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Abstract: The classical Frobenius—Schur duality gives a correspondence between
finite dimensional representations of the symmetric and the linear groups. The goal
of the present paper is to extend this construction to the quantum toroidal setup
with only elementary (algebraic) methods. This work can be seen as a continuation
of [J,D1 and C2] (see also [C-P and G-R-V]) where the cases of the quantum
groups U,(sl(n)), Y(sl(n)) (the Yangian) and U,(sl(n)) are given. In the toroidal
setting the two algebras involved are deformations of Cherednik’s double affine
Hecke algebra introduced in [C1] and of the quantum toroidal group as given in
[G-K-V]. Indeed, one should keep in mind the geometrical construction in [G-R-V]
and [G-K-V] in terms of equivariant K-theory of some flag manifolds. A similar
K-theoretic construction of Cherednik’s algebra has motivated the present work.
At last, we would like to lay emphasis on the fact that, contrary to [J,D1 and C2],
the representations involved in our duality are infinite dimensional. Of course, in the
classical case, i.c., ¢ = 1, a similar duality holds between the toroidal Lie algebra
and the toroidal version of the symmetric group.

The authors would like to thank V. Ginzburg for a useful remark on a preceding
version of this paper.

1. Definition of the Toroidal Hecke Algebra
For any positive integer k set [k] = {0,1,2,...,k} and [£k]* = {1,2,...,k}.

1.1. Definition. The toroidal Hecke algebra of type gl(1), H,y, is the unital asso-
ciative algebra over of = C[x*t!,y*! q*'] with generators

TALXELY !, iel-11%, j e,
and the following relations:
T ' =T7'T, =1, (Ti+1)T; —¢*)=0,
T,TigTi=Tig TiTigr
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TT, =TT if li—jl>1,
- XoY1 = xY1 Xo, XiX; = XiX;, YY =YY,
XT=TX;,  YTi=TY, ifj+ii+]
TXTi = @ Xi11, T, = q Yo,
XY XY = q T,
where Xo = X1 X5 -+ - X,

1.2. Remarks. (i) When x is taken to be 1 the toroidal Hecke algebra is nothing
but the double affine Hecke algebra introduced by Cherednik (see [C1]), which
should be seen as a quotient of a central extension of the braid group over a torus.
Given a permutation w € &; let T,, € Hy be the usual element defined in terms
of a reduced expression of w and, given an /-tuple of integers r = (v1,72,...,77),
denote by X" and Y" the corresponding monomials in the X;’s and Y;’s. Then the
elements X5Y'T,, give a basis of H,, as a ./-module (see [C1, Theorem 2.6.(a)]
for the case x = 1).
(zz) Note that the map T, — T, UXim Y, Y- X, xox ! y—y!, g

q!, extends to an automorphism, Z, of H_, over C.

1.3 Given 1 £i < J <[ set T,',j =T, Tizq-- Tj and Tj,i = TjTj—l -« T;. Then,
put Q=X;T;,;— € H,. Clearly, Tiil,inl,Qil (Gell-11%j€[l]*) is a sys-
tem of generators of H_,. Besides, for any i € [/ — 1]* a direct computation gives
QY,Q ! =y Yy, and QY;Q ! = xy’~'Y]. Indeed we have (see [C1]).

Proposition. The toroidal Hecke algebra H,, admits an equivalent presentation in
terms of generators

Tj:tl9in1,Qil’ i € [l - l]xa J € [l])< 5
with relations:
TT' =T,'Ti=1, (Ti+1)(Ti-¢*)=0,
T;TiiTi = Tipt TiTig
YY, =YY, T =47,
YT =TY;, ifj+ii+1
QT Q'=T, (1<i<i-1), QTQ =T,
QY Q'=ylyi, (1 Zigi-1), QYQ'!=xy ly.

1.4. Let H?,H? C H., be the subalgebras generated respectively by Tﬂ:1 YdEl
and Tiil, Xj“ (G e[l=11%, j€[I1*). Then, Hi;,) and Hﬂ, are isomorphic to the

affine Hecke algebra over ./ of type gl(/), simply denoted H, (see
Remark 1.2(i)).
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1.5. Let H,; C H,, be the subalgebra generated by Tiil (i € [l —17%). Then, Hy,
is the Hecke algebra over .« of finite type gl(!) (see Remark 1.2.(i)).

