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Abstract: We discuss the spectral properties of the Laplacian for domains Q with
fractal boundaries. The main goal of the article is to find the second term of spectral
asymptotics of the counting function N(1) or its integral transformations: @-function,
{-function. For domains with smooth boundaries the order of the second term of
N(A) (under “billiard condition™) is one half of the dimension of the boundary.
In the case of fractal boundaries the well-known Weyl-Berry hypothesis identifies
it with one half of the Hausdorff dimension of 0f2, and the modified Weyl-Berry
conjecture with one half of the Minkowski dimension of 0. We find the spectral
asymptotics for three natural broad classes of fractal boundaries (cabbage type, bub-
ble type and web type) and show that the Minkowski dimension gives the proper
answer for cabbage type of boundaries (due to “one dimensional structure” of the
cabbage type fractals), but the answers are principally different in the two other
cases.
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1. Introduction

The classical Weyl-Berry conjecture is related to the spectral counting function N(4)
for the Laplacian in a bounded domain Q C R¢, d = 1, with smooth boundary 9.
Let us consider the spectral problems for the Dirichlet Laplacian —4~:

—AY = A¥ on Q, ¥Y=0 onoQ
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and the Neumann Laplacian —4™:

—AY =AY on Q, 6_'I’_=0 on 0Q .
on
Let

NE(1) = #{iFf <1}
be a counting function for the eigenvalues A of the operators —4%. Weyl’s con-
jecture has the form
NEQ) = co(d)|R]4%? £ c1(d)|0QIAC42 4 o(A4~VD2), ) 500, (1)

where cy,c; are constants depending only on the dimension d of the phase space,
|| is the volume of £, |0€| is the area of the boundary surface.

The standard method of study of N(1) is based on its integral transformations.
The simplest one is the following:

0t(2) := _T e MdNE(1) = ‘{ pE(t,x,x)dx = Tre™ | )

where p*(t,x,y) are the Green functions for the heat equation ‘-’af = Ap with
Dirichlet or Neumann boundary condition.
Instead of §*-functions one can work with ¢-functions (or resolvents):

1 o dN*(u)
+ +\—z
Fl=Y ——= =Tr(A—4 3
@ Z.;(Hx,.i)z .L(Hu)z ( ) @)
or with the Fourier transform of dN*(A) (which leads to the wave equation).

For domains with smooth boundaries the asymptotic expansions of the integral
transformations are well known. Say

[e o]
0E(t) ~ 3 a(@) P2 0,
k=0

d

a(@) = 5T (5) a@lel,  a@=+2r (d; 1) a(d)|oe) @)

(Minakshasandaram expansion, see, for example [McSi, Ka, Mo]). Here I'(s) is the
Gamma function. A similar expansion is valid for ¢¥(4), 4 — oo. The formal in-
version of these expansions gives Weyl’s expansions (1) for N¥(4). However this
inversion is valid only for the first term of N*(4):

N*(2) = co(d)|QI2*(1 £ (1)), 4 — 00 )
(Weyl’s law). The remainder can be specified (Seeley [Se]):
NEQD) = co(d)|QA? + 0 T), 11— 0. (6)

As for the second term in (1) it’s known that in the general smooth case formula
(1) is valid under an additional “billiard condition™ (Ivrii [Ivl, Iv2]). Let us mention
that Ivrii’s condition is generic, but it can be checked only for several simplest cases.
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If the boundary is very irregular then the question about billiard condition cannot
be posed at all because the billiard trajectories are not determined.

If Q is an open set, || < oo, and 09 is irregular, then one can determine the
Dirichlet and Neumann Laplacian in terms of the closure of the Dirichlet form

D(f,9) = [(Vf,Vg)dx

Q

on the spaces C§°(L2), C°(Q) correspondingly. For the Dirichlet Laplacian the
spectrum is discrete, and the leading term for N~(4) (Weyl’s law) has the same
form (5), Melrose [Me].

The main goal of our paper is to find “the second term” of the spectral asymp-
totics in the case when the boundary of the domain is irregular (fractal). We’ll dis-
cuss the generalized form of the Weyl’s conjecture (1) (in most cases in a weaker
form: not for N(A), but for it’s integral transformations (2), (3)).

