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Abstract: The classical Frobenius-Schur duality gives a correspondence between
finite dimensional representations of the symmetric and the linear groups. The goal
of the present paper is to extend this construction to the quantum toroidal setup
with only elementary (algebraic) methods. This work can be seen as a continuation
of [J,D1 and C2] (see also [C-P and G-R-V]) where the cases of the quantum
groups U^(δl(n)), Y(sl(«)) (the Yangian) and \Jq($l(n)) are given. In the toroidal
setting the two algebras involved are deformations of Cherednik's double affine
Hecke algebra introduced in [Cl] and of the quantum toroidal group as given in
[G-K-V]. Indeed, one should keep in mind the geometrical construction in [G-R-V]
and [G-K-V] in terms of equivariant K-theory of some flag manifolds. A similar
K-theoretic construction of Cherednik's algebra has motivated the present work.
At last, we would like to lay emphasis on the fact that, contrary to [J,D1 and C2],
the representations involved in our duality are infinite dimensional. Of course, in the
classical case, i.e., q — 1, a similar duality holds between the toroidal Lie algebra
and the toroidal version of the symmetric group.

The authors would like to thank V. Ginzburg for a useful remark on a preceding
version of this paper.

1. Definition of the Toroidal Hecke Algebra

For any positive integer k set [k] = {0, 1,2,...,*:} and [Aτ]x = {1,2,..., A:}.

1.1. Definition. The toroidal Hecke algebra of type gl(/), H^, is the unίtal asso-
ciative algebra over s$ = Cfx^y^q^] with generators

and the following relations:

T,.TΓ' = TΓ'T, = 1, (T, + 1)(T, - q2) = 0 ,
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1/1; = T/Γ, if\i-j\>\,

X ~\r vV Y Y V V V W V V
0 II — A II^M), ΛϊΛy — ΛzΛy'5 I/ xy — *y I/ ?

XyT; = TfXy, Y T/ = T/Yy, // j φ I, / + 1

T V T Λ^Y τ~"lvτ~l «~2vr

, A / I Z — q A, _|_I, ι z Y / i ; — q ι/+ι ,

X.YΓ^^^q-^T?,

where X0 = XιX2 - -X/.

7.2. Remarks. (/) When x is taken to be 1 the toroidal Hecke algebra is nothing
but the double affine Hecke algebra introduced by Cherednik (see [Cl]), which
should be seen as a quotient of a central extension of the braid group over a torus.
Given a permutation w G S/ let Tw G H^ be the usual element defined in terms
of a reduced expression of w and, given an /-tuple of integers r = (rι,r2,...,r/),
denote by XΓ and Yr the corresponding monomials in the Xz 's and Ύ/'s. Then the
elements XsYrTw give a basis of H^ as a ^/-module (see [Cl, Theorem 2.6.(a)]
for the case x = 1).

(K) Note that the map T, »-» Tr1, Xf ι-> Yh Yt ̂  Xh x ι-> x"1, y h^ y-1, q ι->
q"1, extends to an automorphism, Ξ, of H^ over <C.

7J. Given 1 ^ / ^ 7 < / set TzJ = T, T/+ι T/ and T/,/ = T7T7_ι T, . Then,
put Q = XιTu_ι G H^. Clearly,' τf^YΪ^Q*1 (i G [/ - l]x,y G [/]x) is a sys-

tem of generators of H^. Besides, for any i G [/ — l]x a direct computation gives
-1 = y-lYi+l, and QY/Q'1 - xy7"1^. Indeed we have (see [Cl]).

