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Abstract: This paper continues the analysis of the low temperature expansions for
classical TV-vector models started in [1]. A main part of it is a derivation of renor-
malization group equations and a construction of their solutions. To do this we
have to introduce "a fluctuation integral" connected with a next renormalization
transformation, and to make its preliminary analysis. The results of the paper are
summarized in theorems stating that the renormalization transformation preserves
the space of densitites, or actions described inductively in [1].

1. Introduction, Formulation of Main Theorems

This paper is a continuation of the paper [1], and we use the notations, definitions
and results established there, as well as in the following papers [2, 3]. Our main
purpose here is to define renormalization procedures for new contributions to the
effective actions and the generating functionals, and to set up and analyse renor-
malization group equations for the "running" coefficients in the main term of the
effective action. The new contributions come from "small field" fluctuation integrals
connected with a successive A: + 1st renormalization transformation, and our other
purpose is to set up such fluctuation integrals, and to define the new contributions.
The renormalization procedures, and in particular the renormalization group equa-
tions have to be defined under the assumption that the effective actions are defined
on the whole lattice, i.e., in the framework of paper [1]. To give some more precise
shape to this paper we assume also that the fluctuation integrals are defined on the
whole lattice, i.e., the lattice is "a small field region," but it is very easy to general-
ize constructions and results obtained in this case to general cases when small field
regions are subregions of the whole lattice. If the renormalization procedure and the
renormalization group flow depended on such a region, then a new renormalized
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action would depend on it also, and even after a localization expansion terms lo-
calized in smaller subdomains would depend on it. This would be inconsistent with
one of the fundamental properties of our procedure, that an expression constructed
by some operation from previous expressions, and subsequently localized in some
domain, depends on the previous expressions localized in the same domain also.
To preserve this property we define the renormalization group flow globally on the
whole lattice, actually even on the whole lattice Έd\ so it is independent also of the
torus T. This was not stated so clearly in [1], so we stress it again here that the
renormalization conditions in [1] can be formulated in terms of functions defined by
proper "thermodynamic limits," as we do it in the inductive hypotheses formulated
in this paper. With the above assumption we present the constructions and results
of this paper as a theorem that the renormalization transformations together with the
renormalization procedures preserve the form and bounds of the effective densities
described in [1]. This is a main theorem of many renormalization group approaches,
and our final results will have this form also, but for complete densities including
contributions from "large field domains." Let us stress again that in this paper the
theorem gives only a coherent way of presentation of results, we have explained
above our main goals. We need here more precise formulations of some inductive
hypotheses, so we start writing them in a proper form. Let us stress that the changes
in the hypotheses make them more precise and restrictive, so they do not affect the
considerations and results of [1]. We only formulate them here, and we refer the
reader to Sect. 2 of [1] for all remarks, explanations and definitions.

Let us recall the definition of the function determining the main term in effective
actions, which is

Ak(ψ9φ;h9a9λ,v) = l-a\\ψ - Qkφ\\2 + ±||3V||2 + ^\\φ2 - 1||2 + \\\φ - hf ,

1=L~k>\ < « < ^ ^ 1,0 < v ^ 1, (1.1)

where a "new" spin configuration ψ is defined on T^k\ an "old" spin configuration
φ is defined on Tη, both have values in IRΛ, h belongs to a neighborhood of the unit
sphere SN~ι in IR^. The norms in (1.1) are L2 -norms, the first on the unit lattice
7] , the remaining three on the lattice Tη. We consider densities pk satisfying the
following inductive hypotheses.

(H.I) There exist positive coefficients βk,ak,λk,Vk, \ < ak < §, λk ^ L2k, 0 <
vk = 1? functioncs $k(Ψk,h), ^k(Ψk,h, #)? and constants Ek,%o,y such that

PkiΨk) = Ik exp|>4 + ^k(Ψk,Kg)],

s^k = -βkAk(Ψk,Φk'9h,ak9λk9vk) + ί i t O M ) - Ek\ifk)\ ,

where ψk is a "new" spin variable on the lattice T^k\ and φk — φk(Φk',K^k9h9^k)
is the minimal configuration defined in Sect. 2 of [1], and constructed in [2].
The function SkiΨk^h) is defined and real analytic on the space Ξk(l,8k)9 where
% = α(u*7α, oίO,k = αo(l + Σ7=k ^ λ αo is positive and small, α = ^ - y, γ is
a constant from the interval 0 < γ < m i n { ^ , | } . The function ^k(Φk,Kg) is



Low Temperature Expansion for Classical N-Vector Models II 677

defined and real analytic on the space Ξk(l,8k) x {g: g is defined on T and has
values in WiN, ||gf||^i < 1}.

(H.2) There exist functions $lj\y\ φj,h), where y G T^ and φj is a spin variable
on this lattice, such that

7=1

where

)= Σ

and where φ^(φk,h) are the minimal configurations of the variational prob-
lems (2.6) in [1], constructed in [2]. The functions 4(y;φj,h) are defined and
real analytic on the space Ξj(l,Sj), where βj — oto,kζa, ζ = L~J', and the coefficients
cij, λj9 Vj in the definition of this space are connected with a^, λk, v^ by the equalities

1 - L~2k

aJ = akι_ L-2j > λj = λk(Ljη)2, Vj = vk(LJη)2 .

(H.3) The functions $\. (y;φj,h) satisfy the symmetry properties

4j\y;Rψj, Rh) = S{

k

j\y; φJth), R € O(N) ,

for all Euclidean transformations r of the lattice T^ onto itself, where (nj/j)(y) =
φj(r-ιy).

(H.4) There exist functions Sj^ (y,X;φj,h) defined for localization domains X G
2fj = 2j(J\ y e X, such that

4J\y;φj,h) - Σ 4J\y>x'>Ψj>h)
xe®y. yex

A function $^{y,X\φj9h) depends on φj restricted to the domain X, and it
does not depend on the torus T if X does not "wind around it" for example
if X C {x: mμ < xμ < Mμ, μ = 1,2,...,d} and Mμ — mμ < 2Lμξ, for the torus
in the ξ-scale. This function has an analytic extension onto the complex space
Ξj(Jβj(X); 1,8/) defined in Sect. 4 of [3], and the extension depends on configura-
tions (φ -±-φ\h + h') restricted to X, i.e. on {φj + φj,h -\-h') restricted to X and
it satisfies the bound

',φj + φ'j,h + ti)\ < Eoexp(-κdj(X)),

where Eo, K are positive constants, K can be chosen arbitrarily large, depending on
the size M of large cubes. It is invariant with respect to orthogonal transformations
R G O(N) applied to the configurations, and covariant with respect to Euclidean
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transformations r of the lattice of large cubes in T^\ i.e., the lattice T^j+m\ where
M = Lm is the size of the cubes.

Let us interrupt for a moment formulating the inductive hypotheses, and let us
notice that it is the above one which has been strengthened in comparison with
the corresponding hypothesis (H.5) in [1]. The analyticity domain, which is now
the space ΞJ(JBJ(X); l,εy) restricted to X, contains the domain considered in [1],
which was the whole lattice space Ξy(l,εy ) restricted to X, in fact it contains any
space S^(By;l,εy) with IB, "larger" than JΆj(X)9 i.e. Bj y IB/(X). An advantage
of using the space ΞJ(ΊBJ(X); l,ε7) is that its definition is localized to a relatively
small neighborhood of X, which is important in constructions of localization ex-
pansions. From the fact that each term in the sum on the right-hand side of (H.4)
is analytic on the space Ξj(l,Sj) it follows that the sum, which is the function

Sjc (y\ Ψj,h), is analytic on this space, so its restriction to the real subspace Ξy(l,ε7 )
is real analytic on it. Thus the analyticity assumption in (H.I) follows from the
assumption in (H.4), and in the future we will be concerned only with the last
one. The hypotheses (H.3), (H.4) imply existence of an effective potential defined
by

ω !j\ Λ ^ J \ ) , (1.2)n 0 M ) = τ}imzd*!ί\y;ψ,h) = ^lim^

where ψ,h are vectors from ]R^ such that the constant configuration equal to φ be-
longs together with h to the space Ξy-(l,εy). The hypothesis (H.4) implies existence

of various other thermodynamic limits, like ^'^(y ψj^) = limTξ^ξΈd $^J'\y;ιl/j,
h), and in particular of the function

We foπnulate the next inductive hypothesis, the renormalization conditions in terms

of •ffJ),'^k

J'°o). We assume that

(H.5)

rk

u\euex) = 0, ( J r f ? y ) ) {eχ,eλ) eλ = 0 ,

tr [^'^(x) • (e2 ® e2)]|x|2 = -Δp tr [^'^(p) • (e2 ® e2)]\p=0
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(H.6) The coefficients βk,ak^λk,vk are connected with the fixed coefficients β,a,λ,v
by the equalities

)yk, ak = a\Zl_lv h = λL2k, vk = vL2kδk ,

or βk = βLk{d~2)yk, ak = a~^y^\ λk = λL2kγk, vk = vL2kδk, depending on renor-

malίzation procedures, and the positive constants yk, δk satisfy the inequalities

where the positive constant c% can be chosen arbitrarily small if β is large enough.

Inductive assumptions on ϊFk(φk,h,g) have a form analogous to the assump-
tions (H.2)-(H.4), but we formulate them in the one hypothesis below.

(H.7) The function ^k{φk,h,g) has the form

£J\ϊJ\= (g,φk)λ

where the scalar products are taken on the unit lattice T\. The functions Ji^\x\ φj,
h,g), x e 71, are defined and real analytic on the space Ξj(l,8j) x {g: \\g\\t\ < 1},
and they satisfy the symmetry properties

\x;φj9h9g)9 R e O(N),

K rg) = Ji[j\x\ φj9 K 9) ,

for all Euclidean transformations r of the lattice T onto itself which are deter-
mined by transformations of the lattice T^ onto itself These functions have the
localization expansions

JίlJ)(x; φj, h9g)= Σ ΛΪJ\x,X\ Ψj, K g),

where a term Jί^J\x,X;ψj,h,g) depends on φj,g restricted to X, and does not
depend on the torus T for X as in (H.4). It has an analytic extension onto
the complex space Ξj(JBj(X); l,ε ; ) x {g: g is defined on T\ and has values in
<CN

9 \\g\\fi < 1}, and the extension depends on configurations (φ + φ',h + h',g) re-
stricted to X, hence on {φj + φj,h + h\g) restricted to X. This extension satisfies
the bound

where K is as in (H.4), cg9oi\ are positive constants, which can be chosen arbitrarily
small for β large enough. It satisfies also the above symmetry properties, with r
as in (H.4).

To finish the inductive description let us recall that χk is the characteristic func-

tion of the space Ξk(l,βk

 Ίp(βk)), where p(β) =Ao(\ogβ)Po, po is a fixed even
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integer and AQ is a sufficiently large positive constant. Let us notice also that (H.5)
can be formulated with e\ replaced by an arbitrary vector h e SN~ι, and e2 re-
placed by a unit vector orthogonal to h, or e2 ® e2 replaced by / — h 0 h. Finally,
let us make the important remark that the initial density po defined by (1.1), (1.5)
in [1] is not described by the above inductive hypotheses. The way they are for-
mulated presupposes that k ^ 1. We can extend the definitions for k = 0 taking
Qo = I — the identity operator on the lattice T, and ψo = φo - the basic spin vari-
able on this lattice, then p0 satisfies the inductive hypotheses with £Ό(φo,h) = O,
^o(φo,h,g) = {g,φo)\. Unfortunately this is not of much help, because the first
renormalization transformation applied to po yields the integral (1.13) in [1], which
has to be treated in a slightly different way than integrals arising at remaining renor-
malization transformations, because of the range of the coefficient λo = λ. We will
discuss it in the next section, after a discussion of a general case.

To formulate a main theorem of this paper it is convenient to introduce spaces
of densities satisfying the inductive hypotheses. Such a space is determined by the
positive integer k, the coefficients β9a9λ9v9 and the constants M,κ,oco,oc\,y,Eo,C8,C9
appearing in the conditions of the hypotheses. Notice that we consider the torus T
as one of basic variables on which pk depends, so actually we consider families of
densities corresponding to all admissible tori as elements of the space. We define

,λ,v,B,v;M,κ,(Xo,(xuy,Eo,C8,c9) (1.4)

= {pk' Pk satisfies the hypotheses (H.1)-(H.7) determined by

the constants in the parentheses, with βk > B, 0 < vk ^ v} .

Now the main theorem can be written as follows.