We shall work only with the Dirichlet Laplacian because for the Neumann
Laplacian the spectrum, generally speaking, is not discrete and the counting function
N*(1) does not exist even when the domain has only one irregular point on 0Q.
The simplest example of such a domain is given by the union of open nonintersect-
ing balls B(x,;r,) with radii 7, and centers at x,, (Fig. 1a). In this case A = 0 is the
point of Sp.(—4*). B. Simon [Si] (see also [JaMoSi]) showed that the Neumann
Laplacian in a bounded domain may have an absolutely continuous spectrum.

Let’s return to the Dirichlet Laplacian. In the well-known paper [Be] M. Berry
discussed the diffraction and scattering of waves by rough (“fractal”) surfaces and
formulated the following physical hypothesis (Weyl-Berry conjecture): if boundary
022 has Hausdorff dimension # = hA(02) <d and corresponding Hausdorff measure
|09|,, then

N=(A) = co(d)|Q]AY* — c1(d, 1)|0QsA*? + o(WH?), A — 0. @)

The spirit of this conjecture can be traced back to the classification of fractals by
their Hausdorff dimensions which became very popular after Mandelbrot’s book [Ma]
on fractals in nature. However very soon Brassard and Carmona [BrCa] showed that
Berry’s hypothesis fails and constructed corresponding counterexamples. In fact it is
possible to give a very simple example of such a type. One can consider the system
of balls B(x,;r,) with 3_r? < oo (Fig. 1b) and with Dirichlet boundary condition.
The spectrum and N~ (1) don’t depend on the location of the balls, but only on
the set {r,}. On the other hand different rearrangements of the balls in the space
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(for fixed {r,}!) can generate arbitrary Hausdorff dimension A(0f) in the interval
[d,d —1].

The physical reason why the Hausdorff dimension cannot be used for the descrip-
tion of the fractal boundary in spectral problems is trivial: the Hausdorff dimension
describes the “content” of the boundary as a geometrical set of points, but it is not
related to the description of the boundary layer of the domain.

Weyl-Berry conjecture with the Minkowski dimension m = m(0Q) and the
Minkowski content |09|,, in formula (7) instead of the Hausdorff dimension and
the Hausdorff measure is known as the modified Weyl-Berry conjecture (MWB
conjecture). M. Lapidus in a long series of papers (see [Lal,La2] and references
there) proved a few essential results, supporting the MWB conjecture. In particular
he proved that in the one-dimensional case the MWB hypothesis is valid [Lal]. In
[Lal] one can also find necessary and sufficient conditions for Minkowski measur-
ability of the 0Q2 for an open set Q C R. Together with J. Fleckinger they showed
[LaF1,La2] that for any dimension d

N™(A) = co(d)|Q|24? + 0(A™*), AL —o00. ®8)

Hua and Sleeman [HuSl] found effective constants C1 such that the remainder
in (8) can be estimated from above and below by C+A™?2. The estimate from below
is proved under an additional strong geometrical condition on Q (existence of a
suitable tessellation).

It turned out to be the case that the modified Weyl-Berry conjecture also fails.
The simplest “argument” was mentioned in [BrCa, FIVa2]: one can remove a count-
able set of isolated points from the domain without changing N(4), but if these points
are judiciously chosen, we can vary the Minkowski dimension and Minkowski con-
tent at will. However this argument requires only a slight specification of the conjec-
ture: the only regular by Wiener part of the boundary has to be taken into account in
the conjecture. This specification is very natural because boundary conditions cannot
be posed at isolated points, and these points must be removed from the boundary set
before evaluating the Minkowski dimension. The essential examples were studied by
J. Fleckinger and D. Vasiliev [FIVa, FIVa2] and later for a wider class of domains by
M. Levitin and D. Vassiliev [LeVa]. They constructed selfsimilar fractals such that

N~(A) = co(d)|R)A%"* - ¢1(d, 4, 02)A™? + o(A™?), A — 00,

where the function ¢; is bounded and strictly positive, but oscillates as A — oo (see
[FIVa]). M. Lapidus and C. Pomerance [LaPo] gave another example where formula
(7) is valid but the coefficient ¢; cannot be expressed through the Minkowski content
|082|m of the boundary. Even though these examples disprove the modified Weyl-
Berry conjecture they support its main part because the order of the second term of
N7(A) in these examples is equal exactly to m/2.

