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Abstract: We first exhibit in the commutative case the simple algebraic relations
between the algebra of functions on a manifold and its infinitesimal length element
ds. Its unitary representations correspond to Riemannian metrics and Spin structure
while ds is the Dirac propagator ds = >̂ -x =D~ι, where D is the Dirac opera-
tor. We extend these simple relations to the non-commutative case using Tomita's
involution J. We then write a spectral action, the trace of a function of the length el-
ement, which when applied to the non-commutative geometry of the Standard Model
will be shown ([CC]) to give the SM Lagrangian coupled to gravity. The internal
fluctuations of the non-commutative geometry are trivial in the commutative case
but yield the full bosonic sector of SM with all correct quantum numbers in this
slightly non-commutative case. The group of local gauge transformations appears
spontaneously as a normal subgroup of the diffeomorphism group.

Riemann's concept of a geometric space is based on the notion of a manifold M
whose points x G M are locally labelled by a finite number of real coordinates
xμ G 1R. The metric data is given by the infinitesimal length element,

ds2=gμvdxμdx\ (1)

which allows to measure distances between two points x, y as the infimum of the
length of arcs x(t) from x to y,

d(x,y) = 1nf Jds. (2)
X

In this paper we shall build our notion of geometry, in a very similar but somehow
dual manner, on the pair (<srf,ds) of the algebra stf of coordinates and the infinite-
simal length element ds. To start we only consider ds as a symbol, which together
with stf generates an algebra (srf^ds). The length element ds does not commute with
the coordinates, i.e. with the functions / on our space, / G sd. But it does satisfy
non-trivial relations. Thus in the simplest case where sd is commutative we shall
have,

[[f,ds-l],g] = 0 Vf,ges/. (3)
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The only other relation between ds and si is of degree n in ds~ι = D and expresses
the homological nature of the volume form (see Axiom 4 below). When si is
commutative it has a spectrum, namely the space of algebra preserving maps from
si to the complex numbers,

χ : si -» C; χ(a + b) = χ(a) + χ(b\ χ(ab) = χ(α)χ(i) Va,b e s/,

χ(λa) = λχ(a) V l G C , V α G ^ . (4)

For instance, when j / is the algebra of functions on a space M the space of such
maps, called characters of si identifies with M. To each point x G M corresponds
the character χx,

/(*) V/Grf . (5)

While relations such as (3) between the algebra si and the length element ds hold at
the universal level, a specific geometry will be specified as a unitary representation
of the algebra generated by si and ds. In general we shall deal with complex valued
functions / so that si will be endowed with an involution,

/ - r, (6)
which is just complex conjugation of functions in the usual case,

/•(*) = /(*) VxeM. (7)

The length element ds will be selfadjoint,

ds* = ds (8)

so that (ds)2 will be automatically positive.
The unitarity of the representation just means that the operator π(a*) correspond-

ing to β* is the adjoint of the operator π(a),

π(α*) = π(aT Vα e (si, ds). (9)

Given a unitary representation π of (s/,ds) we measure the distance between two
points x, y of our space by,

</(*,;;) = Sup{|/(x)-/O;)|; f e s/, \\[f,dS-
ι]\\ S 1}, (10)

where we dropped the letter π but where the representation π has been used in a
crucial way to define the norm of [f,ds~1].

Before we proceed let us first explain what representation of (si,ds) corre-
sponds to an ordinary Riemannian geometry, and check that (10) gives us back
exactly the Riemannian geodesic distance of formula (2). The algebra si is the
algebra of smooth complex valued functions on M, si = C°°(M) and we choose
to represent ds as the propagator for fermions which physicists write in a sug-
gestive way as x-x. This means that we represent si in the Hubert space
L2(M,S) of square integrable sections of the spinor bundle on M by the following
formula:

(/f)W = /(*)«*) V/ G s/ = C°°(M), \/ξ G JT = L2(M,S) , (11)
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and we represent ds by the formula,

^ V μ , (12)

where D is the Dirac operator. We ignore the ambiguity of (12) on the kernel
of D.

One checks immediately that the commutator [D,f]9 ϊov f e. si = C°°(M) is
the Clifford multiplication by the gradient V/ so that its operator norm, in Jf =
L2(M,S), is given by

]|| = Sup| |V/ | | . (13)

It then follows by integration along the path from x to y that |/(x) — f(y)\ S
length of path, provided (13) is bounded by 1. Thus the equality between (10)
and (2).

Note that while ds has the dimension of a length, (ds)~ι which is represented
by D has the dimension of a mass. The formula (10) is dual to formula (2). In
the usual Riemannian case it gives the same answer but being dual it does not use
arcs connecting x with y but rather functions from M to C As we shall see this
will allow to treat spaces with a finite number of points on the same footing as the
continuum. Another virtue of formula (10) is that it will continue to make sense
when the algebra si is no longer commutative.

In this paper we shall write down the axioms of geometry as the presentation of
the algebraic relations between si and ds and the representation of those relations
in Hubert space.

In order to compare different geometries, i.e. different representations of the
algebra {si.ds) generated by si and ds, we shall use the following action functional:

Trace(φ(cfo)), (14)

where φ is a suitable cutoff function which will cut off all eigenvalues of ds smaller
than /.

We shall show in [CC] that for a suitable choice of the algebra si, the above
action will give the Lagrangian of the standard ί/(l) x SU(2) x SU(3) model of
Glashow-Weinberg-Salam coupled with gravity. The algebra will not be C°°(M)
with M a (compact) 4-manifold but a non-commutative refinement of it which has
to do with the quantum group refinement of the Spin covering of SO(4),

1 -» Z/2 -> Spin(4) -> SO(4) -> 1 . (15)

Amazingly, in this description the group of gauge transformations of the matter
fields arises spontaneously as a normal subgroup of the generalized diffeomorphism
group Aut(j/).