Theorem 1. For any constants M, κ9 OL\, y9 eg, c9, y from the interval 0 < y <
min{^^,^}, M,K sufficiently large, oc\9c%9cg positive and sufficiently small, there
exist constants B,OCQ,EQ, such that ifv^ \L~2, then the small field renormalization
transformation Xk+\S^T^χ^ establishes a mapping

-> Έ.k+ι(β,a,λ,v,BLd~2

9vL2

9M,κ9<xo,oίι9γ9Eo,ct9c9). (1.5)

Let us make a few comments on the above theorem. At first notice that its formu-
lation is purely existential, no constructive definitions of "new" coefficients and ef-
fective actions are given. In fact the renormalization transformation Xk+iS^T^χ^
itself does not determine them uniquely, their definitions depend on a renormalization
procedure we apply. It would make sense to introduce a third operation following
S^k\ T^k\ and corresponding to the renormalization procedure, because only this de-
fines uniquely all elements of "new" densities. Unfortunately a definition of such
an operation would be very complicated, practically impossible without going into
many complicated details of the whole procedure, so we have decided not to in-
troduce it here, it is buried in the existential statement of the theorem. Of course
a detailed and precise description of the renormalization procedure is given later in
the paper, in fact two sections are devoted to it. Notice also that we have not yet
defined the characteristic function χ^k\ It is a very simple function restricting fluctu-
ation variables, but a definition of these variables is quite technical, involving some
operators which appear later in the paper. We could introduce all these definitions
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here, but it is much more natural to postpone the definition of χ^ to a proper place
later. Finally let us remark that the transformation (1.5) is obviously a non-linear
one, it depends in a complicated non-linear manner on various elements of densi-
ties pk, in particular on βki and on "new" constants βk+\ through the characteristic
function χu+\.

Densities pk in a space (1.4) are uniquely determined by coefficients βk,ak,λk,vk

and functions S[j\^j\ j = 1,...,£. We define spaces of these elements

Ak(β, a, λ, v,B, v; M, κ9 α0, <xuγ,E0, c%, c9)

= {(βk,ak,λk,vk,(4J))j^k,(^J))jύk): βk,ak,λk,vk satisfy (H.I), (H.6),

and βk > B, 0 < vk ^ v,<^ω satisfy (H.2)-(H.5), ^ ω s a t i s f y (H.7)} .

(1.6)

The conditions (H.2)-(H.5), and (H.7), except the bounds in (H.4), (H.7), define

real vector spaces of the functions (β^] )j^k, and (Jϊk )j^k- The bounds define^ ϊk

open domains in these spaces, which are open balls with respect to appropriate
norms. The conditions in (H.I),(H.6) define a closure of an open domain in a
four-dimensional real vector space of the coefficients βk,ak,λk,Vk. Because of the
one-to-one mapping between the spaces (1.4) and (1.6) the renormalization transfor-
mation (1.5) defines a mapping between appropriate spaces (1.6). We reformulate
Theorem 1 in a more precise way.

Theorem 2. Under the assumptions of Theorem 1 the small field renormalization
transformation establishes a real analytic mapping

-> Ak+ι(β,a,λ, v,BLd~2,vL2;M,κ,αo,αi,y,Eθ9cs,c9). (1.7)

A value of the mapping on an element of the first space is an element (^+1,^+1 >
4+i,v*+i, (^+1)7^+1,(^+1)7^+1) of the second space, for which the following
equations are satisfied:

R R Td-2

Pk+\ = Pk
L
 ~

.
 3 τ2

βk+\
λk+l = λkL

βkLd~2

 2 βk+\+°k+\ T2 ίΛ π λ

vkL
z = — — v k L ι , (1.9)

P + β

R 7 v k L =
Pk+\ + ek+\ Pk+\

where the constants bk+\>Ck+\,dk+\,ek+\ are real analytic functions of βk,

(^k )jύk- They are small compared with βkLd~2 or βk+\, more precisely

M ^ l (1.10)

for B large enough.
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The formulation of the above theorem requires several comments. The first con-
cerns the equalities (1.8). The functions on both sides have different domains, be-
cause the spaces Ξj(l,εj) depend in fact on k through the constant OCQJ and the
coefficients aj,λj,Vj, which are connected with a^λk^k by the equalities written
in (H.2). These spaces decrease when k increases, so the domains of the func-
tions on the left-hand sides of (1.9) are contained in the domains of the functions
on the right-hand sides, and the functions with the subscript "k + 1 " are restric-
tions of the functions with the subscript "£." Because of this property we drop the
subscripts from the symbols of these functions from now on, so we denote them
simply by ^J\^J'\ as in [1]. This property is very important, it means that the
"new" action Sk+\ determined by the renormalization transformation can be obtained
from the "old" one Sk replacing the functions % in (H.2) by %+p and adding a
new contribution S^k+X\ The same is true for # £ + i . The second comment is about
the renormalization group equations (1.9). The corrections with Z?£+i,C£+i, etc. are
called renormalizations. The coefficients must be renormalized in order to create new
terms, which are included into the new contribution $^k+ι\ so that it satisfies the
renormalization conditions (H.5). This can be done in many different ways; there is
no uniqueness in the renormalization procedure. We analyze here a class of possible
procedures leading to the class (1.9) of renormalization group equations with some
additional restrictions. The third comment concerns the constants Ek in (H.I). We
have not included them in the above theorem because they do not play any role in
the small field analysis. They are included in Theorem 1, and they change in a sim-
ple way with each renormalization step, which is precisely described later on, but
the description is not included in the formulation of the inductive hypotheses and
the theorem. The final comment is about the real analyticity of the mapping (1.7).
This property does not play any role in the method, it follows simply from the fact
that the mapping is given by explicit, though quite complicated expressions, which
can be extended analytically in obvious ways to a complex small neighborhood of
real actions. We will repeat this statement in proper places in the text, but it will
always be obvious.

The above theorem implies Theorem 1, even in a more precise form. The two
theorems imply the fundamental Theorem 2.2 in [1].

Let us describe now briefly contents of subsequent sections. In Sect. 2 we reduce
the renormalization transformation T^ to a fluctuation integral, which is a small
perturbation of a simple Gaussian integral, and we define various contributions to a
"new" action. In the very short Sect. 3 we perform the scaling operation S^k\ and
we summarize results obtained until then. In Sect. 4 we describe a renormalization
procedure of the effective action, or rather of the new contributions to the action.
In Sect. 5 we discuss resulting renormalization group equations for new coefficients.
This completes the proof of the two theorems. The paper ends with the short Sect. 6,
where a last step in this renormalization group approach is discussed together with
some simple conclusions. In the whole paper we freely use notations and results
of the three preceding papers [1, 2, 3], making references only for most important
definitions and theorems.

Let us stress again that constructions and results of this paper, although formu-
lated for the case when the whole lattice is a small field domain, are valid in a
most general case with an arbitrary admissible small field domain.
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2. The Renormalization Transformation T{k) and a Fluctuation Integral

We take a density pk from a space (1.4), and we apply the renormalization trans-
formation T(k)χ(k),

(T(k)χ{k)PU(θ) =

\ ^ . (2.1)

The characteristic function χ ^ is a product of two functions, one is equal to

X({\θ-QΦ\ <2β;ΐp(βk)}), (2.2)

and another is a characteristic function introducing restrictions on fluctuation vari-
ables, which will be defined later on. Let us remark that the spin configuration θ is
not equal to the new spin configuration φk+\, in fact they are connected by a scal-
ing transformation determined later. We use the variable θ at this stage to simplify
notations. For the same reason we write φ instead of ψk Consider now the function
of φ in the exponential in (2.1). It is a sum of two terms, one is the function in
the curly brackets multiplied by the large parameter βk, another is the remaining
bounded in βk function of φ. In such a case it is natural to apply the saddle point
method to "calculate" and estimate the integral. A first step of the method is to find
critical points of the function in the curly brackets. This problem has been analyzed
thoroughly in Sect. 4 of [2]. To apply the results of that section we have to under-
stand restrictions on variables θ,φ implied by the characteristic functions in (2.1).
The characteristic function χk implies that configurations φ in the domain of inte-
gration belong to the space Ψk(3βk

 Ίp(βk)), by Lemma 3.1 of [1]. Repeating some
arguments from the proof of this lemma we see easily that the restrictions defining

— I

the space Ψk(3βk

 2 p(βk)) together with the restrictions defining the characteristic
function (2.2) imply the following ones:

v * ( l - λ . 0 o ) < I22β-ιp\βk), (2.3)

assuming that βk is sufficiently large. These conditions imply that θ G Ψk(δ\) with

δ\ = 4Lβk

 2 p(βk) If δ\ is sufficiently small, then we can apply Proposition 4.1
from [2] and conclude that the function in the curly brackets in (2.1), considered
on the space Ψk{L~2c\), has exactly one critical point, which is a minimum of the
function. Keeping the notations of [2] we should denote this minimal configuration
by % + 1 , but for simplicity, we drop the subscript and denote it by φ^k\ Let us write
the corresponding equations and expansions around their solutions, because we need
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them to study the effective action in the integral (2.1). We have

l-aL-2\\θ - Qψ\\l + Ak(ψ,φk)=Jk(θ,ψ,φk,ak), (2.4)

where

Jk(θ,ψ,φ,oc) = l-aL-2\\θ - Qψ\\l

±ak\\ψ - Qkφ\\2 + \WΦ\? + \(«, \φ\2 -

(2.5)
AAk Δ

We have then

inf Jk(θ, ψ9 φk(ψ\ cck(Φ)) = inf inf sapJk(θ9 ψ, φ, α ) . (2.6)
Φ Φ Φ a

It follows that if φo is a critical point of the function (2.4), then (0b ?^(Ψb) 9^(0b))
is a critical point of the function (2.5), and it satisfies the following variational
equations:

jτJk(θ, ψ, φ, α) = aL-2Q*(Qψ -θ) + ak(ψ - Qkφ) = 0 ,

j-Jk(θ, ψ, φ, α) = akQHQkφ - ψ) - Δ«φ + ocφ + v,(0 - A) = 0 ,

| ^(|(/>| - 1) - l α = 0 . (2.7)

The function J^ and the equations are defined for all θ, ψ, φ, oc, and the first two
equations are linear in ψ,φ. The first equation has a unique solution for φ without
any restrictions on θ, φ, and we get

( 2 8 )

Of course the equation and the solution are connected with calculating the compo-
sition of the renormalization transformations T^ and Tk. Substituting the solution
into the second equation and defining

^ , (2.9)

which is the second equation (1.10), we obtain the following system of equations
for φ, α:

(-Aη + ak+xL-2Ql+λQk+λ + <χ)φ = ak+ιL~2Ql+ιΘ + vkh ,

U 2 - l ) - ^ o c = O. (2.10)
λ
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If we calculate α from the second equation, substitute it into the first, and then
multiply the obtained equation by L2, we obtain the variational equation for the
problem of finding

inf Ak+λ(θ,φ Kak+uλkL\vkL
2). (2.11)

Φ

Denoting λk+\ = λkL
2, vk+\ = vkL

2, which are extensions of the equalities in (H.2),
we have the basic variational problem defining the minimal configurations φk+\
on the natural scale L~ιη. They are defined by the unrenormalized coefficients
ak+\,λk+\,vk+\, so in the future we will write also the coefficients and the minimal
configurations with the subscript u. On the ?/-scale, the configurations are determined
by Eqs. (2.10) with the coefficients ak+\L~2,λk,vk, so we have the scaling property

φk+ι(L~ιx;θ9h9ak+uλk+uvk+ι) = φk+ι(x;θ,h,ak+ιL~2,λk,vk), x G Tη . (2.12)

The function φM(θ) is defined if (θ,h) G Ψk+\(cι), hence if (θ,h) G Ψk(L-2cι),
because the last two conditions in the definition (3.18) [1] of these spaces involve

the constant vk = vk+\L~2. This is satisfied if βk

 2 p(βk) is sufficiently small, or βk

sufficiently large. Then the solution of the variational problem on the left-hand side
of (2.6) is obtained by substituting φk+\ instead of φ in the formula (2.8), and
we have

Φ{k\θ) = Qkφk+ι(θ) + ^L-2Q\Θ - Qk+ιφk+ι(θ)). (2.13)
ak

We conclude that the system of Eqs. (2.7) has a solution if (θ,h) G Ψk+\{c\). The
solution is unique in the space of all functions ψ,φ,CL satisfying only the condition
|α| < c0L~2, and is given by the configurations \j/^k\θ)9 φk+\(θ), Oik+\(θ). They satisfy
the composition formulas

Φk(Ψ(k\θ)) = φk+ι(θ), ock(ψ(k\θ)) = ak+ι(θ) (2.14)

holding for θ such that ψ(k\θ) is in the domain of the function φk(ψ). This holds
certainly if βk is sufficiently large, by Proposition 4.1 [2].