Proposition. The toroidal Hecke algebra H^ admits an equivalent presentation in
terms of generators

^±l,Y±l,Q±l, / G [ / - l ] x , 7 G [ / ] X ,

with relations:

T/TΓ1 = Tf1!/ - 1, (Tf + l)(Tf - q2) - 0 ,

iΎj = τJ τί ίf\i-j\>\,

, TΓ'Y/TΓ" = q-2Yί+1 ,

Y/Γ, =TΛ}, ι/7Φ/,ί + l

QT^jQ-' = T, , (1< i < I - 1), tfΊi-iQΓ2 = T, ,

QY/CΓ1 = y~Ύ/+ι (i g / ^ / - i), QY/Q-1 = χy/-1Yι .

7.¥. Let H^,H^ c Hj/ be the subalgebras generated respectively by T^1, Y^1

and T^1, X^1 (/ e [/ - l]x, € [/]x). Then, H^ and H^} are isomorphic to the

affine Hecke algebra over «s/ of type gl(/), simply denoted Hj/ (see
Remark 1.2(i)).
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1.5. Let H^ c H^ be the subalgebra generated by T^1 (/ e [/ - l]x). Then, H^
is the Hecke algebra over j/ of finite type gl(/) (see Remark 1.2.(i)).

1.6. Given complex numbers q,x,ye<Cx, let H,H,... be the algebras obtained
from H^,H^,... by specializing q,x,y to q,x,y.

2. Definition of the Toroidal Quantum Group

2.1. Definition. The toroidal quantum group of type sl(w + 1), U^, is the unital
associative algebra over & = C[c±1,p±1](q) with generators

eα, fα, k/f /, k*1, h*1 ,

where i e [w], k, I G TL and /φO. The relations are expressed in terms of the formal
series

e/(z) = Σ z~* e, ,t, f/(z) = Σ z~* fα. ^(z) = kf + Σ ̂ τ/ k, ,±/ ,ίez tez />o

as follows

h,h7' = hr'h, = k,k7' = kT'k, = 1 ,

[h,, h;] = [k^z), k±(w)] = [hί; k±(z)] = 0 ,

h/eχz) = pc"e/z)h,,

k,±(z)eχw) = ̂ (

ki

±(z)fχw) = θ_fl,

{e, (zι )e, (z2)e/ (w) - (q + q"1 )e, (zι )ey(w)e; (z2) + eχw)eί (z1 )e, (z2)}

+ {zi <-»• z2} = 0, i/ α,7 = - 1 ,

{f,(zι )f/(z2)fχw) - (q + q-1 )fi(z1 )fχw)f, (z2) + f/ (w)f/(z, )f, (z2)}

+ {z, <-> z2} = 0, if ai} = - 1 ,

[e,(z), eχW)] = [f,(z), fχw)J = 0, »/ αy = 0 ,
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where hw+ι stands for ho, δ(z) = Y^^_00z
n, θm(z) — \^_~m and αzy, c/y, m^ , are the

entries of the following [n] x \n\-matrices\

C = : •. : , A = C' + C, M = C'- C .

(\
-1

0
\o

0
1 -

0
0

0
• 0

- 1
-1

-1 \
0

0
1 /

Remark. Given a simple complex Lie algebra g, let denote by g the universal central
extension of g[x±l,y±l] (endowed with the structure of the current Lie algebra over
the torus (Cx x Cx). A "one-loop" presentation of g has been given in [M-R-Y].
The toroidal quantum group U# is a deformation of the enveloping algebra of

sϊ(w +1). When p = 1 and h0, . . . ,hπ, are specialized to a non-zero complex number
d one recovers the toroidal quantum group introduced in [G-K-V].

2.2. Note that, given a = (α0> •••,««) £ (Cx)[π], the map

e, (z) ̂  e/+i(z/fl/+i), f f(z) «-> f/+ι(z/αm),

kf(z) H-> k/+i(z/0i+i), h; h-> di+ia^hi+i ,

(z G [«], w + 1 stands for 0), extends to an automorphism, Ψa, of the ^-algebra U^.