It is the non-commutativίty of the algebra si which gives for free the group
of gauge transformations of matter fields as a (normal) subgroup of the group of
diffeomorphisms. Indeed, when si — C°°(M) is the commutative algebra of smooth
functions on M one easily checks that the following defines a one to one corre-
spondence between diffeomorphisms φ of M and the automorphisms α 6 Aut(^/)
of the algebra si (preserving the *),

*(/)(*) = f(φ~l(x)) Vx G M, / G C°°{M) . (16)
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In the non-commutative case an algebra always has automorphisms, the inner auto-
morphisms given by

««(/) = w/n* V / G ^ (17)
for any element of the unitary group ^ of J/ ,

% = {uejtf; uu* = u*u = 1} . (18)

The subgroup Int(j/) c Aut(,s/) of inner automorphisms is a normal subgroup and
it will provide us with our group of internal gauge transformations. It is a happy co-
incidence that the two terminologies : inner automorphisms and internal symmetries
actually match. Both groups will have to be lifted to the spinors but we shall see
that later. We shall see that the action of inner automorphisms on the metric gives
rise to internal fluctuations of the latter which replace D by D -\-A +JAJ~ι (see
below) and gives exactly the gauge bosons of the standard model, with its symme-
try breaking Higgs sector, when we apply it to the above finite geometry. We had
realized in [Co2] that the fermions were naturally in the adjoint representation of
the unitary group °lί in the case of the standard model, i.e. that the action of % on
tf was,

But we had not understood the significance of the inner automorphisms as internal
diffeomorphisms of the non-commutative space. What the present paper shows is
that one should consider the internal gauge symmetries as part of the diffeomor-
phism group of the non-commutative geometry and the gauge bosons as the internal
fluctuations of the metric. We should thus expect that the action functional should
be of purely gravitational nature. The above spectral action when restricted to these
special metrics will give the interaction Lagrangian of the bosons. The interaction
with Fermions, which has the right hypercharge assignment, is obtained directly
from (\JJ,D\IJ) (with D+A+JAJ~X instead of D), and is thus also of spectral
nature being invariant under the full unitary group of operators in Hubert space.
Thus the only distinction that remains between matter and gravity is the distinction
Int efi/ + Aut stf which vanishes for a number of highly non-commutative algebras.

Quantized calculus. In order to ease the presentation of our axioms let us recall
the first few lines of the dictionary of the quantized calculus which makes use of
the formalism of quantum mechanics to formulate a new theory of infinitesimals.
The first two lines of this dictionary are just the traditional way of interpreting the
observables in quantum mechanics,

Classical Quantum

Complex variable Operator in Hubert space
Real variable Selfadjoint operator, T = T*
Infinitesimal variable Compact operator
Infinitesimal of order a μn(T) = 0(«~α)
Integral j - T = log divergence of the trace of T

We recall briefly that an operator T in Hubert space is compact iff for any ε > 0
one has | |Γ| | < ε except on a finite dimensional subspace of Jf. More precisely

Vε there exists a finite dimensional subspace E of Jf

such that \\T/E^\\ < ε where E1- is the orthogonal of E . (19)
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The size of a compact operator T is measured by the decreasing sequence μn of
eigenvalues of \T\ = y/Ψ*Ύ. The order of such an "infinitesimal" is measured by
the rate at which these characteristic values μn(T) converge to 0 when n —> oo.

One can show that all the intuitive rules of calculus are valid, e.g. the order
of T\ -h T2 or of T\ T2 are as they should be ( ^ oc\ V oc2 and oc\ a2). Moreover the
trace (i.e. the sum of the eigenvalues) is logarithmically divergent for infinitesimals
of order 1, since μn(T) = O(^). It is a quite remarkable fact that the coefficient
of the logarithmic divergency does yield an additive trace which in essence eva-
luates the "classical part" of such infinitesimals. This trace, denoted j - vanishes on
infinitesimals of order α > 1.

The only rule of the naive calculus of infinitesimals which is not fulfilled is
commutativity, but this lack of commutativity is crucial to allow the coexistence of
variables with continuous range with infinitesimals which have discrete spectrum.

We refer to [Co] for more details on this calculus and its applications.

Axioms for commutative geometry. Let us now proceed and write down the
axioms for commutative geometry. The small modifications required for the non-
commutative case will only be handled later.

Thus ffl is a Hubert space, si an involutive algebra represented in ffl and
D = ds~ι is a selfadjoint operator in Jf.

We are given an integer n which controls the dimension of our space by the
condition,

1) ds — D~ι is an infinitesimal of order £.
The universal commutation relation (3) is represented by
2)[ [A/] ,0] = OV/,0<Ξ.β/.
We assume that the simple commutation with |D|, δ(T) = [|Z>|, T] will only yield

bounded operators when we start with any f € si. More precisely we assume that:
3) {Smoothness). For any a e si both a and [D,a] belong to the domain of

δm,for any integer m.
This Axiom 3 is the algebraic formulation of smoothness of the coordinates.
Since the next axiom depends upon the parity of n, let us state it first when n

is even. It yields the γ$ matrix which is abstracted here as a Z/2 grading of the
Hubert space Jf:

4) (Orientability) (n even). There exists a Hochschίld cycle c G Zn(si,si) such
that π(c) = y satisfies

y = γ*, y2 = 1, yD = -Dy .

In the odd case (n odd) one just asks that 1 = π(c) for some n-dimensional
Hochschild cycle c e Zn{si,si).

We need to explain briefly what a Hochschild cycle is. Conceptually it is the
algebraic formulation of a differential form, so that Axiom 4 is really providing us
with the volume form. Concretely an ^-dimensional Hochschild cycle is a finite sum
of elements of si 0 si 0 Θ si (with n + 1 times si),

a]
j

such that the contraction be = 0, where by definition b is linear and satisfies

b(a° ® a1 ® - - 0 an) = a°aι ® a2 ® ® an - a° 0 aιa2 ® 0 an H

akak+ι 0 0 an + + ( - l ) V α 0 <g> <g> an'x
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When si- is commutative it is easy to construct a Hochschild cycle, it suffices to
take any aJ and consider

c = Σ β(<χ)α0 Θ flσ(1) ® β σ ( 2 ) ® ® « σ ( w ) ,

where the sum runs over all the permutations σ of {l,...,n}.
This special construction corresponds to the familiar differential form a°daι A

da2 Λ Λ dan but does not require the previous knowledge of the tangent bundle.
Finally π(c) is the representation of c on tff induced by

π(a° <8> a1 <8> Θ an) = a°[D,aι] [D,an] .

To understand the meaning of Axiom 4 let us take its simplest instance, with n = 1
and si = C°°(Sι) generated by a single unitary element U G si, U U* = U* U = 1.
Let c = t / " 1 (8) U. One checks that 6c = U~ι U -U U~ι = 0 so that c is a
Hochschild cycle, c e Zι(stf,s/). Then the condition π(c) = 1 reads:

[A [/] = [/.

The reader will check at this point that this relation alone completely describes the
geometry of the circle, by computing explicitly the distance between points using
formula (10). One finds the usual metric on the circle with length 2π.