Let us study expansions of the functions φk, ock and the action Jk around the
minimal configuration ψ(k\ We write

') = φk+ι + φ\
(2.15)

and we substitute the above equalities into Jk. We get

^ l l α ' l l 2 , (2.16)

where we have used the variational equations (2.7) satisfied by the configurations
\jj(k\φk+\,oιk+\. We determine the functions φ',a' by solving the variational problem
of taking a supremum over α' and an infimum over φ' of the function of φ\ a' on
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the right-hand side above. The corresponding variational equations are

(-Aη + akQΪQk + vk

φ' + hφ'\2-T*' = 0. (2.17)
2 4

These equations are special cases of Eqs. (3.19), or (3.20) in [2], with δψ = ψ', φ0 —
φk+u αo = βfc+ij /i = 0, αi = 0. Applying Proposition 3.1 of [2] we obtain that
there exists exactly one solution, denoted by δφk,δock, if \ψ'\ <K^ιc6 and βk is
large enough. This solution is an analytic function of ι//, </>£+i,α£+i, and it satisfies
the bounds

\δφk(ψ')\, \d«δφk(ψ')|, \Δ*δφk{γ)\, \δak(ψ')\ ^ K2\ψ'\ . (2.18)

These bounds will be used several times in the future. They show that the analytic
functions δφk(\j/'),δak{\j/') are at least of first order in φ'. Substituting the solutions
into the function on the right-hand side of (2.16) we obtain

Jk(θ,φ,φk(φ),ak(ψ))=Aη

M(θ,φk+ι)+ X-aL-2\\Qψ'\\2

L + X-ak\W - Qkδφk(ψ')f

(2.19)

where we have used the second equation (2.17) to simplify the expression. To
find out the quadratic form in ι// we have to find linear terms in expansions of
δφk(ψ'),δoίk(ψ'), and to substitute them into the above expression. Notice that it is
quadratic in those functions. Let us write

δφk(ψ') = δφ[ι\φf) + δφuW), δak(ψ') = δa(

k

ι\ψ') + δak,2(ψf), (2.20)

where the functions δφ^\\l/f),δ(x[ι\\l/f) are linear in i//, and δφ^iiψ'XδciL^iW) are
analytic and at least of second order in φ''. The linear parts can be found from the
corresponding linear variational equations

(~Aη + akQlQk + v̂  + ak+ι)φf =

φk+i φ'--r<*' = 0.
λk

A solution of the first equation is

φf = Gk(<*k+i)akQW - Gk(ak+ι)φMocf . (2.21)

Substituting it into the second and solving it we get

α' = \j- + φk+\ G*(α*+i )φk+\ Φk+ι Gk(μk+X )akQlφ' . (2.22)

The operator in the square bracket above and its inverse have been analyzed in detail
in paper [2]. The inverse is basically a bounded perturbation of the operator —Aη,
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and the above linear operator is bounded and has an exponential decay property.

The function in (2.22) is equal to δoί[ι\xl/f), and substituting it instead of otf in

(2.21) we get δφ^iψ'). Substituting these linear functions into the expression in
(2.19), we obtain the quadratic form

l ' ) = \ak\\φ' - Qkδφ(

k

ι)(φ')\\2

ψ')Λ-Λtl + vk + ak+ι)δφ[ι\φ')) + -L||&4V)H2

= \au\\WW2

~a2

k ( φk+x Gk(ιxk+i)Q*kφ', -Γ- + φk+\ Gk(ak+ι)φk+\ φk+x2 \ \λk I

• Gk(uk+ι)Q*kΦ' ) • (2.23)

The operator of this quadratic form is a unit lattice bounded operator with expo-
nentially decaying matrix elements, the bound and the decay rate are uniform in k.
The last term on the right-hand side above is non-negative, so we have the bound

\(φ',Δ^φ') > \ak\\φ'\\2 - l-a2(φ',QkGkQ*kψ') - O( |α i + , | ) | | ^ | | 2 , (2.24)

where Gk = G^(0), and we have expanded G^(α^+i) up to the first order in o^+i The
first two terms on the right-hand side above define a quadratic form which is equal
to the effective quadratic form obtained by applying k times the Gaussian renormal-
ization transformation Ta to the Gaussian density determined by the quadratic form
j(φ,(—A + VkL~2k)φ). These effective forms have been investigated thoroughly in
many papers, e.g. in [2c] it has been shown that they are bounded from below by
jyoiΨ'Λ—Δ + Vk)ψ') uniformly in k. From this and the bound (2.24) we obtain that
the quadratic form in the expression on the right-hand side of (2.19) satisfies the
bound

X-aL-2\\Qφ'\\2

L + \(φ',Δ^φ') 2; ψ^W\\2 (2.25)

with the absolute positive constant γ0. Thus the operator of this form satisfies all
the assumptions of the theorem in Sect. 5 of [3] on unit lattice operators, hence its
inverse has a uniform exponential decay. This inverse is denoted by C^k) and it is
a covariance of the corresponding Gaussian measure. It can be expressed explicitly
in terms of operators like Gk, which are some bounded functions of — Δη. Actually
of more interest to us are various localization expansions constructed in [3], but
these will be discussed in a following paper. All the above operators depend also
analytically on the configurations ^ + i , α ^ + i . Let us write now the expansion (2.19)
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separating explicitly the quadratic form in ψ',

Jk(θ,ψ,φk(φ),Λk(φ))=Aη

k+i(θ,φk+i)+\aL-2\\Qψ'\\2+ l-

where

(2.26)

(-Δ + vk + uk+ι)δφk<2(ψ'))

J-\\δuka(ψ>)\\2
(2.27)

The above expression is an analytic function of ψ'lφk+i^k+i, invariant with re-
spect to transformations R G O(N) of the configurations i//, φ^+i, and invariant with
respect to Euclidean transformations r of the configurations i/̂ 7, φ/c+u ̂ /c+i? which
transform the lattice Γ^+1^ onto itself. This is true because the effective actions and
the variational equations have the corresponding invariance or covariance properties.
An important property of the function V^ is its localizability. This function is a
sum of terms which are defined by scalar products on corresponding lattices τ[k^

and Tη. Let us define a function V^k\z), z G
to points of the block Bk+\(z). We have

£ +
, restricting the scalar products

Σ

zeT(k+\)

and the functions V^k\z) have the following symmetry properties:

for orthogonal transformations R G O(N),

V«\rZ;rψ'9rφk+urθLk+1)=

(2.28)

(2.29)

(2.30)

for Euclidean transformations r mapping Γ(A:+1) onto itself. The functions
are obviously analytic functions of \j/f,φk+\,0Lk+\^ at least of third order in \j/\ i.e.
V{k\z\\j/r) = O(|ιAΊ3) A crucial property of V^k\z^f,φk+uoik+ι) is that it has a
localization expansion with an exponential tree decay property in localization
domains of the type described in (H.4). This will be constructed in the following
paper.

Let us come back to the analysis of the integral in (2.1). We have noticed
already that the configuration θ satisfies the restrictions (2.3), so the function
Jk(θ, ψ,φk(ψ),θίk(φ)) m m e curly bracket in (2.1) has exactly one minimum \j/(k\θ)
in the space Ψk(c\). In general the configuration φ^k\θ) may not belong to the do-
main of integration in (2.1) determined by the characteristic functions. To assure
that it does belong to this domain we impose new small field restrictions on θ
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introducing the characteristic function

Jft+U = X ( | | 0 - Qk+ιΦk+ι\ < \ h h \ k

\Δiφk+ι\ < \βk

\φk+ι -h\< \v~kh7 P(βk)γ) • (2.31)

The subscript u here means that the function is defined in terms of unrenormalized
configurations and coefficients. The restrictions above together with the composition
formulas (2.14) and the formula (2.13) imply that the configuration φ^k\θ) satisfies
the restrictions defining the characteristic functions χ^ and (2.2) with the additional
factor \ on the right-hand sides. The remaining conditions defining ^ are for-
mulated in terms of the fluctuation variables φ\ so by definition the configuration
φ(k\θ) is in a center of the corresponding domain. Thus this configuration is inside
the domain of integration in (2.1). Let us notice in connection with the definition
(2.31) that the factor ^ is to some extent arbitrary, any number smaller than 1, but
not too small, could be used.

Making the change of variables φ = φ^ 4- φ' we write the integral (2.1) in
terms of the fluctuation variables φ1. We have studied the expansion in φ' for the
main term of the effective action. Consider now the remaining terms. They have
the representations (H.2), (H.7), and the / h terms in those representations depend
on ψfc (φ). The expansions

φ = ψ(k\θ) + ι//9 φk(ψ) - φk+ι(θ) + δφk(ψ'\ ock(φ) = αjfc+i(0) + d<xk(il/)

(2.32)

and the formula (4.21) in [2] imply corresponding expansions of φ^j\ i.e. we have

Φ{

k

J\φ) = Φ(

ki\(θ) + δφ(

k

j\ψ'), (2.33)

where the last function on the right-hand side is given by

δφ[j\φ') = Qjδφk{φ') + -ψvtfQl-ftf - Qkδφk(φf)). (2.34)
aj

The expansion (2.33) determines expansions of S{j\φ{

k

j)) and ^u\φ[j)\ for
example

{J)JJ\ U\4U ^K^iψ')). (2.35)
Denote the sum over j of the last terms above by δ^iΨ')- Similar formulas hold
for J ^ * and δβ^. All these expansion formulas yield the following representation
of the renormalization transformation (2.1):

βk

l-(aL-2\\Qψ'\\2

L

(2.36)
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The Gaussian part of the above integral has the covariance C^k\ i.e.

C{k) = (aL-2Q*Q + A™)-1 . (2.37)

It is a positive operator and its square root C Λ ^ is a positive operator also. We
make a next change of variables in the fluctuation integral in (2.36), we take

ψ' = βpc{k)^φ . (2.38)

The variables ψ are the final fluctuation variables in terms of which we write the
integral. The reason for introducing them is that the quadratic form in the integral
becomes the purely local quadratic form ^||ιA||2, which simplifies a construction of
localization expansions.

Consider the characteristic functions in the intergral in (2.36). We would like to
define restrictions on the fluctuation variables ψ in such a way, that the functions χk

and (2.2) are equal to 1 on the domain of integration, taking into account the
characteristic function χk+\,u This is satisfied if the following bounds hold:

\β~Ϊ2C(k)i2φ\, \δφk\, \dηδφkl \Aηδφk\, \δak\ < \βk*p(βk), (2.39)
3

— - 1

where we have put βk

 2C^ϊψ in the argument of the functions δφk,δotk, and we

have used the formula (2.13), the restrictions in (2.31), and the bound vk ^ 1. The

operator C^ϊ is bounded, e.g. by a constant #5. Then by the inequality (2.18) all

the expressions in (2.39) can be bounded by K2B5βk

 2 \φ\, so it is enough to assume

that K2Bs\ψ\ < \p(βk). Let us introduce the remaining characteristic function by the

formula

X({\Ψ\ <Pi(βk)}), pι(βk)=Aι(\ogβk)
p\

where

~po ^ (3B5K2Γ
] , (2.40)

^l =
PKPk)

and p\ is an even integer greater than 2. With these assumptions the above function
is the only characteristic function left under the integral in (2.36), and we may
identify it with χ(k\ Notice that this function is invariant with respect to ortho-
gonal transformations R G O(N) of the variables ψ, and with respect to Euclidean
transformations r mapping the lattice τ\k^ onto itself.

The change of variables (2.38) and the above statements on the characteristic
functions yield the following equality:

= χ* + u exp [-

ilogdetC<*>] . ~\\ψ\\2 -

where E%=E'k+
 l-Nlogβk .(2.41)
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The integral on the right-hand side above is the basic fluctuation integral. Its deriva-
tion has been done in the case k ^ 1. The case k — 0, which is connected with
the first renormalization transformation, is slightly different, as we have remarked
already in the first section. The difference is connected with the fact that the co-
efficient λ may be arbitrarily large, in fact we may have λ —> +oo and we would
like to have a procedure which is uniform in λ. Of course λk may be arbitrarily
large also, or λk —• +oo, but the dependence on λk in (2.41) is taken care of by
the minimal configurations φk+\(θ;h,ak-\-\L~~2,λk,Vk), 0Ck+\(θ;h,ak+\L~2,λk,Vk), and
all the expressions in (2.41) have properties and bounds uniform in λk. This would
not be true in the first renormalization transformation; we have to perform some
additional operations, and the whole procedure is slightly different, so we have to
discuss it separately.