1.6. Given_complex numbers ¢,x,y € C*, let H, H,... be the algebras obtained
from Hy,H,,... by specializing q,X,y to g,x, y.

2. Definition of the Toroidal Quantum Group

2.1. Definition. The toroidal quantum group of type sl(n+ 1), Ug, is the unital
associative algebra over B = C[c*!,p*'1(q) with generators

+1 +1
ei,k7 fi,ka ki,la ki B hi ]

where i € [n], k,I € Z and 1+0. The relations are expressed in terms of the formal
series

ez)= Y z 7% e, fi(z) = > z7% £, kK2 =k + 3 27 kg,
rez rez >0

as follows
hh ' =h'h =k =Kk =1,

[hi, hy] = [k (2).kF(w)] = [h;, K (2)] = 0,

is '
hiej(z) = p~e;(z)h;,  hfi(z) =p “fi(z)h;,

Oa, (¢ 7217 2/w)K (2)k; () = 04, (¢’ z/w)k; (WK (2) ,

1=Cji —Cji

K2y 0) = O, (= i, z/we, )k (p2)

1—C;j

K@ (w) = 0-q, (€T B2, /)0 (p%2)

1—Cji

e(p~ ) (w) — £, w)e(z) = T ‘5"er (8(c™2z/w)k; (ew) — d(c*z/w)k; (cz))

ei(2)e;(p % w) = 0, (W™ z/w)e;(w)ei(p~z),
L@ w) = 0_a, (0", z/w)(w)E(p72) ,
{ei(z)eiz2)ej(w) — (q+q ez1)e;(w)eiz2) + ej(w)ei(zi Jeilz2)}
+{z1on}=0, ifaj=-1,
{fiz)f(2)f(w) — (@ +aDfiDGi(z) + §w)iz)fi(2)}
+{z102}=0, ifa;=-1,

[ei(z), e;(w)] = [fi(z).f;(w)] =0, if a; =0,
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where By stands for ho, 8(z) = >0 2", O(z) = qzzq and a;j, cij, my, are the

entries of the following [n] x [n]-matrices:

1 0 0 -1
-1 1 0 0
C= oo , A=C+C,  M=C-C.
0 0 1 0
0 0 -1 1

Remark. Given a simple complex Lie algebra g, let denote by § the universal central
extension of g[x*!, y*!] (endowed with the structure of the current Lie algebra over
the torus €* x €*). A “one-loop” presentation of § has been given in [M-R-Y].
The toroidal quantum group Ug is a deformation of the enveloping algebra of
sl(n + 1). When p =1 and hy,...,h,, are specialized to a non-zero complex number
d one recovers the toroidal quantum group introduced in [G-K-V].

2.2. Note that, given a = (ao,...,a,) € (C*), the map
ei(z) — eir1(z/aiy1), fi(z) — fi11(z/ait),
ki(z) — kir1(z/ain), h; — ai1d; "hisr

(i € [n], n+ 1 stands for 0), extends to an automorphism, ¥,, of the %-algebra Ug.

2.3. Let Ug; c Uy be the subalgebra generated by e; =e;o, fi =f;o and kjEl
(i € [n]). Denote by Uy Drinfeld-Jimbo’s quantization of the enveloping algebra
of sI(n +1). Then ¢;, f; and kil verify the relations of the Chevalley-type generators

of Uy and Ug is a quotient of Ug. Similarly let Ug; c Ug be the subalgebra
generated by the Fourier coefficients of

&(z) = ei(zh; - - - hy), fi(z) = fi(zhy - - - hy),
kKf(z) = KEzhy - b)) (e [n]%).

These elements verify precisely the relations in Drinfeld’s “new presentation” of

Uy (see [D1, B]). In other words, U(g;) is a quotient of Ug. At last put Ty =

Alhif b, ... ht'] € Ug. The algebra Uy is generated by Ug), U% and Tg.

2.4. The subalgebra of Uy generated by e;, f;, kl?tl (i € [n]*) is a quotient of Ug,
the quantum enveloping algebra of sl(n + 1).

