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Abstract: Expansions of the type described in the inductive hypothesis (H.5) in the
paper [1] are constructed for local functions of the "background" configurations, i.e.,
solutions of the variational problems studied in the previous paper [3]. A main part
of this construction is a further analysis of a local structure of the solutions.

1. Introduction

In this paper we discuss a new kind of problem connected with expansions assumed
in the inductive hypothesis (H.5) in [1], but methodologically it is a continuation
of the paper [3] on the variational problems for background configurations. Our
main concern here is to "localize" properly these configurations, and to do this we
use extensively the results and methods of [3]. One of the most important tech-
nical problems in the renormalization group approach is to construct expansions
of non-local functions of basic variables into sums of localized functions, like the
expansions in (H.5) [1]. There are several types of non-localities and non-local func-
tions, we have to consider. In this paper we construct such expansions for a simplest
and most frequently occurring type of non-local functions given by compositions of
localized functions with one of the background configurations, like for example
terms S^{X\\j/[^) of the effective actions. Obviously values φk(x;ιl/),ψ(J\y;ψ) at
points x, y of corresponding lattices are non-local functions of ψ, in fact they depend
on ψ on the whole lattice, or on a generating set B# determining the functions.

Let us describe now in detail basic goals of this paper. Consider a genera-
ting set IB/c, which we can identify with the sequence of domains {ί2i,...,ί2^}5 see
the definitions (1.1)—(1.3) in [3], and assume that a next domain Ω^+i is given,
such that adding it to the sequence yields a new generating set BA +I We denote
A = B(Λk+\) = &kl\, i.e., A c T^k\ Taking the first j domains in the sequence
determines a generating set By. Consider a function ^(X xj/j), where X is a
localization domain, X e Q)^ and ψj is a spin variable on the lattice Γ ( Λ We assume
that this function has the same properties as a term of the localization expansion in
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(H.5) [1], and for simplicity we assume that X C Ω*+i. After k steps the variable
ψj is replaced by the function ι/^(B7,B^;ι/^), and in the k + 1st step φk is split into
the background field ^(B^B^+i θ) associated with the new spin configuration 0,

and the linear function βk

 2 CΛ

 2 φ of the ultralocal spin fluctuation variable φ that
is about to be integrated out. In this situation we consider the function

^(X;φ(Bj,ΊBk;φ(Bk,mM;θ) + β;iC^φ)l (1.1)

where θ is a spin configuration defined on B^+i, φ is the so-called spin fluctuation
variable defined on Λ9 and CΛ

 2 is a positive square root of a positive operator
CΛ , which is an operator of a quadratic form connected with a fluctuation integral
on A. We will write an explicit formula for this operator and we will analyze it in
Sect. 3. Now let us mention only that a kernel of this operator is defined on A x Λ9

and is an analytic function of the configurations φ(JBk+ιl θ\ α(B^+i;θ). Functions
of the form (1.1) appear naturally in a fluctuation integral, which will be discussed
in the next paper. Obviously (1.1) is a non-local function of the variables θ, φ, and
the main goal of this paper is to construct its localization expansion in both of the
variables. To explain a form of this expansion we need some new definitions. We
will use systematically domains in the continuous space T of a type described in
the definition

®(B y ) = { 7 : 7 c Γ , 7 i s a connected domain, connected components of

YΠΩnΠ Ωc

n+ι belong to 2fn9n S j ,

where we put here Ωo = T, Ωj+X = 0}. (1.2)

This definition holds for any j ^ k + 1. For such domains we generalize the concept
of the linear size function dj introduced in (2.27) [1], and we define

dj(Y) = inf { ^ | Γ | B 7 : Γ is a continuous tree graph contained in Y

and intersecting all cubes D' contained in one of the domains

Y Γ\ΩnΠ Ωc

n+ι and belonging to the cover π'n,n ̂  j},

where \Γ\Έj = Σ(Lnξrι\ΓΠ Ωn Π Ωc

n+ι\ξ. (1.3)

The length in the last equality is in the scale ξ = L~~j, which means that we take

the original lattice as Tξ, and T^ as the unit lattice T\ .