The first transformation applied to the initial density po is defined by the
integral

1 _9 1
-oL Z\\Ψ-QΦ\\Ϊ + -

+ j\\\Φ\2 ~ 1112 + ψ\Φ - h\\ή + (g,φ) -E'O\TX\\ , (2.42)

where the characteristic function χo is defined by the restrictions

\\φ\2 — 1| < λ0

 2β0

 2p(βo), \φ — h\ < v0

 2β0

 2p(βo) on T

\\h\2 - \\<^xβ^p\β0), p(βo)=A0(logβ0)
p° . (2.43)

We expand the action in (2.42) around the minimal configuration φ\ taking φ =
φ\ + φ'. We have the equality

{\\3Φ'\\2+ \{Φ\(vo + «ι)Φ')+ \\2φι φ' + \Φ'\21{\\3Φ\\+ \{Φ\(vo + «ι)Φ')+ j\\2φι φ' + \Φ'\21|2} , (2.44)

and we obtain an integral in φ;, for which the effective action has good positivity
properties. To analyze this integral uniformly in λ0 we make a change of vari-
ables. We decompose φ' into two orthogonal components φ' — χ(φ\)o + φ", where

(Ψi)o = W\> χ = iφ])o ' φ'> {φι)o " 4>" = ° T h u s w e h a v e

and we can write the integral in (2.42) in terms of χ, φ". Let us make some remarks
about invariance properties of the expressions and variables above. The expression
in the curly bracket in (2.44) is invariant with respect to simultaneous transforma-
tions of 0i, φ' by elements of O(N), so χ is invariant and the expression is in-
variant with respect to the transformations of φ,φ/f. The characteristic function χ(°\
which will be defined below, restricts φ' to a sufficiently small neighborhood of

_ i

0 (\φf\ < O(β0

 2 p(βo))), hence χ, φ" are small also. We make a change of variables
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χ = χ(χ',φ") such that

2\ΦAi + χ2 + \Φ"\2 = 2\Φx\i'.

This equation has a unique solution

+ 2|0i\χ> - \φ"\2 -10,1 = / + h2(χ', φ"), (2.45)

where /Z2 is an analytic function with an expansion starting with second order terms.
This change of variables transforms the integral in (2.42) into an integral in variables
χr,φ". Finally, we rescale these variables:

The above transformations give a fluctuation integral in which the integration vari-
ables φ,χ are restricted by the condition (φ\)o - φ = 0 and by the characteristic
functions χo>X(O) We remove χo from the integral by introducing new restrictions
on \jj by the characteristic function

< \βo{P(βo),Wι\ < \βoί2P(βo),\Φi-h\ < \v^β^P{βΰ) on τ

We assume sufficiently strong restrictions on φ,χ, so that χi,«χoX(O) = Zi,κZ(0) Using
this equality we can write the following formula for the renormalization transfor-
mation (2.42):

-X-{φ + λ~kφι)oX,(-Λ +aL~2Q*Q + vϋ

{Φ + λ-kφM) -\{i,\Φχ\h) - βo h

2Φ (ΦM(βλ)ΐ h))\ (2.46)

where we have separated terms quadratic in the fluctuation variables from terms of
higher order, or small. These are gathered together in the function V^\ and we have
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1 — -

where h2 = h2((βoλo)~2χ,βo ~2 φ) is given by (2.45), and

G f V i ) = - / ! + aL~2Q*Q + v0 + αi . (2.48)

Consider the function F ( o ) . It is an almost local function of the fluctuation variables,
more precisely it is a sum of terms involving the variables either at one site, or at
two nearest neighbor sites, or at sites of one block. Each term has also the same type
of the almost local dependence on φ\. It is analytic in φ\ and small. The function h2

is at least of second order in χ,φ, so it is O(β^x pj(βo)), and the formula (2.47)

implies that β0V™ = O{βpp\{βQ))\Tx\.
Consider the integral in (2.46). From the above it follows that the integrand is

a small and local perturbation of a Gaussian measure in the variables φ9 χ, φ in the
subspace defined by the condition (φ\ )o φ = 0. We make a change of variables
introducing a new variable φ' by the equality φ' — φ -f (φι)oX This new variable
considered at any point of the lattice T\ has values in the whole space ΊR.N, un-
restricted by any conditions. This change of variables is given by an orthogonal
transformation between the corresponding spaces, so the Jacobian is equal to 1. The
quadratic form in (2.46) can be written in the new variable φ' as

(φ',[I - (1 - λ~h(ΦOo ® (ΨOolGfWt/ - (1 - ΛΓ'XΦOo ® (Φι)o]φf)

+ 2 ^ (0! )0 <8> (φι )oφ'^ (2.49)

The operator of this form is bounded and short-ranged. The operator Gf ! (αi) is
bounded from below by an absolute positive constant 70 (see [3] for a proof), and oc\
is bounded by a small constant c\. Thus the quadratic form (2.49) is bounded from
below by

γo(Φ',[I-(ΦOo®(Φi)o]Φ') + ( l + ]—^) (Φ'ΛΦ:)o®(Φι)oΦ'} ^ Ύo(Φ',Φ'},

assuming that c\ < \ and yo S l From the above properties it follows that the op-
erator of the quadratic form (2.49) satisfies the assumptions of the theorem on unit
lattice operators in [3], so its inverse has an exponentially decaying kernel and a
localization expansion (see (5.17) in [3]). Denote the inverse by C ( 0 ) . The square
root of this operator has the same properties. We make the next change of vari-
ables φ1 — C ( 0 )2φ, which yields the following formula for the first renormalization
transformation:

= χ]>uexp \-βoAι(φ,φι;h,aL-2,λ0,v0)+ - logdetC(0)

" ( 1 - λ~h(Φύo®(Φι)o]C(O^φ + (φ,)oh)\ • (2.50)
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The functions V^ ' and hϊ above are obtained from the corresponding functions
in (2.46) by substituting (/ - ((/>i)o <8> (Φ\)o)C^ϊφ,(φ\)o C^ϊφ in place of φ,χ.
We define the characteristic function χ ( 0 ) by (2.40) with k = 0. The fluctuation
integral in (2.50) has the same form and properties as the integral in (2.41). The
underintegral expressions have bounds uniform in the whole range of λo, in fact

they are analytic functions of /l^5. The integral in (2.50) is now simpler than the
integral in (2.41), so we continue our analysis of the last one.

The integral in (2.41) is the basic fluctuation integral which we will analyze
now, and also in the next section. At first let us describe some of its basic prop-
erties. It is obviously convergent and defines a function of Θ,h, g through various
functions φk^v$^^ ,£F^. By the previously described symmetry properties it is
invariant with respect to Euclidean transformations of θ,h,g, which map the lat-
tice T^k+ι^ onto itself, and with respect to orthogonal transformations R G O(N)
of θ9h9g. This integral determines new contributions to the effective action and the
generating functional. Let us write explicitly formulas for these contributions. Define
a two-parameter family of measures

-\\M\2-ι

+ δδk{βk

 {C{k)ϊsψ) + δ^k(βk

 {C(k)Uφ,g)\ , (2.51)

where Z^J is a normalization factor, or the integral over φ of the expression after
dφ above. The new contribution to the generating functional is given by

TJdt

^-δ^k)(β;ΐc^tψ),C^ϊψ), (2.52)

or

} j ^ { β p ^ ^ ^ ^ • ( 2 . 5 3 )

The new contribution to the effective action is given by

= I logdet C<*> + S\k+l), (2.54)
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where

(-β\ ((^

(2.55)

The above expression can be written as a sum of localized terms

[k+ι\z), (2.56)

which are given by the following formula:

yeB(z)0

Σ
y£B(z) 0

(2.57)

The two formulas (2.57), (2.53) are the fundamental formulas for the future discus-
sion of localization expansions and bounds. We have to write also \ log det C w as
a sum of localized terms. We have

l- log det C(k) = ~

= ~\ Σ tr(log(aL-2Q*Q + A^))(y,y), (2.58)
2

g

This allows us to write <?i as a sum of localized terms

where the symbol "tr" denotes algebraic trace of N x ΛA-matrix.

as a sum of localized terms

ό0 \z), (2.59)
L

where

( U I 1 Λ I ,-» r Ί s / 7 _ ι 1 \

) . (2.60)

From the previously discussed symmetry properties it follows that

4k+l\rz;rθ,h) = <ίo

(*+1)(z;0,/O (2.61)
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for Euclidean transformations r mapping Γ^+1^ onto itself, and

4k+l\z;RΘ,Rh) = 4k+l\z; θ>h) ( 2 6 2 )

for orthogonal transformations R e O(N). Similar properties hold for the new con-
tribution to the generating functional, i.e. for (2.52), or (2.53).

The equality (2.41) and the definitions (2.51)-(2.60) yield the equality

'k»\Ίik)\-E'k»\Ί

where
E'l' = E'k'- log / dψχ({\Φ\ < Pι(βk)})e-^2 . (2.63)

The density on the right-hand side has already some basic features of densities in a
space (1.4) with k + 1 instead oϊ k. The new contributions are defined at the moment
on the domain of the characteristic function Xk+\,u We would like to show that
they have localization expansions satisfying (H.4) and the corresponding properties
in (H.7). These imply all the analyticity properties in the inductive hypotheses, as
we have noticed already before. A construction of the localization expansion will
be given in a later paper, now we formulate the results only. A first result concerns
the new terms SQ + (z) of the effective action, and is described in the following
proposition.

Proposition 2.1. If β or B are large enough, then the functions S^+l) defined by
the formulas (2.60), (2.57) have localization expansions satisfying all the condi-
tions of the inductive hypothesis (H.4) for j = k + 1, but the bounds hold with Eo

replaced by NLdB^ + 1, and K replaced by 2κ — 3 — 6κo.

Let us recall that the "absolute" constant B4 was defined in Sect. 3 of [3] in con-
nection with the localization of the functions of the operator aL~2Q*Q + A^k\ where
Δ^ is defined by (2.23). Obviously we assume here that K — 3 — 6κo ^ 0. It fol-
lows from the above proposition that we can take EQ as any number ^ NLdB4 + 1.
This is not a final restriction on Eo because there will be other contributions to the
effective action introduced in the next sections. We have a similar result for the new
contribution to the generating functional.

Proposition 2.2. For β or B large enough the functions # Q + (x; g) defined by
(2.52), (2.53) satisfy all the conditions of the inductive hypothesis (H.7) for
j = k + 1, but the bounds hold with c9 replaced by const. β~i+ α i rg \β~K and
K replaced by 2κ — 4 — 6KQ.

From this proposition we obtain that we can take eg as any number ^ \β~*-
Again it is not a final restriction on c9, we will have other contributions to the
generating functional. We assume that K — 4 — 6κ$ g: 0, and the exponential factors
in the bounds for the new contributions <f0

(A:+1), ̂ k+X\g) can be taken exactly the
same as in the hypotheses (H.4), (H.7).

The above two propositions will be proved in a more general form in one of
the following papers. The generalization is connected with restricting the effective
action and the fluctuation integral to "a small field" subregion of the whole lattice,
and also with some other technical issues.
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3. The Scaling Operation S<*>

A next operation is the scaling operation S^k\ It is simply a rescaling of the lattice
Tη to TL-\ψ and corresponding rescalings of the lattices T^} to the lattices T^_x .
The spin configurations and the external fields are unchanged by the rescalings, or
their values on the rescaled lattices are equal to values at corresponding points of the
original lattices. Functions of the spin configurations and the external fields, like the
effective action and the generating functional, do not change also, they are defined
on new lattices, domains and configurations in the same way as on the original
ones. An exception in this is the main action which is written explicitly in terms of
the L2-norms on relevant lattices. The rescaling implies the following equality:

βkAη

k+ι(θ,φk+\\ak+\L~2,λk,vk) = βkL
d~2AM(θ,φk+χ;ak+hu,λk+hu,vk+hu), (3.1)

where the action and the configurations on the right-hand side are defined on the
L~ι^-lattice, and λk+\fU = λkL

2, vk+\,u = VkL2- We have also the scaling property
(2.12) for the function φk+ι, so the rescaled function depends on ak+\ίU, λk+\rlι, Vjt+i,M.
We write all these expressions with the subscript "w" to indicate that they are
rescaled but unrenormalized. A result of the two operations is written in the follow-
ing way:

where

βk+ιyu = βkLd~2, Ak+ιtU(θ9φ) = Ak+\(θ9φ;ak+ι9U9λk+ι9U9vk+ι9U). (3.2)

The characteristic function is written also in terms of the rescaled expressions. The

domain of this function is basically equal to the space Ξk+\,U(L, \βk

 Ί p(βk)), except

that in the last condition in (2.20) [1] the constant L2\βk

 Ίp(βk) is replaced by

\
Let us summarize properties of the density on the right-hand side of (3.2). The

"old" terms Sk and #£ satisfy all the inductive hypothesis (H.2)-(H.5),(H.7) but
now the / h terms depend on the unrenormalized function φ^λ u(θ) instead of the

function ψjj (φk). The analyticity domains are also defined in terms of the unrenor-
malized functions φjtU9 and we denote them by Ξjw(l,ε7 ? w), where ε7?w denotes the
constant after k steps, which differs by the term ^αo^ α from the constant after
k + 1 steps. After a renormalization operation we will have to change accordingly
the spaces and to prove proper inclusions. The "new" terms ${jk+ι\ J ^ + 1 ) satisfy
the inductive hypotheses (H.2)-(H.4), (H.7) only, but with the analyticity domain
Ξc

k+χ M(l,fi£+i) defined also in terms of the unrenormalized function φk+\,u>
 a n d

with constants in the bounds in (H.4), (H.7) independent of EQ. These constants are
described more precisely in Propositions 2.2,2.3.