2.5. Given complex numbers c, p,qg € €C* let U, U,... be the algebras obtained
from Ug, Ug, ... by specializing ¢,p,q to ¢, p,q. A U-module is said to have triv-
ial central charge if its restrictions both to U W and U have (ie, c=1 and
kok; - -k, =1).

2.6. Fix q € €%, and suppose that / < n. Following [C-P, 2.5], a U-module is
said to be of level [ if its irreducible components are isomorphic to irreducible
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components of V&', Similarly a U-module or a U-module is said to be of level I
if it is of level / as a U-module.

2.7.8et Pr={x=(0s- > dn) € ZM 3o + y1 + - -+ + x» = {}. A U-module M with
trivial central charge and level / is integrable of index d if it splits in a direct sum
M =@ cp, M, such that

M, ={me M| hm =dp*m} = {m € M| kim = g* " **'m} ,
where n + 1 stands for 0 and if its restrictions both to U(l) and U(z) are inte-

grable (see [L, 3.5.1]). Then, the central element d = hg - - - h, acts on M by scalar
multiplication by d"*! p’.

3. Definition of the Duality Functor
Fix ¢,x, y, p,q € C*.
3.1. Let V be the fundamental representation of U. It has a basis vy,...,0,41 on
which the action of e, f;, k; (i € [n]*) is the following:
€i(vy) = 0y it10r—1, fi(v,) = 0r.iVr41, ki(v,) = q51.r—5,+|,,~vr .

Then, V&' is a left U-module for the induced action given by the following co-
product:

Ae) =€k +1@e, Af)=f1+k'of,  Ak)=kok.
This action commutes with the left H-action given by T, = 121 @ T® 1®/~—1
where T € End V®? verifies

q*v, ® v ifr=s,
T(v, ®vs) = ¢ qus D, if r <s,
qus@v, + (¢ — D, @v, ifr>s.

3.2. For any i € [n+ 1]% define t/ to be the automorphism of the algebra U given
on the Kac—Moody generators by the formula

—a,;

tie) = —fk,  ti(e;) = 20(—1)S—”vq*eﬁ‘““‘”e,-eﬁ” if it
s=

)
0 = —k'e, ) = X (DT IR f i+,
s=0

ti(kj) = k()

where el(.j ),fi(j ) are the usual quantum divided powers (see [L, 3.1.1]) and s; € &S,
is the transposition (i i + 1). Let M’ be an integrable U-module. Set t! € Autg(M')
(i € [n+ 11) to be the braid operator defined by

t{’(m’) _ Z (_1)s+kqs—rtel(r)fl§5)e§t) -m'
r—s+t=—k
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where m’ € M’ and k € Z are such that k; - m’ = g*m’ (see [L, 5.2.1 and 5.2.3]).
We have (see [L, Chaps. 5 and 37])

vm' e M, Yue U, t/(um')="=t(u)t'(m). (3.2.1)

Similarly, denote by 7 the automorphism of the affine Dynkin diagram AP (with
vertices indexed by 1,...,n,n+ 1) given by 1(i) =i+ 1 (if i¥n+1),t(n+1) = 1.
Let v’ be the automorphism of the algebra U given, in terms of its Kac-Moody
generators e;,f;,k;, (i € [n+ 1]*), by the following rule:

7'(€;) = exi), () = fw), 7' (ki) = Ky -
Putt, =1 otyot,_jo0---ot] € Aut(U). Take a right H-module M. In particular,
M is a right H-module and we can consider the dual left U-module M ®yz V®'. This

module is endowed with a structure of left U-module such that for any m € M and
v € V®/ (see [C-P])

! I
e 1 (m@V) = mY; ' @f;(v),  fa(mev) =3 mY;®e,(v),
J=1 J=1

ki 1(m®v) =me (I )®(v),
where ey, fy, kg € Endg(V) are defined by means of

d1,r—0
€U = 5,.’"_,_1171, fo-v, = 5r,lvn+19 ko-v, = gL oy,

and fo, = 12771 @fh @ (k" )®' 7/, e; =ki’ ' ®ey®1®/~/. Until the end of
Sect. 3.2 take M’ = M @y V®'. For any I-tuple j € ([n+ 11%)’ set Vi=0;, ® - ®Uj,.
Define " € Aut(M’) such that