To simplify the formula below let us denote the function ^(B y,B^) by φ^\
and φ(fBk,ΊBk+\) by φ^k\ The main goal of this paper is to prove the following
statement:

The function (1.1) has a localization expansion of the form

; φ{

k

j\φ{k\θ) + β^d^ψ)) = Σ ^ Y; θ, Φ), (1.4)

where the terms of the expansion depend on the variables θ, φ restricted to the
corresponding domains Y and satisfy the bounds

7; 0,ι/O| < Eo expi-κodj(X)-2κdk+ι(Y)). (1.5)
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The formula (1.4) has prepared for integrating out ψ in such a way that lo-
calization in θ will be manifest afterwards, because φ is an ultralocal variable.
The formulation of the above statement is not complete yet because we have not
described analyticity domains for the terms of the expansion, but we postpone for-
mulations and a discussion of these more technical issues to Sect. 4. The statement
gives a precise formulation of main aspects of these localization expansions, and it
establishes a pattern for all related propositions in this and subsequent papers.

Let us explain briefly what is a main problem connected with constructing the
expansion (1.4). It should be quite clear that it has to do with appropriate localization

expansions of the functions ψj^\ψ(k\CΛ

 2 , because they introduce a non-locality
into the function (1.1). However, it is not enough to localize them in an arbitrary
way, the point is that we have to use representations and bounds of Sect. 3 [1],
in particular Corollary 3.11 [1], and they hold on rather small subspaces of natural
analyticity domains, like subspaces Ψj(X;CoUη,£k) defined in (3.13), (3.14) [1].
These subspaces incorporate in their definitions various scaling properties, some of
them "anomalous," related to the singular nature of the basic variational equations
for the problem (1.6) [3]. We have to localize the function ψ^ in such a way
that the properties are preserved at least on the domain X, so its values are in the
subspace above. This problem is solved in two steps, actually in three, the first step
was the introduction of the auxiliary variable α and the variational equations (1.10)
[3], in which the parameter λ occurs only as \. The important step is to use the
fundamental composition formula (4.39) [3] together with the representation (4.21)
[3], and to write ψ^ as a composition of such a function localized in a neigh-
bourhood of X, and a suitable non-local function, which enters only into "boundary
conditions" of the locaĵ  one, and may satisfy more relaxed conditions described by
corresponding spaces Ψc in (1.11), (1.12) [3]. Such a representation of the func-
tion {//£ is presented in the formula (4.16), which is one of the most important
formulas in the paper, a key to the localization procedure. It reduces the problem
to a simpler one of localizing the functions of the type ι/̂ (B7 ,B^) with fewer and
simpler conditions to be satisfied. This is reduced again, through the representation
(4.21) [3], to the problem of localizing the function (/>(%)> which is still not quite
standard, in particular the second non-linear variational equation in (1.14) [3] has
to be treated with some care, and this is the third of the steps mentioned above,
but it is resolved in a number of small technical details not worthwhile, or even
impossible to describe here.

Let us describe now the content of the following three sections. We reverse in
a sense the steps described above, and we start with localizations of the functions
φ(&k), Ά(IBy?IB^), which is the subject of Sect. 2. It is achieved by introducing
suitable interpolating parameters into their definitions and studying analytic exten-
sions in the parameters, their regularity properties and bounds. We do the same for
the covariance operator C^\ and for some functions of this operator, in Sect. 3. In
Sect. 4 we start with a derivation of the representation (4.16), and then we construct
the expansion (1.4) using the results of the previous sections and applying some
simple interpolation formulas. All results of this paper are very technical and it is
more convenient to start with definitions and constructions, and then to formulate
the most important conclusions as propositions; for some of them it is even not
possible to do it another way.

Finally let us remark that the size M of large cubes in the following two sections
does not have to be equal to the size of large cubes used in the renormalization



36 T. Balaban

group procedure. In these sections we consider M = Lm as a parameter which must
satisfy appropriate conditions, in particular M~ι is one of the fundamental factors
controlling convergence of all expansions we will construct in this paper. These
issues will be discussed in the last section.

2. Localization Expansions for the "Background" Configurations

In this section we introduce the localization parameters into the functions φ(&k),
φ(JBj, Wk), and other functions we use in these papers. This construction for functions
φ(JBk) is a basis of all other constructions, so we start with its detailed description.
We use here extensively the constructions and the results of the papers [2,3].

