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Abstract: Based on the dispersionless KP (dKP) theory, we study a topological
Landau—Ginzburg (LG) theory characterized by a rational potential. Writing the
dKP hierarchy in a general form treating all the primaries in an equal basis, we
find that the hierarchy naturally includes the dispersionless (continuous) limit of
Toda hierarchy and its generalizations having a finite number of primaries. Several
flat solutions of the topological LG theory are obtained in this formulation, and are
identified with those discussed by Dubrovin. We explicitly construct gravitational
descendants for all the primary fields. Giving a residue formula for the 3-point
functions of the fields, we show that these 3-point functions satisfy the topological
recursion relation. The string equation is obtained as the generalized hodograph
solutions of the dKP hierarchy, which show that all the gravitational effects to
the constitutive equations (2-point functions) can be renormalized into the coupling
constants in the small phase space.

1. Introduction

A coupled system of the gravity and topological matter fields ¢* (primaries) is
given by the action
S=S+ Y tnafon(d), (1.1)
z

o € primaries
N20
with Sy the basic action obtained by twisting an ordinary model, oy(¢*) the N
gravitational descendant of ¢* and #y, the coupling constants. It is essentially
characterized by genus-zero 3-point functions (¢*¢?¢"). The topological field theory
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(TFT) corresponding to the action (1.1) is defined such that, when the descendants
couplings are turned off at certain values, the 3-point functions (¢p*¢pP¢?) := c*#7 of
the theory satisfy a set of equations,

n* = ¢*" = constant, (flatness of metric), (1.2a)
0 0
a—téc“ﬁv = a—tacm, (integrability) , (1.2b)
> (:""3’1;1,1,,0’”‘s = > c“”n,luc"ﬁé (associativity) .  (1.2c)
A, p=primaries A, p=primaries

Here f, := ty,, are the primary couplings in (1.1), and #,, is the inverse of n*. The
set of these Egs. (1.2) is called the WDVV equation [Dul], and the solutions of
this equation describe the topological limits of the TFT coupled to the gravity (the
“flat” solutions). In this paper, we call the space of primary couplings #, alone the
“small” phase space, and the entire coupling space the “large” phase space.

The genus-zero limit of certain TFT’s coupled to the gravity is equivalent to the
dispersionless limit of the KP (dKP) hierarchy with a reduction. In [DVV1] the flat
solutions to the A-,D-, and E- (ADE-) models of the topological minimal models
were obtained by the Landau-Ginzburg (LG) description. In particular, a structure
of the dKP hierarchy was found for the case of the A-model, where the fusion
ring of the primaries is given by a “polynomial” ring of one variable p, the quasi-
momentum, over an ideal given by the LG potential. This approach was further
extended in [AK,Kr2, T] by introducing a “rational” LG potential, which includes
the D-model and its extension [T]. TFT’s with a rational potential appear in several
literatures, such as a classical limit of the multi-matrix model [BX], the multi-field
representations of the KP hierarchy [ANPV], and the symmetry constrained KP
hierarchy [OS]. (They are all equivalent, and have the same Lax operators.)

A classification of the flat solutions of the WDVV equation was given in [Du2],
by studying the Frobenius manifold, but not in the dKP approach. The group theore-
tical structure behind the solution was understood by associating the scale dimensions
of the primaries with the degrees of the Coxeter group. It was then shown that all
the classified solutions fall into the ADE-series or the relatives by some truncations
[Z]. Quite recently the solution of the CP! model [W,DW] was also found in the
LG approach [EY]. Of course, there are other flat solutions [W,DW] for which the
LG description is not yet known.

All these flat solutions are obtained as the topological limits of the TFT coupled
to the gravity. The generalizations of the analysis to the large phase space has been
carried out in a rather limited extent, except in [AK, Kr2, LP]. The framework based
on the cohomology in [W,DW] provides a perturbative method to study the TFT
in the large phase space. But the integrable structure behind such a solution of the
theory remains obscure. In this regard, the approach based on the dKP hierarchy
with the LG picture prevails over the cohomological approach.

The aim of this paper is to study the topological LG theory having a rational
potential based on the dKP hierarchy previously proposed in [AK], and we answer
several questions mentioned above. The paper is organized as follows: In Sect. 2, we
give a mathematical background of the dKP theory. The main purpose in this section
is to rewrite the dKP hierarchy in a general form treating all the primaries in an equal
basis, and show that it includes several fusion rings for a single rational potential.
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In particular, the dispersionless limit of Toda (dToda) hierarchy [TT1,Kol,SV] is
shown to be naturally included in this formulation as a special choice of the ring.

Section 3 introduces the universal coordinates for the deformation variables of
the rational potential. Then writing the dKP hierarchy with these coordinates, we
show the integrability of the hierarchy. The generalized Gel’fand-Dikey potentials
in the hierarchy are also given explicitly in a residue formula. We also find several
flat solutions corresponding to the topological limits of our TFT model.

In Sect. 4, based on the integrability of the hierarchy, we define the free energy
and the N-point functions of the TFT. The 3-point function is explicitly expressed
by a residue formula. We also define another type of the free energy and the cor-
responding N-point functions, which are the functions of the universal coordinates.
But the 2-point functions of both types are found to be a unique object. Namely
these 2-point functions calculated from the respective free energies coincide. More-
over, the 2-point functions are free from the choice of the primary rings obtained
in the general formulation of the dKP hierarchy. This leads to a symmetry of the
WDVV equation discussed in [Du2]. A hamiltonian form for the dKP hierarchy is
also found in terms of 1-point functions which are also given explicitly.

Section 5 defines the gravitational descendants for all the primary fields. In par-
ticular, we elaborate the descendants of the primary ¢! generated by the derivative
of “log”-function (i.e. non-vanishing residue at infinity) which is a typical flow in
the dToda hierarchy. The descendant fields of ¢! for the dToda hierarchy (CP'-
model) were first found in [EY], but in a rather heuristic way. Here we give not
only a mathematical justification to their result but also a general formulation of
the descendants. Then we show that the topological recursion relation for these
descendants naturally inheres in the framework of the dKP theory.

In Sect. 6, we show that the solution of the dKP hierarchy is completely de-
termined in the small phase space. This implies that all the gravitational effects to
the constitutive equations (2-point functions) can be renormalized in the primary
couplings. This is precisely the theorem obtained in [KG] for a study of the dKP
hierarchy, and the string equation is then obtained as a consequence of this theorem.
The solution of the string equation is given algebraically in the generalized hodo-
graph transform, and can be explicitly obtained as a perturbative solution with small
gravitational couplings. This is the well-known procedure of the renormalization in
the quantum field theory.

In Sect. 7, we discuss the critical phenomena based on our LG theory. The main
objective here is to study the scaling behavior of the solution to the dKP hierarchy
in the small phase space. The critical exponents of the free energy and the primaries
are calculated for the scaling models, which has no scaling violation term, such as
log-solution. Among the LG theories having a different type of rational potentials,
we find that there exists an equivalent pair in the sense that two theories in this
pair give the same scaling behavior at all the critical points. This symmetry is a
consequence of our general formulation of the dKP hierarchy introduced in Sect. 2.

In Sect. 8, we illustrate the results obtained in this paper by taking several ex-
plicit examples including the CP'-model [DW, EY], and especially we give the cor-
responding free energies for the flat solutions. We also provide a detail analysis of
the terms including log-singularity in Appendix A, and a brief overview of the dKP
theory in Appendix B.

In this paper, we restrict ourself to the analysis of the TFT in the genus-zero
limit, which corresponds to a spherical approximation of the world sheet in the
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string theory. Effects of finite genus to the world sheet may be studied by replacing
the quasi-momentum p in the rational potential by a differential symbol 0 (i.e.
the multi-matrix models of [BX, Da]), or by promoting the potential into a matrix
form [KO]. Quantization of the dKP theory may be also obtained by the Moyal
deformation [S]. We will study these in a future communication.