5 P 5
/! +1, +1, +1,
T(m@v) =mY," Y, YT @01 @V @ - @0

where v,., stands for v; and j = (j1,...,J;) is an [-tuple of integers in [n + 1]*.
A direct computation gives

Vm' e M, Yue U, 1'(um')=1(@)"(m). (3.2.2)
Putt) =t"otjot/ ;o ot/ €Aut(M"). As a consequence of (3.2.1) and (3.2.2),

vm' e M', VueU, ! (um')="t, Wt (m'). (3.2.3)

Example. 1f 1 =1 we find

t/(m@v;) = (=1)"gm@uy;, i€[n], jeln+117, (3:2:4)
to,(m@v;) = —m(—¢"Y¥1)’ @, . (3.2.5)

Lemma. Let j be non decreasing, and set Yy s = Y+ Yz ---Ys, with j7'(1) =]0,s].
Then
) (mv) = (=) g mY;  ®v;.



Schur Duality in the Toroidal Setting 475

Proof. From [L, 5.3.4], for all integrable U-modules Ny, N, and for all n €N,
ny €EN,,
ei(m) ®@fi(n) = 0= t'(n @my) =t/ (n) Rt (n) (3.2.6)

(note that Lusztig uses the opposite coproduct in [L]). Put j; = (ji,...,/;—1) and for
any permutation ¢ € S,41, set o(j)=(c(j1),...,0(j;)). We first compute t ot |

ot/. Note thatt) ot jo---ot/(m@vj)=m®t, ot/ o---ot](vj). We have
ei(vj,)#0 if and only if j1"1(2):1=® and f,(v;,)+0 if and only if j; = 1. Since j is
non-decreasing, using (3.2.6) and (3.2.4) we find

!
/() =t/ (vi) @t (v;,) = ,ﬁgit,l/(”fk) =(=D"q"vs)

where a; is the cardinality of j~!(i). Suppose that
t;cl O---0 til(Vj) = (_1)az+~~-+ak+|qkalvskms}(j) .

Now ek+1(vsk~~sl(j|))®fk+1(vsk--~s|(j,)):|:0 if and only if (s;---51(j1)) ' (k +2)+0
and j; = 1, that is if and only if j;”'(k +2) %0 and j; = 1. Since j is non-decreasing,
using (3.2.6) and (3.2.4) we get the same formula as above for t,; o--- o t{(vj).
Then, finally

t/ o ot/(mav) = (—1)"¢"mev, 1@ Qv;_1,
where vy stands for v,.;. Applying 7’ we find the result. O

3.3. Take a right H-module M. The U-module structure on M ®g V®' is given in
terms of Drinfeld generators by (see [G-R-V]).

Theorem. If j is non-decreasing and i € [n]* we have

—1 ,
e(z)(m®vy) = ql_t+sm<1 + 2 Tk,s+1>5(qn+1_lZYs+l)®vj* ,
k=s+1

s—1 .
f(z)(m®@v) = q“”’m(1+ > Tk,s_1>6(q"+1“zm®vj+,

k=r+1

kEE)m®vy) = m [[ 05" 7zY) ] 05,(¢" 2Yr)®v;,

Jk=i Jk=it+1
where 1r,s]1 = j~ (i), Is,t] =j~ (i + 1).

Vim = V0twssbifics2emsi) if s+t and vi- =0 else,

Vit = V0jifomrsit Loy U 7 FS and vy =0 else,

and 0E(z) stands for the Taylor expansion of 0,(z) = q_z — respectively at oo
and 0.
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Proof. Let us prove the formula involving e; ;. We know that e; , = (—1)7"t/,"#(e;)
(see [B, 4.6] and 2.3). So (3.2.3) gives

eLpoty Mmev) =(—1)" " oei(mv). (3.3.1)
First of all note that formulas in Sect. 3.1 give (with j~!(1) =]0,s] and j7'(2) =]s,])