The next axiom will be the axiom of finiteness.
5) {Finiteness and absolute continuity). Viewed as an sέ'-module the space

j f ^ = p | w Domain Dm is finite and projective. Moreover the following equality
defines a hermitίan structure (,) on this module,

(aξ9η) = f a(ξ9η)dsn \/a G si, Vξ,η G ̂ foo .

We recall from [Co] that a hermitian structure on a finite projective ^/-module is
given by an ^-valued inner product. The prototype of such a module with inner
product is the following, one lets e G ¥xo]Mq(srf) be a selfadjoint idempotent,

e = e*, e2 = e

and one lets $ be the left module sin e = {(£/)/=i,...,«; ζj £ si9ξjβjk = ζk}, where
the action of si is given by left multiplication,

The ^/-valued inner product is then given by:

It follows from Axiom 4) and from a general theorem ([Co]) that the operators adsn,
a G si are measurable (cf. [Co]) so that the coefficient j-adsn of the logarithmic
divergence of their trace is unambiguously defined.

It follows from Axiom 5) that the algebra si is uniquely determined inside its
weak closure si" (which is also the bicommutant of si in $?) by the equality

Π Dom<5
m>0 J

This shows that the whole geometric data (si9J^9D) is in fact uniquely determined
by the triple (sir/

9J^9D) where si" is a commutative von Neumann algebra.
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This also shows that J / is a pre C* algebra, i.e. that it is stable under the
C°° functional calculus in the C* algebra norm closure of si 9 A = si. Since we
assumed that si was commutative, so is A and by Gelfand's theorem A = C(X) is
the algebra of continuous complex valued functions o n l = Spectrum (A). We note
finally that characters χ of si extend automatically to A by continuity so that

Spectrum ,4 = Spectrum si .

We let Ki(si\ / = 0,1 be the ^-groups of si (or equivalently of A or of X). Thus
Ko(si) classifies finite projective modules over si (or equivalently vector bundles
over X). Similarly K\(si) is the group of connected components of GL^si), i.e.
K\(si) — πo GLoo(si)9 while by the Bott periodicity theorem one has,

where n + 1 only matters modulo 2.
One easily defines the index pairing of the operator D with Kn(s/), where again

n only matters modulo 2. In the even case one uses y to decompose D as D =
D+ + D~, where D+ = (1 — p)Dp, p = ̂ . Then for any selfadjoint idempotent
e G si the operator eD+ e is a Fredholm operator from the subspace epJίf of J f to
the subspace e(l — p)J^. This extends immediately to projections e G Mq(si) for
some integer q, and gives an additive map from Ko(si) to TL denoted (IndD,e). A
similar discussion applies in the odd case ([Co]).

Since si is commutative we have the diagonal map,

si 0 si -̂ W, m(x®y)=xy Vx,y£s#,

which yields a corresponding map m* : K*{stf) x K*($i) —» K*(si). Composing this
map with IndZ) we obtain the intersection form,

It clearly only depends upon the stable homotopy class of the representation π and
thus gives a very rough information on π. We shall assume,

6) (Poincare duality). The intersection form K*(s/) x K*(s/) —> Z w invertible.
If one wants to take in account the possible presence of torsion in the AΓ-groups

one should formulate Poincare duality as the isomorphism,

given by the Kasparov intersection product with the class μ of the Fredholm module
(Jf,D9y) over si O si. We refer to [Co, C] for the detailed formulation, but 6)
will suffice for Theorem 1 below.

Thanks to the work of D. Sullivan [S] one knows that the above Poincare duality
isomorphism in K theory is (in the simply connected case and ignoring 2-torsion)
a characterization of the homotopy type of spaces which possess a structure of PL
manifold. This requires the use of real K theory instead of the above complex K
theory and our last axiom will be precisely the existence of such a real structure on
our cycle.

7) (Reality). There exists an antilinear isometry J : J f -» Jf such that JaJ~x

= α* Ma e si andJ2 = ε,JD = ε'DJ and Jy = ε"γJ9 where ε,ε',ε" G {-1,+1} are
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given by the following table from the value of n modulo 8,

n =
ε
ε1

ε"

0
1
1
1

1
1
j

2
2

1
- 1

3
- 1

1

4
- 1

1
1

5
- 1

- 1

6
1
1

- 1

7
1
1

We can now state our first result,

Theorem. Let s$ — C°°(M), where M is a smooth compact manifold of dimen-
sion n. a) Let π be a unitary representation of(s#,ds) satisfying the above seven
axioms, then there exists a unique Rίemannian metric g on M such that the
geodesic distance between any two points x,y G M is given by

d(x9y) = Sup{\a(x)-a(y)\ 9aerf9\\[D9a]\\ ^ 1}.

b) The metric g = g(π) only depends upon the unitary equivalence class of π
and the fibers of the map : π —> g(π) from unitary equivalence classes to metrics
form a finite collection of ajfine spaces s4'σ parametrized by the Spin structures σ
on M.

c) The action functional j - dsn~2 is a positive quadratic form on each <srfσ with
a unique minimum πσ.

d) πσ is the representation of (s$,ds) in L2(M,Sσ) given by multiplication
operators and the Dirac operator of the Levi Civita Spin connection.

e) The value of j-dsn~2 on πσ is given by the Einstein Hubert action,

~cn (R^gdnx, cn = (n~ 2)/12 x (4π)~/?/2 Γ (- -f
\2

Let us make a few remarks about this theorem.

1) Note first that none of the axioms uses the fact that ,90 is the algebra of
smooth functions on a manifold. In fact one should deduce from the axioms that
the spectrum X of J / is a smooth manifold and that the map X —> IR^, given by
the finite collection aιj of elements of stf involved in the Hochschild cycle c of
Axiom 4, is actually a smooth embedding of X as a submanifold of 1R.N. To prove
this one should use [Co], Proposition 15, p. 312.

2) The two Axioms 2 and 3 should be considered as the presentation of the
algebra (s$,ds). Thus this presentation involves an explicit Hochschild ft-cycle c G
Zn(s/9£#) and for n odd gives the relation,

In the even case the relations are Dy = —γD and γ2 = 1, γ = y*, with

It is thus natural to fix c as part of the data. The differential form on M —
Spectrum s$ associated to the Hochschild ft-cycle c is equal to the volume form
of the metric g. Thus fixing c determines the volume form of the metric.