We fix now a generating set B^, and we denote the functions φ(βkX^(βk) sim-
ply by φk9oik Our basic goal is to construct extensions of the functions φk,<x>k m the
interpolating parameters, and to investigate their analyticity properties and bounds.
This is based on the proof of Proposition 3.1 given in the third section of [3]. We
start with the representation φk = φo + δφk, (Xk = ceo + δoίk The functions φo,oto
are already almost local functions of φ + φ'9 h + h\ as it follows from their defini-
tions (3.2), (3.3) [3]. More precisely φo,oco restricted to Aj(y), y e Λj9 depend on
φ + φ',h -f hr restricted to Aj(y). Thus the basic problem mentioned above concerns
the functions δφk, δock- They are constructed as solutions of Eqs. (3.19), and we
consider again the more general system (3.20), to cover some other applications.
The function δφk is represented in the form (3.23), to which we apply the identity
(3.25). We write explicitly this representation for future reference

δφk =

+G((Xo)δakG(oto)φoδ<χk + G(oco)δ(xkG((Xo)δ(xkG(ao + δotk)(Q*aδφ + f x )

-G(a0)δakG(θίo)δoίkG(ao + δak)φQδak . (2.1)

The function δoik satisfies Eqs. (3.24), or (3.26). We consider at first the function
δφk, or a more general function given by the above formula with δ(Xk replaced
by some δa. We introduce the interpolating parameters based on the generalized
random walk expansion for G(α) constructed in Sect. A of [2b], see in particular
the formula (2.40). Let us describe this expansion. We start with a construction of
a cover of the domain Ωi. Each Ωj is a localization domain from ®7, so it is a
union of large cubes in Z~y-scale, or a union of MLy^-cubes in the 77-scale, with
centers at points of the lattice TJJ£™\ where M = Lm. We take the domain Ω~, i.e.
the domain obtained by adding one layer of the large cubes touching Ωj9 and the
set

which is the set of centers of the large cubes contained in Ω~ and disjoint with
Ωy +i. For each point z in this set we take a cube of the size 3MLJ'η with a center
at z and denote it by D z . The family of cubes

cover of the domain Ω



Localization Expansions. I. "Background" Configurations 37

We take a decomposition of unity corresponding to this cover and similar to the
decomposition in (3.1) [3]. More precisely we take a decomposition of unity {hz}
with functions hz having the properties

hzeC2(Bz), hz^0, \dhz\<2(MLJη)-\ \ddhz\ <4(MLJη)-\

i = 1 on a neighborhood of Ω\. (2.2)

It is easy to construct such a decomposition starting with a function h G CQ(] — 1,
1[), 0 g λ ^ 1, \h'\ < 2, \h"\ < 4, and such that h\t) + h2(t - 1) = 1 on a neigh-
borhood of the interval [0,1]. Then almost all functions hz can be defined by the
formula hz(x) = Y[d

μ=ιh((MLJη)~ι(xμ — zμ))9 that is for all z except those in the
boundary layers Ωf\Ωj9 where two adjacent scales meet. It is easy to see how
to adjust the definition for those points, so we do not write the rather awkward
formulas here.

For each cube D z of the cover we take the basic operator —ΛΩ^η + β*flβ + v + α
and restrict it to D z taking the Neumann boundary conditions on the part of the
boundary contained in Ωi. Denoting the corresponding Laplace operator by (^\η)az

we define
G(DZ, α) = ( - ( < % + (Q*aQ + v + α)[ D z n Ω l Γ 1 (2.3)

For all D z which do not intersect the boundary dΩ\ the Laplace operator is sim-
ply AΪJ1. Also the operator Q*aQ restricted to D z is either equal to an operator

aj(Uη)~2QjQj if D z is contained in Ω^Ωy+i, or to a sum of two such operators for
j and y ' + l , restricted to the subdomains D z Π Ωc

j+X and D z Π Ωy+i, if D z intersects
the boundary 3Ωy+i. The inverse operators (2.3) have been investigated thoroughly
in the paper [2b], see in particular the bound (2.33) there. We reformulate this
bound here, but at first we have to recall the definition of the scaled distance d(y, yr)
between two points y,yf G IB .̂ Take the set of all paths Γy^y/ connecting the points
y,y', contained in Ωi, and such that the intersections Γy^y> Π (Ωy \Ω J + i) are unions
of paths in the lattice Λj, i.e. are unions of bonds of this lattice. Define

d(y, y') = inf \Γy%Ϋ | B i , |Γ | B , = Σ C ^ ) " ' \Γ Π ΩJ Π Ωc

J+ι | . (2.4)
y,yf y = l

This function is determined by the set ΊBk, and it is obviously a distance on this
set. We will need all the properties of this function proved in [2b], in particular
the bounds (2.50)-(2.53) in Lemma 2.1. Notice that if y,y' G D z c Ωj\Ωj+\, then
d(y9y>) = (Vη)-ι\y - / | , where \y - y'\ = \y - y'\x = Σ?μ=ι \yμ - y'μ\ is the dis-
tance in the 77-scale.