t—1
e(m®vy) = ql—t+sm<1 + Z Tk,s+1> QY- .
k=s+1

We have
—1
t{{,j" oei(m®vj) = ql—t+stg|—h (m <1 + E Tk’s+1> ®vi_) '
k=s+1

Thus, using Lemma 3.2, the right-hand side of (3.3.1) is

t—1
(_1)h(s+l)q1—t+s—h(s+1)n m <1 + > Tk,s+l>Y1,_s}j|-1 V- .
k=s+1

Now Y; commutes with Ty, if i € [s]*. Thus
—1
tgl—h ° el(m ®Vj) — (_l)h(s+l)q1—t+s—h(s+1)n mYl,_sh (1 + kz 1 Tk,s+]) Ys:-hl ®Vj— )
=5+

A similar computation for the left-hand side of (3.3.1) gives

e no t//—h(m ® Vj) — ("I)h(s+l)q_hsnel,h(MY1—:Sh ® Vj) )

)

Thus we finally obtain

—1
e (m@vy) =q" " "m (1 + > Tk,s+l>Ys:L}; X V- .
k=s+1

For the other cases we proceed in a similar way. Namely, since the i fundamental
weight o; verifies w; = 7' - W', where w =5, +5,_1 - - - 51, define t;, = 7" ot],. Then
e,n = (—1)7";"(e;) and

e ot "(mav) = (1"t oe(m®aW).

Thus it suffices to compute t;, (m ®v;) using the following reduced decomposition
of wi: '
w’=un+1_i-un_i---u1, with Uiy =S8 Sjr1- - Sjti—1 - O

Corollary. Fix di,...,d, € C* and take a right H-module M. For any non-
decreasing j and i € [n]* set (see notations in Theorem 3.3)

hi(m®vj) = dip" "mQy;
t—1

e(z)(m®vy) = ql_t+sm(1 + > Tk,s+1>5(qn+l_iP_S_IZYs+1/d1 e d) @ V-,
k=s+1
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s—1 X
fi(z)(m®vy) = ql"”’m(1+ > Tk,s_l)6(q"+1—’p—”‘zn/dl-~~d,-)®vj+,
k=r+1

k(@) mev) = m ] 65(¢" 7 pzYy/dy - - dy)

Ji=i
< I 05(q" ' p~*2Yi/dy - di) @,
Je=i+1
where v, stands for vy. These operators on M @y V®' verify the relations in 2.1
(involving non-zero i and j).

Proof. Follows from 2.3. O

Remark. In the context of the corollary the relations 2.1 give in particular
eky —gkojer = (g — g ") hoey 1k
Moreover, for any non-decreasing /-tuple j one gets

k(m®v)=q""'mev,

ki(m®v) = ¢ "' (1 — g 2)pSdi - d!

k=i jr=i+1

: m(q*‘ DOR RIS Y,:‘)@vj,

where, as usual, ]»,s5] = j~'(i), Js,#] = j~(i + 1). Thus, the evaluation of the above
formula on a non-zero vector of type m Q@ v; @ v, ® - -- @ v; gives ¢ = 1. In other
words, on the dual module M ®y V®’ the central element ¢ is trivial, even if M is
not finite dimensional.

3.4. In the two next sections set ¢ = 1, p =y, take a right H-module M and

fix di,...,d, € C*. In particular M is a right H"-module and the operators on
M ®y V®' given in Corollary 3.3 verify the relations 2.1 involving non-zero i
and j. Let  : M @y V® — M @y V®' be the linear map defined for any I-tuple
§=U1J2,---»j1) and any m € M by
—6y —0n+ _5n+ )
l//(m®vj)=mX1 +1,J;X2 L ,..XI Li1 ®Ul+j1 ®Ul+jz ®"'®Ul+j1 s
where v,4, stands for v;. An easy computation gives

Y lohoy=dd \h_y (i=23,...,n), Yy 2ohoy?®=dd, h,. (34.1)

Proposition. Let p = y. Given i =2,3,...,n, we have the following identities in
End(M @y V®')

Wl oei(z) oY = e (z/qdy), Yy 2oei(xz) oyl =e,(q" 'dr- - duz),
¥ ofi(z) oy = f;1(2/qd;), Y2 ofi(xz) oy =1£u(q" 'y - d2),
Yyl okE(z) oy =kE (z/gd;), Y2 okf(xz)oy? =k (g \dr- - dyz) .
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In order to prove this proposition we need the following.
Lemma. Forany 1 i < j<lput Q;=X;-T;; € H,,. Then, ifi <r <jand
i<t<j,
QY Q =y 'Y, QTmiQ} =T,.