The main purpose of the present work is to single out broad classes of fractals
(without assumptions on selfsimilarity or geometrical conditions which allow to sep-
arate variables) for which spectral asymptotics can be found. The second goal was
to answer the following question: is the order of the second term of spectral asymp-
totics always related to the Minkowski dimension of the boundary? In particular,
suppose that N~(A) has two terms of asymptotics as 4 — oo:

N~(A) = co(d)|R)2% — ¢\(d, 02)A*? + o(AF?), 1 — o0 )
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(we can call s = 5(0Q) as a spectral dimension of 0Q2). Is it true or not, that s(0Q) =
m(0L2)? Of course it is true for d = 1 due to the Lapidus result. For dimensions
d > 1 formula (8) leads to the inequality s < m. The answer for the last question
is complicated and more often negative. First of all let us mention that the second
(boundary) term of the spectral asymptotics may not exist or may have a more
complicated form than in (9). But even if the asymptotic formula (9) is valid,
then the spectral dimension s in the majority of interesting cases from the physical
point of view is not connected with the Minkowski dimension of 0€2, and it has an
absolutely different geometrical (physical) meaning.

Let us mention that the term “domain with a fractal boundary” may have different
meanings. One can understand it as a domain whose boundary is a closed fractal set
in the Mandelbrot [Ma] sense, i.e. the boundary of the domain is a connected Cantor
type set with an additional hierarchical (selfsimilar) structure. The physical idea of
fractals in nature is different (see M. Berry [Be]). These are usually objects like
clouds, Earth lithosphere, Solar magnetosphere, etc. The main feature of these objects
is the existence of a homogeneous (or regular) main media, “matrix,” and a system
of multiscaled obstacles imbedded in the matrix (drops forming the clouds, cracks
in Earth lithosphere, vertices, dislocations, etc.). Fundamental problems appear when
someone describes the physical processes in the interface (scattering of acoustic or
electromagnetic waves by the clouds, propagation of the seismic waves through the
lithosphere, generation of the magnetic field on the solar wind on the surface of the
Sun, absorption of high-frequency vibrations or heat energy by thin coverings with
multiscaled inclusions and so forth).

Let d = 3. We single out three broad and natural types of fractal boundaries:
cabbage type, bubble type and web type. A cabbage type fractal contains a countable
system of smooth 2-dimensional “cracks” which converge to the outer boundary of
the domain. A typical cross section is given in Fig. 2. The exact definition can
be found in Sect.2. A bubble type fractal is a domain with the smooth boundary
without a countable set of balls. A 2-dimensional analogue is given in Fig. 3. Web
fractals are smooth domains without a countable system of “almost parallel” tubes.
A typical cross section transversal to axis of tubes is given in the same Fig. 3. In
this paper we consider only a very special type of web fractals: the direct product
of a 2-D bubble type domain and an interval. Then the problem can be reduced to
the 2-dimensional problem for bubble fractals.

Qo
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Fig. 3

For cabbage type domains the boundary has fractal structure in the normal di-
rection only. We show that in this case the spectral dimension s coincides with the
Minkowski dimension m, and moreover under some natural assumptions the MWB
conjecture is valid. In the other two cases the MWB conjecture fails. In fact, the
answer depends on the electrostatic properties of the boundary. In bubble type do-
mains the spectral dimension s depends on the Newton capacity of the bubbles, in
web type domains it depends on the logarithmic capacity of the circles in a cross-
section of the web. In particular we show that if radii of the bubbles (or circles
in the cross-section of the web) are decreasing fast enough then s =d — 1, and
at the same time the Minkowski dimension can be an arbitrary number between
d—1andd.

Let us mention that in the case of a smooth boundary the second term in (9)
depends on mes(9€2). It leads to the assumption that formula (9) with s=d — 1
could be valid for bubble type domains if 3 74~ < co. However it is not true. In
Sect. 3 we show that s =d — 1 if 37?2 < oo. In our next article we will show
that s may not be equal to d — 1 if 377! < oo, but 3_r/"? = co.