Our basic goal now is to modify the effective action in (3.2) in such a way
that it satisfies all the inductive hypotheses (H.1)-(H.7). This is achieved by a
renormalization operation defined and discussed in the next two sections.



698 T Balaban

4. The Renormalization Operation

In the small field region considered here this operation is reduced to rearrangements
of the effective action done in such a way that they create new terms which are
combined with the term <fo

(^+1) and yield an expression satisfying the renormalization
conditions (H.5). They involve a rescaling of the variable Θ and changes of the
constants βk+\,u^k+\,uΛk+\,u^k+\,u defining the main action. Before we describe
these operations let us explain why do we need the rescaling. It is connected with
properties of the effective potential, and in particular with the second condition in
(H.5). The effective potential for the whole effective action in (3.2) is defined as the
value of this action on a constant configuration θ, divided by the volume | Γ ^ + 1 ) |
of the lattice. This gives the expression

n+i(0,Λ) = βk+ι Vk+i(θ,h) - Σ (LJ-'ηΓd^\ψ{

k^(θ,h\h) - 1^*+1)(0,*),
7=1

where for simplicity we have dropped the subscript u. We can write it in terms of
the corresponding functions of the expressions U,V,W2 as in (3.45) [1]. We are
interested now only in θ = ue\, A = ei, so we obtain

fk+l(u,l,0) =

- Σ (L^ηΓ'fJ'W^iueueOl 1,0) - /0

(*+1)(a, 1,0),
7 = 1

where we have used the fact that 1/^(^1, <?i) is proportional to eu and its value
at u — 1 is equal to e\. These properties follow immediately from the variational
equations determining the functions ψjj+v It follows also that u — 1 is a criti-
cal point of all the functions on the right-hand side above, except the last one,
and this is true for all admissible values of the constants α^+i,^_|_i,v^+i, allowed
by the existence theory for the variational problem. This means that no change
of the constants can produce a new contribution to / 0

 + (w, 1,0) changing the

derivative ^ / 0

( / : + 1 ) ( l , 1,0), so it cannot make the point u= 1 a critical point of

the function /0

(^+1)(w, 1,0). We have to change this function in some other way.
One possible way is suggested by the following remark. The whole effective po-
tential fk+\(u, 1,0) has a critical point which is close to 1. This follows from
the fact that the first term in the definition of fk+\ is dominating, so we can
write

(«, 1,0) = o Q/fc+i(« - l)2) - 4k+i\u, 1,0),

and the equation

^ / * + i ( « , 1,0) = O(βk+ι(u - 1)) - | ; / < Γ V 1,0) = 0

has exactly one solution in a neighborhood of 1. Denoting this solution by Zk+\ we
have Zk+\ = 1 + O(β^lx). Now we make the change of variables u — zk+\u'. The
function fk+\(zk+\u', 1,0) of u1 has a critical point at u' = 1. We can write this
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function as

fk+\(zk+\u', 1,0) = βk+iVk+i(u',l,O)

7 = 1

where the definition of / ^ + 1 ^ is obvious. This function has similar properties and
( * 1 )bounds as / 0

(*+ 1 ) because zM ~ 1 = O(βj~lλ), so the factor βk+x in the leading
term is cancelled. Obviously by the above definition the point u' = 1 is a critical
point of the function / ( A : + 1 )(V, 1,0), so the second condition in (H.5) is satisfied.
The above discussion should explain the role of the scaling transformation and the
definition of the scaling constant. The remaining conditions in (H.5) can be satisfied
by proper changes of the coefficients in the main action in (3.1). We do not consider
these conditions separately, but we treat them all at once, in one renormalization
operation.

Let us define now the basic step of the renormalization operation. It consists of
the scaling operation and the change of the coefficients given by the equations

θ = Zk+lψk+l, zk+\ = 1 + ζjfc+1

βk+\,u = βk+\ + bk+\> βk+\,
u
ak+\,u

βk+\,u βk+\ 1 7 o o . /λ Λ .
-: = i Γ -: ak+\ , Pk+\,uVk+\tu = βk+\Vk+\ + vMek+i . (4.1)
λ k \ Ak A k \

The constants ζk+ubk+ι,ck+udk+\,ek+ι will be determined later by the renormaliza-
tion conditions (H.5). If they are given, then the above equations determine uniquely
the new coefficients βk+\,ak+\,λk+\,vk+\. The above equations determine a decom-
position of the main action in (3.2) into a sum of a new action and a remaining
expression which is called a counterterm. This decomposition is complicated by
the fact that the minimal configuration φk+\,u is changed also by the change of
the coefficients, we have to expand it around the new minimal configuration φk+\
determined by the new, renormalized coefficients. We study simultaneously the de-
composition of the main action and the expansion of the minimal configuration using
the variational problem (1.6)—(1.9) [2]. We have

βk+\,uAk+\,u(θ,φk+ι,u) = βk+ιtUinf Ak+\3u(θ9φ) = /?*+!

inf sup<
Φ

-Qk+ιΦ\\2 + \\\dφ\\2 + \(a, \φ\2 - 1) - ^ L - | | α | | 2 + Uk+ι\\φ - h\\2

- QMΦW2 + ^ + 1 | | # | | 2 + ^ + 1 < α , \φ\2 - 1) - ^ | | < x | | 2

Z Z Zλk+\

-vk+\ek+ι\\φ- , + Ck+i){(zk+ι - l)ψk+i,Ψk+\ - Qk+\Φ) }

(4.2)
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The expression in the first square bracket above determines the new, renormalized
main action. We take the corresponding minimal configuration φk+\, which is a
solution of the variational problem determined by the new action, and we expand
the above expression around it, i.e. we take φ = φk+\ + δφ, α = ock+\ + <5α, and we
have

,u(θ, Φk+\,u)

- Qk+lΦk+\)

l l ^ i - Qk+iΦk+\\\2 + -bk+ι\\dφk+\\\2

2

2λk+\

inf sup • -Qk+ιδφf

2λk+ι

~ Qk+ιΦk+0)

-h)

Consider the variational problem above. Variational equations are

(4.3)

<5α)

~ Qk+\Φk+\)

ίφk+i - h)
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βkl\bk+\ -
α0 , (4.4)

where the last equalities are definitions of the functions ψo, fo,oco These equations
can be written in the form

1 1 1
δφ φk+\ H—\δφ\ —τδcc = —oco , (4.5)

where

a = _ ' j v ' = cik+\,u > v — Vk+\ ~f = Vk+\,

*- = 4+1 ! — = Λ*+i,κ . (4.6)

The above system of equations is a special case of a basic system of equations (3.20)
[2] studied in paper [2]. It is a minor modification of the system (2.17), and it has
basically the same properties described in Proposition 3.1 [2]. If ψo, ̂ +i5a^+i,/o5oco
satisfy the assumptions of this proposition, then the system (4.5) has exactly one
solution in the space of all complex configurations satisfying the only restriction
\δa\ < c6. We denote the solution by δφk+\,δttk+\ again, though these functions
are different from the solutions of (2.17) discussed in Sect. 2. We do not use those
solutions in the rest of the paper, so this notation should not cause a confusion. The
solution δφk+\9δ(Xk+i is an analytic function of φo, φk+\,otk+\,fo,%o on the domain
described above, and it satisfies the bounds

, fo,ao)l\Aδφk+ι(ψo, fo,oco)\,\δotk+\(Ψo, A(*o)\

(4.7)

The derivatives above, and in the previous formulas, are on the lattice TL-ιη, but for
simplicity we have omitted the superscript L~ιη indicating the scale. Formulating
these results we have assumed implicitly that the coefficients a,v,λ are in a proper
range, for example \<a<\, 0 < v ^ 1, λ ^ I. This is satisfied in our case, be-
cause they are equal to the unrenormalized coefficients fl£+i,M, Vfc+ijM,^+ijM which
satisfy these conditions. Let us check if the configurations ψo, φ£+i,α£+i,/o,oco s a t "
isfy the assumptions of Proposition 3.1 [2]. Obviously this depends on assump-
tions for the renormalization constants and the new variables ι/^+i,/z. Let us start
with the first. Notice that the equations depend on these constants only through the
combinations ζk+\,β'k+ιbk+\> β~k+\ck+\iβ~k+\dk+\>βk+\ek+\- For simplicity let us drop
the subscript k + 1 in the notations. We assume that these rescaled constants are
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sufficiently small, more precisely

Iβ-^CI, \β-ιb\9 \β-ιc\, \β~ιdl \β-ιe\ < ε , (4.8)

where ε is a sufficiently small positive number. This implies that the coefficients
ak+\9Vk+\,λk+\ are correspondingly small variations of ak+\ίU, vk+ι,u^k+\,u We will
come back to the discussion of these coefficients later on. Consider now the new
variables. We need to consider at first real analytic functions of these variables, so
we assume that

(ψk+\,h)eΞk+1(l9εk+ι). (4.9)

Notice that the space above is defined by the renormalized functions φk+\,0Lk+\.
With this assumption, and by the definitions of ψo,fo,θίo in (4.4) we have

|α o | <3ε ε^+1 = 3ε*+ 1ε, (4.10)

where we have estimated φk+\,φk+ι and various constants like (1 + β~ιb)~ι, (1 +
β~ιd)~\ (a + β'ιc){\ + β~λb)~λ = ak+hu simply by | . Assuming that ΊK2εk+]ε ^
c6, the configurations ^ o , ^ + i , α ^ + i , / o , α o satisfy the assumptions of Proposi-
tion 3.1 [2] and there exists exactly one solution of the system (4.4), or (4.5),
with the properties described above. In particular it satisfies the bounds

\δφk+\ |, \dδφk+ι |, \Aδφk+ι |, \δccM \ < lK2εk+xε (4.11)

on the domains (4.8), (4.9). It follows from the bounds, or even more clearly from
Eqs. (4.4), that δφk+\,δciLk+\ are analytic functions of at least first order of the renor-
malization constants. Notice that up to now we do not have any strong restrictions
on ε, the condition ^2^+1 £ = C6 is satisfied even with ε = 1, we have stronger re-
strictions on ε/s. The only other conditions we have used are that various constants
like (1 + β ~ 1 6 ) ~ 1 , etc. are close to 1, or < | , and it is enough to take ε ^ ^ .
Thus we have constructed the expansion

,u = Φk+ι + δφk+\, u-k+uu = α*+i + δu.k+\ (4.12)Φk+\,

of the unrenormalized minimal configurations around the renormalized ones, and
the perturbations δφk+\,δciίk+\ are analytic functions of at least first order in the
renormalization constants.

Let us come back to the expansion (4.3) and substitute there the solution of the
system (4.4). We get

2 - l ) | τ f + 1 ) | , (4.13)
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where, using Eqs. (4.4), the counterterm C ( ί + 1 ) is given by

703

β-1c)ζ(ψk+uψk+ι - Qk+iφk+\) + -β~ιc\\ψk+ι - Qk+ιφk+ι

- β~ιd)\\ak+ι |

+ l-vβ~ιe\\ \φk+ι

_ I ( f l + β-*c)ζ2\\ψk+1

2 + vβ-ιe{\φk+ι 1,1 - (φk+, ) 0 h)

2 + \{a + β~ xc)\\Qk+xδφkk+x |

+ \{\+β-χb)\\dδφk+x\\2 + λ-{\ +β-ιb){δφk+u(ak+] +2δaM)δφk+ι)

- γλ(\ + β-χd)\\δak+i | |2 + ( ι
β-ιb){δφk+i,δak+1φk+ι)

(4.14)

where a,v,λ denote ak+\,Vk+\,h+\ now. The above expression is a local function
of the configurations \jjk+\,φk+\,δφk+\iδv<k+\i s o we can write a decomposition as
in (2.28) restricting the norms and scalar products to blocks Bk+ι(z% z e τ[k+x\
We get

c ( * + i ) = Σ C ( ^ + 1 ) (z), (4.15)

and the functions C^k+λ\z) satisfy the usual Euclidean covariance and O(N) invari-

ance properties. Of course the same holds for C\ + and C2

 + separately. These

functions are analytic on the domains (4.8), (4.9), and C ^ + 1 ) is at least of first order

in the renormalization constants, Q is at least of second order.