Proof. We prove the first equality, the second being similar. First, suppose that i = 1
and use a decreasing induction on j. If j =1 —1 we get the relation QY,Q"! =
Yy 'Y,. 1. Take r such that 1 < » < j— 1, then » < j and by induction we get

Xi T T T T X =y Yo

Since = j,j + 1, we have T;Y, = Y, T, and we are done.
Fix now j and make induction on i, the case i = 1 being proved before. Consider
i+1 =7 £ j. Then i £ r and by induction we have

X T T T T X =y Yo
Now X, T; = ¢°T; X;41, then we find
Ti_l(X"+1Ti+11YT;1 X)) Ti = Y 'Y,

ie.,
Ql+1]Y Q,+1j _IT Yr+1T_

Since 1 +r=+i,i+ 1 we have T;Y,;y; = Y, T; and we are through. O

Proof of the proposition. We prove the relation involving e;. Suppose first that
i#0,1. Take a non-decreasing /-tuple j = (j1,/2,--.,j1) and put

Insl=i"'G-1), lsd=i"'G), 1p0=i"'C+1).
Consider the following /-tuples
w=~0+j,.. 14+ jp1..01), =0 LI+j,....14+7),
B=0, . LI+, Ut i prss i prstts L+ Jimprstas - L+ Jp)

Set Rp = qp(p—l)Tp,lTp+1’2 cee T1_1,1_p. Then

ei(Z) © W(m ® vj) et(z)(mXp-H p+2 Xl ® Viu )

= &(2)mX, |, X, X 'R, @)

I—p+t—1
1—t+ - -1
=9 szp+1 X Ry T+ 30 Thi—pist
k=I—p+s+1

. 5(qn+1_iyp_l_s_IZYl—p+s+1/d1 e d) OV,
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In another hand

Yo ei_1(z/qdi )(m®V;)
t—1

— l// (ql—t+sm (1 + Z Tk,S-H) (S(qn-'—]-iyds_lZYH—l/dl .. dl) ® vj_>
k

=s+1

—1 ,
=q'"""m (1 +kz+l Tk,s+l> 8(g Ty 2 Yy Jdy - "di)X;Ll1 X 'R, @V -
=5

Now, Ry'X;Xj— -+ Xp1 = g#P~"Py, where P, = Qi—p,1—1-+- Q2 p+1Qi,p. Thus
the relation follows from

—1
Pp(1+ > Tk,s+l>5(y—s—le+1)B;_l
k

=s+1

I—p+t—1 J |
=1+ > Trprser |07 7Y prsi) s
k=1-ps+1

which is a consequence of the preceding lemma (note that 1 < s+ 1 < p and
0<k<p-—1 for any k €]s,t]).

Suppose now that i = 1. Set Jr,s] = j~!(n), 1s,/] = j~'(n + 1), and consider the
following /-tuples:

=0, 02 2 0 +2.. 0 +2), (1) =]0,s -],
Q@) =ls—ri—rl,

= L2 2 0+ 2, +2), B2 (1) =105 — 4 1],
Rl =l —=r+1,1-7r],
B=Clseerfistoemn+ 1,0+ 1), j3'(n) =lrs+ 1],
Bln+ 1) =ls+1,11,

=01 +2dr +2,1,..,1,2,...2),  ja (1) =lns+ 1],
W@ =ls+ 1.0

Then

ei(xz) o Y (m®vj) = e (xz)(mX, - X; 'R, @)

k=s—r+1

I—r—1
= ql_H—sz:-:l T X7er (1 + Z Tk,s—r+l> 5(qnyr_s_1xZYs—r+l/dl )® Vir -
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In another hand,

Y2 oe,(q" \dr- - duz)(m V)