2. Preliminary on the Dispersionless KP Hierarchy

In this paper we study a topological Landau—Ginzburg (LG) theory with a rational
potential given by a Laurent polynomial of p and (p —s)~! [AK,Kr2],

W = W(p;v,s)
I S n—1 v-1
—n+1p +Up1p +Uo+p—s+
i Gl S @.1)

m—D(p -1 mp—sy

Here the variable p represents the quasi-momentum of the field, and the (com-
plex) coefficients v,, —m < a < n— 1, and s are the deformation variables of the
potential. At the singularities p = co and p =s of the W potential we introduce
the local coordinates A4 and p,

A=p+0 (—;;) , for large p, (2.2a)

4= __i”_"s” +O(1), for small p—s, (2.2b)
which are also globally defined through [AK, T]
in+1 'um

Ta+l om (2.3)

The main objective in this paper is to study deformation of the W potential
in the framework of the LG theory for TFT, where the deformation is induced by
coupling constants. Here we introduce an infinite number of coupling constants ¢
for i € Z, and consider the deformation variables {v,} and s to be functions of
t;’s. Then we assume the W potential to satisfy the following flow equations of the
deformation,

W QW 0Q oW .
Ei— ={0\ W} = ap ot Op° forieZ 24)
with the generators Q' defined by
[HL‘/V“L, for 0 <i < o0,
o' = { llog ]y —[logy]-, for i=—1, (2.5)

- [m;—lﬂlil—l]_’ for —oco<i< 2.
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The symbols [-]4 and [-]- indicate the parts of non-negative powers in p and
negative powers in p — s, respectively. In Appendix A, we give a precise definition
of these + projections, and also provide explicit calculations of the terms including
the log — terms, such as log A and log u. In particular, one can show that Q! =
log(p — s), which was previously used in [AK,Kr2]. It should be also noted that
the definition of Q~! in (2.5) is natural, even though it looks complicated. Indeed,
this definition clearly shows that Q~! is a generator of degree zero in p having
contributions from both singularities p = co and p = s in the rational potential W.

Equation (2.4) is nothing but the dispersionless KP (dKP) hierarchy [KG, TT2,
Krl,Dul] with the reduction given by the W potential (2.1). We refer to the set
of Egs.(2.4) as the dKP hierarchy in this paper, even though we mainly concern
with the reduced one. In Appendix B, we briefly summarize the theory of the dKP
hierarchy. Note here that each deformation in (2.4) should be independent from
the others. Namely we have to have the compatibility conditions among the flows
in (2.4), that is, 0*W/0t;0t; = 0°W/ot;0t; for all i,j € Z, which can be confirmed
by:

Lemma 2.1. The generators Q' satisfy the zero curvature condition,

00" 80/ ,
—a%—a%iﬁ-{Q’,Qj}:o, fori,jeZ. (2.6)

Proof. Here we give a proof in the general form: Let F and G be the functions
of either A or p, and define Fy :=[F]i and G4 :=[G]+. The flow parameters
corresponding to F. and Gi are denoted by ¢+ and sy, respectively. Then, for the
case with F, and G_, we have

oF, [oOF -
P [K] ={G_,F}s ={G_,Fy} —{G_,F}
0G_
= {G_,F+} + H .

For the case with F, and G, that is, both F and G are the functions of A, we
have

oF [Q{L ={G,F}; ={G;,F,} +{G,,F_},

K (3S+

0G
= {G+’F+} - {G’F+}+ = {G+:F+} + ?‘F .
+

Using these results, the case including Q! can be also shown by a similar but
careful computation (see Appendix A for details). O

We thus see that the flows commute if those generators are the functions of A
or/and p only. The compatibility of the flows (Lemma 2.1) implies that the dKP
hierarchy (2.4) possesses an infinite number of symmetries inducing the conservation
laws (see Theorem 3.3), and leading to its integrability. This gives the main reason
why we use the dKP hierarchy to express the deformation with an infinite number
of coupling constants.
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Let us now consider a ring of Laurent polynomials over C, denoted by C|p,
(p —s)7']. A basis for this ring may be given by

dg
dp

¢ = , iel. (2.7)

Namely ¢’ is a Laurent polynomial of degree i € Z. Introducing an ideal given by

dw
—— =W =¢"— ¢ ™ =0 2.8
i ¢~ : 28)
we have a (commutative and associative) finite dimensional rational ring of dimen-
sion n+m—+1,
Clp,(p—5)7']
Ro= 0 7 2 2.9)
w'(p)

A basis of this ring # can be taken to be a set of n+ m + 1 consecutive elements
in Eq. (2.7), including ¢° as an identity element of the ring. We thus consider here
a topological field theory with # 4 m + 1 primary fields. Since ¢" and ¢~"*+D are
identified by Eq. (2.8), a natural basis may be chosen as

{*:0€ Apm}, (2.10)

where the set of indices 4, , C Z is given by
Apmi={icZ:—m <i < n}. (2.11)

The fields ¢* in (2.10) are called the “primaries,” which describe the matter fields
of our TFT, while the other ¢’s are the “gravitational descendants.” (Throughout
this paper, we use the Greek letters for the primary indices, and the Roman letters
for all indices including both primary and descendant indices.) The TFT is then
described by an action,

S=S+ X td =S+ > 6P+ > 4, (2.12)

i€Z %€ dpm AV

where Sy is the matter sector action. In this formula, the coupling constants ¢, with
o € 4y, are called the primary couplings describing the deformation of the matter
sector of the TFT, while all the others are the gravitational couplings describing the
gravitational deformations.

In the viewpoint of the dKP hierarchy (2.4), the fields ¢’ and the coupling
constants #; are related by

OW (px)
0t;

where p, is a root of the ideal W/(p) =0, denoted by p. € Ker W’. This is the
Riemann invariant form of the flow (2.4) which is a quasi-linear system of first
order equations for the deformation variables v, and s in W. In this form of the
dKP hierarchy, we note that the primary coupling #, plays a particular role, called the
“cosmological constant” in string theory, and the corresponding field is the identity
¢°. These are customarily denoted as #) = t» and ¢° = 2, where 2 is called the
“puncture” operator. However, writing the dKP hierarchy (2.4) in a more general

N oW (p.)
= ¢(p*)(3—t0_’ (2.13)
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form, one can define a different set of primary fields, and associate t» with another
primary coupling #,, for some oy =+0, whose field is of course the identity of this
set. This general form of the dKP hierarchy may be given by

where {4, B}; represents the Poisson bracket with the (p,#) pair, i.e.
0AOB 0A OB
A,B — . 2.1
{4, B} = a o o op (2.15)

This is derived from (2.4) and (2.6), and the dKP hierarchy in (2.4) corresponds
to the case with j = 0. From the form (2.14) with fixed j = oy € 4, ,, the flow
equation for the W potential similar to (2.13) takes the form,

W (ps) W (ps) _ d'(ps) W (ps)
o Oy G(pi) Oy,

This defines a set of new primary fields with a fixed oy € 4, ,
{$* := ¢*/p™(mod W'Y : o € Apm} (2.17)

whose identity element is given by qg“o. This implies that we have n+m+ 1 dif-
ferent choices of the puncture operator, £ = ¢*, and the cosmological constant
t» = t,,. Note that each new field q~5°‘ is also defined as an element of the ring £ in
(2.9). One should also note that the hierarchy (2.14) is mathematically equivalent
to (2.4), and the solutions of this hierarchy are of course the same as those of (2.4).
However, as we explained above, the physical significance of the flow parameters
t, is different, and this observation will be useful to construct various solutions rele-
vant to our TFT. In particular, the dKP hierarchy in (2.14) with j = ag = —1 turns
out to be the dispersionless (or continuous) limit of the generalized Toda hierarchy
[Kol], and introducing P := p — s, (2.14) becomes
6_W_P(6Q,~ ow  0Q; (’3W>

a  \ 0P d_, 0t_y OP

OP 0ty 0Ot_; OP

= ¢'(ps) (2.16)

(2.18)

The right-hand side gives the Poisson bracket for the dispersionless Toda hier-
archy [TT1]. The basis of this ring is then given by

{¢* = P¢*(mod W') : w. € 4, ,} C C[P,P7], (2.19)

and the W potential is

1 w_
:___Pn-H Pn e m'
w " + wy, +Wo+ +2P2 +um

(2.20)

With the ideal (2.8), the fusion algebra on the ring £ is defined by the product
rule,
¢ PP = EZA; Pg? (mod W), for o, B € Ay, (2.21)
y n,m

with the structure constants cyﬁ Associativity of the fusion algebra plays a funda-
mental role for the TFT described by the W potential. It is then an important subject
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to study the structure constants as functions of the coupling constants ¢ for i € Z.
We will study the fusion algebra (2.21) in terms of the 3-point functions in Sect. 4.
As a final remark of this section, we note that our choice of the rational ring
on C[p,(p —s)~'] can be naturally extended to a more general case with multi-
poles at p=s;, i =1,...,1, proposed in [ANPV,BX,Kr2]. In fact, because of the
asymmetric form of p and (p — s)~!, it is immediate to see that a ring in this general
case is defined on the Laurent polynomials in C[p,(p —s1)~,...,(p —s1)~'].