U)

have
The expansion (4.12) determines corresponding expansions of ψk+x u, i.e. we

where

(4-16)

They cause further changes in the effective action and the generating functional, we
expand them around the new configurations and include perturbations into the new
contribution to the effective action and the generating functional correspondingly.
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We define an unrenormalized k -f 1st effective action Su by the formula

4k+l)(zk+]φk+uh)

g & ) , h ) ] . (4.17)

The k + 1st contribution to the generating functional is defined finally by the formula

(4.18)

With the above definitions of the new contributions the effective action

(φk+ι),h) has the representation (H.2) with the terms S^j\y\φ^χ{φk+\,h),h) de-

termined by the functions S^\y\φj,h). The fact that these functions satisfy all the

inductive assumptions follows immediately from the inclusions

); l9εj) C ^ M ( B y ( X ) ; l9εM), (4.19)

where β7 is defined by the formula in (H.I) with the sum over n starting with

n = k + 1, and ε7?w is defined exactly by that formula. Thus ε7;W = Sj + £iαo£α >

ε7 + £i |ε/ We postpone a proof of the above inclusions to the paper on localiza-

tion expansions. This remark applies also to the terms of the generating functional

The first term on the right-hand side of (4.17) has the localization expansion
described in Proposition 2.1, and we have to construct such a representation for the
sum in (4.17). We cannot use the local representations of the actions <f(7) for the
same reason as in the case of the fluctuation integral contribution (2.55), namely
we need the whole resummed <f(7) in order to apply the representation (3.127) [1]
in terms of irrelevant expressions. To construct the representation (2.56) we have
used the first order expansion in the fluctuation variable in (2.57), which yields

also a first order expansion in the constant βk

 2. Here we may use Eqs. (4.5) and
formula (4.16) to construct a first order expansion in the renormalization constants.
Actually we need an expansion in some functions defined on lattices, so that we
can localize it as in (2.57). Let us recall that the coefficients of Eqs. (4.5) are
equal to the unrenormalized coefficients α£+i,«9 Vk+\,uΛk+\,u s o t n e only dependence
on the renormalization constants is through the functions ιAo>/o?#o5 and they are at
least of first order in the constants. The solution ^(/>A:+i(ιAo?/o?θ(o)?̂ ^A:+i(Άo?/o?̂ o)?

which is an analytic function of ψo,fo,oto, is of first order in these variables, i.e.,
δφk+\(0,0,0) = 0, δθίk+\(0,0,0) = 0, so we can expand in functions ι/̂ o,/o, oco The
function δφ^ given by the formula (4.16) depends on φo,fo,ao, and it is equal to 0
if all these configurations are equal to 0. Let us write this dependence explicitly, i.e.,
we write δφl^^φo^fo^oίo), and we have δφ^λ(0,0,0) = 0. Using these properties
we can write the differences in (4.17) as integrals of a derivative with respect to
a parameter t multiplying the configurations φo,fo,%o, and this derivative can be



Low Temperature Expansion for Classical TV-Vector Models II 705

expressed in terms of derivatives with respect to these configurations. The obtained
expressions can be localized then in cubes Δ(z) = Bk+\{z). This way we can write
$uk+l^ as a sum of the local expressions over points of the lattice τ[k+ι>} as in
(2.56), and the local functions are given by the formula

y=i o

(t + τχAiz))f0,(t + τχA(z))(x0),h) (4.20)
τ=0

The above functions are Euclidean covariant with respect to transformations of the
lattice T[ + , and they are invariant with respect to the orthogonal group. This ends
the first part of the renormalization operation.

A result of this operation can be written in the following way:

Σ Σ

(4.21)

where

and E^k+λ\z) does not depend on z by the translation invariance,

Ek+λ = El'Ld - E«+l\0).

The density defined by the exponential on the right-hand side of (4.21) has the
form required by the inductive assumptions for k + 1. We have to verify that it has
all the properties required by the assumptions. The "old" contributions satisfy all
the assumptions, except that we have to prove the inclusion (4.19). With the new
contributions we face the same problems as with the contributions coming from the
fluctuation integral, we have to verify that they are analytic on proper domains, and
we have to construct localization expansions satisfying proper bounds. The formula
(4.21) determines the new contribution to the effective action. It is given by the

f of the local functionssum over z

φk+uh) -

z e 7f+1). (4.22)

They are functions of (ψk+uh) and the renormalization constants ζ, β~ιb, β~ιc,
β~ιd, β~ιe, and we do not know yet their domains of definition, we do not know
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even if they are defined on the space (4.9). They are certainly defined on suf-
ficiently small domains, and satisfy the symmetry properties in (H.3). We have
to prove (H.4), which implies the analyticity statement in (H.2), and we have to
prove the renormalization conditions (H.5). This is achieved by a proper choice
of the renormalization constants. The conditions in (H.5) determine a system of
equations for the constants, and we will prove that this system has a unique small
solution. Substituting this solution into the functions (4.22) yields the final contri-
bution to the effective action, satisfying all the inductive hypotheses (H.2)-(H.5).
We will prove also that the above solution satisfies the inductive hypothesis (H.6).
Finally, we have to prove that the new contribution to the generating functional sat-
isfies the hypothesis (H.7). In this section we formulate propositions on localization
expansions for the new contributions. These propositions will be proved in the same
paper as Propositions 2.1, 2.2. In the next section we will analyze the renormaliza-
tion group equations for the renormalization constants, and we will prove all the
above mentioned properties. This will end the renormalization operation and the
proof of the basic theorems.

Let us start with a proposition on the functions in (4.22).

Proposition 4.1. If the constant ε in (4.8) is small enough, then the functions
C\k+ι\z\ Cf + 1 ) (z), <?f+1)(z) defined by the formulas (4.14), (4.15), (4.20) have
localization expansions satisfying all the properties in the inductive hypothesis
(H.4) for j = k + 1, but with the constant Eo in the bounds replaced by C4 ε^+1ε,
C4ε

2

k+Xε
2, NLd B4 + l-\-C5Eoε correspondingly, where C4, C5 are positive ''absolute"

constants. Terms of the expansions can be extended to analytic functions of the
variables (ψk+ι,h) and the renormalization constants, defined on the spaces

Ξc

k+ι(BM(X); l, f i j t + 1) x {the polydisc (4.8)} , (4.23)

and depending on the variables restricted to the domains X.

This proposition yields also localization expansions of the whole new contribu-
tions $(k+ι\z) defined by (4.22), but with bounds depending on βk+\ and ε. We
will come back to a discussion of the expansion in the next section, when we will
determine the renormalization constants, because only then we will obtain a precise
bound ε on the constants. For the functions $u

 + (^) we can assume now that

C5Eos ^ 1 , (4.24)

and we obtain the bounds in (H.4) with the constant NLdB4 + 2 = B6. We will
discuss the above assumption in the next section also. The next proposition concerns
the new contribution to the generating functional.

Proposition 4.2. For ε small enough the functions Ji^ + \x;g) defined by the
formula (4.18) have localization expansions satisfying all the properties in the
hypothesis (H.7) for j — k + 1, but with the constant eg in the bounds replaced
by \β~* + C()εlSk+x^2y~(Xι\ where Ce is another "absolute" constant Terms of the
expansions can be analytically extended onto products of the spaces (4.23) and
{θ: II0II/1 < 1}? and they depend on the variables restricted to the corresponding
domains.
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It follows from this proposition that to complete the proof of (H.7) for the
new contribution ^k+x\g) we have to prove that the expression CesL^k+l^2y~ay>) is
arbitrarily small for β large enough. This will follow again from the bounds on the
renormalization constants in the next section. The above propositions will be proved
together with all other results on localization expansions.

5. The Renormalization Conditions, and the Conclusion of the k+lst Step

We start with an analysis of the renormalization conditions (H.5). Consider the first
three conditions there. They are formulated in terms of the effective potential of the
action S^k+λ\ i.e. we take a constant configuration \jjk+x = ψ and define the effective
potential Ϋ~{k+ι\ψ,h) by the equality (2.25) [1]. We distinguish three contributions
to this function, one from the action Suk+λ\ one from the expression in the first
square bracket in (4.14), which is denoted by C\ + \ and one from the expression
in the second square bracket in (4.14) denoted by C^+ι\ We have

4M\z; ψ9h) = ru

{k+x\xjj,h) = fγ+ι\U9 V, W2), (5.1)

and we are interested in the function /M

 + (u, v, 0). It is an analytic function of u, v

on the discs {\u — 1| < ^δ0}, {\υ — 1| < ^}, where we can take SQ = ^K^x&k+\ by

Lemma 3.2 [1]. It is also an analytic function of the renormalization constants on

the poly disc (4.8). For simplicity of formulations let us introduce the notations

ί C ζ β % β~b

ξ4 = jS^cjfc+i, ξs =

The function /„ } is analytic in ξ on the polydisc {|£z| < ε} with ε sufficiently
small, e.g. ε ^ ci0, cio given by taking the equality in (4.24). On the whole
analyticity domain it satisfies the bound | / i^ + 1 ) | <B6Ko, hence its derivatives satisfy
the bounds

d
du

< B6K0 -ψ- = 4B6K0Kf - p . (5.3)

The functions Cpk+ι\z;ψ,h), p — \,2 have similar representations in terms of

functions cf+λ\u,v,w2) and we have to calculate the corresponding derivatives.

For the function c\k+l>} we calculate them explicitly using formulas for solu-

tions of the variational problems for constant configurations. In particular we have
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φk+ι(ueuveι) = Ak+ι(u,v)eu and

λk+x

From these formulas and the definition of c\ + we obtain easily

(U,0) =

(1,1,0) = -

^ + ( 5 4 )

We do not need to calculate the derivatives of c ^ + 1 ) explicitly, because they are
at least of second order in the renormalization constants, we need only bounds for
them, which will be discussed later. We can write now the three renormalization
conditions in (H.5). Notice that the first condition is satisfied by the choice of the
constant E^k+λ\ Let us simplify the notation omitting again the subscript "k + 1"
for all constants. The remaining two renormalization conditions can be written in
the form

{ ί ή -β [{a+β~lc)ζ2+{a+r l c ) τ τ i

l,l,O) = O. (5.5)

We obtain two equations for the five unknown renormalization constants.
Now we consider the last condition in (H.5). It is much more difficult to analyze

because we have to calculate second order derivatives with respect to the variables
i/fc+i, and we have to do it explicitly for the function C\ + . We are interested
in the derivatives calculated at the constant configuration 1/̂ +1 = e\, h = e\, so we
write ψk+\ = e\ + φf and we calculate the derivatives with respect to ι// at ι/// = 0.
The function cf+λ) is an analytic function of ψ' in a neighborhood of 0, and it is
enough to expand it in \jj' up to second order terms. From the form of the function
Cj it is clear that we have to find an expansion of φk+\{e\ + φ\e\) up to second
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order in ψf, and an expansion of ock+\(e\ + φ\e\) up to first order in ψ1'. We write

= eλ + < ^ ( f ) + f^

= 4 1

+

) i0A') + , (5.6)

and by (2.21), (2.22) we have

^ . (5.7)

Differentiating Eqs. (2.17) up to the second order in ψf and solving the resulting
equations we obtain a formula for φk^χ{φ'). To write it in a simple form we intro-
duce the notations

i9trΨ' = ak+χGk+\Ql+ι(! - eλ 0 eι)ψ\

eλ)\ljf, (5.8)

and we have then

x \(Hk+h trφ') • (Hk+Urψ')+J-(Hk+Uongψ
f) • (Hk+ιJongφ')\

-2Gk+ι((eι Hk+UIongψ')Hk+htrψ'). (5.9)

Substituting expansions (5.6) into formula (4.14) for the function C\+ we
obtain an expansion of this function, and second order terms of this expansion yield
a quadratic form in φ\ which we write in the simplified form omitting the subscript

^±(2β-^-β-'d)\\a^(ψ')\\2 + l-β-ιe\\φ^(ψ')\\2 . (5.10)

From the above formula and (5.7), (5.9) it is easy to write explicitly the operator
of this quadratic form. We need a kernel of this operator to calculate the constant
in (H.5) only. This constant is expressed in terms of transversal components of
the kernel, so we need only contributions from transversal components of ψ' in
(5.7), (5.9). Denoting \\f'tr — (I — e\ 0 e\)ψ' = θ we obtain the following formula
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for the transversal part of the above quadratic form:

-(a + β-ιc)ζ2\\θ\\2 + -(a + β~xc) l—— ζ\\HΘ\\2 + (a + β~ιc)ζ{θ, θ - QHΘ)
2 2 1 + —

+ \β~λc\\θ - QHθf + l-β-ιb\\dHΘ\\2 + l-vβ-ιe\\HΘ\\2

= l-(a + β-ιc)ζ2\\θf + (a + β~ιc)ζ(Θ,{I - aQGQ*)θ)

^ ) . (5.11)

This gives also a formula for the kernel of the operator. Actually we need only com-
ponents in the direction of the vector ei, so we may take θ = $2^2, which amounts
to taking a scalar function θ in the above formula. The kernel is a translationally
invariant function of the unit lattice points, we have to take its infinite volume limit,
calculate a Fourier transform of the limit, and the derivative in (H.5). To do this
calculation we use the representations derived in [3]. We have

G = (-Δ+ v)-1 - a{-Δ + v)-ιQ\I + aQ(-A + vΓιQ*yιQ(-A + v)'] ,

and from this we obtain the formulas

/ - aQGQ* =(I + aQ(-A + v ) " 1 ^ ) " 1 ,

QG2Q* = (Q(-A + vy2Q*)(I + aQ(-A + v ) " ^ * ) " 2 ,

QG(-A + v)GQ* = (Q(-A + v)~xQ*){I + aQ(-A + v Γ ' ρ * ) " 2 . (5.12)

They are written in terms of three basic unit lattice operators. They are translationally
invariant, so they are convolution operators and therefore they commute. For their
Fourier transforms we have the following representations:

Γ2QΊ(P) = Σ K i P
HP) = (Qi-Δ + VΓ2QΊ(P) = Σ
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where p G IR^ \pμ\ ^ π, / = 2π«, n G Z J , |rcμ| g ±(Lm - 1),

Λ(tf) = Σ I W | 2 , W = Lm(eiL'm^ - 1),

um(q) = Π um,μ(q\ um,μ(q) = Λ , v > m = £ + 1 in our case . (5.13)
μ=i ^lίi

The Fourier transforms of the kernels of the operators (5.12) are equal to f(p),h(p)
f2(p),g(ρ)f2(p) correspondingly. By (H.5) we have to calculate the second order
derivatives with respect to p\ at p = 0 for these functions, and also for f2(p).
Take p = te\ and write simply f(t), g(t), h(t). From the above formulas we can
calculate easily the values

^ , /'(0) = 0,

= 0, g"(0) = - 2 ^ ( l + ^ ( 1 - L~2m)v -

A(0) = 4j, A'(0) = 0, λ"(0) = - 2 ^ ^2 + j ί ( l -

where

Φ) = -cosL~ml) ' [2L2m(l -

the summation is over a one-component index /. Notice the following simple pro-
perties of these numbers: 0 < Q(V) < ^ , 0 < ci(v) — vc2(v) < ci(v) < ^ . With the
help of these formulas we can calculate explicitly the constant in (H.5) for the
kernel of the quadratic form (5.11). Taking the constants for kernels of the second
order derivatives of the functions <fM^+1) and C ^ + 1 ) we write the last renormalization
condition in (H.5) in the form

x I - 1 + a-^-{\ - L~2η2) - avdiy) + ^(fl + v)v2c2(v)

0 (5.14)

This is a third equation for the renormalization constants, so we have the three
Eqs. (5.5), (5.14) for five unknown constants. To analyze these equations we have
to obtain bounds for various functions occurring in them.
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Let us start with the first term in (5.14). We obtain from (H.5)

(*+l,oo) _ 1 v- y> ( d Mk+l)\ ( γ
2 \d(x)oψ(0) )

(5.15)
By Lemma 3.2 [1] the functions tf+1)(z, Y; e\ + ζe2, e\) are analytic on the complex
domain

{ζ: ζ is a<C- valued function defined on τ[k+λ\ \ζ\ < ε 0 + δ0, \dιζ\ < δ0, \ζ\2 < δ0}

if ε0 + ^ i ^ o ^ βyfc+ij m particular for ε0 = δo = \K

This domain contains the domain {£: \ζ\ < \δ0}, hence we obtain the estimate

d2 2

g (j)B6cxV(-κdk+λ{Y))Hχ\\δζ2

(5.16)

for arbitrary functions δζ\,δζ2. We write x\ = (x\ — z\)2-\-2(x\ — z\)z\ + z\ and
take (5ζi as one of the functions (xi — zi)2, xi — zi,l, and (5̂ 2 as a corresponding
function <5, zi<5, z2(5, where t> is the unit lattice ^-function concentrated at 0. The
sum over x in (5.15) can be written as a sum of three terms corresponding to the
three choices of the functions δζ\,δζ2, and using (5.16) it can be bounded by

/ 4 \ 2

4 1 — £ 6 e x p ( - κ 4 + i ( 7 ) ) s u p | x - z | 2 .
\δoj xeγ

We have |x - z| g \ΓXJ ^ 2dLM + dMdk+x(Y) by (3.54)[1]. The sum over z eY
in (6.15) gives the factor |7 | . Using the inequality | 7 | ^ (3LM)d(l + dk+\(Y)\
which will be proved in the paper on localization expansions, we obtain the bound

if
< 4(\6dKιLM)2(3LM)dB6-^~ exp(-(κ; -

The sum over Y in (5.15) can be bounded by Ko using the above exponential
factors, so we obtain finally the bound

|^+i,oo)| < 2K0(l6dKιLM)2(3LM)dB6-^— . (5.17)

Let us recall that vu

 + ' is an analytic function of the renormalization constants

ξ, and the above bound holds on the polydisc {ξ: \ξi\ <c\o}. From this we can

obtain bounds on derivatives of ι;?+ l j O o ) with respect to ξ.

Consider the last term in (5.14). The constant v{oo\cf+1)) is given by the

formula (5.15) with cf+ι) instead of tf+1) The function cf+λ\z) has been

analyzed in Proposition 4.1. In the proof of (5.17) we have used only the
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general properties established there, so we obtain the following bound also:

υ{oo\cf+1))| < 2K0(l6dKιLM)2(3LM)dC4ε
2 . (5.18)

The function t / 0 0 ^ ^ ) is an analytic function of at least second order on the
polydisc (4.8). Let us remark that a much better bound can be proved for this
function, without the factor (LM)d+2, if we use better analyticity properties of
Cf+ι\ or by more explicit representations, as in the case of c[k+ι\ but it is not
important here. The above statements about C\ + (z) apply also to the case of con-
stant spin configurations, i.e., to the function cf+ι\u, v,Q). It is an analytic function
of u,v on the discs described after (5.1), and of ξ on the polydisc (4.8), and it is
bounded by C4ε

2

k+Xε
2 on those domains. Thus the derivatives satisfy the bounds

5 *<*+1> 1(1,1,0)

-2 =4C4K
2vε2 . (5.19)

Consider now the system of Eqs. (5.5), (5.14). We have three equations for five
unknown constants, so we have to supplement them with two additional equations.
Obviously most important terms in the system are linear terms in ζ. Besides lin-
ear terms written explicitly there are linear terms coming from expansions of the
functions ( | / f + 1 ) ) ( 1 , 1 , 0 ) , ( | / f + 1 ))(1,1,0), v(

u

k+hoo) in ξ, but these are very
small in comparison with the first, which are multiplied by β, so we have to con-
sider only the explicitly written linear terms. A closer inspection of these terms
shows that the constant β~ιd does not appear at all, and β~ιc is multiplied by
a coefficient proportional to v, which is small for a large number of steps. Thus
the equations are singular in β~ιc, β~xd and these constants must be determined
by some independent conditions. Intuitively a reason for this is clear, the correspond-
ing expressions multiplied by these constants in the effective action Ak+\,u, or in
C^k+ι\ are irrelevant, so they make unessential contributions only. There is no need
for their renormalization, so we may choose β~ιc, β~λd basically in an arbitrary
way. One obvious choice is to take c = 0,d = 0. There are plenty of other possible
choices, and we discuss here one of them, obtained by requiring that the constants
au are determined by a "free" renormalization group flow, i.e. by the recursive equa-
tions ak+\ =

 a +aL~2' β i = fl? a n <^ * n e c o n s tants λk are determined by "pure scal-
ing", i.e. by the equations λk+\ = λkL

2. The constants ak+\iU> h+\,u are obtained by
such equations from ak, λk, so these requirements can be written as ak+\ = ak+\yU,
λk+x = λk+ι,w O n the other hand by the renormalization group equations (4.1) we
have

βk+\,u^k+\,u = (βk+ι + bk+\)cik+ι = βk+\ak+\ + Ck+u hence Ck+\ = ak+\bk+\ ,

βk+\,u βk+\ + bk+\ βk+l 1 7 i , r
 ίc

 ™ \

~: = ] = -j 1- -« dk+u hence dk+\ = bk+\ . (5.20)

In the simplified notation the requirements lead to the equations c = ab, d = b,
which yield an example of the additional conditions on the renormalization constants.
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We consider the Eqs. (5.5), (5.14) with these substitutions, so we obtain a system
of three equations for the three unknown constants ζ, β~ιe, β~ιb. We analyze now
these equations. Let us remark that this analysis applies also to other "reasonable"
choices of c, d, possibly with some unimportant changes of constants in bounds. We
divide the equations by β, and we divide also the first equation in (5.5) by
The obtained system of equations is

an h β M ( β ) ^ # (1,1,0)
εk+\ β ε \OU

«2i— +a22β-'e^^a2l^β-ιb+-v^/2

k+l))(ll,0)

v\δvJu

tk+\ I εk+\ J

where

λ-\- v a

-1 + ^ ( 1 - L~2η2) - avcx{y) + i(α

.33 ^ 1 ^ [ 1 + V2C1(V) - V3C2(V)] + ̂  [ ^

(5.21)

The explicitly written linear part of the system is given by the triangular matrix
with the above coefficients, so it is important to get bounds for the coefficients
a\ i,<Z22>033 on the main diagonal. To get slightly better bounds we assume that
1 < a < | 5 i.e. all a^ are in the interval ]1, | [ . They are given by the "free flow"

formula a^ = a\Zι-ik •> s o it is enough to take o G [ ( l — L~2)~ι, | [ , e.g. an optimal
choice is a = (1 —L~2)~ι, and then a^ \ 1. With these assumptions we can easily
prove the following bounds:

2 < β n < 2' α 2 2 = 1 ? 4 < α33 < 1, and |α2i I < sk+u

-τ-εΛ+i < -εk+u \a32\ < —v < - . (5.22)
6 2 13 2
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Thus the matrix is regular and its inverse can be calculated by a simple Gauss
elimination procedure. Applying it to the system (5.21), and using the notations
(5.2), we obtain a system of equations of the following form:

ξ + c(ξ) = f(ξ),

where ξ is now a three-component vector with components ξ\ =

(5.23)

^ £2 = β~ιe,

ξ3 = β~ιb. The functions Ct(ξ), ί = 1,2,3, are suitable linear combinations of the
functions in square brackets in (5.21), so they are analytic functions of at least
second order in ξ. From the Gauss elimination procedure and the bounds (5.17),
(5.18) we obtain the bounds

Cί(ξ)\ < 9K0(l6dKιLM)2(3LM)dC4ε
2, i= 1,2,3 , (5.24)

for ξ in the poly disc {ξ: \ξj\ < c\o}. We have written above a common bound
for all the functions. The functions fi(ζ) are the same linear combinations of the
functions on the right-hand sides of (5.21), so they are analytic functions of ξ
defined on the polydisc and satisfying the bounds

9K0(l6dKιLM)2(3LM)dB6 (5.25)
h+\

Notice that the number on the right-hand side above is arbitrarily small if β is
large enough. Consider the system (5.23). The right-hand side can be arbitrarily
small, and the function c(ξ) is of second order in ξ, so the system should have
exactly one small solution. To prove it we notice that a solution is a fixed point
of the mapping ξ —-> —c(ξ) + /(£) , so it is enough to prove that the mapping is a
contraction on some polydisc {ξ: |£|oo < ε}, where |£|oo =max z |ξz | and ε rg c\0.
For simplicity denote K5 = 9K0(l6dK}LM)2(3LM)d. We have the following bounds
for derivatives of //(£) on the polydisc with ε ^ \c\o\

3

ira(O 4C4K5ε,
3

Σ 4B6K5— β-] *
Ck+i

They imply that

c\o εk+λ j

if \6C4K5ε ^ 1, \6B6K5—β ~X

1. ^. „//

- 2 ^ ξ ξ

1 . (5.26)