I—1
= y? <q1_1+sm<1 + > Tk,s+1)5(qny_s_12Ys+1/d1)®Vj3>

k=s+1

-1 ‘
= ql—”sm(l + > Tk,s+1)5(qny—s_les+l/dl X4 X @,
k=s+1
1—1 = 1 ! !
=q'" “m(l + X Tk,s+1>6(q"y‘s‘ Yo /d)X - X R @,
k=s+1
Thus it suffices to prove that

I—r—1

-1
P, (1 + Z Tk,s+l>5(y_s_le+1)Pr—l =(l + Z Tk,s—r+1>5(xyr_s_le—r+l) .

k=s+1 k=s—r+1
3.4.2)
Formula (3.4.2) follows from

Lemma. For any r <[ set P, =Q_,;—1---Q2,+1Q1,, € H,,. Then, ifr<s+1
andr <k <,

PrYs+1Pr_1 = xers—-r+1’ PerPr_l =Tir.
Proof. By definition of P, one gets
XoP =g IX X - X Ty Trnp - Tisy s

Then a direct computation gives P, = qZ’(’_’)QII,_,QZII_,H +++Q,;_,Xo, and the
result follows from the preceding lemma. [J

3.5. Fix dy € €% and let ey(2),fo(z), ki (z),hy € End(M @i V®)[[z*!]] be such
that
e(z) =yl oei(gdiz) oy, fo(z) =y ofi(gdiz) oy,

ki(z) =y ' oki(gdiz)oyy,  ho=dod;'Y ohioy.

The operators are defined in such a way that if i € [#] and x = dj - - - d,g" !,

V! oe(z) oY = er1(z/gdy), Y ofi(z) oy =fii(z/qd)), (3.5.1)

Yokt (z) oy =K (z/qd), W ohioy =dd iy -
where e_1(z), f_1(z), kfl(z) and h_; stand for e,(z), f,(z), kf(z) and h,.
Example. In particular we get

ko(m®vj) = q"s"’m@)vj, ho(m®v;) = dop’"sm®vi ,
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and, if j is non-decreasing,

r

eo(m®v;) = q’—’“m( > T;,3>Xs+1 V-,
k=1

!
fo(m®vj) = ‘Ism( > Tr_+11,k—1) X ®ve
k=s+1

where 10,71 =i~ !(1), Is,{]=§'(n+ 1) and

Vi = YUty fretodr 41 jisn 1) if 40 and Vi- = 0 else,

Vit = Vit L) Af SF1 and vy = 0 else.

Thus kok; - - - k,(m®Vv) =m®yv.
The main result of this section is the following theorem

Theorem. Put c =1, x=dy---dyg""', y = p and n > 1. Then for any right H-
module M, the preceding formulas give a left U-module structure on M @y V®'.
The module M @y V®' is of level | and has trivial central charge. Moreover, if
dy=---=d,=d, M@u V® is integrable with index d.

Proof. By construction, the operators e;(z),fi(z), k*(z),h; € End(M ®u VE)[[z*']]
with non-zero i, defined in Corollary 3.3, verify relations 2.1. In order to ver-
ify all the relations 2.1, it’s sufficient to prove the relations involving ¥*(e;(z)),
PE(fi(2)), 'I{,k(kfc(z)) and PX(h;) for k=1,2,...,n and a; =g 'd"" (see 2.2).
But from (3.4.1), (3.5.1) these elements are equal respectively to ¥ o e;(z) o Y%,
YFofiz) oy, YyFokF(z) oy and ¥ oh;oy* (i € [n+1]%). Thus we are
done. For the trivial central charge see Remark 3.3 and Example 3.5. The integra-
bility of M ®y V®! follows from the integrability of the U-module V. O

4. Definition of an Inverse Functor
Fix ¢,x, y,d, p,q € C* and /,n,€ N.

4.1. Remarks. (i) Suppose that g is not a root of unity. Then H-modules and
integrable U-modules are direct sums of finite dimensional modules (see [L, 6.3.6]
for the U-case). Thus, if / < n, the Schur duality in the finite case (see [J]) gives
indeed an equivalence between the category of H-modules and the category of
integrable U-modules of level /.

(#t) Similarly, if g is not a root of unity and / < n, the affine Schur duality
gives indeed an equivalence between the category of H-modules and the category
of integrable U-module with trivial central charge and level / (see [C-P]).