If D z intersects the boundary δΩy + i , then we have the bounds (LJ+ιη)~ι\y —
yf\ ^ d(y,y') ^ (LJη)~ι\y — y'\. Now we can formulate the following property of
the operators (2.3): there exist positive constants #o> 70,71 such that if α has complex
values and satisfies |α|2 < yi, the norm restricted to D z, y G D z Π Λj, / G D z Π Λy,
then

χAj/iyΊf\ + \χAΛy)G(Πz,ot)χAj/iyΊf\

Wηflχ^fl (2.5)
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for any function / defined on D z Π Ω i . This is the bound (2.33) in [2b], after
rescaling to the ^-lattice and using the distance (2.4). Next, we define an operator
Kz = K(hz) by the formula

(Kzf)(x) = Σ (d«hz)(b)(dV)(b) + (A«hz)(x)f(x)
best(x)

L-Jd{hz{xf)-hz{x))f{xf)
)

for x e Bj(y), y e D z Π Aj , (2.6)

or in the operator form

K(hz) = 2Vhz .V + Δhz- [Q*aQ,hz].

We will use this definition also in cases in which hz is replaced by some other
functions, possibly vector valued. Using the properties (2.2) of the functions hz we
obtain the following simple bound for the operators Kz\

\XAj{y)Kzf\ ^

( 2 7 )
for y eΠzΠ Aj.

At first we construct the generalized random walk expansion for the operator

G(α) defined by (3.22) [3]. These random walks are sequences ω = (ωo, co\,...,ωn\

n = 0,1,... such that ωz G U/=i Λj > i e ωi a r e centers of cubes belonging to the

considered cover, and Dω. Π dωi+ι Φ 0. The expansion has the following form:

ω

We have proved in [2b], see the proof of Proposition 2.2, that the series above
is convergent in all the relevant norms, like the norms | |o, \dη \\,\dη |(α),2—α?

\Aη |2, and the operator G(α) satisfies the bounds (2.57) in that theorem. We have
used these bounds in Sect. 3 [3]. Now we need some stronger estimates for the
series. Let us simplify the notation and denote the cube Aj(y) for y e Aj by A(y).
We have the equality 1 = Σyemk XΔ{y) o n ^ i , and we insert these decompositions
between the factors hωι and Kωι+λ in (2.8). Denoting |ω| = «, where ω is a sequence

,ωi, . . . ,ω w ), we have

00

χA(y)G((x)f = Σ Σ Σ XA(y)hωoG(Πωo,cc)hωoχA{yι)

n=0 ω:|ω|=w {y\,yi,...,yn,y')

. . . . . χA(yn)KωnG(Πωn,a)hωnχA{yΊf. (2.9)

At first we estimate the number of walks ω with a fixed |ω| = n. The number of
ωo such that A(y) C D ω o is not greater than 2 « 2d, because there are at most 2d
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cubes of a fixed scale containing Λ(y). For ω; fixed there are less than (2L -\- l)d

points ω, +i such that supp hωi+ιΠ supp hωiή=0, and generally, if ω{ is not in one
of the boundary layers, there are 3d such points. Thus the number of walks does
not exceed 2d+ι(2L + l)nd. Next, consider one factor in (2.9) enclosed between two
characteristic functions. From the bounds (2.7), (2.5), we get

\L^η)2\χΔ{yi)f\. (2.10)

Applying this bound and (2.5) to the sum in (2.9) we obtain

\ χ A { y ) G ( o c ) f \ ύ Σ Σ Σ Bo(4dBoM-ι)n

n=0 ω:\ω\=n,yeΠωQ {y\,y2,...,yn')U D / D

ι,y2)

Σ e-b°d^ sup {V'η?\lA(y>)f\
ω:\ω\=n,yeΠω0 /eDω / l

g ^ ( (d, ^yo) (21+ \)dMdM~

Jyo) l/b, where

ω) = inf(J(.y, 71) + d(yuy2) + +

the infimum is taken over ( j i j ^ - J / i j ' ) :

J>i ^ Dω._j Π D ω ι ,y G Dωw,assuming that 7 G Πωo

= Σ ^ y W

4

and assuming SdB0cι(d,\y0)(2L+ l)dM~ι ^ 1.
In the second inequality above we have used Lemma 2.1 in [2b]. We have written

these inequalities in such detailed form because it is not the final bound which is
most interesting for us, but bounds and expressions in the intermediate stages, which
indicate possible improvements. In particular we have not made proper use of the
factors M~n and exp(— ̂ yod(y ω)), for example we may replace M~ι by M " in
the last assumption, and use the factor M~ϊn for some other bounds. This remark
will be important when we will study analytic extensions in interpolating parameters.
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Another possibility is to represent the sum in (2.9) as a sum over domains X
containing the cube A(y), with terms equal to the sum of terms in (2.9) determined
by random walks ω such that Xω — ( jD ω / =X These terms are localized in the
domain X in the sense that they depend on α and / restricted to X, and we can
use the exponential factor to get a bound of the form (H.5). This way we obtain a
localization expansion for the operator G(α), but it is not enough for our purposes,
so we do not discuss any details.