3) The sign in front of the Einstein Hubert action given in (a) is the correct one
for the Euclidean formulation of gravity and for instance in the n — 4 dimensional
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case the Einstein Hubert action becomes the area

of our space, in units of Planck length lp. Thus the only negative sign in the
second derivative of j - ds1 around flat space comes from the Weyl factor which is
determined by the choice of c. We refer to [K] and [KW] for the detailed calculation.

4) When M is a Spin manifold the map π —> g(π) is surjective and if we fix c
it surjects to the metrics g with fixed volume form. (This amounts to checking that
all axioms are fulfilled.)

5) If we drop Axiom 7 there is a completely similar result as Theorem 1 where
Spin is replaced by Spinc (cf. [ML]) and where uniqueness is lost in c) and the
minimum of the action j~ dsn~2 is reached on a linear subspace of siσ with σ a
fixed Spinc structure. The elements of this subspace correspond exactly to the U( 1)
gauge potentials involved in the Spinc Dirac operator and d) e) continue to hold.

6) A commutative geometry (si, Jίf,D) is connected iff the only operators com-
muting with si and D are the scalars, i.e. iff the representation π of (si,ds) in Jf7

is irreducible.

The axioms for non-commutative geometry. We are now ready to proceed to the
non-commutative case, i.e. where we no longer assume that the algebra si is com-
mutative. Among the axioms we wrote 1), 3) and 5) will remain unchanged while
the others will be slightly modified. One of the most significant results of the the-
ory of operator algebras is Tomita's theorem [Ta] which asserts that for any weakly
closed * algebra of operators M in Hubert space Jf which admits a cyclic and
separating vector, there exists a canonical antilinear isometric involution J from Jf
to 2tf such that

JMJ~X = M',

where M' = {T\ Ta = aT Va G M] is the commutant of M. It follows then that M
is antiisomorphic to its commutant, the antiisomorphism being given by the C-linear
map,

aeM ->Ja*J~x eMf .

Now Axiom 7 already involves an antilinear isometry J in Jίf, which in the
usual geometric case is the charge conjugation. Since we assumed that si was
commutative, the equality Ja*J~x — a of Axiom 7 is compatible with Tomita's an-
tiisomorphism. In general we shall replace the requirement Ja*J~x = a \/a G srf of
Axiom 7 by the following:

1') One has [a,b°] = 0 Ma,b e st, where b° = Jb*J~x (and [a,b°] is the com-
mutator ab° - b°a).

Otherwise we leave 7) unchanged. This immediately turns the Hilbert space Jf
into a module over the algebra si 0 si0 which is the tensor product of sd by its
opposite algebra s/°. One lets,

(a (g) b°)ξ = aJb*J-χξ Va,bestf .

(One can use equivalently the terminology of bimodules or correspondences (cf.
[Co]).)

Thus Axiom (7 ;) now gives a Λ7?-homology class for the algebra si 0 siQ en-
dowed with the antilinear automorphism,
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and we do not need the diagonal map m : si' 0 si' —> si (which is an algebra
homomorphism only in the commutative case) to formulate Poincare duality,

(6') The cup product by μ £ KRn(si 0 si0) is an isomorphism

We also note that the intersection form on K*(si) continues to be well defined.
Given e,feK*(si) one considers e 0 f° as an element of K*(si <g> si0) and
evaluates

(e,f) = (Index D, e®f°).

From the table of commutation of Axiom 7 one gets for instance that this intersec-
tion form is symplectic for n = 2 or 6 and quadratic for n — 0 or 4 modulo 8 as
in the usual case.

We shall modify Axiom 2 in the following way:

[[D,a],b°] = 0 Va,b£si. (2')

Note that by (7') a and b° commute so that the formulation of (2') is symmetric,
i.e. it is equivalent to

[[D9b
0],a] = Q \/a,b£sf.

Finally we shall slightly modify (4). Of course Hochschild homology continues
to make sense in the non-commutative case.

(4') There exists a Hochschild cycle c e Zn(si, si 0 si0) such that y = π(c)
satisfies y = y*, y2 = 1, γa = ay \/a e si, yD = —Dy. (In the odd case we simply
require π(c) = 1 . )

We view si 0 si0 as a bimodule over si by restricting to the subalgebra si 0
1 C si 0 s4° the natural structure of si 0 s/° bimodules on si 0 si0. This gives

a(b 0 c°)d = abd 0 c° Ma9b9c9d £ si .

Note that the Hochschild homology makes sense with coefficients in any bimodule.
Since we have a representation of si 0 si° in Jf, π(c) continues to make sense.

Axioms (3) and (5) are unchanged in the non-commutative case, and the proof
of the measurability of the operators adsn for any a G si continues to hold in that
generality.

Thus a non-commutative geometry of dimension n is given by a triple (si9 J f ,D)
with real structure / satisfying (1), (2 ;), (3), (40, (5), (6'), (7 ;).

Examples and internal diffeomorphisms. Let us give some simple examples. Let
us first assume that si is the finite dimensional commutative algebra si = (CN. Even
though si is commutative it admits non-trivial geometries and these are classified, up
to homotopy of the operator D, by integral quadratic forms q = (qίj\je\,...,N which
are invertible over TL. The geometry associated to a quadratic form q is defined as
follows. One lets J«f = @Uj3^ij9 where Jf^ = <[>, % = \qij\. The left action of
si in J f is given, with obvious notations by

The Έ/2 grading y is given by

= yijξij 7ij = Sign
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and the isometric antilinear involution J is given by,

(Jξ)ij = ξβ

(It makes sense since q^ = qβ.)
One has KQ(J^) — Έn and the intersection pairing is given by the quadratic form

q. A choice of D is determined by a function m on the edges of the graph Γ defined
as follows. The vertices of Γ are the (ί,j) with #//φO, the edges of Γ are the (i,j),
(k, /) for which y^ ykί = —\ and i — k or j = I. The function m on Γ^ has to satisfy
m̂ &z = rήkijj and /w^/ = ήiβjk One can find D so that the obtained geometry is
connected iff the above graph is connected.

As a next simple example let J / = C°°(M,Mk((E)) be the algebra of k x k ma-
trix valued functions on a smooth compact Spin manifold M. Let gfbea Riemannian
metric on M and Jf = L2(M,S <8)M*(C)) be the Hubert space of I 2 sections of the
tensor product S ® M*(C) of the Spinor bundle S by Mjt(C). Then J / acts on Jf7

by left multiplication,
(aξ)(x) = a(x)ξ(x) MxeM.