3. The dKP Hierarchy in the Universal Coordinates

The dKP hierarchy (2.4) defines the flows of the variables v,, —-m < a <n—1,
and s. In this section we reformulate the dKP hierarchy (2.4) in terms of new vari-
ables, that is, a reparametrization of the deformation variables. These new variables
which we refer to as the “universal coordinates” are introduced as follows: First we
invert Eqgs. (2.2a) and (2.2b) in terms of p respectively (see also Appendix B for a
motivation of this procedure),

0 u

u
p=A— ==y =, forlarge 4, (3.1a)
oy, w7 u’

p=ul 4 + +H’l+ , for large u. (3.1b)

Then we have:

Lemma 3.1. The coefficients u' for i € Z can be expressed as the residue formulae,

Hil res [A1], Jor 0 i< o0,
p=00
u={ res s [log 4] + res[log ul, fori=-1, (3.2)
H res[ull 1] fOr —OO<I§—2

(The residue formula is defined in the usual way as (A.3) in Appendix A.)

Proof. These formulae except i = —1 can be shown by replacing the differential
dp in the residue integral with that of the local coordinate, i.e. dp = (dp/dl)dA or
dp = (dp/du)du. As explained in Appendix A, the u~! is evaluated as

ul = res [log Al+ res[log ul = res [log rl— res[log(p - )]

1
= 5 flogpdp—flog(p—s)dp}=—f1g< )dp—s
m Coo és

where the contour C, is taken around p = oo, and C, to surround a branch cut
between p = s and p = oo, in both directions counter-clockwise. [
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Note in (3.2) that the coefficients u* for « € 4,,,, are determined from the defor-
mation variables v, and s in Eq. (2.1), while the others are polynomials of these u*
(see Proposition 3.3 for their explicit forms). These variables u* play an important
role throughout this paper, and we call them the universal coordinates of the defor-
mation. One of the main purposes of this paper is to construct them as functions of
the coupling constants ¢ by solving the dKP hierarchy (2.4).

We note that the universal coordinates u* are related to the primaries ¢* through
the W potential:

Proposition 3.2. For each primary index o € A, ,, we have

ow

= ::BGEA: nup®”,  (mod W'), (3.3)

where a metric 1,p is defined by

5a+ﬁ,n—1’ for -1 é a’ﬁ é n,
Nap =S Oasp—m—2, Jor —m <o, < -2, 3.4)

0, otherwise .

(Throughout this paper, we use n,5 =n** for lowering and raising the primary
indices.)

Proof. We differentiate #* in (3.2) with respect to ## to find for 0 < o, 8 < n,

Onp = TES [/1“6—/1] = res [Aa—"a—W] .

p=00 auﬁ p=00 6uﬂ
On the other hand the definition of ¢# in (2.7) leads to

res (A" ¢"] = res [17"A] = buppn (3.5)

p=00
for 0 £ f < n. By inspecting (3.1) we note for 0 < f < n,

ow

— € C[p].
Then the uniqueness of polynomials which are orthogonal to A*~" gives Eq.(3.3)
for 0 £ a < n. A similar calculation leads to the cases for —-m < o < 0. O

The formula (3.3) is a Legendre transform between
{#*:0€dy,} and {P*:a € dym}

with the generator W, i.e. dW =} . 4, 9"duq, and gives an inversion formula for
a reconstruction of the W potential from the universal coordinates u® (see Eq. (23)
in [AK] for the explicit formula). The most important aspect of the coefficients u'
in (3.1) is that they give the conserved densities of the dKP hierarchy. Namely we
have:
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Theorem 3.3. There exist functions G7 = GY(u) such that

ol 0
E=_—GY, ijel. 6
3 6tOG' i,j € (3.6)

Proof. This can be proved by a general formulation of the dKP hierarchy, which
does not depend on the form of W (see Appendix B). Here we give a proof by
a direct calculation using the explicit formula of # given by (3.2): For i = 0 and
any j € Z. the quantity G¥ can be obtained as

oul 04 o
— = L = i J
5 = A P at,-] Jres [#{07, 4]

p=00 i+1

o] - & m o]

For other cases, similar calculations lead to the following explicit formulae for
GY:

G/ = ! res [A ¢/ =

1 ) .
res [VT1¢'], 0<i j<oo, (3.72)
i+ 1 p=cc 1 p=oco

Areslu 9], 2<i<oo, 15 <00,

G = . _ (3.7b)
7—1_1 res[W 197, 1<i<oo 25j<o0,
p=s

741——1 res [ATlp7], 0<Li<oo, 1 £j<o0,
p=00

G~/ = G = o (3.7¢)
Apresw ¢l 0=i<oo, 25)<o0,
p=s

G "' = res[logd ¢!+ res[ logu ¢~ '] = logu_,, . (3.7d)
p=00 p=s

These can be more easily obtained by using the formula (4.6) in Proposition 4.3. O
Note from (3.7) that G are symmetric in the indices, G¥ = G/, thereby

ou' oul

We also note from (3.2) that . ‘
u =G, (3.9)

The densities G are referred to as the generalized Gel’fand—Dikey (GD) potential.
As we will show in the next section, these expressions of the generalized GD
potentials will lead to the definitions of the N-point functions and the free energy
of our TFT.



Topological Landau-Ginzburg Theory 195
From Theorem 3.3 and GY = G/, we also have:

Corollary 3.4. The generalized GD potentials GV satisfy

0 . o .
—GY = —G*, L k€EZ. 3.10
o o Jor 1] (3.10)

The corollary implies that the GV can be further integrated by both # and ¢;.
This fact will be important in the next section where we define N-point functions
from GY (Proposition 4.2).

The formula (3.10) gives a general form of the dKP hierarchy, and is in fact
equivalent to the general form of the hierarchy (2.14). For each k = ay € 4,,,, in
(3.10), one can then define a new set of hierarchy,

ot 0 i
— = G’, Ljel, 3.11
Ot; Oty bJ ( )

where the new variable i’ is a generalization of u' in (3.9), and is defined as
i =G™ (3.12)

Then the Riemann invariant form of the quasi-linear system (3.11) is given by
(2.16). As we will show in Sect.4, the primary fields ¢* in (2.17) are related
with the generalized universal coordinates #* by the same Legendre transform as in
(3.3), ie.

ow - ~

o by = X nypd? (mod W) . (3.13)

u BE dnm
In (3.11) the dKP hierarchy is defined over the entire phase space of the coupling

constants. However, if we restrict the hierarchy only on the small phase space, we
obtain:

Proposition 3.5. The dKP hierarchy (3.11) with i,j € A, , possesses the following
solutions for each oy € 4, m,

i :ﬂg n*Ptg, o€ Apm. (3.14)

As a special case with ay = 0, we have u, = t,.

Proof. Note from (3.13) and (3.14) that we have OW/ot,, = OW/0ii,, = P =
1(mod W'). Then calculating (3.11) with (3.14) and finding the same equation
as (3.5) in Proposition 3.2 verifies the assertion. O

With the solution (3.14), the primary coupling #,, then gives the deformation
parameter (cosmological constant) corresponding to the puncture operator (5“0 =2
in the new set of primaries {QZ)“} of (2.17), as we have described in Sect. 2.

It is obvious but important to note that the solution (3.14) does not satisfy the
dKP hierarchy for the gravitational couplings #;. For each «q the solution of (3.14)
gives a “flat” solution of the WDVV equation, Eq. (1.2), and describes the matter
sector of TFT at the topological point [DW] (see Sect.7). Proposition 3.5 then
implies that the dKP hierarchy with a given W potential admits the same number
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of flat solutions as of the primaries, that is, n+m+ 1 for W in (2.1). In order
to construct solutions with the gravitational couplings, one needs to solve the dKP
hierarchy in the entire phase space. It is however surprising that these solutions
can be obtained by solving the dKP hierarchy only in the small phase space. This
has been shown in [KG], and may be considered as the renormalizability of the
universal coordinates. This will be further discussed in Sect. 6.