Consider the representation (2.1) of the function δφk(δθί) obtained by replacing
the function <5a* by the variable <5α. We expand each operator G(αo) and G(α0 + δoc)
in this formula into the generalized random walk expansions (2.8). It is easy to see
that multiplying and summing these expansions yield an expansion of basically the
same form as (2.8), but with some small modifications. Some operators Kω. may be
replaced by a multiplication operator, the multiplication by the function —δ(xhωι. We
can have at most two such replacements. The localized Green's operators depend
on αo, except the case when there are exactly two replacements, then the operators
occurring after the last one depend on αo + δa. Finally, at the end of each term
of the expansion there is a function /, which is equal either to Q*aδψ + / i , or
to —φoδoί. We can represent this expansion in the form of a generalized random
walk expansion, like in (2.8), if we introduce random walks ω = (ωo,ωi,...,ωn)
whose elements ωz are not points, but pairs ωt — (zi9σi), where zz G | j j = 1 Λ^+,
<*i £ {0,1}. We define operators KWι, variables ϋi9 and functions gσ,σ G {0,1}, as
follows:

Kωι = KZι if σ, = 0, Kω. = -δochZι if σ,- = 1;

ϋi = 0 if σ\ H h σt < 2, #,- = 1 if σ\ H h σ, ^ 2, / ^ 1;

g0 = Q*aδψ + fu Q\ = -φoδoc. (2.12)

The random walks ω are restricted by the conditions: E3Zι_ι Π DZί Φ0, / = 1, ,k,
DZ(_j = Dz., or zχ-\ — zι if σz = 1, σ\ H h σ̂  ^ 2. The first condition actually has
the stronger form: if both cubes DZj_15DZι are in the same scale, then DZ/ C Π^_1?

hence also DZi_1 C D ~ , and if they are in adjacent scales, then the cube in the
smaller scale is contained in the larger cube. We will use sometimes this stronger
condition in the future. The expansion of the function δφk(δa) can be written now
in the following form:

/ M \
δφk(δa) = ΣhZoG(ΠZo,oίO)h2o U^G(DZl9ao + 0/<5α)λZί gσo. (2.13)

\ J
Let us remark that there is an even simpler expansion of this function, exactly
of the form (2.8), if we use the representation (3.23) [3] directly, i.e. we write
δφk(δa) = G(αo + δoι)(Q*aδψ + f\ — φoδoc), and we use the expansion (2.8) for
G(αo + <5α). This is enough for a localization of the function δφk(δot), but we have
to study and localize the equation for δcc, and for this we need the more detailed form
(2.12). This expansion can be bounded as in (2.11), with some small modifications
only. We will discuss this bound later, after introducing interpolating parameters.
To do this we have to describe at first a geometric setting.

Consider two domains Xo9X\ such that

Xo,X\ C Ωk,Xo9X\ G <3)k9X£r* CXi,ro is a positive integer to be fixed later.
(2.14)
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We could consider more general domains from @(lBk), but in future applications
we will use only the above simpler case. We would like to localize the function
δφk(δoc) restricted to the domain Xo, i.e. to represent it as a sum over domains
X D X\ of functions which depend on φo,oίo,δcc,δ\l/,f\ restricted to X. We do it
by introducing interpolating, or localization parameters into the formula (2.13) for
this function. Let us introduce at first the notations:

for a walk ω = (ωo,ω\,...9ωn) we denote

ω = (ωi, . . . ,ω π ) and |ώ| = |ω| = n

M
(KG)(ώ) = Y[KωιG(ΠZι,θL0 + #, <5α)AZ| if | ώ | > 0 ,

(KG)(ώ) = 1 if |ώ| = 0 . (2.15)

The domains Ωj\Ωj+\ are unions of disjoint large cubes in the Z, "•'-scale, i.e., the
cubes from the partition πy , where π7 was defined in [1] between (2.25) and (2.26).
We denote these cubes by D, and to each cube we assign a variable SQ. The set
5 = {^n} is the set of interpolating, or localization parameters. We define

δφk(δoc,s) = ΣKG(ϋZo,oίo)hZo(KG)(ώ)gσQ Π *D , (2.16)

where Xω = |j!=o '-U This fun cti°n has the following simple properties:

δφk(δθί, 1) = δφk(δoc), where s = 1 means that all SQ = 1;

χx0δφk(δcc90) is the sum in (2.13) over random walks ω

satisfying Π^ ΠXoφΦ, Xω CX\, hence it is localized in X\.