The real structure J is given by

J = C Θ * ,

where C is the charge conjugation on spinors and * is the adjoint operation T —> Γ*
on matrices. This operation transforms the left multiplication operators ξ -^ aξ on
matrices into right multiplication operators ξ —> ξα* so that one checks Axiom (7'),

[a,Z>°] = 0 \/a,bestf, b° = Jb*J~x .

As a first choice of D one can take D = <§M ® \, the tensor product of the Dirac
operator 0)M on M by the identity on Mk((t). One can then easily check that one
obtains a non-commutative geometry in this way. This example is relevant to illus-
trate two facts which hold in general in the non-commutative case. The first is that
the group Aut(j/) of * automorphisms of the algebra s/9 which plays in general
the role of the group Diff(M) of diffeomorphisms of the manifold M and acts on
the space of representations π by composition, has a natural normal subgroup

IntAf C AutM,

where IntM is the group of inner automorphisms, i.e. automorphisms of the form,

Ou(x) = uxu* Vx e stf ,

where u is an arbitrary element of the unitary group

f = { ϋ G i ; uu* = u*u = 1} .

Moreover the action of this group of internal diffeomorphisms on our geometries
can be expressed in a simple manner. Indeed the replacement of the representation
π by π o a~ι is equivalent to the replacement of the operator D by

D = D+A+JAJ~l ,

where A = u[D,u*].

The desired unitary equivalence is given by the operator,

U = uJuJ-χ .

(One checks that UDU* = D and that Ua~ι(x)U* = x for any JC e s4.)
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The above perturbation of the metric is a special case of internal perturbation
given by,

where A — A* is now an arbitrary operator of the form

A = Σai[D,bi] aubi G si.

In the commutative case such perturbations of the metric all vanish because A = A*
implies A -\-JAJ~λ — 0. But in the non-commutative case they do not. Thus in our
example with k > 1 one gets that,

IntM = C°°(M,PSU(k))

is the group of local gauge transformations (internal symmetries) for an SU(k)
gauge theory on M. The internal perturbations of the metric are parametrized by
SU(k) gauge potentials, i.e. by the non-tracial part of A = Σaι[D,bi], &ubi G si.
One can compute the effect of such internal perturbations to the distance between
two pure states φ, φ on si. We take x, y G M and let φ and φ correspond to two
unit vectors (rays) in (£k by the equality

φ(a)=(a(x)ξ,ξ), ψ(a) = {a(y)η, η) Vα e si .

The distance d(φ,ψ) for the metric D is defined as usual by

) = SM\ψ(a)-ψ(a)\; a e si, \\\b,a\\\ ^ 1}

This distance depends heavily on the gauge connection A. The latter defines an
horizontal distribution H on the fibre bundle P over M whose fiber over each
x G M is the pure state space P^_i(C) of A4(C). The metric d turns out to be
equal to the Carnot metric ([G]) on P defined by the horizontal distribution H and
the Euclidean structure on H given by the Riemannian metric of M,

d(φ,φ) = Inf / | | π * ( y ( 0 ) R 7(0) = <p, y(l) = φ ,
o

where π : P —> M is the projection and γ varies through all horizontal paths
(y(t) G H Mt) which join φ to φ. In particular the finiteness of d(φ,φ) for x = y
is governed by the holonomy of the connection at the point x. The flat situation
A = 0 corresponds to the product geometry of M by the finite geometry where the
algebra is MN(<52) and D = 0. For the latter since D = 0 the distance between any
two ψ"¥φ is +oo. Thus for the product one gets that the connected components
of the metric topology are the flat sections of the bundle P. Alternatively, if the
holonomy at x is SU(k), the metric on the fiber Px is finite.

Our next example will be highly non-commutative. It is a special case of a
general construction that works for any isometry of a Riemannian Spin manifold,
but we shall work it out in the very specific case where this isometry is the irrational
rotation RQ of the circle Sι. This will have the advantage of definiteness but the
whole discussion is general. The algebra is the irrational rotation smooth algebra,

s/θ = {ΣanmUnVm; a = (an,m) G
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where ^(Έ2), the Schwartz space of Έ2, is the space of sequences of rapid decay
(i.e. (1 + |w| + \m\)kanim is bounded for any k ^ 0). The * algebra structure is
governed by the presentation,

U* = U~\ V* = V~\ VU = λUV with λ = exp(2πιθ)

with θ e]0,1].
In order to specify the metric structure of our non-commutative geometry we

shall need, as for usual elliptic curves, a complex number τ, 3?τ > 0. We can then
describe the geometry as follows: the Hubert space Jf is given by the sum of
2-copies of L2(S#Q, τo), where τo is the canonical normalized trace,

τo(a) = #oo Vα e SΛQ .

The Hubert space L2(S/Q,TQ) is just the completion of $£Q for the inner product
( α , i ) = τ o ( i * α ) V β , ί e 4

The representation of S$Q in Jf7 is given by left multiplication, i.e. as 2 copies
of the left regular representation,

0 λ(a)\

The operator D depends explicitly on the choice of τ and is

Γ 0 δx+τδ2~\

~[-δx-τδ2 0 J'

where the δj are the following derivations of S/Q:

0; δ2(U) = 0, δ2(V) = 2πiV .

The Z/2 grading y is just y= [i _°i 1 •

To specify our geometry it remains to give the antilinear isometry. We let J =py g y g
l> w h e r e JQ i s T o m i t a ' s involution ([Ta]),[Λo o°

Note that Joλ(a*)J^~ι = p(a) is the right multiplication by a E sίβ s o that our
Axiom (7') is easy to check. The dimension n is equal to 2 so that JD = DJ,
J2 = — 1 and Jy = —yJ as expected.

The other axioms are easy to check but Axiom (4;) is not so trivial because
it requires to exhibit a Hochschild 2-cycle, c e Z2(s/β,s/e) such that π(c) = y. It
turns out to be,

c = (2/π)"2(τ - τγ\V-ιU-χ 0 [/ 0 F - U~ι V~x 0 F 0 [/).

(Note that this is not the same as the antisymmetrization of F " 1 ^ " 1 ^ ^ ® ^
because of the phase factor in V~ιU~ι φ U~ιV~ι.) One checks that be = 0 and
π(c) = y.

Note also that the area, j-ds2 = j-D~2 of the non-commutative torus depends
on τ in the same way as c; the reason is that it has homological significance,
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where the cyclic cocycle φ is rigidly fixed by its integrality as the chern character
of our ^C-cycle.