2.5. Let U^ C U# be the subalgebra generated by ez = e/}o5 ί — f/,o an(i k^1

(/ G [«]). Denote by U# Drinfeld-Jimbo's quantization of the enveloping algebra

of sl(w +1). Then e/, fz and k^1 verify the relations of the Chevalley-type generators

of U^ and U^ is a quotient of U#. Similarly let U^ C U^ be the subalgebra
generated by the Fourier coefficients of

e/(z) = e/(zhι - hz ), f f(z) = f/(zhι - - h,-),

These elements verify precisely the relations in Drinfeld's "new presentation" of

U# (see [Dl, B]). In other words, U«# is a quotient of U^. At last, put T^ =

^[h^^f1,...^^1] C U^. The algebra U* is generated by U^}, U^} and TΛ.

2.4. The subalgebra of U# generated by ez , f/, k^1 (/ G [«]x) is a quotient of U^,
the quantum enveloping algebra of sl(w + 1).

2.5. Given complex numbers c, /?,^ G Cx let U, U, ... be the algebras obtained
from U#, U^, ... by specializing c, p, q to c, /?, ̂ . A U-module is said to have triv-

ial central charge if its restrictions both to U and U have (i.e., c = 1 and

2.6. Fix q G Cx, and suppose that / ^ n. Following [C-P, 2.5], a U-module is
said to be of level / if its irreducible components are isomorphic to irreducible
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components of V®7. Similarly a U-module or a U-module is said to be of level /
if it is of level / as a U-module.

2.7. Set Pl = {χ = (χo,.. ,χ») e ZW|χ 0 + Xi + - + In = /}. A U-module M with
trivial central charge and level / is ίntegrable of index d if it splits in a direct sum
M = 0χeΛ MX such that

Mχ = {m G Af I h, /w = Φ*'/H} = {m G M\ k/ra = #χ/~*'+1w} ,

where n + 1 stands for 0 and if its restrictions both to U and U are inte-
grable (see [L, 3.5.1]). Then, the central element d = ho hw acts on M by scalar
multiplication by dn+l pl'.

3. Definition of the Duality Functor

Fix C9x9y9p9q G C x.

3.1. Let V be the fundamental representation of U. It has a basis v\9...9vn+\ on
which the action of e/,f/,k/ (/ G [«]*) is the following:

e/(ι;r) = δrίi+\Όr-ι, f/(ιv) = δrίiVr+ι9 k, (ι;r) = qδl'r~δί+l rvr .

Then, V 0 7 is a left U-module for the induced action given by the following co-
product:

Λ(e, ) = e, 0k, + 1 0e/? A(fi) = f,- 0 1 + k"1 0f, , J(k/) = k, 0k, .

This action commutes with the left H-action given by Tz = I®1 l

where T G EndV® 2 verifies

q2vr ®vs if r = s ,

Ύ(vr 0 vs) = ^ qvs ®vr if r < s,

qvs 0 vr + (q2 — 1 )υr 0 vs if r > s .

3.2. For any / G [n + l]x define t to be the automorphism of the algebra U given
on the Kac-Moody generators by the formula

—a,j

tVpΛ — —f k t'fp Λ — V ( — 1 y~ f ly/7~Jp^~ f ly~ lSV p^ if ι = f c ιl / V c i / — Az κz? 1 /V C 7/ — / v V x / q ci C7e/ A1 * i 7 5
5=0

—a,y

t,'(f, ) = -k~l e, , t,'(f, ) = Σ (-! /~°" 4 sf/s)f, f, '' ~ if z *j ,

t,'(ky) = k ί l(y) ,

where ez ,f z are the usual quantum divided powers (see [L, 3.1.1]) and Si G Sw+ι
is the transposition (/ / + 1). Let M' be an integrable U-module. Set t ' G Autc(M')
(/ G [n + l] x) to be the braid operator defined by

Σ



474 M. Varagnolo, E. Vasserot

where mf G M' and k G Z are such that k/ m7 = qkm' (see [L, 5.2.1 and 5.2.3]).
We have (see [L, Chaps. 5 and 37])