It is obviously an analytic function of s9 actually it is a polynomial in s, and we
consider it on the poly disc {s: \s\ ̂  eKι}, where κ\ is a sufficiently large positive
number. We would like to prove bounds (3.47) in Proposition 3.1 [3] for the function
(2.16), assuming that M is chosen sufficiently large, depending on κ\. We can obtain
them in the same way as the bound (2.11), and we have for y G B^,

-lM + |ω|M-i(lβΊ-1)2β0ci Ul-y<\ (2L+ Ϊ)d,l-y<\ (2L+ Ϊ)d\δa\2θ+(\ω\ -

(d, iy ^ | 2 ) θ+(\ω\ - 2)1

| / i | 2 + I | ί α | 2 ) exp K l Σ ^ ^ \Xω Π X{ Π Ωj Π Ω)+λ \,

(2.17)

where we use the function θ+(t) = 1 for / ^ 0, θ+(t) = 0 for t < 0.
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Here we have used the first two inequalities in (2.11) together with the as-
sumption SdB0cι(d9 \γo)(2L+ \)dM~τ ^ 1. We assume further that 4B0cι(d,\γ0)
(2L+ l)d\δot\2 < 1. This assumption is almost the same as |<5α|2 < \y\, because
γι is an inverse of the norm of the operator G, and this may be taken as
the constant on the right-hand side of the last inequality in (2.11). Now the
expression in the first parenthesis can be bounded by 1 + j -f \ < 2, because
M-τM S 1 for |ω| gt 0, M - 2 < H - D | ω | ^ \ for | ω | ^ 1 ? m& M " ^ N - 2 ) I | c o
(|ω| — 1) ^ 1 for |ω| ^ 2. The expression in the second parenthesis is bounded
by §^i H- §|<5α|2- Consider the exponential in the third parenthesis and assume that
XωΠXfή=09 otherwise the exponential is equal to 1. We combine the exponential
with the first exponential on the right-hand side of (2.17), and we would like to
estimate the product. At first we estimate it in a general case, for an arbitrary walk
ω, and then in the case considered here.

Take a walk ω and the corresponding sequence of cubes ( D Z O , D Z I , . . . , D Z M ) ,
where y e DZo Πffî . By the definition of d(y,ω) in (2.11) we take the infimum
over a finite set, so it is equal to a value of the function at some elements of the
set. Let the sequence yo = y9 y\,..., yn be one of them, thus

d(y,ω) = d(y,yλ) + d(yuy2) + + d(yn.uyn%yi £ DZί_1 Π UZι Π IB* ,

/ = l,...,n9yn e\JZnΠBk.

We have ^, j/+i GDZ i and we take a path Γ(yi9yi+\) connecting the two points,
contained in DZj, and satisfying the equality d(yi9yi+\) = \Γ(yi9yi+\)\Bk9 where the
scaled length is defined in (2.4). Combining these paths we get

d(y,ω) = \Γ\Bk, where Γ = Γ(y,yι)U Γ(yuy2) U U Γ(yn_uyn) .

We assume that Πz. Π X[ φ 0 for some /, and we denote by r a minimal / with this
property, i.e. DZo,...,DZ/._j does not intersect X[9 and DZr ΠXf + Φ. Generally we
can have r — 0. The point yr divides the path Γ into two parts, the one from y to
yr is denoted by Γ°, and the other from yr to yn is denoted by Γr. The index r
divides also the walk ω into two walks: ω° = (ωo,.. .,ω r _i), which may be empty,
and ωf = (ω r , . . . ,ω n ) . Obviously we have Xω ΠXf = Xωι ΠX{. Let us divide now
the path Γr into a union of subpaths Γuί — 1,...,/?, such that