4. N-point Functions

In this section we give a realization of our TFT by constructing explicit formulae
of the N-point functions in the framework of the dKP hierarchy. Let us begin
with:

Definition 4.1. A complex function (" ---¢™) of t =(t;:i € Z) is a N-point
Sunction of the fields {¢'}, if there exists a function F = F(t) such that

0

. . 0
(97 $M)(O) = 5 = F (). (41)

Here the function F(t) is called the free energy of a TFT.
From Theorem 3.3 and Corollary 3.4 it is immediate that:

Proposition 4.2. There exists a function F = F(t) such that the generalized GD
potential GY in (3.7) is expressed by

N
V= — —
¢ =5 ath' (4.2)

It is then natural to identify GV to be the 2-point function generated by the free
energy F, o -
(¢'¢7) = G (u). (4.3)

This gives a constitutive equation of the 2-point function aé a function of the uni-
versal coordinates [DW]. Also with (4.3), the variables #' in (3.12) with a fixed
oy € Ay,,m are expressed by

i =(p'p™), i€Z. (4.4)

Now we define the N-point function of our TFT by differentiating (4.3) with
respect to the flow parameters,

<¢i¢j¢k1,“¢k1v—z>.._a_... 0

Oty,  Otyy_,

(') . .5)

In particular one can prove:
Proposition 4.3. The 3-point function defined by (4.5) can be represented by the
residue formula

o'd’ d)k%t—pf}

b { % “®

('d/¢") =
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Proof. With (¢'¢/) = GY of (3.7), it suffices to show

k
I:(b ¢f¢ a,o:| ' (4.7)

) = s, |

pEKer W'’

For the case i = 0, j < —2, we get by analytical continuation of the contour in
the residue integral,

i oW
the rh.s = res [(b d)] i } — res {(}5 ¢’ ot }

p=00 W’ p=s

D Aitl ; Kl ”—j—l
T o [(ﬁ]a_zk (i+1>}_§e=ss [¢a_g(-(j+1>] ' (4.8)

The second piece becomes

ia iu_j_l _ i .
=i ()] - =l [
)."H 0 'u—j—
poo 5p< 5_[1+1] ‘

Putting this into (4.8) and using (3.7c) yield the Lh.s. of Eq. (4.7). For other
cases of i and j, (4.7) can be shown similarly. O

Note here that, if W is a polynomial in p, i.e. the A-model, the residue in
Eq. (4.6) can be evaluated at p = co. We also remark that /' is nilpotent in the
numerator of the integrand in (4.6), and the residue formula (4.6) is faithful to the
ring structure with the ideal W’ = 0. With Proposition 4.3, the integrability of the
3-point function is evident, and is equivalent to (3.10) in Corollary 3.4,

™ 2 (979" = A 2§19 = (#9795 (4.9)
i J

It should be also noted that the 1-point function obtained by further integration of
(4.7) can not be explicitly expressed unless we give a specific form of the solutions
of the dKP hierarchy (see Sect. 6).

As was shown in the previous section, the coupling constants t, for o € 4, ,
are identified with the universal coordinates u, at a topological limit of TFT
(Proposition 3.5). This suggests that we have another type of free energy in terms
of the universal coordinates u#*. Namely we have:

Proposition 4.4. There exists a function Fy = Fo(u) such that for o, ff € 4, m,

. o 0
G = aéu—ﬁF (4.10)

Proof. Note first that the generalized GD potential G*# can be considered as the
functions of the universal coordinates u* instead of z,. From Proposition 3.2 and
the explicit form of G*/, one can easily see that G* can be integrated by both u*
and uf. O
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Note that the existence of Fy results directly from the definition of the universal
coordinates, and not as a consequence of the dKP hierarchy. With the more general
solution in Proposition 3.5, that is, i, = (¢™¢,) = ¢, for each oy € 4, ,, we have
from Corollary 3.4:

Proposition 4.5. There exists a function F,, = F, (i) such that for o, € Ay m,

0 0
G*=_—_—F,. 4.1
il ttg @.11)
One should note from these propositions that the 2-point function G*f is a
universal object, that is,
0%F) 0% Fy,

aﬂ = =
G 5uaauﬂ 6&@12,; ’ (4'12)

This has been found as a symmetry of the WDVV equation in [Du2].
From Propositions 4.4 and 4.5, we propose:

Definition 4.6. A complex function (¢* ---d™)o of the universal coordinates u*
for o € Ay is a universal N-point function of the fields ¢*, if there exists a
Sfunction Fy = Fo(u) such that for o; € Ay m,

0
Fo(u) . 4.
R (O (4.13a)
We call the function Fy the universal free energy. In general, one can also de-
fine universal N-point functions for the fields {¢*} in (2.17) with the free energy
F (i) as

<¢°‘1 . ¢°‘N>0(u) =

~ ~ 0 0
G Y () = —— e ——F (@) 4.1
<¢ ¢ >0(0(u) aﬁal aﬁow a()(u) ( 3b)
Note that F,, gives the free energy F in (4.1) at the topological limit corre-
sponding to the flat solution #, = t,. For oy = 0, we also notice that owing to (3.3)
the 2-point functions G* in (3.7) can be further integrated by u* and the universal
1-point functions are expressed as the period integrals,

1 o-+n
= G e ST 0sase, (4.14a)

(¢*)o

(=" = res [W (logfl— ;%)] + res [W <log,u -~ %)] ., (4.14b)

p=00 p=s

1
res[u®™ !, 2<a<m. (4.14¢)

(@70 = (at+m— 1) —1) pos

These 1-point functions can be extended for all fields ¢’ with i € Z by integrating
G"™ with respect to u,. With these definitions of the N-point functions, we see the
universality of the 2-point functions,

($"¢F)o = (¢"0F) = (*P )., - (4.15)
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The universal 3-point function can be also written in the residue formula,

{wwwy

(@*¢F¢")o = res

pEKerw’ (4'16)

W/
With (4.16), the metric defined in (3.4) can be expressed by the universal 3-point
functions, i.e. for o, f € 4, m,

Nag =0 = (¢* P ") . (4.17)

Note that in terms of the flat solution i, = ¢, obtained in Proposition 3.5 we also
have 3
= 2-G% = (" ™) . (4.18)
6t,g
The flatness of these 3-point functions is a fundamental property for TFT.
From (4.16), one can define an inner product on the ring #Z of (2.9) with a
bilinear map, (+,-)o: Z x £ — C,

o v\ _ 0
Gmi= s, | 5%] = @ghn. (4.19)
The ring with this inner product {£,(-, - )o} then defines a commutative Frobenius
algebra. In particular, the set of primary fields {¢*} defined in (2.7) gives an or-
thonormal basis, i.e.
P ¢p
o — 5% — _
(¢, ¢p)o = 05 = L [ 7| (4.20)
It follows from (4.20) that the following bilinear map also gives an inner prod-
uct which makes the fields {¢} in (2.17) to be orthonormal, i.e. for a fixed
do € An,m>

pEKer W’

T ¢ A% \2
(¢ ¥)sy = teS [%J (4.21)

Note that (¢, ) = ((]Nb, tﬁ)ao, i.e. the invariance of the inner product under the change
of primaries.
Let us now consider the fusion algebra (2.21) with the universal 3-point functions

(4.16). Using (4.19), the structure constants c$ﬂ in (2.21) can be written by

= ("GP ho= 3 (66" )onsy . (4.22)

66An,m

Then the associativity (1.2c) follows through reducing the following quantity to the
universal 3-point functions (4.16),

ws[wwww

eSS 7 ] s P70 € Ay . (4.23)

For the case of the dKP hierarchy in the form (2.16), the fusion alg-
ebra for {¢*} is defined in the same way: From (4.21), the structure constant &ﬁ‘ﬂ
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is given by

Ta 1B T %0 \2
[¢ P,(¢") } | (424)

W/

This also gives a residue formula of the universal 3-point functions for {q~5°‘}, and
from (3.13) and (4.15) we have

. 0 7, 0
o 1B Ty _ L = —_— * b
In particular, we see 7 = (¢*¢#$™),,. We also note

= 3 Y= T &g (mod ), (4.26)
YEdpm YEdnm
which leads to the linear transformation between the fields {¢*} and {q~5°‘},
o __ a0 T f !
P* = ﬂeZAM ¢’ (mod W'). (4.27)

With (4.27), one can now prove the relation (3.13), 0W/0u, = (;3"‘ (mod W'): Taking
the derivative of the W potential with respect to u,, we have

« 0w oW diip W | o ra
9" = ouy  p&7., Otip Oux 3 &7 aaﬁ<¢ 9" Pplo
1)/
= Z —aﬁcﬂo , (mod W/) . (428)

BE Anm

Using (4.27) then leads to the relation (3.13).

Before closing this section, we remark as a corollary to Proposition 4.5 that the

dKP hierarchy in (3.11) for the entire phase space can be put into a hamiltonian
form,

o _ o _ 0 il

Ot Oty ity Oty plq., " 0P

i€eZ, (4.29)

where the hamiltonian function A’ is given by the 1-point function (¢'),, defined
in (4.13b). Note here that the index i in the 1-point function is extended to i € Z,
as explained below (4.14).

