coupled to the connection on E 0 5 " .

For our purposes in this paper we need G-equivariant versions of these two the-
orems. These follow rather easily from the functorial properties of the constructions
involved. We now outline the details.

Let us suppose that E —> S4 is a G-equivariant hermitian vector bundle, where
the group G acts on E by unitary bundle maps covering a conformal orientation-
preserving G-action on S4, so it makes sense to speak about G-invariant instan-
tons on E. The G-action on S4 then naturally lifts, via the twistor fibration, to
a fiber-preserving action on CP3 (a homomorphism G -* PGL(2,H) = S0(4,1)).
We further need a lift of the G-action to a H-linear action on H 2 (a homomorphism
G —GL(2,H)).
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Remark. If no such lift exists, replacing G by an appropriate double-cover guar-
antees the existence of a lift. If more than one lift exists, choose arbitrarily. If
G is simply-connected, as in our case of G = SU(2), there exists a unique such
lift. •

Next, a G-invariant ADHM monad is defined to be an ADHM monad A : W x
C4 —> V, where W, V and (C4 are equipped with a G-action respecting all their
structures, and where the bilinear map A is G-equivariant. Two G-invariant ADHM
monads are said to be G-equivalent if they are equivalent via G-equivariant maps.
Similarly, G-equivalence of G-invariant instantons means equivalence by bundle
automorphisms commuting with the G-action.

Given a G-equivariant bundle E —> S4 together with a lift of the G-action
to H 2 , the fiinctoriality of the constructions used in proving Theorems 3.1 then
yields:

Corollary 3.3. Every G-invariant instanton (up to G-equivalence) is obtained by
the ADHM construction from a unique G-invariant monad (up to G-equivalence),
where the G-action on M2 is specified by the lift.

We now formulate a G-equivariant version of Theorem 3.2. The G-action on
H 2 induces a lift of the G-action from S4 to the spinor bundles S±. If G acts
isometrically on S4, then the action on £* is unitary, and the Dirac operators in
Theorem 3.2 are G-invariant. (If G acts on S4 conformally but not isometrically,
which is not our case, then one must include appropriate conformal weights, see
[15]). We thus obtain:

Corollary 3.4. The kernels of the Dirac operators in Theorem 3.2 are G-invariant
and the identifications in Formulae (3.1) and (3.2) are G-equivariant.

Using this last corollary, together with a G-equivariant index theorem and a
vanishing theorem for the Dirac operator, one can compute the G-repre-
sentations W and V for the ADHM monad of a G-invariant instanton. This
will be done in the next section for our case of instantons with quadrupole
symmetry.

4. S*7(2)-Invariant ADHM Monads

Following Corollaries 3.3 and 3.4 of the previous section, the classification of in-
stantons with quadrupole symmetry amounts to the classification of «SC/(2)-invariant
ADHM monads A : W x C4 -+ F, where the SC/(2)-action on C4 ^ H 2 induces the
quadrupole SU(2faction on S4 = H P 1 described in the Introduction. In this sec-
tion we begin with the determination of the SU(2faction on C4, W and V. Similar
computations appear in [7] and in [17].

Recall from the Introduction that rank-2 vector bundles over S4 with quadrupole
symmetry are classified by a pair (/i+, /?_ ) of positive odd integers (see the Appendix
for details). Further, recall from the Introduction that a necessary condition for such
a bundle to admit a symmetric instanton is /i_ = 1.

Proposition 4.1. An instanton with quadrupole symmetry of type (/!+, 1), where
n+ = 1,3,5..., corresponds to an SU(2)-invariant ADHM monad A:WxQ?->V
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with the following SU(2)-action (denoting n+ by n for simplicity) :

Remark. Note that the decomposition of V starts with a "gap" of length 4, and then
proceeds in steps of 2. We have for the first few values of n+:

n+ W V

1
3
5
7
9
11

{0}

n
n•r4©

n®
n®

n
n

n

n
Proof, Let us first prove the isomorphism C4 = ^3. In light of Corollary 3.3 and
the remark preceding it, we need to prove that the St/(2)-action on H 2 defined by
the quatemionic-hermitian representation 1̂ 3 projects, via the twistor fibration, to the
"quadrupole" action on S4. Now we know that the quaternionic-hermitian SU(2)-
action on H 2 projects to an isometric, hence linear, action on S4 (in general Sp(2)
thus projects to SO(5)), so it is sufficient to show that this action is not reducible
(recall that R5 admits a unique, up to equivalence, irreducible SU(2faction, the
"quadrupole action"). But any reducible Sf/(2)-representation on R5 must have a
trivial summand, so we only need to check that no fixed points occur on S4, or
in other words, that there are no S£/(2)-invariant quaternionic lines in H2 . This
follows from the irreducibility of the representation i^.