Γ' = U Γu \Γr\Bk = Σ l A k , \Γi\Bk = M for / < p, \Γp\Bk ^ M.
i=l i=\

Each path Γz contains some number of points from the sequence (yo9...,yn); the
number may be 0. Let us fix Γj and denote the points by ys,ys+\,...,yt-\,s :§ t,
the set is empty if s = t. The points determine the cubes DZ s,DZ s + 1,.. .,DZ ί_ 1 . The
scaled length of the path Γz is ^ M, so it may intersect at most two of the domains
{Ωj\Ωj+\}, and the same is true for the cubes. Therefore there exists an index j
such that ΠZί c Ωj-\\Ωj+\ for / = s,s + 1,...,t — 1. The ordinary length of Γz in
the 77-scale is ^ MLJη, hence the projections of Γz onto the coordinate axis are
intervals of lengths ^ MLJη, and Γt is contained in a continuous space cube D, of
the size MUr\. Take a cube D' of the size ΊMVr\9 which has the same center as the
cube Dj . The cubes D Z ί , . . . ,D Z ί _ 1 have either the size 3MLJη, or the size 3MLJ~ιη,
and they have non-empty intersections with Πi9 hence they are contained in D'.
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Thus the sum in the second exponential in (2.17) for the domain DZj U U DZί_j
is reduced to two terms with indices j — l,y, and we have

1

(MLJ-

< 1

ft-
l I
I U

, ) n Ω y_i n OFj

{ΊMLJη)d

+ n Ω j π Ω < + 1

{7L)d

the last equality holds for / < p, for / = p we have simply the bound (7L)d. Sum-
ming the above inequalities over / from 1 to p we get

This is a basic estimate in the general case. We have also d(y,ω) = \Γ\B/c =
\Γ°\iBk + I-Γ'IB^ n e n c e t n e product of the two exponentials in (2.17) can be bounded
as follows:

,ω) e χ p K ] Σ
Π Ωj Π

- e x p

or M ^ 2(7L)dκι—.
7

e x p (- {ΊL)"K "K

M

(2.19)

We assume that M satisfies this second restriction, together with the first for-
mulated just after (2.17). We would like to estimate the length I Γ 0 ^ by a quantity
independent of the walk ω. Let us recall that Γ° is a path starting at the point y and
ending at the point yr e OZr_ι Π ΠZr, where the cubes D Z o , . . . ,ΠZr_j are contained in
Xi, and DZr intersects both domains X\,X{. From this it follows that all these cubes
are from the cover π'k9 and that ΠZr c (Xf)^2, hence yr belongs to this domain and
the path Γ° connects the point y with the point yr G (Xf )~2. Thus we have

^ d(y9yr) > inf (2.20)

and we obtain finally the inequality

j+ι

. (2.21)



44 T. Balaban

Generally the distance in the last exponential above is equal to 0, so the exponential
can be estimated further only by Qxp(ΊL)dκ\.

Consider now the special case of (2.17), when A(y) c ΠZo and ΠZo Π I Q + U. Take
the cube D e πk containing Δ{y\ then D c Xf2, CΓr c X^2+r and D~ r Π (X{)~2 =
0 if 2 + r ^ ro — 2, or r ^ r0 — 4, by the condition (2.14). From this we obtain
the bound

d(y,(Xλ

cr2)>(r0-4)M. (2.22)

In this case the product of the exponentials on the left-hand side of (2.21) can be
bounded by

exp H y o t o - 4)M + (ΊL)dκλ) ^ exp (-\γo(ro - 5)M) g 1

if /*o ^ 5, which we assume from now on.

Combining all the above estimates, we obtain bounds for the expression in (2.17)
for all possible cases, and we obtain the inequalities

\δφk(δ<x,s)\ < 2d+3B0Cι (d, ^

\χA(y)δφk(δa,s)\ < 2d+3Boc, (d,~γo) Q<5i + | | 5 α | 2 ) for A(y)cX0,

\χΔ{y)(δφk(δoc,s)-δφk(δoc,l))\ <

( \ r 2 \ / 5 e 3, Λ
• exp ( — zyod(y,(Xι)) 1 I -ch H—|<5α|2 ) , (2.23)

and the same inequalities for the norms \dη |i, \dη |(α),2-α> \Aη ^ of the functions
on the left-hand sides above. The function δφk(δoc,s) has also some localization
properties dependent on zeros of s, but these will be discussed below.