The first condition gives a restriction on the radius of the polydisc, it determines
the maximal radius r0 = min{(16C4K5)~ι, ^C\Q}. The second condition gives a re-
striction on β. Assuming these conditions we obtain that the mapping is a contrac-
tion, hence Eq. (5.23) has at most one solution. A solution can be constructed as
a limit of a sequence of successive approximations, starting for example with
/(O), if |/(0)|oo < \ΓQ. Then the sequence is convergent and all elements of the
sequence can be bounded by 2|/(0)|oo. The limit satisfies this inequality also, and
it is a solution of (5.23). Consider the condition |/(0)|oo < \rQ- By (5.25) it is
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enough to assume that 2B^K5 β~ι-j— ^ r0. By the definition of r0 this is equivalent
εk+i

to two conditions. We write them together with the second condition (5.26) in the
form

max [lC,K5, — ) β~^ J - g 1 , (5.27)
I c ) ε
[lC,K5, — ) β~^ J - g 1 ,
I c\o) εk+ι

where we have written explicitly that β equals βk+ι If this condition is satis-
fied, then all the above statements and bounds hold, in particular Eq. (5.23) have
a unique solution ξ° satisfying the bound |^°|oo ^ 2|/(0)|oo < 2B6K5 β^-J-. Let

us analyze this condition. From Eqs. (4.1) and Definition (5.2) it is easy to calculate
that

1 1 1 I P. 1 i £^

βk+\ — βk+\,u
1 + 5 >-*- i + 5 ' -™ - ^ « i + 5 fti + 6 '

(5.28)

From the first equality and the inductive hypothesis (H.6) we get

β~lχ < 3-β-ιL-^x^d-^yk < 2β-ιL-«+ιXd-2\ hence

β~lλ - i - < ?-2β-χL-^ < V 1 , (5.29)
bk+\ α o α o

and condition (5.27) is satisfied if

max <2CAK5, — \ \β~ι g 1 . (5.30)

Assuming this we obtain that all the previous conditions are satisfied, so this com-
pletes the analysis of Eqs. (5.5), (5.14). For the solution ξ° of these equations
we have

4 B K \β-ιL-2«k+» L Z - 2 ^ + 1 > ( 5 . 3 1 )

if β is large enough. The equalities (5.28) and the inductive hypothesis (H.6) imply

g 0 ,

\>&kl\ < e χ P

x exp(| log(l + ξ°3)\ + I log(l + ξ\)\) < exp ί c8 ξ i " 2 ϋ 1 (5-32)
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This proves the inductive hypothesis for the renormalized constants βk+\, fljt+i,

fa+l, vk+\
Let us make two remarks on the above analysis. The first is that a dependence

on ξ in Eqs. (5.5), (5.14), or (5.23), is somewhat more subtle, besides the explic-
itly written one there is also a dependence through the constants ft+i, v^+i given
by (5.28), but this does not change anything in the considerations above. The
second is that the equalities (5.32) and the bound (5.31) lead to the following
precise form of the asymptotic behavior of the "running" coefficients βk^k'

}im = }{m y = y lim ^ = lim δk = δQO, (5.33)

and yoo, <5oo satisfy the inequalities (5.32) with k + 1 replaced by oo. Finally notice
that if ξ° is given, then by (5.28) we have βk+ι,Vk+ι, hence we can calculate
the constants bk+\ — βk+\ζ% e*+i = βk+\ζ® Thus we have proved the following
proposition:

Proposition 5.1. The system of Eqs. (5.5),(5.14) supplemented with the
equations c = ab, d — b, or equίvalently the system (5.23), has exactly one solution
in the polydisc {ξ e C 3 : |ξ|oo < r0}, where ξ\ = ε ^ C , £2 = Z?"1^, £3 = β~ιb, if
the condition (5.30) is satisfied. The solution ξ° is real and satisfies the bound
|f°loo ^ 2|/(0)|oo < 2B6K5β~^^-, hence the bound (5.31) and the above one

implies the bounds (5.32) for yk+\, <Wi ond the inductive hypothesis (H.6) for the
"new" coefficients βk+u ak+u λk+uvk+h

The above analysis was done assuming the additional equations c — ab, d — b,
but it holds also for the second natural choice of the equations, namely c = 0, d = 0.
In fact all the above bounds and results hold for this choice without any changes,
except that the equalities (5.28) are complemented with the equalities

= aa\-λx + 6), 4+i = λkL
2 -L- . (5.34)

They yield the second set of equalities in (H.6). We could also consider some mixed
sets of equations between the two above sets, for example c = 0, d = b, and the
results would still hold for such choices.

The construction of the solution of Eqs. (5.5),(5.14) completes the definition
of the renormalization transformation. We substitute the solution into the function
g{k+\) defied by (4.22), and the obtained function satisfies the renormalization
conditions (H.5) also. We need only to make a few final comments on bounds for
this function, or rather for terms of its localization expansion. We define

S(k+λ\z, Y) = 4*+1)(z, Y) - βk+ιC
ik+ι\z, Y), Y G Θk+Uz € Y , (5.35)

and if Y is a cube from π'k+ι containing z in its central large cube, then we also

subtract £' ( i + 1 ) (z). From Proposition 4.1 and (5.31) we obtain

z , Y ) \ < ( ^ ^

B6+2C4B6K5 + l- C4B6K5cΛ exp(-/cc4+i(Ό)

3C4K6K5 exp(-κdk+i(Y)), (5.36)



718 T Balaban

for domains Y different from the above cube. For the constant E^k+ι\z) we obtain
therefore the bound

|£ ( * + I ) (z) | < 3C4B6K0K5 , (5.37)

and the final bounds for terms of the localization expansion of S^k+X\z) are

7) | < 4 C 4 £ 6 ^ 5 e x p ( - κ ^ + 1 ( 7 ) ) (5.38)

for all localization domains Y e @>k+\, Y 3 z (assuming KQ ^ 3). The constants in
the above inequality are independent of EQ, SO we have to assume that

EQ ^4C4B6K0K5, (5.39)

for example we can define it by the equality above. This completes the analysis of
the new contribution to the effective action.

Consider now the new contribution to the generating functional. We have proved
all the properties in the inductive hypothesis (H.7), except the bounds for terms of
the localization expansions. In the bounds formulated in Proposition 4.2 we substitute
ε = 4B6K5 ^β~ιL~2y(k+ι\ on the basis of the inequalities (5.31). The constant there

is equal to

\ \ β - ϊ ^c9 (5.40)

2 αg
for β large enough so we obtain the bounds in the inductive hypothesis. We can

define eg — β~*.
Let us come back yet to the condition (4.24), which is C5Eos ^ 1, and take

ε — 4B^Ks \β~ι by (5.31). The condition can be written as
α o

4B6C5K5 ^Eoβ-1 ^ 1, or even 16B2

6C4C5KQK% \ β~x S 1 , (5.41)
α α

if we take EQ given by the equality in (5.39), i.e., EQ — 4C4B^KQK^. It is the
strongest restriction on β. It could be essentially improved by a more careful, but
much lengthier, analysis than the one given here.

Now we have completed the analysis of the renormalization operation. We can
formulate the obtained results in the proposition.

Proposition 5.2. Substituting the solution of the system of Eqs. (5.5), (5.14) into
the functions S^k+ι\ ^k+x\g) defined by formulas (4.20)-(4.22),(4.18), we
obtain the final £ + l s t contributions to the effective action and the generat-
ing functional They satisfy the inductive hypotheses (H.2)-(H.5), (H.7) corres-
pondingly, if β is large enough, and EQ satisfies the restriction (5.39).

This completes also the proof of Theorem 2. To complete the proof of Theorem 1
we have to multiply the density (5.21) by the characteristic function χ^+i, and
to notice the identity Xk+\Xk+\M = Xk+\- We could write now the constants and
the restrictions in the formulations of these theorems more explicitly, but it is not
important.
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6. The Last Step Procedure

We have stated already that we finish the renormalization procedure if the external
field vk is close to 1, v̂  « 1. We have to formulate this statement precisely now.
Ideally we would like to have vk = 1, but if we start with an arbitrary v we almost
never get this value. We assume that the renormalization steps are finished when
vk is for the first time greater than a fixed value, e.g. vk > \L~2. The sequence
vk is strictly increasing, so the index k is uniquely defined. By the definition
Vfc_i ^ !^~2> hence v^u — Vk-\L2 ^ | and vk < 1. Denote the index k by k\9 it
is a function of v, and of course of the other parameters also, but the dependence
on v is most important. Consider the density pkι9 and in particular the characteristic

function χkι. The domain of this function is equal to the space Ξkι(l,βk

 2p(βkι)),
and by Lemma 3.1 and (3.21 )[1] we have

Ψkι(K-χδkι)C Ξkl(l,δkl)C Ψkι(3δkι), where δkι = β'k} p{βkι). (6.1)

This means that the restrictions defining the space are basically equivalent to the
restrictions defining Ψkι (δkι). In this step we take finally vectors h in the unit sphere,
h e SN~\ Then the third condition in the definition (3.18)[1] of the space Ψkι(3δkι)
can be written as ^vkι\(ιj/kι)o — h\2 < 9δ2

k{. Taking into account the definition
of k\ and the second condition there we obtain that

hfe-A| <(5L + 3)δkι (6.2)

on the domain of the characteristic function χkι. The above restriction of ψkι to
a neighborhood of the vector h is of the same order as the other restrictions on
ψki This is a crucial observation, which allows us to perform the final integration
with respect to the variables φkl without any further renormalization transformations.
Thus we consider the integral

(6.3)

where the fluctuation field characteristic function χ^ will be defined in a mo-
ment. We proceed in exactly the same way as in the previous steps. At first we
look for critical points of the function Akι(\j/kι,φkι,h). On the considered domain it
has exactly one critical point, which is a minimum of this function. It is the con-
stant configuration i/^ = h, and then φkλ{h,h) = h also. We introduce the fluctuation
field ψ' by the equality φkι —h + φ1, and we expand the expression in the expo-
nential around the minimal configuration. In particular for the main action we have
by (2.26),

Akι(ιkl9φkι;h) = ^(ψ\A^ψ) + V^\φf), (6.4)

because Ak(h,h;h) = 0. The quadratic form and the interaction are given by the
formulas (2.23), (2.27), where φkι+\ = h and αkι+\ = 0. The quadratic form satisfies
inequality (2.24), and by the discussion after this inequality we have

A . (6.5)
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Thus the operator Δ^kχ) is positive definite, e.g. A^ ^ ly0L~2, and the lower bound
is an absolute positive number. This is the basic fact which allows us to perform
the fluctuation integral as in the previous steps, because the covariance C^ is de-
caying exponentially with a decay rate of an order of the lower bound for Δ^kλ\
Notice that this lower bound is basically the same as lower bounds for the opera-
tors Δ^ + aQ*Q, which are determined by a lower bound of the operator γQ(—Δ)
+ aQ*Q, and this is approximately equal to yoL~2. Having this basic property of
C ^ we repeat the whole procedure described and discussed in the general k -\- Ist

step for the fluctuation integral, in particular we introduce the change of variables

φf = β^C^ϊψ, and the characteristic function χ({ |^ | < P\(βkι)}) We obtain an
expression of the form

^[δkι{Kh) + 4kλ+\h9h)-E^\^ . (6.6)

By the first inductive assumption in (H.5) we have S^ih.h) — 0, and we combine the
remaining two constants to define —E^+i. Actually we should define the constant
E in the original action in (H.I) as a normalization constant, which means that
is£1+i = 0. This determines uniquely E in terms of all the contributions from all
the steps. This is not the final definition of E though, it has to be modified in the
presence of large field contributions. The last term in the above exponential is equal
to # ^ + 1 ) , so we obtain finally

e x p J % + 1 ( M , # ) , (6.7)

and the function in the exponential is the generating functional for connected corre-
lation functions. There is no point in making an extensive analysis of this functional,
this will be done in other papers, but let us point out several facts. The functional
can be written as

fci + l

^kι+ι(h9h9g) = (g9h) + Σ (g,Jtu\h9h9g)) ,
7 = 1

and the terms satisfy the conditions (H.7), in particular the exponential tree de-
cay property. They imply that we can take the thermodynamic limit T —> Έd,
and for v > 0 the correlation functions decay exponentially also. If v —> 0 then
k\ —> oc by the asymptotic behavior (6.33) and there exists a limit of the gen-
erating functionals. This follows from the bounds in (H.7), which imply that
the series above is uniformly convergent, and also from the fact that each term
of the series has a limit as v —> 0. The limit J^(/ί,/z, g) is an analytic func-
tion of g, and it generates the connected correlation functions, which converge to
0 with separation of points going to oo, so they define a pure thermodynamic
phase.
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