It is also worthwhile to check in some detail the Poincare duality. The point is
that while at a superficial level our geometry TΓ̂  looks like an ordinary torus, this
impression quickly fades away if we realize that for θ φ Q the algebra $4$ contains
many non-trivial idempotents ([Ri, Po]) and smooth real elements a = a* of s/β
can have Cantor spectrum (thus from the point of view of a the space TΓ̂  looks
totally disconnected). In fact at first it might seem that Poincare duality might fail
since there is no element x G KQ(J^Q), xΦO of virtual dimension 0, τo(x) = 0, the
characteristic property of the Bott element. Indeed, when θ φ Q, the Ko group is Έ?
([Pi-V]) and the trace τ§{ne§ + me\) = n + mθ never vanishes unless n = m = 0.
The above specifies uniquely the basis eo = [1] and e\, τo(ei) = θ of K$ and we
take the basis U, V for K\. In this basis the intersection form of Axiom (6) is given
by the symplectic matrix,

rθ -1 0 0 i

1 0 0 0

0 0 0 - 1

.0 0 1 0 J

It follows that Poincare duality is satisfied and that the Bott element β makes sense,
as an element of Ko(stfj] <g) &4Q). It is given by

β = el ® e\ - e\ <g> e0 + u° 0 v - v° 0 u ,

where we denote by 0 the external cup product in K theory. One can check that with
μ the ^-homology class on S*0Q <g) s/jj given by our AΓ-cycle one has the Poincare
duality equation ([CS])

μ 0^o β = id^

Finally the unique trace on s/fj ® S$Q is TQ 0 τo and it does vanish on β, (TQ 0
τo, β) — 0 which is the expected property of the Bott element.

In the general theory both β G K*{s$l 0 s$o) and μ G K*(S#Q 0 s/fj) make sense
and satisfy the above equation. Moreover the local index theorem of [CM] allows to
compute the pairing (μ, β) by a local formula, i.e. a formula invoking j - of simple
algebraic expressions. This yields the Gauss Bonnet theorem in our context, due to
the equality,

(μ,β) =

(where the rank is the rank of the abelian group, i.e. dimQ(A^ (8) Q)). Using the

automorphism σ of S/Q associated to a unimodular integral matrix \a

c

b

d G SL(2,Έ)

by,

σ(U) = UaV\ σ(V)= UcVd ,

it is not difficult to check that, up to an irrelevant scale factor, the non-commutative
geometry Ύ2

θτ only depends upon the value of τ in <E+/PSL(2,Z). The new phe-
nomenon which occurs in the non-commutative case is the Morita equivalence of
geometries which will correspond here to the action of the modular group PSL(2,Έ)
on the module θ rather than τ. To change θ in this way one uses a finite projec-
tive right module $ over the algebra srf and then one replaces J / by the algebra
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gβ — End^(^). To be more specific let us change θ in — ^ as follows. We take for
$ the following right j3/-module ([Co]). As a vector space $ is the Schwartz space

of functions on R. The right action of S$Q on £f is specified by the rules,

(ξU)(s) = ξ(s + θ) Vξe

(ξV)(s) = e 2 π / 5 a » V£

One checks directly that the algebra & = E n d ^ ( y ) is isomoφhic to J^-I/Θ with
generators given by the translation by 1 and the multiplication by the function
s - ^ e x p ( ^ ) . This j^-module ^ is naturally a hermitian module ([Co]) and
we can now apply the following general operation of Morita equivalence in non-
commutative geometry.

Let (jrf, J^f,D) be a given geometry and J* = End^(<f) a Morita equivalent
algebra. Then a non-commutative geometry, (&,3ti?,D) is uniquely specified by a
hermitian connection ([Co]) V on δ. Such a connection is a linear map,

V : δ ->δ ®j Ωι

D
D ,

where ΩX

D is the j/-bimodule,

Ωι

D = {ΣaάDM, ai9bi e ^} C

and V should satisfy the Leibnitz rule and the compatibility with the hermitian
structure,

= (Vξ)a + ̂ [ A « ] V a € ^ , ξ E δ,

2) (& Vη) - (Vξ, ly) = d(& ι/) Vξ, ŷ G δ,

where da = [/),«] by definition.

To construct J>f and D one proceeds as follows: One lets $ =
where ^ is the conjugate module, with elements ξ, ξ G <̂  and the module structure,

Then J f has a natural Hubert space structure (cf. [Co]) obtained using the hermitian
structure of δ. _

The operator D is given by the formula,

D(ξ®η®ζ) = (Vξ)η (g)£ + £®i>/(g)£ + ξ(g> η(Vζ) ,

where we take advantage of the action of Ωι

D in J f in order to make sense of
(Vξ)η for instance (cf. [Co]). The above formula is compatible with tensor products
over stf. Similarly the real structure J is given by (with obvious notations),

One then checks that all our axioms are fulfilled by the triple (^,^f,Z)) and J
where the action of & is given by

b(ξ®η®ζ) = (bξ) ® η 0 ζ .
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In our specific example of the right module £f on siq the S$Q bimodule ΩX

D is easily
computed and (cf. [Co]) as a bimodule it is the sum of two copies of S/Q which
we write by identifying ω G Ωι

D with a 2 x 2 matrix of the form,

ω —
_ Γ 0 λ(a)Λ

[λ(b) 0 J '

and writing a = (δ\ + τc>2)(x), b = (—<5i,— τc^X x) for any x G i and ω = dx.
A connection V is uniquely specified by the two covariant derivatives Vy which
correspond to δj. Thus a specific choice of connection on <f is given by

We leave as an exercise to compute the corresponding value of the module τ' for
the Morita equivalent geometry on TΓ2,^. The connection V used in this example
has constant curvature (cf. [C-R]) but there is a lot of freedom in the choice of the
connection. Indeed the space of connections is naturally an affine space over the
vector space Hom^((ί, <ί (g)^ Ωι

D) (with the selfadjointness condition).

All this discussion applies in particular when $ = si and yields a whole new
class of geometries, the internal perturbation which replaces D by D -\- A -\-JAJ~1,
where A is an arbitrary selfadjoint element of ΩX

D.
These internal perturbations are trivial: A+JAJ~ι = 0 when the geometry is

commutative (Theorem 1). They are highly non-trivial for T^, θ φ Q.
When θ ^ Q the von Neumann algebra weak closure of sio in Jf is the hyper-

finite factor of type IIi and the antilinear isometry To is Tomita's involution. In the
general theory it is always true that the von Neumann algebra srf" weak closure of
si in tff is finite and hyperfinite. This follows from Axiom 5, the general properties
of the Dixmier trace and the results of [Co]. In particular the von Neumann algebras
involved in our geometries are completely classified up to isomorphism ([Co]).