5. The Topological Recursion Relation

In addition to Egs. (1.2), the TFT’s also satisfy the so-called “topological recursion
relation” which gives a recursion for the 3-point functions of the descendants. In
this section we show that the dKP hierarchy (2.4) also provides this important

property.
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Let us first define the descendant fields of the primaries ¢*, an(¢*) for N = 1,
except o = —1,

on(¢*) == 99i _

P (5.1)

ena VO 0 <o < p,
{dN,adrN’"—'“', -m<as -2,

where the normalization constants cy,, and dy,, are defined by [EKYY, AK]

eve = [+ D)a+1+n+ D) (a+1+N-Dn+1N]"",  (52a)

dno = [(Je] = D(Je] =1+ m)---(Ja] =1+ N = Dm)] 7" (5.2b)

For the case of « = —1, the descendant field on(¢~!) is defined as

05t o [[wN wN
on(p™") = %}V =% ([m(logl—CN)L - [W(logﬂ—dzv)]_) ,  (5.3)

where the constants ¢y and dy are given by

cy = ! %1 (5.4a)
N ohrigm '
dy = 1§1 (5.4b)
N_mlzll ’

In Appendix A, we give the explicit formula of (5.3), and show that oy(¢p~!) is
defined as an element of the ring # of (2.9). The compatibility of these fields can
be also shown in the similar way as in Lemma 2.1. Equation (5.3) gives a precise
definition and generalization of the descendant fields of ¢! found in [EY]. With
the relation 0W/ouy = ¢° = 1 (mod W") (see (3.3)), the descendant fields (5.1) and
(5.3) obey a recursion relation,

0
on-1(¢%) = %GN(W), (mod ') (5.5)

Correspondingly to those descendant fields, we also define the gravitational coupling
constants fy, as

Cﬁ,latN(nH)Jra, 0=a=n,
Ing =< N1, x=—1 (5.6)
d;’; L _Nm—|ajs —M a2,

Thus the gravitational descendants are constructed entirely from the primary (matter)
fields alone, similar to the case of the minimal model [Lo, EKYY,EYY1].

With the definitions of Q;l in (5.3), and #y_; in (5.6), one can extend the
3-point function in Proposition 4.3 to include the field oy(¢~!). In particular, fol-
lowing the calculations in Appendix A and in the proof of Proposition 4.3, we find
the formula for the 2-point function with oy(¢p~'),

) wN ) wN )
(on(d™e') = res ]—\,!—(logi - cN)¢’] t+res [m(logu - dN)qb’] . (57
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As shown in (4.14), the 2-point function (oy(¢~!)$*) can be further integrated by
uy, and we have the 1-point functions in addition to (4.14),

WN+1
(on(¢™ ) = [(N 1),(10g/1“cN+1)}
N+1
+ res [(N 1),(logu—d1v+1)] . (5.8)

By the ideal W’ = 0, we have the extended relation of (2.8),

an(¢") = an(p~ D) = N¢ “Nm=tt) (mod W), N 20,  (59)

N'm
with the identifications oo(¢*) = ¢%, co,o = do,« = 1 for any o € 4, ,,. This implies
that the solutions of the dKP hierarchy (2.13) have the form with #y o := 1,,

u* = u*(tn,p @ tnyn + tN—(m+1), for each N = 0, and B € 4,,), (5.10)

where v _(m+1) is the flow parameter corresponding to the field on(d~"D), ie.
tN—(m+1) = N!m"t_(y i 1ym—1. Note that these on (¢~ D) and ty_(m+1) Were readily
excluded from the defining relations (5.1) and (5.6). However, because of (5.10)
we identify ty, with fy, + tn—(m+1). With these notations one obtains the main
theorem of this section:

Theorem 5.1. For each primary ¢, we have the topological recursion relation for
the 3-point functions,

(on(¢™)4B) = 3 (on—1(¢")¢F)(¢ppAB) , (5.11)

BE dnm

for any A,B€ C[p,(p—s)"']and N = 1
To prove this theorem we need:

Lemma 5.2. The descendants can be decomposed into the primaries, i.e.,

(@)= ¥ (on_1(¢*)¢")ds (mod W’). (5.12)

BE Anm

Proof. From the orthonormality (4.20), we note that Eq. (5.12) is equivalent to

)P
(ov-1(#28%) = on(@ )0 = 1es | 53y

pEKer W’

The function in the residue has a pole at either p = oo or p = s in addition to those
at the roots of W’ = 0. Therefore we evaluate (5.13) for the case of a% — 1,
ey tes [ANTDOHDFeH B for ¢ > 0
p=00

the residue = >
dy,y tes [uV=Dm=2=1gf1 for ¢ < -2
p=00

IIA
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which gives, with (3.7), the Lh.s. of (5.13). For the case of « = —1, we have

(on(p™ )P %) =  rtes {U_M%M]

pEKer W'

= s [ =ytog —ew-)¢#] + res [ F = pyrtlogu —dw-1)o/]

(on-1(p~1)pF). O

Then the proof of Theorem 5.1 is straightforward with the residue formula of the
three point functions (4.6).

6. The String Equations

Here we derive the “string equation” as the solution of the dKP hierarchy (3.6),
and give an explicit scheme to construct the corresponding free energy. The main
result in this section is to show that all the effects of the gravitational couplings to
the constitutive equations (2-point functions) can be described in the small phase
space alone by renormalizing the primary couplings, that is, the renormalizability of
the solutions of our TFT. Let us first note from Theorem 5.1:

Corollary 6.1. The dKP hierarchy (3.6) for the gravitational couplings ty g can be
decomposed into the flows for the primaries with t,,

ou* o
= S (o9 S 6B E Ay (6.1)
y

atN,,B YE dum

where the 2-point function (ay_1(¢*),) is a function of u* given by (4.3).
From Corollary 6.1 one can obtain:
Theorem 6.2 [KG). The solution of the dKP hierarchy can be expressed by
Wty je )= i*(ig: p € dpm) foracdym, (6.2)

where ©1* and % are given by for all o, B € Ay m,

Wty 1y € dum) =u"(..., 0,1y, 1,0,..), (6.3a)
fg=1tp+ > (on-1(d")Pp)tn,a - (6.3b)
OCGAn,m
N21

Proof. Equation (6.1) can be expressed in the invariant form of the vector
]
field Xy,

X =0 fora,fpedy, and N =1, (6.4)
with '
p._ 0 By 0
Xy =— — > (ov_1(dP),) — . (6.5)
Otn,p Y€ Anm at,
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This implies that each u* is constant along the characteristic, which are straight
lines, given by, for o, € 4,,,, and N = 1,

d[N’ﬁ dt,
= . 6.6
1T T (@h6) (00)
The integrals of Eq. (6.6) are
fo=tut 3 (on-1(¢")du)inp (6.7)

BE dnm

which gives Eq.(6.3b) on taking the sum over N = 1. Here 7, gives the initial
position of the characteristics at #y3 =0 for all N = 1. Note then that #* in
(6.3a) are the solutions of the dKP hierarchy in the small phase space labeled
by {fy:® € 4, m}. This completes the proof. O

This theorem implies that the solution of the dKP hierarchy is completely de-
termined by that in the small phase space, #*. To be concrete, we first note that
Eq. (6.3b) may be written in the following form, which gives the string equation of
our TFT (see the end of this section),

0=t+ X (on_1(d")ba)ing (6.8)
ﬂﬁgnl,m

by shifting the couplings with arbitrary constants Cy,p as
fMﬁthﬂ-f-CMﬁ, for N =21, (6.9a)
and by imposing the relations,

— 5 {on-1(¢P)pu)Crp =1 - (6.9b)
P

Note here that the dKP hierarchy is translationally invariant in the couplings, that is,
the solution can be written in the shifted variables 7y,4. A solution #*(7,) of the dKP
hierarchy in the small phase space is then given by solving the algebraic equation
(6.9b). For example, by the choice of Cy,g = —0n,10p,4,, this equation coincides with
(3.14), so that the dKP hierarchy provides a flat solution of our TFT. All the flat
solutions are indeed obtained from this choice of the constants Cy g. The solution
in the large phase space is given by merely writing 7, in #%(¢,) by (6.3b). This is
an implicit solution called the hodograph solution, which still includes the function
#* in the r.h.s. of (6.3b). (See below for the construction of explicit solutions.)
Thus depending on the values of Cy g one can construct infinitely many solutions
of the dKP hierarchy in the entire phase space. Physically speaking, a choice of
Cy,p amounts to considering a TFT in the small phase space where the gravitational
couplings take the fixed values,

ing=Cnp NZ1, fEApm, (6.10)

and the TFT in the large phase space is obtained as a perturbation from this gravity
background.
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The physical meaning of (6.2) is that all the gravitational effects in the universal
coordinates u*(¢), consequently in the 2-point function (¢*@?) are renormalized into
the primary couplings 7, by (6.3b). This renormalizability of the TFT can be most
properly seen by writing the action (2.12) as

S =358+ Z [MaGN(¢a) =8+ Z fad)a (mod Wl) . (6.11)
A€ dnm A€ dpm
N20

This follows from Lemma 5.2 for the decomposition of the descendants. By (6.3b)
and (6.9b) we obtain the string equation in the generalized form,

- Y (on-1(@P)p)Crp =t + X (on-1(P)du)tn g - (6.12)
i 15

Here the 2-point functions are the known function of u, by the explicit forms
(3.7) and (5.7), thereby (6.12) gives an implicit solution of the dKP hierarchy, the
generalized hodograph solution. In order to solve (6.12) explicitly, we employ a
perturbation method, assuming the gravitational couplings #y, to be small, where
the leading solution is given by (6.9b) with 7, = f,, i.e. ty, =0 for N = 1. Thus
one obtains the solution u*(#;) as a formal series in the gravitational couplings ty .
This is the well-known renormalization procedure in the quantum field theory. For
example, in the case where Cy 3 = —6n,16p,0, Eq. (6.9b) gives the simplest solution

A

fly = fy .
The string equation (6.12) then becomes

Uy =ti+ 5 (on_1(0")budtnp » (6.13)
PR

which was discussed in [DW, EYY2]. The above mentioned renormalization can be
easily carried out in this case.