Vm' G M', \/u G U, t '(wm') = t7(w)t7V) . (3.2.1)

Similarly, denote by τ the automorphism of the affine Dynkin diagram An * (with
vertices indexed by !,...,«,« -h 1) given by τ(i) = / -f 1 (if /φ« + 1), τ(n + !)=!.
Let τ1 be the automorphism of the algebra U given, in terms of its Kac-Moody
generators e/,f/,k z, (i G [n + l]x), by the following rule:

τ'fe) = eτ(0, τ7(f;) = fτ(0, τ7(k;) = kτ(0 .

Put tfωι = τ' o tf

n o t7_! o . . . o tί G Aut(U). Take a right H-module M. In particular,

M is a right H-module and we can consider the dual left U-module M 0π V®'. This
module is endowed with a structure of left U-module such that for any m G M and
v G VΘ / (see [C-P])

/ /
f Λ +ι(/w0v)= ]Γ

7=1

where e0,f^,k0 G Endc(V) are defined by means of

C0 Vr = δrtn+ιVι, fθ'Vr = δrΛVn+\, k0 Vr = qδl'r~δa+l'rVr

and f^^l^^-^fβΘίkρ1)®^', eθ>y = kf7'"1 Θe 0® l®7^'. Until the end of

Sect. 3.2 take M' = M ΘH VΘ/. For any /-tuple j G ([n + 1] x ); set η = vh ® - - 0 ι;7 r

Define τ/7 G Aut(M7) such that

where ί;w+2 stands for v\ and j = OΊ,.. ,7/) is an /-tuple of integers in [w + l]x.
A direct computation gives

Vm; G M7, VM G U, τ"(um') = τ'(u)τ"(mf} . (3.2.2)

Put t^ = τ7/ o t'J o t't_λ o . . . o t'/GAu^M7). As a consequence of (3.2.1) and (3.2.2),

V m 7 G M 7 , V w G U , t^ l(Wm7) = t/, l(WK l(m7). (3.2.3)

Example. If / = 1 we find

ή'(m®Vj) = (-l)Sl+l ^m<S>υ,.U), i 6 [n]x, y e [» + l]x , (3.2.4)

C(m ® »;) = -wί-β-Y, )*'•> ® t^ . (3.2.5)

Lemma. Let j fte now decreasing, and set Y],s = YI ¥2 Ys, with Γ'O) =]0,s].



Schur Duality in the Toroidal Setting 475

Proof. From [L, 5.3.4], for all integrable U-modules N\,N2 and for all

) = 0 =* ή'(m ®n2) = t '^O^t 'fe) (3.2.6)

(note that Lusztig uses the opposite coproduct in [L]). Put ji = (yΊ, . . . Ji-\ ) and for
any permutation σ G Sw+ι, set σ(j) = (σ(yΊ), ...,σ(y/)). We first compute t" Ot"-ι
o . . . o t". Note that t" o t"^ o - - - o t'{(m 0 η) = m <g> t" o t"_j o - o t"(Vj). We have

CiίVjJφO if and only if jΓ1(2)Φ0 and f^i yJΦO if and only if y/ = 1. Since j is
non-decreasing, using (3.2.6) and (3.2.4) we find

t'ι'(Vj) - t'/ίvjj® t'/(t;y/) = - - = <g) tί7(t;Λ) = (-I)fl2

k=\

where α/ is the cardinality of j-1(/). Suppose that

Now eΛ+ι(vSjt...Jl(jl))0ίt+ι(t;Jjt...Sl0 / ))φO if and only if (^- •Jι(jι))Γ1(*

andy/ = 1, that is if and only if JΓ^A: + 2)Φ0 andy'/ = 1. Since j is non-decreasing,
using (3.2.6) and (3.2.4) we get the same formula as above for t^+1 o o t'/(Vj).
Then, finally

where VQ stands for vn+\. Applying τ" we find the result. D

3.3. Take a right H-module M. The U-module structure on M(g)H V07 is given in
terms of Drinfeld generators by (see [G-R-V]).