Remark 1. In fact we find the second term of asymptotics only for the integral
transformation (2) or (3) of N~ (A). It gives some information about the asymptotics
of N~(4), and in particular it gives the exact value of the second term of spectral
asymptotics of N~ (4) under the assumption that this term exists (i.e. the spectral
dimension is defined).

2. Cabbage Type Domains

We will start this section by recalling the definition of the Minkowski dimension of
the boundary 0Q of an open set 2 C R¢. Then we prove the Minkowski measura-
bility of cabbage type domains and find the asymptotic behavior of the @-function
for the Dirichlet Laplacian in these domains.

Definition 1. Let (0R2), be an e-neighborhood of the boundary and mes(0R2)} be
the Lebesque measure of the interior part (02)F = (0Q). N Q2 of this neighborhood.
We say that 0Q is Minkowski measurable if there is a constant m such that
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mes(0R2); /e?~™ has a nonzero limit as ¢ — 0. The constant m = m(0R) is called
the Minkowski dimension of 0%2, and the limit

. mes(0Q)f
o0l = im, "HE

is called the Minkowski content of 09Q.

For example, if Q is a domain with a compact smooth boundary, then m(3Q) =
d — 1 and the Minkowski content is equal to the surface area of 9Q. If Q = %¢\{0}
and 0RQ2 consists of one point, then m(62) = 0 and the Minkowski content is equal
to the volume of the unit d-dimensional ball.

Now we give a definition of domains with fractal boundaries of cabbage
type. Let domains ©o, 2, C R4 be given by equations Qp = {x : F(x) >0}, Q; =
{x: G(x) >0}, where F,G:R? - R,d = 1, are smooth functions (at least C2
class) without critical points at their zero level sets: VF(x)+0 as F(x) =0,
VG(x)+0 as G(x) =0. We assume that the boundary dQ is compact and one-
connected, and |VF(x)|>y>0 as |[F(x)] < 1. In this case the level sets {x:
F(x) = ¢},|¢| = 1 will be smooth one-connected surfaces. Let domains Q, ©2; have
nonempty intersection and their boundaries be transversal, or Qp C ;.

Definition 2. We say that the domain Q has a fractal boundary of cabbage type
if Q has the form (see Fig. 2):

00
Q= \ Uk,
n=1

where
L={x:Fx)=n""% x€Q}

with an arbitrary fix positive constant a > 0.

Theorem 3. If Q has a cabbage type boundary, then 0Q is Minkowski measurable
with
1

m(&Q):d—1+l—+a, (10)
102, = c(x)[ |VF(0)| ™ do, TI'=020Q, c(a)=(/)%(l+a).
r
(11)

Proof. We fix some ¢ from the interval (O,m) and a very small ¢ > 0. Then
we represent 0Q2 in the form of four nonintersecting sets:

Go = 0%y, Gi= UL, G=U~L, G3

n>ny n<ny nyZnz2ny

i
1

where ,
Ta, ny=my(e) = wH
For any set Q we denote the e-neighborhood of Q by (Q).. Since 3 is smooth

and compact we have

ny = nl(s) = 8‘#;

mes(Gy): < Ce.
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Let [} = {x:F(x)=n""} (and therefore, I = I, N Q). From the fact that
|VF(x)|>y>0 when |F(x)] <1 it follows that the distance p = p(x,9) be-
tween any point x C I, and 0Qy = {x : F(x) = 0} does not exceed y"'n"*

p(x,0Q) <y 'n* forxel,n=1. (12)
Thus (G,), is located inside the h.-neighborhood of 09, with
he=9"n*4e=y et 4 g < Cet?

(the last inequality follows from the fact that § < 1/(1 + o)) and therefore

mes(Gy); < Ceatd |

Let us estimate mes(G,).. The measure of the e-neighborhood of I, does not
exceed Ce with a constant C independent of n. Since G, consists of at most [n;]
surfaces I, we have:

mes(G,), < Ce-e ™o = Cethet?
Thus
meS(GO)G + mes(Gl )5 + meS(Gz)e _S_ Cgﬁfi""s . (13)