Let us now give an explicit form of the free energy F of our TFT. Based on
the string equation (6.12) we have:

Theorem 6.3 [Dul,Krl,TT2]. The free energy corresponding to Egq.(6.9b) is
given by

F(tnog i o€ dpm,N 2 0) = > Inadup(on(9)om($))(2) (6.14)
€4

15

N —

a’ﬂ ,
NM20

=

where to, = t,.

Proof. By multiplying (6.8) by (¢*4B) with any fields 4,B and using the topo-
logical recursion relation (5.12), the string equation (6.8) becomes

- - 0

0= Y invplon(¢P)4B) = Y inpg=——(4B). (6.15)
BEdnm Bed,, | Oing
N0 N0
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This shows that the 2-point function is a homogeneous function of degree zero
in typ, so that the free energy is of degree two, that is, with an Euler operator
el

. 0
EF1:= > tN’ﬁét_—F =2F. (6.16)
BE dum N.B
NZ0

The formula (6.14) is then obtained by applying the Euler operator once again to
(6.16). O

One should again note that the 2-point functions (¢'¢/) in Eq. (6.14) are the ex-
plicitly given quantities in terms of the universal coordinates {u*}, which are the
solutions of the dKP hierarchy. We also note that Eq. (6.14) can be reduced to the
free energy on the small phase space with ty, =0 for N = 1,

Floret) =5 S ats$ 9+ S Cuatplon(99h)

B € dnm B E dnm
N=1
1
+5 L CuaCuplon(dMou(@") . (6.17)
@, An,m
RS

In Sect.8, we discuss several examples of LG potentials, and give the explicit
formulae of the free energy.

7. Critical Phenomena

In this section we discuss the critical behavior of the TFT coupled to the gravity
based on the string equation (6.12). This corresponds to studying that of a ma-
trix model in the genus-zero (classical) limit, which would obey a constrained KP
hierarchy with the W potential in a pseudo-differential form.

We call our TFT with the rational potential (2.1) a W, ,-model. For example,
W,o gives the A,-model, and Wy, , with the Z,-symmetry, where the deformation
variables are constrained by s =0 and vy,1; =0 for —1 < a < n— 1, gives the
Dy-model. Also, Wy,41,2, With the Z,-symmetry is a natural extension of the latter
[T]. (The truncation by the Z,-symmetry with @ = 3 does not make sense, since
the flat metric is vanishing for the primaries given by ¢*, where « is the a-multiple.
In this regard there is a misstatement in our previous paper [AK].) As is clear from
the free energy (6.14), the W, ,-model with non-zero m in general has a scaling
violation due to the log-term. The above models are all of the types which do not
have such a violation in our TFT.

We now study critical phenomena of the W, ,-model by scaling to the special
gravity background given by (6.10),

inpg = —OnnOpp, for some fo, No = 1.

This amounts to studying the dKP hierarchy in the small phase space with Cy g =
—0n,N, 08, 5,- The solution of the hierarchy is then given by the string equation (6.12),

ie.,
(ONy=1() o) =t . (7.1)
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For the scaling models, we find the critical behavior of the free energy,
F — g2 hsmF  ast, — gl 77, . (7.2)

Here ¢ is a (dimensionless) scaling parameter, ysuing s called the string susceptibility
[FGZ], and v, is the critical exponent of the primary ¢* following from (2.16), i.e.

P* — & ¢* . (7.3)

Since 43“" = P(=1), the puncture operator, we take y,, = 0. Hence the dimension
of ¢, equals 1, and #,, = t», the cosmological constant. The values of Ysuing and 7y,
can be computed by a dimensional analysis of the string equation (7.1). (Make use
of the case « = g to fix the dimension of A and p.) Here we give only the results:

a) Case with ay = 0:

S 2
string d+:i:’
ya:(xd—aos fOl‘O(gO,
++
a+ 1) 4oy +1
ya=—( ) 0 , fora <0, (7.4)

dit

where

d++ =N0(n+1)—050+ﬁ0, for ﬁo g 05
1
. :No(n+1)—oc0—1—(ﬁ0+l)%, for By < 0.

b) Case with oy < 0:

2
Vstring = ‘E,
o+ 1) o+ 1
Vo = ( )"+l 0 , fOI‘OC%O,
d_+
=27 fra<o0, (1.5)
d_+
where
d_y = Nom+og+1+(Bo+1)——, for fp 20,
n+1
d__ =N0m+060—,30, for ,30 <0.

For the W, 0(4,)-model these results are well known in the critical analysis
of matrix models [Do, GGPZ, FK,FKN,DVV2]. In fact the critical W, ¢-model is
obtained as the genus-zero limit of the double scaled (p — 1)-matrix model at the

g™ criticality in which

p—1=n, g—1=No—1)(n+1)+ Py . (7.6)
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The latter model is identified with the (p,q) minimal model coupled to the grav-
ity. Among the minimal ones the (n+ 1,7+ 2) model, for Ny =2 and By =
0, falls into the unitary series, of which the central charge is given by 1 —
m in the gravitationless limit [KPZ,DK,Da]. The (n+ 1,q) models
with 1 £ g <n+1 correspond to the topological limits of the W, -
model.

For the W,,41,2,-model with the Z,-symmetry these results should be understood
with the following parametrization of the indices,

n=2v+1, m=2U,

and
a=2a, foracd,,. 7.7

An interesting observation about the models of this type is that there is a symmetry
in the critical exponents given by (7.4) and (7.5) under the simultaneous interchange

n—om-—1, m—n+1,

and
o+1— —(a+1). (7.8)

This implies that the W, 2,-model in the gravity background given by 7y p =
—0N,N,9p,p, has the same critical behavior as the W, 3,42-model in the back-
ground 7y, B = —ON,N,Op—(Bo+2), if the primary coupling #,,a € A3, , in the former
is identified with ¢_(y42), —(®¢ 4+ 2) € 43,2242 in the latter. This symmetry holds
for any Nyp(=1). Hence both models are considered to be physically equivalent
even when the gravity is turned on, by generalizing the identification of the primary
couplings for the descendant couplings. Thus there exists an equivalent pair in the
W, m-models with the Z,-symmetry.