Theorem. If] is non-decreasing and i G [n]x we have

Σ T^
k=s+l

1 + Σ TA,J
k=r+\

k±(z)(/ιι(8)Vj) = w Π θfί^2-1'^) Π Θ^
y*=z' 7* =z+ι

V = v(7i,..,Λ,^+2,.,7/) if8** and V j - = 0

V J + = 0

and 0.
stands for the Taylor expansion of θm(z) = ̂  J respectively at oc
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Proof. Let us prove the formula involving e^. We know that ei^ = (— 1 )~At^A(eι )
(see [B, 4.6] and 2.3). So (3.2.3) gives

eι,A o CA(w(8)Vj) = (-1ΓΛCΛ oeiOiiΘv,) . (3.3.1)

First of all note that formulas in Sect. 3.1 give (with ] ~ l ( l ) =]09s] and j~!(2) =ψ,f

We have

i / / l~l

fff—n ^ Λ / ^ / O W T . Λ ~1— t+s+tf—n I „„ I i , v^
lωι

Thus, using Lemma 3.2, the right-hand side of (3.3.1) is

£=5+1

Now Y/ commutes with T^,.y+ι if i G [5 ]x. Thus

4- Σ
Jt=j+l

A similar computation for the left-hand side of (3.3.1) gives

ei,* o C*(«®η) = (-l^V

Thus we finally obtain

eι,A(/w(8)γ,) = ί

1-ί+ί-AlI/ιιfn- Σ
V k=s+l

For the other cases we proceed in a similar way. Namely, since the /th fundamental
weight ωz verifies ωz = τz wz, where w = 5Λ ^w_ι 5ι, define t^ = τ//z o t^,. Then

eα = (-irX7A(e/)and

eα o t^-*(w ® η) = (- 1 )-χ-* o e,(»n ® η) .

Thus it suffices to compute t^.(»i(8)Vj) using the following reduced decomposition

of wl:
wl = un+ι-i un-i - - MI, with M7 = Sj s/+ι - ty+i-i . D

Corollary. F/x d\,...9dn G Cx am/ ίafe a rzgfAί H-module M. For any non-
decreasing j am/ / G [w]x set (see notations in Theorem 3.3)
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= ql-s+rml + Σ

k±(z)(/fi<8>Vj) = m Π

where vn+\ stands for VQ. These operators on M®H V®7 verify the relations in 2.1
(involving non-zero ί and j).

Proof. Follows from 2.3. D

Remark. In the context of the corollary the relations 2.1 give in particular

eιk2,ι - 0k2,ιeι = (q - ^~1)cΓ1h2eι,ιk2 .

Moreover, for any non-decreasing /-tuple j one gets

kj(w 0 Vj) = q~r~tm ® Vj ,

where, as usual, ]r,s] = }~l(i), ]s,t] = }~l(i +1). Thus, the evaluation of the above
formula on a non-zero vector of type m (g> v\ 0 f 2 0 (8) ϋ/ gives c —\. In other
words, on the dual module M (g>H V®7 the central element c is trivial, even if M is
not finite dimensional.

3.4. In the two next sections set c= l,p = y, take a right H-module M and

fix ί/ι,...,ί/Λ G C x. In particular M is a right H -module and the operators on
given in Corollary 3.3 verify the relations 2.1 involving non-zero /

and j. Let ψ : M ®H V07 — > M 0H VΘ / be the linear map defined for any /-tuple
J = Ui,J2> Jι} and any m G M by

ιA(m 0 η) - m X " + 1 ^ X2"
+1'^2 - . . X7""+u' 0 ι;1+7- 0 t;1+72 <g> - - <g> ̂ ^ ,

where fw+2 stands for PI. An easy computation gives

^r1 oh; o ψ = didr_\hi-i (i = 2,3,. ..,/ι), ^~2 o h i o ̂ 2 = rfirf-1^ . (3.4.1)