For the calculation of the 5t/(2)-action on W and V we need to make an
essential use of the following three tools:

1. The interpretation in Theorem 3.2 and Corollary 3.4 of the SU(2^representa-
tions W and V in terms of Dirac operators.

2. A fixed-point formula of Atiyah and Bott, applied to the 5C/(2)-equivariant
index of these Dirac operators.

3. A vanishing theorem for solutions of Dirac equations which renders the index
calculation effective for our purpose.

These matters are explained in detail in well-known references [5, 1, 3], so here
we shall merely quote from these references the relevant facts for the calculation at
hand.

Recall from Theorem 3.2 and Corollary 3.4 the interpretation of W* and V as
the kernels of the Dirac operators D\ and Z>2, respectively. We can thus determine
the decomposition of their kernels into irreducible representations by calculating for
each of them the corresponding character (trace), via a fixed-point formula of Atiyah
and Bott [1], which we now recall briefly.

The set-up relevant for our case is that of an elliptic differential operator
D : r(Ff) -> T(F"), where Fr and F" are vector bundles over a compact mani-
fold M, together with a bundle map / : F ; —> F" whose induced action on sections
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F(Ff) —• F{Fn) commutes with D and all of whose fixed points on M are isolated
and non-degenerate. It follows that the kernel and cokernel of D (which are neces-
sarily finite-dimensional vector spaces by ellipticity and compactness) are invariant
under / and the formula of Atiyah and Bott expresses the difference of the traces
of the /-action on these spaces (the /-index of D) in terms of the /-action at the
fixed points:

index(/,D) := tr(/,Ker (D)) - tr(/,coKer (D)) = £ vp ,
P

Vp- d e t ( l - < / , / ) ' ( 4 1 )

where p ranges over the fixed points of / on M and dpf denotes the action of the
derivative of / on the tangent space to M at the fixed-point /?. We note that the
particular form of the differential operator D does not enter this remarkable formula,
only the details of the action of / at the fixed points are needed.

To apply this fixed-point formula in our case, we restrict the 5l/(2)-action to
a circle subgroup, say, the diagonal subgroup of SU(2). It is easy to see then that
there are exactly two (antipodal) fixed points in S4 C R5,#+ and —q+ (see the
Appendix). These are necessarily non-degenerate fixed points as the action is by
isometries. It follows that the Atiyah-Bott fixed-point formula can be applied to
express the difference of the characters of the St/(2)-representations Ker(A) and
coKer (£>,)> * = 1>2, in terms of the action of the circle subgroup on the various
bundles at the two fixed points.

We now make use of the vanishing of the cokernels of the differential op-
erators D\ and D^. This follows, via a Weitzenbock-type formula for the Dirac
operator, from the positivity of the curvature of S4, the self-duality of S4 and
the self-duality of the connection on E (see, for example, Sect. 6 of [3]). The
fixed-point formula (4.1) thus gives the characters of the SC/(2)-representations W*
and V, The action on W* is isomorphic to the action on W; see the Remark after
Formula (2.6).

We examine the details of the circle group action at the fixed points. This
is a routine calculation, whose outcome is summarized in the following table of
weights:

E S~ S+ TS4

q+ ±n ±3 ±1 ±2, ±4

-q+ ±1 ±1 ±3 ±2, ±4

We next use this information in the Atiyah-Bott fixed-point formula (4.1) for
the calculation of the characters of W and V, where we use z to parametrize the
diagonal matrix with (z,£) on the diagonal and \z\ = 1:

(zn + z»)(z3 + f 3) - (z» + z«)(z + z) + (z + zf - (z + z)(z3 + z3)
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and

( z_ f)2 ( z2_ f 2 )

Finally, with the Weyl integration formula, we decompose the above expres-
sions for the characters of V and W into sums of characters of irreducible SU(2)-
representations

where %d is the character of the (d -f 1 )-dimensional irreducible 5(7(2 ̂ representation
%, as given in Formula (2.1). We have obtained the decompositions in the statement
of the proposition. •

5. The S/7(2)-Equivariant ADHM Conditions

The next two sections form the most technical part of the paper and consist of
the determination of the 5(7(2 )-equivariant ADHM maps A : W x C4 —• V9 with the
S£/(2)-action on C4, W and V as given in Proposition 4.1 of the previous section.
A fortuitous property of these representations is that they are multiplicity-free, i.e.,
in their decomposition into irreducible summands each % appears at most once.