Although the scaling analysis from (7.1) to (7.5) cannot be applied for the case
without the Z,-symmetry, we conjecture that in general the ¥, ,,-model is equivalent
to the W,,_1 n+1-model by the above identification of the couplings. Notice that this
equivalence is based on the interchange of the local coordinates A and u in (2.2) (i.e.
interchange between p and p — s). It is also interesting to see how this symmetry is
extended for the LG models with multi-poles in the rational potential [Kr2]. In the
next section, this equivalence will be checked for the W ,- and the W; ;-models,
by calculating the free energy in the small phase space with the different gravity
backgrounds given by 7y g = —0n,10p,4-

8. Examples

In order to demonstrate the results obtained in this paper, we here give the
explicit results for several models, which include the W, ;-model for a exam-
ple with two primaries, and the W;,-, Wi 1-models for those with three
primaries.
Wy,1-model. The W potential in this case is given by (2.1),

[

W=p+_=, (8.1)
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where v_; and s are related to the universal coordinates (3.2) as

v = W = U_q, s=ul=up. (8.2)
Then we have (2.2),
Uu_y U_1up
A=p+—+ 4+, 8.3a
Pt e (8.3a)
. +uo+(p—uo) . (8.3b)

The flow equation for #_; is then given by (3.6) and (4.29),

0 U—1\ _ 0 1 0 u_y\ _ 0 0 1 .
0t ( Uo ) B (1/14—1 0> oty ( uo ) = o (1 0>VH0 > (84)

where VH, b= (6H0"1/6u_1,6H0“ 1/6u0)T , and the hamiltonian function Ho_I is
given by the 1-point function (4.14b),

oFy 1
® =~ +u_(logu_, —1). (8.5)

Hy'' = (¢ = G 2

Here the universal free energy F; can be found as follows: With the hamiltonian
for the identity flow given by H{ = (¢°)o = 0F,/0ug = ugu_,, we obtain

1 1 3
Fo= 5ugu_l + zuz_l <logu_1 — E) . (8.6)

The hamiltonian H, ! for the descendant field of ¢! is given by

H' = (0™ o = g1 +uous(logur — 1) (8.7)

The 2-point functions (¢'¢/) then become
(%) =ur, (%07 =u,  (¢7'¢7!) =logu_,

(61(9°)9°) = uou_1, (01 ()™)Y =u_1 + %uﬁ ,

(01(¢7")9°%) = u_i(logu_y — 1)+ %ué, (61(¢H9p™") =uologu_, ,

(8 = 302+ uiid,

(61(%)o1 (")) = luf}-l—u_luologu_l,
3

(o1(¢o1(¢™")) = udlogu_y +u_{(logu_,)* —2logu_; +2}, (8.8)
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which are put in the string equation (6.8),

fo + (°Po)i10 + (™ o)1, —1 + (61(d")Po) 20 + (G1(d™Po)ia,—1 -+ =0,
(8.9a)

F_14+(@°d_ )10+ (@ d_1)f1, —1+(01($))P_1) D20+ (01(d™ Vp_1)io,—1 -+~ = 0.
(8.9b)

As we mentioned in Sect.2, we can set either a) f{p = or b) t_; = tp. The
case of a) corresponds to the dKP equation in the form of (8.4), while in the case
of b) the dKP equation is rewritten in the form (3.11) with ¢y = —1,

0 (i, 0 e 0 u_y 0 0 1\ . .,
— - — . 8.10
Oty ( iy ) <1 0 ) ot_q ( il > 0t_, (] ()) VHO ’ ( )

where we define i, = (¢p*°¢,) in (4.4) with ag = —1,

fig := (¢~ o) = logu_, iy = (" p_1) =up . (8.11)
The hamiltonian function H g in (8.10) is given by
~ . oF_, 1 .
HO — 0 = — 2 1o .
0=(¢")1 90 2V +e”, (8.12)

with the free energy F_; in (4.13b),
1 ~2 o~ do
F_= §u71u0+e . (8.13)

In particular, note the universality of the 2-point function (4.12),

0*F, 0*F_ .
apBy o _ L igadB
<¢ d) >0 N auaauﬁ aﬁaaaﬂ * <¢ ¢ >—1 > (814)

where ¢ ' =1 and ¢° = p —up = e™(p — ii_;)~" (mod W'). The string equations
corresponding to these cases become as follows:

For the case of a), choosing Cx,, = —Jn,104,0 in (6.8),
up =ty +tioup + 4,1 logu_; +---, (8.15a)
U_y =tg+thou_1+tH,1u+---, (8.15b)

where t» = t_; is the primary coupling of 2 = ¢° = ¢_,. The free energy (6.14)
for the flat solution, say F(t¢»,ts), is given by Fj in (8.6) with the substitution
Ug =tp, U_1 = tg.

For the case of b), we have with the choice Cyy = —0n, 104, -1 »
u_1 = tg)-Ft]’oeﬁo-{—t],_]I;,] RN (8.16a)
o =to+totiog+t, 1ty - . (8.16b)

The free energy for the flat solution is then given by F_; in (8.13) with &_| = tp,
flg = to. This is the CP'-model discussed in [DW,EY]. As an example including a
gravitational coupling, we calculate the free energy (6.14) for the case with nonzero
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t1,—1 :=t,» [EHY]: From (8.16), we first have
~ ty - ty
1= R = . N
U_q =iy il 1~y (8.17)

Then from (6.14) we obtain the same result as in [EHY],

1 3t 2
F(tp,ta,11,9) = 77 —g’t‘fg +(1—t1p)Ye 7 . (8.18)

Here the point is that our derivation of the free energy is totally algebraic.

Wo.2-model. The W potential is given by

U_1 V_p

W= .19
p+p_s+2(p_s)2, (8.19)
with the relation,
v =u’ =u_y, (1)_2)1/2 =ut=u_,, s=u"'= ug . (8.20)
The flow equations in the hierarchy are
u_ 0 1 0 _
P 1 P U—i
— | ug = 0 0 1ju_; — | uo
0t_y 5 g
U_» Vu_y 0 —u_yfu*, U_»
5 010
=— |10 0}|VH', (8.21a)
oty
0 0 1
u_ 0 0 1 u_
0 : , \ o ’
_— up = l/u_z 0 —u_l/u_z - Uy
0ty 2 2 3 oto
u_j —u_yfut, 1 u ju’, U_n
5 010
=— |10 0|VH?, (8.21b)
oty
0 0 1
where the hamiltonian functions are given by
OF 1
Hy' = (¢ = —% =~ +u_,logu_s, (8.22a)
6u_1 2
_ 0F, 1 u2_1
Hyt = (¢ = =uplh_y + = — . 2
0 (@™o G, MU t3 -~ (8.22b)
Here the free energy Fj is given by
1, 1, 1,
Fy= 5”0”—1 + 5”—2“0 + Eu“l logu_, . (8.23)



212 S. Aoyama, Y. Kodama

In this model, there are three flat solutions:

a) With the choice Cy, = —dn,104,0, We obtain the universal free energy F
given by (8.23). The free energy F(ty:a=0,—1,—2) in (6.14) is then given by
Fy with u, = t,, in particular, #) = t5.

b) With Cyy = —6n,106, 1,

1 1 1 L.
F_= 517-1172_2 + anazl - ﬁaiz + fige™ (8.24)

where the new variables #,, o« = 0,—1,—2 are defined by

iy = (p"'p_1) =uo, (8.25)
iy = (¢ p_2) =u_fu_s.

Note here that (¢p*¢pF) = ($*¢P)_; = 0*F_1/0ii,0ig, and the free energy is given
by F(ty) = F_1(ily = ty) with t_; = tg.
¢) With Cyy = —0n,104, -2,

1. . 1. e 1. . 3
F_,= gu_lug + 5“3_2 + flgfi_q iy + 5”2—1 <log i — 5) , (8.26)

where the new variables are
iy = (p2p_1) =u_y,
iy = (p*ho) =u_1/u_2, (8.27)
g = (P 2P_2) = ug — (u_1/u_z)*.

The free energy is given in the same way as before, and ¢_; = t».

W), 1-model. The W potential is

2

w=¥ o+ =L (8.28)
2 p—s
where
Vg = uO = Uy, v_1 = u] =U_1, s = u_l =Uy . (829)

This model has been recently studied in [Du2,KO]. Here we show that the flat
solutions of this model coincide with those of the W, ,-model just discussed (the
equivalent pair discussed in Sect. 7). With (8.28), the flow Eq. (3.6) are

o [ up 0 uy o [*
— | uo = 1 0 O — | u R (8.30a)
on Oty
[Z3] 0 1 231 Ui

U_1 0 1 Ui U_g

0
—— = 1 . .
5| 0 0 | (8.30b)
U llu.y 0 O u



Topological Landau-Ginzburg Theory 213

The three flat solutions are as follows:

a) With Cy 4 = —0n,104,0,

1
F()= —U_ 1ul+

1 1 3
6 uo—f—uluou 1+2u 1 <logu 1 — 5) . (8.31)

6

This gives the same free energy F(t»,t2,,t2,) as that in the case c) of the W -
model, if we identify the variables u, in this model with iig, f = —(o 4 2) (mod 3),
in the W, ,-model as

tp :=uy = t_p, ty, = uy = iy, ty, = =u_] =1d_j. (8.32)

b) With Cyy = —0n,100,—1,

Fy= %a_lag + %al i, - %ag + dige™ (8.33)
where
=(¢7'p_1) = uo +ui/2,
iy 1= (™ o) = w1, (8.34)
= (¢p7 ') =logu_; .

The free energy is the same as in the case b) of the W ,-model.
c) With Cyy = —0n,100,1,

1
iy i + Eu | log i, (8.35)

where

¢'po) =u_y, (8.36)
= (¢'¢1) =uo +13/2.

The free energy is again the same as in the case a) of the Wy -model.