The non-commutative geometry of the standard model. We shall now describe a
simple finite geometry of dimension equal to 0, (S/F,3^F,DF) (F for finite),
whose product by ordinary Euclidean 4-dimensional geometry (or more gener-
ally by a 4-dimensional Spin manifold) will give the standard model (SM) in the
following way:

1) The Hubert space Jf will describe the (one particle) Fermionic sector of
the SM.

2) The inner fluctuations of the metric D ^ D+A +JAJ~ι give exactly the
bosonic sector of SM with the correct quantum numbers and hypercharges for the
coupling with the fermions: (D\l/,φ).

3) The spectral action Trace (φ(D~1)) + {Dψ,ψ) restricted to the inner fluctu-
ations of the metric, gives the SM Lagrangian.

We postpone the proof of (3) and the analysis of its relation to gravity to our
collaboration with A.C. [CC].

In this paper we shall describe the geometry (sip, Jf/r,ZV) and check (2) in
some detail. We let J^F be the Hubert space with basis the list of elementary
Fermions. Thus each generation of Fermions contributes by a space of dimension
15 + 15, where 15 = 12 + 3. The 12 corresponds to the quarks and 12 = 4 x 3 ,



Gravity Coupled with Matter and Foundation of Non-commutative Geometry 171

where the 4 is given by the table

uR UL

dR dL

of up and down particles of left or right chirality, while the 3 is given by the color
index. The 3 in 15 = 12 + 3 corresponds to the leptons and is given by the table

eL

The second 15 in 15 + 15 corresponds to antiparticles and is obtained by putting
an / instead of an / for any / in the above basis. This gives us the antilinear
isometry J — Jp in J"fp, by

ifi + fj + Σλ~fi

for any A/, μy G (C.
We let .β//r = (C Θ H Θ M 3(C) be the direct sum of the real involutive algebras

(C of complex numbers, IH of quaternions, and Λf3((C) of 3 x 3 matrices. (Recall

that quaternions q can be represented as 2 x 2 matrices of the form I ^ ί\9 where

Let us give the action of s/ in Jiff. We let, for a = (λ,q,m) G J / 5

aw/? = AwΛ auL = awz - /W/,

adR = AJ# aJ^ = /fô  + â //, ,

(independently of the color index), while for leptons the formula is the same but
there is no UR.
_ This fixes completely the action of sd on particles. The action on antiparticles
/ is given by: (for a — (λ,q,m) as above)

af = λf if / is a lepton ,

af = mf if / is a quark .

Here the 3 x 3 matrix is acting in the obvious way on the color index.

For the operator DF we take DF = \Y

oγ\, where Y is the Yukawa coupling

matrix,

with

which has the dimension of

" 0

0

Λf*
u

0

0

0

0

Mi

Y-

Mu

0

0

0

a mass,

= Yq® 1

0 "

Md

0

0

and is

307/

of the

=

0

0

K

form:

0

0

* 0

0

0

For one generation ΛfM, Λf̂  and Me would just be scalars but for 3 generations
they are matrices which encode both the masses of the Fermions and their mixing
properties.
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Let us now check our axioms for this O-dimensional geometry (siF,3tf?

F,DF).
We begin by checking 7') One has Jp = 1, JFDF = DFJF and it is clear that JF

commutes with the natural Z/2 grading given by chirality:

7(/Λ) = ΪR> 7(Λ) = -/z. (/ particle or antiparticle).

But the important property is that [a,b°] = 0 for any a,b G si (cf. (7')), where
b° = Jb*J~ι \/b G ̂ /. To check it, it is enough to see what happens on one gener-
ation of particles. For quarks the right action b° of b G si b = (λ,q,m) is given by
wί acting on the color index which obviously commutes with the left action of si.
For leptons the right action is by the scalar λ which also commutes with the left
action of si.

We have thus checked (7'). Since n = 0 and 2%F is finite dimensional Axiom
(1) is obvious. To check (I1) we need to show that [[D,a],b°] = 0Vaibesi.

Once again it is enough to check it for one generation of particles. It is clear
for leptons and it is true for quarks exactly because the color is unbroken so that
both a and D exactly commute with the right action of si.

Being in finite dimension Axiom 3 is obvious.
To check (4r) one verifies that γ = εJεJ, where ε is the following element of si,

s = (1, -1,1). Thus one has c = ε 0 ε° G si 0 si0.
Note that our algebra si is real so that (5) has to be stated for the complex

algebra generated by si in fflF. It is then clear. Finally when we compute the
intersection form on K0(si) = Z φ Z φ Z w e find, with TV the number of generators,
the 3 x 3 matrix,

Γ- l 1 - H

= 2N 1 0 1

- 1 1 0

The above matrix is invertible with inverse given by

Q~l = (2Λ0- 1

r 1 1 - 1

1 1 0

- 1 0 1

so that (6) only holds rationally.
We now consider a 4-dimensional smooth compact Riemannian manifold M with

a fixed spin structure and consider its product with the above finite geometry. One
can prove that our notion of geometry is stable by products. When one of the two
geometries is even (i.e. it possesses a TLβ grading 71), the product geometry is
given by the rules,

= A 0 D2 .

To check Axiom (4') for instance one uses the shuffle product in Hochschild homo-
logy (cf. [L]).

For the product of the manifold M by the finite geometry F we thus have
si = C°°(M) ®siF = C°°(M,siF), JT = L2(M,S) 0 J*?F = L2(M,S® JfF) and
D = §M (g) 1 + γ5 0 DF, where §M is the Dirac operator on M.

Let us check that the inner fluctuations of the metric give us the gauge
bosons of the standard model with their correct quantum numbers. We first have
to compute A = Σaι\p,a'^ αz, a\ G si. Since D = <fM <g> 1 -j- y$ <g) DF decomposes
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as a sum of two terms, so does A and we first consider the discrete part A^
coming from commutators with γζ®Dp. Let X G M and let αz (x) = {λuqumi)>
a\(χ) — (/l ,^ ,w ), the computation of Σai[γ5 <g)ZV,tf ] at x gives γ5 tensored by the
following matrices:

X =
fuψi Muφ2λ

_ -Mdφ2 Mdφι J '

for the quark part, with φ\ = Σ2z (αz' — Λ.J), φ2 =

0
X' =

M*φ[\

φ\ = Σoiiiλ't - αj) + βΓβ\, φ'2 = Z(-a^ + β^ - αj)) .