Let us first establish some notation. For an instanton with quadrupole symmetry
of type (JI+, 1), denote the odd integer n+ by 2m + 1 and let

I = m — 1, m — 3 , . . . (ending with / = 0 or 1 depending on the parity of m), be
the restriction of the bilinear map A : W x ̂ 3 —• V corresponding to the summand
i^n C W in the decomposition of Proposition 4.1:

w ss fSo..!) e *2(m-3) e • • • . (5.1)

The Clebsch-Gordan decompositions

^ 2 / ® ^ = % 3 e % i e f 2 M © ^ 2 / - 3 for/ ^ 2 ,

and Lemma 2.1 allow us to write ^/ uniquely as a linear combination of transvectants

•>2 + fl/,3(-, ->3 for / ̂  2 ,

> * ) o •
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We call the complex numbers {tf/,p} the coefficients of the 5(7(2)-invariant monad.
Note, by Proposition 4.1, that am_i,i = 0 because of the "gap" i^-i t- K but
any other coefficient may be non-zero. It is clear that an 5(7(2)-invariant monad is
determined uniquely by its coefficients.

We now formulate the ADHM conditions for an 5(7(2 )-invariant monad in terms
of its coefficients.

Theorem 5.1. Let m be a nonnegative integer^ and let n+ = 2m + 1. For an 5(7(2)-
equivariant bilinear map A : W x C4 —> V, where the SU(2)-action on the vector
spaces is as stated in Proposition 4.1, the ADHM conditions of Sect. 3 are equiv-
alent to the following conditions on the coefficients {#/,/>}:

a) The ADHM reality condition is equivalent to a^p G R for all I and p.
b) The ADHM injectivity condition is equivalent to a/^+O/or all I.
c) The ADHM isotropy condition is equivalent to the following two conditions:

i) The "diagonal isotropy condition":

, (2/+l)_2 2/(2/ - 3 ) ^
U1 = (21- \f l>* (21- If lA *°r - '

2)(2/ + 3) , 9(2/+1) 2fl'>3 = (2/-i)2 <*w=Wa" f°ralll^2>
ii) 7%e "off-diagonal isotropy condition":

ai,oai+2,2 = «/,ia/+2,3 for all I ^ I <> m-3 . (5.2)

Proof of 5.1 a) and b).

a) Follows immediately from the C-antilinearity of <r and its compatibility with
transvectants (Eq.(2.5)).

b) Suppose the ADHM injectivity condition holds for the 5(7(2)-invariant monad
A:Wxr3-*V. Letw=xzl€-r2iCW and letz=jc3 G^5. Then ( w , z ) 0 =x 2 / + 3 +0 ,
while {w,z)p = 0 for any p ^ 1. Therefore A(w,z) = 0 iff a/,o = 0, so we have
proved that ADHM injectivity implies a/,o+O for all /.

Conversely, suppose that a/,o+0 for all /, and that A(w,z) = 0 for some w € W
and some non-zero z £ i^. We need to prove that w — 0. Using the direct sum de-
composition of W (Eq. (5.1)), write w = ww_i + wm_3 H , where w/ € T /̂ C FF.
Our assumptions imply that (wm-\,z)o = 0, but since the 0th transvectant is just
multiplication of polynomials, this implies wm-\ = 0. We now proceed by induc-
tion. If / ^ m — 3 and w/+2 = 0, our assumptions imply that (>v/,z)o = 0, but this
again implies w\ = 0. So we have now proved that if a/,o+O for all /, then the
ADHM injectivity condition holds. •

To prove part c), we first note that the isotropy condition can be reformulated as
follows: associate to a monad A the C-quadrilinear form

Then the isotropy condition

^(w,w',z,z) = 0, w,w' e W, z e C4 ,
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means that for fixed w,w' the bilinear form /^(w, w'9 •, • ) is anti-symmetric, so that
its symmetrization in the last two arguments vanishes,

/+ := IA(w9w'9z9z') + IA(w9w'9z'9z) = 0 .