Proposition. Lβί p = y. Given / = 2,3,...,« J we /zαί e the following identities in
End(M(g)HVΘ/)

ψ"1 o e/(z) o ψ = ^^(z/qdil ψ~2 o eι(xz) o ψ2 = tn(qn~ld2 - - - dnz) ,

i/r1 o ϋ(z) o ̂  = f/_ι(zM), Ά"2 o fiC^z) o ιA2 = tn(qn~ld2 - - dnz) ,
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In order to prove this proposition we need the following.

Lemma. For any 1 ^ / ^ j < I put Q/j = Xz TZj</ G H^. Then, if ί ^ r ^ j and

Q v π~ι v~* v c\ T π~ι Tij*r\lij — y IM-IJ V z j J - f - l V / j — -1/ •

Proof. We prove the first equality, the second being similar. First, suppose that z = 1
and use a decreasing induction on j. If j = / — 1 we get the relation QY^Q"1 =
y~1Yr+ι. Take r such that 1 g r ^ j — 1, then r ^ y and by induction we get

XiTij-iT/Yj Ty T j^ jXj = y Yr+ι .

Since rΦy,y + 1, we have T/Yr = YrTy and we are done.
Fix now y and make induction on /, the case i = I being proved before. Consider

i + 1 ̂  r ^ y. Then i ^ r and by induction we have

X;T/Tz +ιjYrT/+1jT. Xz = y Yr+ι .

Now XZ TZ = g^T^Xj+i, then we find

i.e.,
Q , VΠ~"^ v~^T V ,T~^z+1,7 lrV/+l,y ~ J ** Y^+l ^z

Since 1 + rφ/, / + 1 we have TzYr+ι = Yr+ιTz and we are through. D

Proof of the proposition. We prove the relation involving e/. Suppose first that
/ΦO, 1. Take a non-decreasing /-tuple j = (yΊ,y'2,...,y/) and put

]r>s] = ]~\i - 1), ]s,t] =J"1(0> ]pJ] = J~1(«+ !)-

Consider the following /-tuples

J3 = (i? ? ι? i +yΊ? , i +jι-p+s9Jι-p+s+ι, i +y'/-/?+5+25 5

Cpl p — πP(p—l}Ύ ,T , t « . . . Tι i / ThpnOCL -i-Vr) — W A n I -L n-|-l 2 -*• / — 1 /— Ό* •"• UCIl

e/(z)

/-P+/-1

i + E
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In another hand

Σ
k=s+l

Σ Ίk

k=s+\

Now, R- 1X/X/_ 1...χp +ι=^- />Pp, where Pp = Q/_ A /_ι - - Q^+iQi,/,- Thus
the relation follows from

Σ T^
k=s+\

( l-p+t-\

i + Σ
k=l-p+s+l

which is a consequence of the preceding lemma (note that 1 ^ s + 1 ^ /? and
0 < k < p - 1 for any £ e]s, t[).

Suppose now that / = 1. Set ]r,s] = }~l(n), ]s, /] = j"1^ +1), and consider the
following /-tuples:

J! =(!,.. .,1,2,. ..,2,yι +2,...,y r + 2), j f^l) =]0,,s - r],

J4 = (./ι+2,.. . ,yV + 2,l,...,l,2,...,2), J4~1(l)=]r,ί+l],

Then
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In another hand,

+ Σ
k=s+\

+ Σ
k=S+\

Thus it suffices to prove that

pr(ι+ Σ τk>s+l}δ(y-s-lΎs+})p-1 =ίι
V k=s+l ) \ k=s-r+\ J

(3.4.2)

Formula (3.4.2) follows from

Lemma. For any r < / set Pr = Q/_ r >/_ι Q2,r+ιQι,r £ H .̂ Then, if r < s + 1
r <k <l,

P.Y^P-1 = x/Y,_r+ι,

Proof. By definition of Pr one gets

XoP-1 = ^2r(/-r)X1X2 - - - XrTr,!Tr+lf2 - - T/_u_ r .