Now we will show that
mes(G3 ), ~ const. - g™ as¢— +0.
From (12) it follows that

pu 1= max p(x,09) S Cny% +e=Cea ¥ 4 g < CeTm ™, §,>0. (14)
x 3)e
The last relation in (14) is valid due to the inequality 6 < 1/2(a + 1).
We denote by /(o) the ray emitted from o € 0€ in the direction of the internal
normal to 0€:
VF(o) }
l(o)={x:x=0+—=———1,1203}. 15
@={ V()] )
Since the angle 6 between /(g) and VF(x) at the point x € /(c) is a smooth function
of x, and this angle is /2 at 02y, we have 6 = n/2 + O(p) for p(x,d) < 1.
Together with (12) it gives

0=n/2+0(n"*) forxel,, n=n,. (16)

Let I'" = 0Qp N Q; be the edge of I, ' be Ap.-constriction of I' and I't be
Apg-extension of I' on 0Q, ie. '" ={x:x €T, p(x,I"")> Ap.}, I'* consists of
I' and all points x € 09, such that p(x,I"’) < Ap.. Here 4 is a big enough constant
which will be chosen a couple of lines below. Let

(G = {x:xe U () x € (o) with some o € Fi},

nZn2n;
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(G3) = {x :x€ U (e x € I(o) with some ¢ € I"}. a7n
nZn2n;

The transversality of 0y and 02, together with (14), (16) imply that (G3); C
(G3): C (G3)f if A is big enough. The surface area of I't\I'" does not exceed
Cp,, and the thicknesses of (G3), does not exceed p, (see (14)). Together it leads
to the following relations:

mes(Gs)e = mes(Gs); + O((p:)*) = mes(G3)} + O((p.)*) - (18)

From here and the inclusions (G3); C (G3)? C (G3)] we get that mes(G3), =
mes(G3)? + O((p.)?) and therefore

mes(Gs). = [ dx+O(e™t?), §;>0, e — +0. (19)
(G3)?

According to (14) the layers (ﬁ,)s, n = ny, are close to 0€2p. Hence one can
rewrite the last integral as a repeated one and integrate first along /(s), and then
along I'. From (16) it follows that the intersections /(s) with the layers (1),
n = np are intervals 4 = A(n,0,¢) with the distances between ¢’ = I(6) N I, and
the ends of 4 equal to &(1 + O(p.)). We will use the values of F as coordinates
along /(). Let do be the element of the surface area of I'. Then we have

mes(G3); = [ [ f JdF] do + o(e™), , (20)

_ | dx
I | U 4(n,a,¢)

dFdo

where U’4 means the union of intervals 4 for ny = n = n,.
Since J = |VF—1(-7)[ at ¢ € 09 and the Jacobian J is a smooth function, we have

J= WF‘—(,,), + O(p;) when p(x,082) < p,. Thus

mes(G3); = [ [ f <IV—;ZG—N + 0(p5)> dF} do + o(e™=) .

r | d4(n,o,c)

From here and the fact that the increment of F on /(¢) in the p.-neighborhood
of 09y is less than Cp,, it follows that

1 o
mes(G3 ). —I_[ [U'A({q,e) IVT(UTIdFjI do + o(e™+)

1 <
= — dF| d ), 21
1'[ |VF(0)| [um({,a,e) ] it (1)

Now we are going to evaluate the internal integral in (21). From (16) it follows
that the derivative 0F/dl of F in the direction of /() is equal to |VF(x)|(1 +
O(p.)) at points x € I(a) with p(x,02) < p.. The smoothness of VF implies that
[VF(x)| = |VF(0)|(1 + O(p;)) for x € I(0), p(x,02) < p.. Thus

O = IVF@(1+0p0) for x € I(0), p(x.20) S .
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By mtegranng along I(c) and taking into account that F(¢’) = n=* we get
F(x) =n"% £ &|VF(0)|(1+ O(p:))

at the end points x of 4(n,0,¢). Let us replace the intervals A(n,0,¢) in (21) by the
close intervals 4(n,c,¢) such that F(x) = n~* & ¢|VF(0)| at the end points of 4.
Since the union U’4 consists of at most 7,(¢) intervals, the error will have an order
O(ny(€) - ep;) = o(e¢™ ). Thus

mes(G3)e =

J dF] do + o(e7%) . (22)

(V4 A'(n, 0,¢)

1
! wF@)
Now the internal integral is equal to the length of the system of intervals
[n*—¢|VF(a)|, n*+¢|VF(@6)|l, m =n=n
on the F-axis. Let us find n» = n* from the equation
n™* — e|VF(0)| = (n+1)"* + ¢|VF(0)] .