Next, we define the C-quadrilinear forms

(5.5)

(w9w'9Z9Z
r) i-> {(W^p+i-

and their symmetrization on the last two arguments

Lemma 5.2.

a) The vector space <8fitk of SU(2)-invariant <E-quadrilinear forms

has basis {FiykyP}9 where 0 ^ p ^ min(/ + k93) - \l - k\.
b) Ifl = k (mod 2), then the subspace ^ k C %^ of forms which are symmetric

in the last two arguments has dimension:

i) min(/,2) ifk = l,
ii) 1 if \k - l\ = 2 and min(Jfc,/) ^ 1,

iii) 0 in all other cases.

Proof

a) Immediate from the Clebsch-Gordan formula (2.7).
b) &£k is the subspace of invariant vectors in (i^i <8> ^2jt) <8> 52(^5), where the

symmetric square S\i^) = ^ ® f̂ . The results now follow from the Clebsch-
Gordan formula. •

It follows that the set {Ff^} spans the vector space <3^ : , but that this set is not
linearly independent in general.

Proposition 5.3. If I = k (mod 2), then the following relations constitute a basis
for the linear dependence of the set {F^p} in <9ff

if 1^2;

if l = U
if 1 = 0,

i) The "diagonal relations", ifk = l:

- 3 F + 1 2

0

2 / ( 2 / - 3 ^

2F,+,2

0

9(2/ + 1)
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ii) The "off-diagonal relations" if\k-l\=2andk,l^l:

iii) No non-trivial relations in all other cases.

Proof. The number of linear dependence relations is the difference between the
dimension of <&ik and the dimension of 8 ^ , both of which are computed in
Lemma 5.2. To find a basis, we evaluate Ff^ (w9w',z9z') for appropriate choices
of arguments.

i) Substituting w = x0)?21"", z == y>
9 w' = aw and z1 — az into Formulae (5.4),

(5.5) and (2.3), we get

i = ((w,z)p, (aw9az)p) + {{w9az)p9 (aw9z)p)

= ((lVjZ^ff^z)^) - {(w9az)p9a(w9az)p)

= \\(w9az)p\\
2-\\(w9z)p\\

2
9

Evaluating this expression with Formula (2.6) for sufficiently many distinct
values of a gives a linear system of equations. The diagonal relations form a
basis for the space of solutions,

ii) The proof is similar, but even simpler. Since the dimension of the subspace
is at most 1, it suffices to choose any argument for which F+ /+2 0 does not
vanish,

iii) F,+. = 0 in all other cases since ^k is zero-dimensional. D

Proof of 5.1 c). The ADHM isotropy condition If = 0 restricted to i^i x ^u x
f i x -fi is equivalent to

T = 0 . (5.6)Yl p
p=0

By the dimension count of Lemma 5.2 b), there are only two non-trivial cases:

i) When k = /, Eq. (5.6) reduces to
min(2/,3)

E
p=Q

This equation is equivalent, by Proposition 5.3 i), to the diagonal isotropy
condition of Theorem 5.1 c)i).

ii) When |* - l\ = 2 and min(*, /) ^ 1, then either k = / + 2 ^ 3 and Eq. (5.6)
reduces to

= 0 , (5.7)

o r / = & - f 2 ^ 3 and Eq. (5.6) reduces to a similar equation. In either case
the equation is equivalent, by Proposition 5.3 ii), to the off-diagonal isotropy
condition of Theorem 5.1 c)ii). D
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Corollary 5.4, Suppose the coefficients {aiP} satisfy the equivariant ADHM con-
ditions. Then

fti ^±^ (5.8)

for all I ^k ^m- 3.

Proof This is non-trivial only if m ^ 4. All a^p are real by the ADHM reality
condition. By the ADHM injectivity condition a*+2,o+O, so c%+2 o>®- Substituting
into the ADHM diagonal isotropy condition, we obtain a^+2,2 > 0, so a*+2,2 4=0. Also
tf*,o*O by the injectivity condition, so ^0^+2,2+0. From the off-diagonal isotropy
condition we conclude that a^\ =1=0 and tf*+2,3 4=0. Dividing the off-diagonal isotropy
condition by tf*,o#*+2,3 gives the result. •

6. Solutions of the S£/(2)-Equivariant ADHM Conditions

The existence statement of Theorem 1.1 is established by the following explicit
formula.