Then a direct computation gives Pr = ^2r(r~/)Qγ1/_rQ^1/_r+ι Q7/-ιXo, and the
result follows from the preceding lemma. Π

3.5. Fix < / 0 e C x and let e0(z),f0(^),k^(z),h0 G End(M(g)H V®7)^1]] be such
that

e0(z) = î -1 o eι(ήrrfιz) o ι/^, f0(z) - i/^"1 o fι(^z) o ψ ,

) oψ, h0 =

The operators are defined in such a way that if i E [«] and * — JQ dnq
n+l,

ιjΓl o e/(z) o ψ = ei-ι(z/qdi), ψ"1 o fz (z) o ̂  = {^(z/qdt),

ψ~l o k±(z) o ̂  = ̂ (z/qdi), r ' o h, o ψ = did-^i^

where e_ι(z), f_ι(z), k^(z) and h_! stand for eπ(z), fπ(z), k^(z) and h«.

Example. In particular we get



Schur Duality in the Toroidal Setting 481

and, if j is non-decreasing,

*=ι

f o ( / n ® V j ) = qsm

where ]0,r] =j-1(l), ]s9l] = \~l(n + 1) and

vj- = v(yι,...,yV-ι,y,+ι, ,y/,«+i) if ^ΦO and Vj- = 0 else ,

vj+ = v(yΊ, ..,yV, ι,yv+ι,.. ,y/-ι) if sή=l and Vj+ = 0 else .

Thus k0kι kn(m 0 v) = m 0 v.

The main result of this section is the following theorem

Theorem. Put c = 1, x = do - - dnq
n+l, y = p and n > 1. Then for any right H-

module M, the preceding formulas give a left \J-module structure on M ®H V®1.
The module M ®H V®7 is of level I and has trivial central charge. Moreover, if
do = - = dn = d, M <8>H V(δ)/ is ίntegrable with index d.

Proof. By construction, the operators e/(z),f/(z),kz

±(z),h/ e End(M ®HV®l)[[z±l]]
with non-zero /, defined in Corollary 3.3, verify relations 2.1. In order to ver-
ify all the relations 2.1, it's sufficient to prove the relations involving ¥^(e/(z)),

¥?(f/(z)), <F/(k±(z)) and <F/(h;) for *=l ,2 , . . . , / ι and a^q^dγ1 (see 2.2).
But from (3.4.1), (3.5.1) these elements are equal respectively to ψk oe z(z)oι/^~A :,
\l/k o fi(z) o ̂ -*, ψk o kf(z) o ̂ -* and ψk o h, o ̂ ~* (/ G [w + l]x). Thus we are
done. For the trivial central charge see Remark 3.3 and Example 3.5. The integra-
bility of M ®H V®7 follows from the integrability of the U-module V. D

4. Definition of an Inverse Functor

Fix C9x,y9d9p9q G Cx and /,n,e M.

4.1. Remarks. (/) Suppose that q is not a root of unity. Then H-modules and
integrable U-modules are direct sums of finite dimensional modules (see [L, 6.3.6]
for the U-case). Thus, if / ^ n, the Schur duality in the finite case (see [J]) gives
indeed an equivalence between the category of H-modules and the category of
integrable U-modules of level /.

(ii) Similarly, if q is not a root of unity and / ^ n, the affine Schur duality
gives indeed an equivalence between the category of H-modules and the category
of integrable U-module with trivial central charge and level / (see [C-P]).