For the lepton part one gets the 3 x 3 matrix,

-Mdφ2

0

0

0

0

0

M*dφ'2

M*dψ\

where φi,φ2>φί and φr

2 are as above.

Let q = φ\ + cp2J, q' = φ[ + φ2j, where j is the quaternion 1 ^ J . The selfad-

jointness condition A = A* is equivalent to g ; = g* and we see that the discrete part
^ ( 0 ? 1 ) is exactly given by a quaternion valued function, q(x) e M on M. This pair
of complex fields is the Higgs doublet and one checks that it has the right quantum
numbers. The antiparticle sector does not contribute to A^0^ because the left action
of S^F on this sector exactly commutes with DF.

Let us now determine the other part A^1^ of A, i.e.

With obvious notations, at = (λi9qi9mi)9 a\ — (A ,# ,m ) we obtain,

A C/(l) gauge field A = Σλidλ'i9
A SU{2) gauge field Q = Σqidq'i9
A ί/(3) gauge field V = Σmidm^

The computation of A -\-JAJ~1 gives the following matrices on quarks and leptons,
where we omit the symbol of Clifford multiplication,

A +
0

0

0

V

-A

--2A

0

0

0

0

0

0

β n -

β21

β

/I

0

0

π +

Oil

Q

V

0

β l 2

22 -

0

0

β l 2

β22 +

-i

where the matrix for quarks is a 4 x 4 matrix of 3 x 3 matrices because V is a 3 x 3
matrix, (ignoring the flavor index). Since we are only interested in the fluctuation of
the metric we shall write the total 15 x 15 matrix as the sum of a traceless matrix
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plus a scalar multiple of the identity matrix. Since the latter does not affect the metric
we shall ignore it. This amounts to remove a C/(l) by imposing the condition that
the full matrix is traceless, i.e. that 4 trace V — AA = 0, i.e. trace V = A. Thus we
get V = V + \A with trace V = 0 so that V is an SU(3) gauge potential. The
ί/( 1) field A is the generator of hypercharge and we obtain the following matrices
for the inner fluctuation A +JAJ~ι of the metric (vector part),

UR

dR

uL

dL

0

0

. 0

0

-\Λ+V

0

0

Qn-

0

0

+ \Λ+V

Oil Q22-

0

0

Qn

eL

-2Λ 0 0

0 Qn-Λ Qn

0 02i Q22 - A

Together with the above Higgs doublet which gives the scalar part of A +JAJ~ι,
we thus obtain exactly the gauge bosons of the standard model coupled with the
correct hypercharges YL,YR- They are such that the electromagnetic charge g e m , is
determined by 2QQm = YR for right-handed particles and 2Q e m = YL + 2/3, where
I3 is the 3 r d generator of the weak isospin group SU(2). For QGm one gets the
same answer for the left and right components of each particle and | , — | for u9d
respectively and 0,-1 for v and e respectively.

We showed in [C] that one obtains the full Lagrangian of the standard model
from the sum j-θ2ds4 + ((D +A -h JAJ~x)\j/,-φ), where θ is the curvature of the
connection A. However this requires the definition of the curvature and is still
in the spirit of gauge theories. What the present paper shows is that one should
consider the internal gauge symmetries as part of the diffeomorphism group of the
non-commutative geometry, and the gauge bosons as the internal fluctuations of the
metric. It follows then that the action functional should be of purely gravitational
nature. We state the principle of spectral invariance, stronger than the invariance
under diffeomorphisms, which requires that the action functional only depends on
the spectral properties of D = ds"1 in J f. This is verified by the action,

/ = Trace (φ(ds)) + (Dψ, φ)

for any nice function φ from IR^ to R.
We shall show in [CC] that this action gives the SM Lagrangian coupled

with gravity. It would seem at first sight that the algebra srf has disappeared
from the scene when one writes down the above action. The point is that it
is still there because it imposes the constraints [[D,a],b°] = 0 Ma,b e s0 and
Σa^D^aj] [D,ctf] = y coming from Axioms 2 and 4.

It is important at this point to note that the integrality, « e N o f the dimension
of a non-commutative geometry appears to be essential to define the Hochschild
cycle c G Zn and in turn the chirality 7. This is very similar to the obstruction
which appears when one tries to apply dimensional regularization to chiral gauge
theories.

The relations (Axioms 2 and 4) which relate the algebra s/ with the infinitesi-
mal length element ds are very simple, but it is clear that more involved relations
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of a quartic type are necessary to cover the hypoelliptic situation encountered in
[CM]. Also the algebra si — C°°(M) ® sip used in the description of the standard
model is only slightly non-commutative. This commutativity should fade away when
one gets to energies A ~ mp so that the inner automorphisms Int si exhaust more
and more automorphisms of si. It is tempting to follow the approximation scheme
given in [GKP] but the main difficulty is that the above non-linear constraints be-
tween the algebra si and the operator D do not have finite dimensional realiza-
tions since the Hochschild homology H/[{si,si) vanishes for any finite dimensional
algebra si.

As a final remark we look for an explanation of the remaining non-commutativity
of the algebra si = C°°(M) <g) sip from the theory of quantum groups at roots
of unity. The simple fact is that the Spin covering of SO(4), i.e. Spin(4) is not
the maximal covering in the world of quantum groups. Indeed, Spin(4) = SU(2) x
SU(2) and even the single group SU(2) admits, in the sense of non-commutative
geometry (cf. [M]) non-trivial extensions of finite order, (Frobenius at oo)

1 -> H -> SU(2)q -> SU(2) -+ 1 ,

where q is any root of unity, qm — 1, of odd order. The simplest instance is
when m = 3 so that q = Qxp(^f-). The quantum group H has a finite dimen-
sional Hopf algebra which is closely related to the algebra sip. The Spin repre-
sentation of H defines, like any other representation of H, a bimodule over the
Hopf algebra of H. The structure of this bimodule turns out to be very similar
to the structure of the bimodule tfp over sip that we described above. The de-
tails of the adaptation of these ideas to Spin(4) = SU(2) x SU(2) still remain to be
elucidated.
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