Proposition 6.1. For every non-negative integer m, the coefficients {a/,p} de-
fined by

aUp = y/(2m + 1 )2((2/ + 1 )jP- - (6/ - 1 )p + 6/ - 3 ^ - (2/ - 1 f(2l + 3? ^ 0 ,

satisfy the equivariant ADHM conditions of Theorem 5.1.

Proof The proof consists of merely substituting the coefficients aiiP into the
equivariant ADHM conditions of Theorem 5.1. Clearly 0w_i,i = 0 . The inequal-
ity / ^ m — 1 is equivalent to (2/ + 3)2 ^ (2m + I)2, and the reality and non-
negativity of the a^p are immediate from:

4 0 = (2/ - l)2(9(2m + I)2 - {21 + 3)2) > 0 ,

a2 , - (2/ - \f((2m + I)2 - (2/ + 3)2) ^ 0 ,

a?>2 = ( 2 / - f 3 ) 2 ( ( 2 m + l ) 2 - ( 2 / - l ) 2 ) > 0 , (6.1)

ojf3 = (2/ + 3)2(9(2m + I)2 - (2/ - I)2) > 0 .

The first inequality implies the injectivity condition «/jo4:O. Verification of the di-
agonal and off-diagonal isotropy conditions requires a simple calculation. D

To prove uniqueness, we need to study the equivalence of SU(2 )-invariant
monads. If A:W x<& —*Fisan S£/(2)-invariant monad then, by definition, any
real 5(7(2 )-equivariant automorphism W —• W and unitary quaternionic 5(7(2)-
equivariant automorphism V —• V take A into an SC/(2)-equivalent 5(7(2)-invariant
monad A. By Schur's lemma, the restriction of an equivariant real invertible map
W —• W to y*2/ C W is the identity map multiplied by a non-zero real number
yj. Similarly, the restriction of an equivariant unitary quaternionic map y —• V to
^} C V is the identity map multiplied by Kj = dbl. The coefficents {SiiP} of A are
then related to the coefficients {aitP} of A by

. (6.2)
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Definition 6.2. Let k be an integer. An SU(2)-invariant monad A is called k-
canonical if its coefficients {aijP} satisfy the following conditions for all I ^.k:

0 &hp ^ 0 for all p.
ii) a/,o = 1.

The uniqueness proof for Theorem (1.1) proceeds by bringing S£/(2>invariant
ADHM monads into O-canonical form.

Lemma 6.3. Every SU(2)'invariant ADHM monad is SU{2yequivalent to a 0-
canonical monad.

Proof Let {aiiP} be the coefficients of an S£/(2)-invariant ADHM monad A. We
shall first construct an SU(2 )-equivalent (m — l)-canonical monad with coefficients
{5itP}. If m = 0, the set of coefficients is empty, so A is trivially O-canonical. Sup-
pose m ^ 1. Let K2m+i = 1 and ym-\ = l/tfm-i,o, so 5m_i,o = 1. If w = 1, we are
done. Suppose m ^ 2. As always, we must have am-\y\ = 0. Choose K2m-3 so that
5w-i,2 = K2m-3ym-\am-\,2 ^ 0. If m = 2, we are done. Suppose that m ^ 3. Choose
fc2m_5 so that 5w_i,3 = K2m-5ym-\am-\,3 ^ 0. Letting yw_3 = K2m-3/am-3i09 we ob-
tain 5m_3,o = 1. If m = 3, we are done. Suppose m ^ 4. Letting any remaining KJ =
1 and 7/ = 1, we have constructed an (m — l)-canonical S£/(2)-equivalent monad A.

We now use induction on k. Given a (k 4- 2)-canonical 5(7(2 )-invariant ADHM
monad B with coefficients {bitP}, we shall construct an 5C/(2)-equivalent k-
canonical monad B with coefficients {bitP}. Suppose m ^ 4. Let 0 ^ * ^ m — 3
with k = m-l (mod 2). Let K; = 1 fory* ^ 2* 4-1. Let yk = l/fc*,o> and y/ = 1 for
/ > k. Then £*,<> = 1. If it = 0, we are done. Assume that k ^ 1. Since 5 is (it 4- 2)-
canonical 6jt+2,2 and 6*+2,3 are positive, and Corollary 5.4 implies bk,i/bk,o>O,
proving the positivity of b^i = ykb^x = b^i/b^o. Choose K^-I SO that b^i ^ 0.
If it = 1, we are done. Assume k ^ 2. Choose K ^ - 3 SO that b^i ^ 0. Letting any
remaining Kj = 1 and yi = 1, we have constructed a ^-canonical 5t/(2)-equivalent
monad B. D

Lemma 6.4. For any non-negative integer m, /Aer^ is at most one ^-canonical
invariant ADHM monad.