4.2. Theorem. Suppose that ¢ =1, x =d""'¢"*' and y = p. Suppose moreover
that [+ 1<n and that q is not a root of unity. Let M' be an integrable U-
module with index d and level 1. Then there exists a H-module, M, such that
M’ ~M @ V® as U-modules.
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Proof. Given i = 1,2, the restrictic_m of M’ to U is integrable with trivial cen-
tral charge and level /. Since a” is isomorphic to H, by affine Schur duality
(see Remark 4.1 (ii)) one gets an H”-module, M®, such that M’ ~ M® RuV®

as U"”-modules. Moreover, the M@ are isomorphic as H-modules. So just de-
note t~hem by M. By construction the action of ey, fy, ko is as in Remark 3.5 and
€,(2),f:(2), ki(z) (see 2.3) act as in Theorem 3 3 Note that the action of X;,Y; € H

on M is given by the H”-module and the H"-module structure of M. In order to
prove that these actions extend to a H-module structure it’s sufficient to verify that
for any m € M,

mQY,Q ! = y'mY, and mQY,Q ! =xy'"'mY,, (4.2.1)

where Q = X;Ty,;_; (see 1.3). Recall that M — M @y V®' is an equivalence from
the category of H-modules to the category of integrable U-modules of level / (since
q is not a root of unity, see 4.1). Thus, if v € V®' is a generator of V¥, ie. V¥ =
U-v,the map M > m— m®vE M@y V® is injective for any H-module M.

() Setv=00nQuQ - Qv and W= Q04 ® -+ @] ®Vy41. Then,

e(mev)=¢""'mQew.

Since w is a generator of V (I < n) the relation mQY Q™! = y~ mYz will follow
from mQY Q' ® w = y~!mY, ® w. In another hand the equality e0k2 (z) = ki(z)eo
implies in particular that e kz,_lh h2 = kz,_lh h‘ e (see 2.3). Now

eoko W'y ' (m®vV) = ¢"(g7% — 1)eoh; 'hy ' (mY2 ®@v)
= ¢"(¢7> = 1)y 'h; by eg(mY2 @)
= ¢ g = Dy, (mY.Qew),
and, since h; and IEj commute,
ko 1h;'h leg(m®@v) = ¢"' (g7 — Dhy 'y ' (mQY, @ w) .

Thus we are done.
(i) Set v=01 Q3 Q4 ® - QU1 and W=03Q04® -+ @ V41 @ VUpt1. Rela-
tions 2.1 give

hi(eoks,—1 — ¢ 'ki,—1e0)ki = (¢ ' — q)eo—1 = hy ' (eokn—1 — g 'kn—1€0)Ky ,
which evaluated on m ®@ v writes (see 2.3)
hieok; bk (m®v) = —¢ 'hy'k, ;- b leok(m @ V),

ie., . .
v ek, _iki(m®v) = —¢'d 'k, _1e0ku(m®V).

Since d = hg - - - h, acts as y'd"*! and n> 1+ 1 we find
dn+lqn+1my 1Y1Q®w y-—lmQYl ®w

Thus, since w is a generator of V, we get the second relation in (4.2.1).
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We have proved that X; and Y; give a H-module structure on M. In order
to prove that M’ is isomorphic to the dual module M ®y V®' we must now ver-
ify that h; acts as in Corollary 3.3. It is a direct consequence of the integrabil-

ity of M @u V®' since the equality ki(m®yv;) = qu(")”j_]("“)m@vj imply that
hi(m®v;) = dpj—](i)m®vj. 4

5. Conclusion

Using Theorems 3.5 and 4.2 we get the following duality theorem.

Theorem. Suppose that ¢ = 1, x = d"'q""" and y = p. Suppose moreover that q
is not a root of unity and that 141 <n. Then the functor M — M @y V®' is
an equivalence between the category of right H-modules and the category of left
integrable U-modules with index d and level 1.

Remark. Suppose that g is not a root of unity. Since H does not admit finite
dimensional representations if x is not a root of unity, the toroidal quantum group
U does not admit either any finite dimensional representations if d"*'¢"*! is not a
root of unity.
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