4.2. Theorem. Suppose that c = 1, c = dn+lqn+λ and y = p. Suppose moreover
that I + 1 < n and that q is not a root of unity. Let M1 be an integrable U-
module with index d and level I. Then there exists a ^-module, M, such that
M' ~ M (g)H V

0 / as \J-modules.
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Proof. Given / = 1,2, the restriction of M' to U ' is mtegrable with trivial cen-

tral charge and level /. Since H is isomorphic to H, by affine Schur duality

(see Remark 4.1 (ii)) one gets an H(0-module, Af< f>, such that M' ~ M® ® H V0 /

as U l -modules. Moreover, the M(/) are isomorphic as H-modules. So just de-
note them by M. By construction the action of eo,fo,ko is as in Remark 3.5 and
e/(z),f/(z), k/(z) (see 2.3) act as in Theorem 3.3. Note that the action of X, , Y/ G H

on M is given by the H -module and the H -module structure of M. In order to
prove that these actions extend to a H-module structure it's sufficient to verify that
for any m G M,

-1 = y-lmY2 and wQY/Q"1 = xyl~lmYι , (4.2.1)

where Q = XιTι 9 /_ι (see 1.3). Recall that M h-» M®H V®7 is an equivalence from
the category of H-modules to the category of integrable U-modules of level / (since
q is not a root of unity, see 4.1). Thus, if v G V(δ)/ is a generator of V0/, i.e. VΘ / =
U v, the map M 3 m \-^ m®\ G M ®H VΘ / is injective for any H-module M.

(i) Set v = υ\ ® t>2 ® ̂ 4 0 0 t;/+ι and w = v2 Θ f 4 0 0 t;/+ι (8) t;w+ι . Then,

Since w is a generator of V (I <ri) the relation wQYiQ"1 = y~λmΎ2 will follow
from mQYiQ"1 0 w = ^-1mY2 0 w. In another hand the equality eok^(z) = k^(z)eo
implies in particular that e0k2,_ιh71h^1 = k ^ - i h Y ^ o (see 2.3). Now

= qn(q~2 -

= qn(q~2 -

and, since hz and ky commute,

= qn+l~l(q~2 - l)h-lh~\mQΎl 0 w) .

Thus we are done.
(ii) Set v = ϋi ® ι>3 <8> 04 ® ® ι;/+ι and w = v$ ® #4 ® ® ϋ/+ι 0 ϋn+ι . Rela-

tions 2.1 give

hι(e0kι,_ι - ^r^i.-ieo)^ = (q~l - ^)e0_ι = h

which evaluated on m®\ writes (see 2.3)

hιe 0kι j_ιh7 1kι(m(g)v) = -^~1hQ1kw,_ιh7

i.e.,

Since d = h0 hw acts as yl dn+l and n > / + 1 we find

dn+l<f+lmy-lYιQ® w = y~lmQΎι ® w .

Thus, since w is a generator of V, we get the second relation in (4.2. 1 ).
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We have proved that X/ and Yy give a H-module structure on M. In order

to prove that Mf is isomorphic to the dual module M ®H V®7 we must now ver-
ify that hf acts as in Corollary 3.3. It is a direct consequence of the integrabil-

ity of M^πV® 7 since the equality k^/Hφη) = ^ ί~1 ( l ' )"" ί~1 ( / + 1 )/w0Vj imply that

h, (/H(8>Vj) = φrl(0w(g>η. D

5. Conclusion

Using Theorems 3.5 and 4.2 we get the following duality theorem.

Theorem. Suppose that c — 1, x — dn+lqn+l and y = p. Suppose moreover that q
is not a root of unity and that I + I <n. Then the functor M ι—> M®H V®' is
an equivalence between the category of right ϊl-modules and the category of left
integrable TJ-modules with index d and level I.

Remark. Suppose that q is not a root of unity. Since H does not admit finite
dimensional representations if c is not a root of unity, the toroidal quantum group
U does not admit either any finite dimensional representations if dn+lqn+l is not a
root of unity.
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