Proof. For a given m, suppose that {aiiP} and {5/,^} are both coefficients of
invariant O-canonical ADHM monads. We shall show that SitP = aifP for all /
and p. If m — 0, the statement is trivial. Suppose m ^ 1. Because both are 0-
canonical, am_i,o = aw-i,o = 1. If /w = 1, we are done. Suppose m ^ 2. We al-
ways have aOT_i i = am-\t\ = 0. By the diagonal isotropy condition of Theorem 5.1
c)i), ^ _ i ) 2

 = am-\,2> s° ^w-i,2 = ^m-i,2 by non-negativity. If m = 2, we are done.
Suppose m ^ 3. Again by die diagonal isotropy condition and non-negativity,
5OT-i,3 = tfm-1,3. If iw = 3,oo,o = <*o,o = 1 and we are done.

Suppose m ^ 4 . L e t O ^ i t ^ m - 3 with it = m - 1 (mod 2). We shall show
that if 5*+2,p = ajt+2tp for all p, then a^p = a^p for all /?. Induction on it then com-
pletes the proof of the lemma. If k = 0, only p = 0 occurs, and the statement is
trivial because ao,o — #o,o — 1- Assume k ^ 1. Since both monads are 0-canonical,
Corollary 5.4 implies a*,i = fl*+2,2A**+2,3 and S*,i =^+2,2/^+2,3- By assumpticni
5*+2,/> = a*+2,/7 for all p, so 5jt,i = a^i. Using this and a^o = a*,o = 1 in the di-
agonal isotropy condition gives a£2 = a|2» an(^ a^ so ^*3 = a?,3 if it ^ 2. From
non-negativity we conclude that a\^p ~a^p for all p. D
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The uniqueness statement of Theorem 1.1 follows:

Corollary 6.5. For any non-negative integer m, there is at most one 5(7(2)-
equivalence class of SU(2)-invariant ADHM monads^ hence at most one gauge
equivalence class of 51/(2)-invariant instantons on the bundle of symmetry type
(*+,/!_) = (2ro+1,1).

Proof For a given m, suppose A and B are 5£/(2)-invariant ADHM monads. By
Lemma 6.3, there exist O-canonical 51/(2)-invariant ADHM monad A and B that
are 5£/(2)-equivalent to A and B, respectively. By Lemma 6.4, A=B. Therefore A
and B are 5(7(2)-equivalent, and correspond, by Corollary 3.3, to instantons which
are 5(7(2 )-equivalent - hence gauge equivalent. •

Note that the 5£/(2)-invariant ADHM monads of Proposition 6.1 are not O-canonical.

7. Examples

We exhibit the first few examples, using Lemma 6.3 to bring the ADHM monads
of Proposition 6.1 into O-canonical form.

The invariant monad with m = 0, and (/t+,/i_) = (1,1), is trivial, corresponding
to the flat connection on the trivial bundle c2 = 0. W = {0}, so A is the zero map,
and the set of coefficients is empty.

The invariant monad with m = 1, and («+,/!_) = (3,1), correpsonds to the stan-
dard ("50(5)-invariant") instanton on the bundle with c2 = 1. The monad is de-
scribed by the single coefficient #o,o = 1- Neither the diagonal nor the off-diagonal
isotropy condition enters.

The invariant monad with m = 2, and (/i+,/i_) = (5,1), has c2 = 3, and has
coefficients:

0i,o = 1, 0i,i = 0, ah2 = V3 .
The diagonal isotropy condition enters, but the off-diagonal does not.

The invariant monad with m = 3, and (/!+,«_) = (7,1), has c-i = 6, and has
coefficients:

02,0 = 1, 02,1 = 0, a2,2 = Vsfi, 02,3 = V6,

0o,o = 1 •
Both the diagonal and off-diagonal isotropy conditions enter in this, and all following
monads.