It is obvious that

* a T-lr'z 0
" “[2s|VF(a)|] > e

The intervals with n > n* intersect each other and cover the segment
[(m(e))™ — ¢|VF(0)|, (n* —1)"* +¢|VF(o)]].
The length & of this segment has order (n*)~%, i.e

T
h~ [EVTF(E—)'] , €—+40.

The intervals with n € [n;,n*] do not intersect each other, and their common length
is
1

2¢|VF(0)|(n* — ny) ~ (26| VF(o)|)™a™, ¢— +0.
Thus the internal integral in (22) is equal to

[ZTEOT™ 14y o), e 40,

Together with (22) and (13) it gives (10), (11). Theorem 3 is proved.

The next theorem gives the asymptotic behavior of the f-function (2) for the
Dirichlet Laplacian —4~ in domains with fractal boundaries of cabbage type. Before
we formulate this theorem we give the corresponding 1-dimensional result which
follows from [La2] and will be used in an essential way to prove the theorem.

Let us recall that we denote by /(o) the ray emitted from o € 08 in the direction
of the internal normal to 09 (see (15)). Let //(¢) be the maximal segment of
I(g) with the beginning point at ¢ on which 0 < F(x) < 1 and |//(0)| be the
length of I'c). All points of I'c), except o, belong to the interior of Q, because
|VF(x)|40 when 0 < F(x) <1 (and F >0 on Qy, F =0 on 0Q). We will use



Spectral Asymptotics for Domains with Fractal Boundaries 95

s = |x — o] as the coordinates of points x on /(c). We denote by {/,} the system
of subintervals /, on /’(¢) determined by inequalities (n + 1) * < F(x) <n™% n =
1,2,.... Let P(t,s,s') be the 1-dimensional Green function for the heat equation
on {I,} with Dirichlet boundary conditions at end points of all subintervals, and
P =P — (4nt)"2 exp(— 2L,

We denote by ¢(z) the classical Riemann function which is equal to ¢(z) =
3" j % for Rez > 1 and is determined as a meromorphic extension for other z. In
particular, ¢(z) = 15 + [[°([f] 2 — t*)dt for 0 <z < 1. Let I'(z) = [;"e~"t*"' dt,
Rez > 0, be the Gamma function.

Lemma 4. The following formulas are valid when t — 0:

(o) _. 1 a  \ 1
A, P = S T iy (anF(a)l) (“C (m))

)t—m’m(l +o(1))

1
r (2(1 +a)
and respectively

Dy 1 o = 1
4,700t =i (eran) (5(m3))

)z-m“m(l +o(1)),

1
r{ ———
(2( 1+a)
where the estimates of remainders are uniform with respect to a C 0.
Proof. Let D C R consist of a system of nonintersecting intervals such that their
lengths |/;| have an order || ~Lj‘(‘+“) with & >0 as j — co. Then [La2] D is
Minkowski measurable, m(dD) = 1+a’ |@D|,, = 2!=™(1 — m)~!L™, and the count-
ing function of the corresponding 1-dimensional Laplacian with Dirichlet boundary
conditions at the ends of intervals /; has the following asymptotic behavior:

N‘(l)=-71; ID| VA — 2" 'n~™(1 — m)(—¢(m)) |0D|,, A"*(1 + o(1)) as A — 0.

The assertion of the lemma follows from the last formula applied to D = L'(o)
L= IVTa(a)T in this case) and from (2).

Theorem 5. Let domain Q have a fractal boundary of a cabbage type with

parameter o.> 0. Then 0~ -function has the following asymptotics as t — 0:
_lel IBQI».

(4nt)dr?

where m = m(0Q) and |09Q|, are defined in Theorem 1, and

+e(d,m)=

0= (t) = fe-" dN~(A) = = (1+0(1)), (23)
0

- —d—t g 1 1
wm =gt (o (53)) (s
=(m—d+1)Yd —m2"n'T "(—c(m —d + 1)I (M_ZH) :