Appendix A: Calculus Including Log-terms

Here we give the explicit calculations of quantities including log-terms, for example,
the generators Oy "in (5.3), and the 1-point function (4.14b) of the corresponding
fields ay(¢p~1).

We first define the projection symbols [-]; and [+]- in (2.5) in terms of the
contour integrals. Let f(p) € C[p,(p —s)~'], that is, f(p) is a rational function
given by

f(p)= Z apt+ Y, —— (A1)

=1 (P‘S)’ ’
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Then the 4+ and — projections are defined by
Lf(P)]s = % awp®,
k20

[f(P)]- ; S), . (A2)
The coefficients a; and b; are obtained by
f(p) L . f(p),
T [pkfl] T 2mig § "fl ’
1
b =res [f(p)(p—9)""1:= %gff(p)(p —s)"dp, (A3)

where Co, and C; are the contours oriented in the anti-clockwise direction about
p =00 and p =s, respectively. Then from (A.2) and (A.3), we have

1,16,

P =55 § 1=,

P = oo § LB gy (A4)

27uc z—p

Note that the point p in (A.4) locates between C,, and Cs. Equations (A.4) give
explicit formulae for the projections of the rational functions in C[p,(p —s)~!].

Now let us consider the case including log-terms, log4 and logu. In this
case, one has to modify C; in (A.4) to C, which is taken to surround a branch
cut between p=s and p =oo. The main idea of defining these terms is to
regularize the log-terms by addmg and subtracting the singular parts of these
terms. For the formula QN in (5.3) is then calculated as follows: We first
write log A = log(4/p) + logp, and logu = log[u(p —s)] — log(p — s). Then we
have

N

N w
07! = |Retoer—en| — [ cogu—av)

wN A N
- |57 (e —ev) | |57 Goetuco 1 -am|

wN wN
+ [—N—' logp] . + [W'— log(p — s)] . (A.S5)

The first two terms are well defined and give polynomials in C[p,(p — s)~!], while
the last two terms may be computed by deforming the contour in the integrals (A.4),
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i.e. with C; — Cy,

wN wN
[—]\7!— logp} . + [7\,—'— log(p — s)} )

N1 N —
. 1 ‘ $ W(z) ngdz _ 1 ' § W(z)" log(z — s) dz
2niN'¢  z—p 27uN.a z—p
1 WE)Y z w(p)"
= 1 dz + ———1 —5).
2niN!C£ z—p o8 <z—s> 2t N! 0g(p =)

Thus Q{,l includes the log-term, and is calculated as

wvN A wN
07! = [m (log - w)] - [7vT (oglu(p — )1~ )|
w(p)"

TN

log(p —s).
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(A.6)

(A7)

In particular, we see from (A.7) that Q! = Oy ' = log(p —5) in (2.5). Note here
that the fields oy (¢~') = 00y /dp are all well-defined as elements in the ring (2.9),

# = C[p,(p—s)"'I/W'(p).

In a similar way as above, the residue formula including the log-terms can be
also explicitly expressed by the contour integrals. Let f(p) € C[p,(p —s)~']. We

then want to give a precise meaning of the quantity, e.g. (5.8),
s, [f(p)log ]+ res [f(p)logpu] .
By the regularizations for log A and log u, we obtain
A
res | f(p)log—| +res[f(p)loglu(p —s)]I
p=00 pl  p=s

1
o ci f(p)llog p —log(p — s)ldp

= Ies [f(p)log J +1es [f(p)log{u(p — )} -

p—S

(A.8)

(A.9)

Note that the contour integral in (A.9) gives fos [f(p)l+dp which was previously

obtained in [AK], i.e.

f(p) dp .
—Z

§ f(p)liog p—log(p — s)dp = [ dz §
Coo 0 Cox P
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Appendix B: The dKP Hierarchy

In this appendix, we give a brief summary of the dKP theory as a quasi-classical
limit of the KP theory. For simplicity, we consider here the original form of the KP
hierarchy, and not a constrained hierarchy discussed recently in [BX, AFNV, OS],
which is directly related to our dKP hierarchy in the dispersionless limit. The KP
theory without constraint may be formulated as follows:

Let L be a formal pseudo-differential operator given by

0 . .
L=0+> 400D, (B.1)
=0

where A’ = A'(X, Ty, T»,...), the symbol 0 implies the derivative with respect to X,
and 07'0 = 00~' = 1. The operation with ' is given by a generalized Leibnitz
rule,

6 F
F = € Z. 2
The KP hierarchy is then defined by the so-called Lax formula,
;ﬁ =[By, L]1:=B,L—LB,, n=0,1,..., (B.3)

where the differential operator B, is given by the differential part of L"*!/(n + 1),
denoted by

L', . (B.4)

n

n+1

The hierarchy (B.3) is also given by the compatibility conditions of the following
linear equations for the wave function ¥Y(Ty, T1,...) with Ty = X, and % =0;

LY =¥, (B.52)
ow
a7 =B (B.5b)

Note that (B.5b) gives an iso-spectral deformation of the operator L in (B.5a). Then,
the dKP hierarchy can be obtained from the “quasi-classical” limit of the KP theory
as follows [Ko2]: Let # be a small parameter (the Planck constant), and introduce
the variables,

t, :=hT,, forn=0,1,..., (B.6a)
a = d(tt,...):=A4(Ty, Ty,...), fori=0,1,..., (B.6b)

which lead to the replacement 57 2 —pl 0?,, Then write the wave function ¥ in (B.S)
to be the WKB form,

Y(To, Ty,...) = exp{%S(to,tl,...)}, (B.7)
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where the function S is called the action, and plays a fundamental role of the dKP
theory. With (B.7) the quasi-classical limit leads to, for i € Z,

XTgl:h"axTWHp", ash— 0, (B.8)
where p is the momentum function defined by
oS
=5 (B.9)
From (B.8), Egs. (B.5) in the limit become
@ a
A=p+—+—=+---, (B.102)
p p
op _ 00"
£ = B.
0ty ox ’ (B.10b)

where Q" given by lims_, ., [B,¥/¥] is the polynomial part of 2"*!/(n+ 1) in p,
and we denote Q" = [A"*!/(n 4+ 1)], as in (2.5). Note that (B.10) is the Hamilton—
Jacobi equation for the wave Eq.(B.5), and it defines the dKP hierarchy. In this
formulation, A is considered to be a constant given by the spectral parameter of
L. Note that the formulation we used in the text is different from the one given
here, that is, the momentum function p in the text is considered as a parameter
instead of 4. However, these formulations are of course equivalent, and indeed they
are connected as a cannonical change of variables: Namely consider the differential
three-forms (oco-forms in general),

diNdp Ndx =dQ" NdANdt,, (B.11)

which leads to both (B.10) and the dKP hierarchy in the form (2.4) by consider-
ing the independent variables to be either (4,7,,x) or (p,t,,x), and comparing the
coefficients of dA A dt, Adx or dp A dt, A dx. Now it is clear from (B.10) that the
function p gives the conserved densities of the hierarchy (Theorem 3.1). Also the
compatibility conditions among the flows in (B.10), which are now given by

0 _ 00
i (B.12)

Note from (B.9) and (B.10b) that O’ is written in the form with the action S,
A}

Q":E, for n=0,1,... . (B.13)
Writing O in a Laurent series of A, we have
; 1 : 1 N
= [y = —— A - —GY . B.14
O = = Jg,wl (B.14)

Here the coefficients GY can be calculated by the residue form,

100
i+1
TH1 o [’1 ap } . (B.15)
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which is just (3.7a), and also shows GY = G/'. We then see that the action S can
be written in terms of the free energy F,

oo ptl o 1 gF

=4l B.

Here the free energy is defined by (4.2), G¥ = 8*F/0t;0t;. The existence of the free
energy is a consequence of the integrability (B.12), i.e. (3.10),

0G7  oGN
ot B ot;
Noticing the scale invariance of (B.17) under #; — &t;, we see that the functions

GY are homogeneous functions of degree zero, and so that the free energy F is of
degree two, i.e. (6.16) [Krl, TT2]. This implies

(B.17)

it,'%F:ZF. (B.18)

Then taking the derivative of (B.18) with respect to ¢#; leads to

x oF
t———F = — R B.19
i;O '6t,~6tj atj ( )
and, using (B.18) once again, we obtain the formula (6.14) of the free energy, i.e.
1 = ..
F=2 3% t;GY. (B.20)
2,70

Note also that using the formula (B.15) the free energy F can be written in the
form [Krl],

1 )
Felres |55t , (B.21)
2 p=cc ap

where St := Y0647 /(i + 1), and Sy = Y2 10"
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