The invariant monad with m = 4, and (n+,n-) = (9,1) has ci = 10, and has
coefficients:

03,0 = 1, 03,1 = 0, a3,2 = \/7/25, 03,3 = \/88/25 ,

0i,o = 1, 01,1 = \/7788, 01,2 = \ / !25/44.
The invariant monad with m = 5, and (w+,/i_) = (11,1), has c-i = 15, and has

coefficients:

04,o = 1, 04,1 = 0, a4,2 = VW4S>, 04,3 = ^130/49,

02,0 = 1, 02,1 = \/9/130> a2a = x/343/585, 02,3 = y/lAl/26,

0o,o = 1.
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Appendix

The purpose of this appendix is to present the classification of rank-2 hermitian
vector bundles over S4 with quadrupole symmetry, in terms of a pair of positive
odd integers (/*+,#- ), as mentioned in the Introduction. The reference here is Sect. 2
of [10].

The idea is a variant of the usual "clutching" construction for vector bundles
on a sphere. We recall that this construction is based on viewing the sphere as a
union of two hemispheres (disks), intersecting along an equator (a sphere of one
dimension lower); since each hemisphere is homotopically trivial (contractible) any
bundle over it is trivial, and so any bundle over the sphere can be obtained by the
"gluing" of trivial bundles over the hemispheres via a map from the equator to the
structure group (the unitary group for hermitian bundles).

In our case of bundles with "quadrupole symmetry," i.e. St/(2)-equivariant her-
mitian vector bundles over S4 with the 51/(2 )-action on S4 C R 5 given by the
5-dimensional irreducible representation of SU{2), we have a similar construction.
For this we need to examine first the orbit structure of the SU{2 faction on S4.
One then checks that (1) a generic orbit is 3-dimensional; (2) there are two singu-
lar orbits; and (3) S4 is the union of two tubular neighborhoods (equivariant disk
bundles), one of each of the two singular orbits, intersecting along a generic orbit.

In general, for a smooth action of a compact group, a tubular-neighborhood of
a given orbit can be "radially" contracted, equivariantly, to the orbit. It follows
that an equivariant bundle over such a neighborhood is the pull-back, under the
contraction, of an equivariant bundle over the orbit, i.e. a homogeneous bundle, and
thus given as the bundle associated to a representation of the stabilizer group of a
point on the orbit. The "gluing" of such bundles over distinct tubular neighborhoods
is done via an equivariant isomorphism between the restrictions of the bundles to
the intersection of the tubular neighborhoods.

To describe the situation precisely in our case of "quadrupole symmetry" we
need to fix first some notation. It is convenient to identify our symmetry group
SU(2) with Sp(l), the group of unit quaternions. This can be done by, say, con-
sidering the quaternions H as a right C vector space with a C-basis {IJ}9 and let
Sp(l) act by left multiplication. Next, we take as a model for the 5-dimensional
irreducible representation of Sp(l) the space of traceless real quadratic forms q
on the Lie algebra of Sp(l) (imaginary quaternions), with the Sp(l)-action in-
duced by the adjoint action on the Lie algebra, and norm given by ||#||2 = t r ( ^ ) .
The Sp(l)-action preserves this norm, so we obtain an Sp(l) action on the unit
sphere S4. More explicitly, if we fix a basis for the Lie algebra of Sp(l), say
{ij9k}9 with the dual basis {a,j5,y}, then the coefficients of a traceless quadratic
form q constitute a 3 x 3 traceless symmetric matrix, so that the Sp(l)-action fac-
tors through the usual conjugation action of 50(3) on the space of symmetric
matrices.

The orbits of the Sp(l)-action are parametrized by the set of 3 eigenvalues of a
form. Generically, the 3 eigenvalues are distinct, so the two singular orbits consist
exactly of those forms with a degenerate eigenvalue, with the sign of the degenerate
eigenvalue distinguishing between the two singular orbits.

Now let us fix two points on iS4, one on each of the two singular orbits,

q+ := - ^
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and denote the corresponding stabilizer groups by H+ and H-9 respectively;

# + = {e*6} u {ie^}9 H- = {eie} U {ke% 0 ^ 0 < In .

Then picking a point #o in the intersection of the normal disks at q±9

the stabilizer group at qo is

r:=H+DH- = {±1,±j,±/,±k} .

With this notation understood, the clutching construction for bundles with
quadrupole symmetry can now be stated:

Proposition 7.1. There is a bijective correspondence between SU{2)-equivalence
classes of SU{2)-equivariant hermitian vector bundles over S4 and equivalence
classes of triples (p+,p_,$), where

(1) p± are linear unitary representations of H± on hermitian vector spaces
V±, respectively;

(2) <f> is a F-equivariant unitary isomorphism V+ —> F_; and
(3) two triples (p+,p-,<f>) and (p + ,p_ ,^) are equivalent if there exist H±-

equivariant unitary isomorphisms V± —> V±, taking <f> to 0.

The next step then is to study the representations of the stabilizers H± and their
restriction to F. The calculation is based on the technique of induced representations
which we now review briefly.

Let K be a compact Lie group with a subgroup K1 of finite index. There are
two additive maps relating the complex representation rings RK and RK\

i* :RK-+ RK'

and
U-.RK' -+RK.

The first is restriction V»-» V\K> and the second induction W •-» Maps^,(A, W) =
F{K XK' W). These are related by Frobenius reciprocity

for any V € RK and W € RK', where (•, •) denotes the standard pairing generated
by declaring for two irreducible representations A and B (of the same group) that
(A,B) = 1 if A and B are isomorphic, else (A,B) = 0. Reciprocity implies that all
representations of K can be obtained by induction from K'\ taking an irreducible
VeRK,

(U*V,V) = (J*V,i*V)>09

so V can be obtained as one of the irreducible components of the induced repre-
sentation iJ*V.

Now back to the representations of H±9 beginning with //_. We find its rep-
resentations by inducing from its index-2 subgroup HL := {e*0 \ 0 ^ 0 < 2n}. Let
X € RH'_ denote the basic 1-dimensional representation, then RH!_ = Z[A,X~x\ The
following is obtained by a calculation using Frobenius reciprocity.
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Proposition 7.2. For all n,meZ,

i)rux**xm + x-*.
2) UXn is irreducible ifn+0.
3) Ul = 1 4- <T, where a is the "sign representation" (I on H'_ and —I on the

other component).
4) U " ^ U w iff \n\ = \m\.

Corollary 7.3. A complete list, without repetitions, of irreducible representations
of H- is given by

\,a,UXn, n = 1,2,3,... .

For H+ we have the same result with the obvious notational reinterpretation.

Next, we restrict the H± representations to the subgroup f. Using a character
table for F we find that the group F has 5 irreducible representations: \9o\9ai9az9
and C2. The first 4 are 1-dimensional: 1 is the trivial, G\ is 1 on { ± 1 , ± J } and —1
on the rest, Gi and 0*3 similarly with j and k instead of i, respectively. <C2 is the
restriction to F of the standard 2-dimensional Sp(l)-representation (denoted by i^x
in Sect. 2). A simple calculation then yields:

Proposition 7.4. Upon restriction from H- to F, a restricts to o\ and i*Xn restricts
to

<C2 if n is odd,

if n = 2(mod4).

The corresponding result for H+ is

Proposition 7.5. Upon restriction from H+ to F,a restricts to 03 and i*Xn restricts
to

C2 ifn is odd,
1 + <T3 z//i = 0(mod4),
O\ + o"2 if n = 2(mod4).

Comparing the last two propositions with Proposition 7.1 we obtain:

Corollary 7.6. A complete list, without repetitions, of equivalence classes of non-
trivial triples (p+,p_,0), with dim(Kfc) = 2, and thus, according to Proposition 7.1,
of non-trivial rank-2 vector bundles over S4 with quadrupole symmetry, is given
by

{i*Xn+,i*Xn-,\), n± = 1,3,5. . . .

Finally, a word about Chern numbers and our orientation convention. It is rather
straightforward to derive a formula that expresses the second Chern number of our
bundles with quadrupole symmetry in terms of the integer invariants n+ and n- of
the last corollary. This can be done either by an explicit integration of a curvature
expression using an invariant connection (as in [20, 4]), or by a localization principle
for equivariant cohomology classes (as in [10]). Either way, to arrive at Formula
(1.1) in the Introduction for the second Chan number C2 one needs to integrate the
second Chern class of the bundle over S4, so an orientation choice for S* affects
the sign of C2. We choose the orientation for S4 that fixes the sign of ci to be as
given in Formula (1.1).
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