Consider now the function δcck determined by the second equation in (3.20) [3].
It is a non-linear equation, and we construct an analytic extension δoc^s) of δoίk by
introducing properly the localization parameters s into this equation. Let us recall
that it is

1 1 1
Φo δφk(δa) + -δφk(δa) δφk(δθί) — -δa = -αi . (2.24)

Unfortunately we cannot do it simply by putting δφk(δcc,s) in place of δφk(δoc)
above, and solving the resulting equation. A problem is a bit subtler, it is a sin-
gular equation in δoc, the inverse of the operator determining a linear part of it is
unbounded, and we have to use quite a lot of a structure of the function δφk(δcc) to
deal with this problem. Fortunately enough of this structure is preserved in terms of
the random walk expansion (2.13) of this function, so we substitute it in the above
equation, and using the definition (2.15) we write it in the form

ΣΦo ' hZQG(pzo,ao)hZ(j(KG)(ώ)gσo + x Σ hz'oG(Hz'Q,xo)hz>o(KG)(ώ')gσ'Q

9<~\δΛ = \0Lχ ( 2 2 5 )
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The equation has been analyzed in Sect. 3 [3], and we can apply this analysis to the
above particular form of the equation without any essential changes, only with some
slight changes of constants in the bounds. At first, we apply the operator G~ι((Xo)
to the above equation and we obtain, after simple transformations and using the
identities after (3.33)[3] and the definition (2.6), the following one:

δa + \(-Aa\η + Q*aQ + v)δa + (φ2

0 - l)δa + jθL0δoι - φ0 . g0

+ΣK(KΦo) ' G(ΠZQ,κo)hZQ(KG)(ώ)gσo - Σ Φo ' (KG)(ώ)(g0 + <7i)
co ώ:|ώ|>0

+ \ Σ K(hz,,hziG(pzi,«oXKGXώ')gσi) G{Ozl,,a0)h
^ ω' ,ω"

- I Σ h4G(a4,ao)hz>(KG)(ώ')gσ, (KG)(ώ")(g0 + gλ)

\ ^ (2.26)

The notation used above for terms of the third sum is rather awkward and does
not give justice to simplicity of these expressions. We can rearrange terms of the
equation, introduce some new definitions, and write it in a simpler form. Using the
condition |ώ| > 0 we can write ώ = (ωi, . . . ,ω w ), n ^ 1, as ωf = {ωfQ,...,ω'n_x),
n — 1 ^ 0 , with obvious identification of elements of the two walks, and we
have

ώ:\ώ\>0

= Σ ΦoK(hz,)

- Σ Φo Q ^ Q
(z'Q,ώ')

We combine the first sum on the right-hand side above with the first sum in (2.26)
replacing the operator K(hZoφo) there by K(φohZo) — φoK(hZo). Let us introduce a
new operator V(hz) acting on a pair of two functions by the following formula:

V(hz)(f,g) =

-If (VA, Vηg) + 2(Vhz V/) -g + iA'f) Kg

-[Q*aQ,f] hzg = 2Vnf V\hzg) + (A"f) • hzg

-VQ*aQJ\ • hzg = K(f) hzg . (2.27)

Notice that the definition is not symmetric in f,g, so the operator acts on ordered
pairs. Next, we define operators Vωo for ct>o = (zo, σo) by the formulas

V<*{f,g) = V(hzo)(f,g) if<τo = O,

Vωo(f,g) = f δahzog if σ0 = 1 ,
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and we change slightly the definition of the variables ΰj in (2.12) by including σ0

also, i.e.

# ι = 0 if σ0 + σ\ H h σ, < 2, #, = 1 if σ0 + σi H h σ 2 ^ 2 .

Thus the first two sums in (2.26) combined can be written as follows:

iΦo, G(ΠZ0, ao)hZo(KG)(ώ)(go + gx)). (2.28)

In the same way we combine the last two sums, except that we have to take the
last sum with the restriction \ώ"\ > 0, so we get

\ ΣΣ

0 , a 0 ) h Z Q ( K G ) ( ώ ) ( g 0 + g χ ) .

(2.29)

Notice that the walks ω'\ω" must begin with points Z'0,ZQ such that
suppΛz//+0, which means that either Dz/ C D^/, or Dz// C D ^ , or both, depend-
ing on the sizes of the cubes. We obtain the equation in which the four sums in
(2.26) are replaced by the sum of the above two expressions. The next operation is
to apply the operator

] = λG(λ)

to both sides of this equation. The operator G(λ) is a special case of G(α); we take
simply the constant <x = λ9 and therefore it has the random walk expansion (2.8).
We combine this expansion with the expansions in (2.28), (2.29), and we obtain
sums which can be interpreted as sums over random tree graphs of a simple form.
We have two classes of tree graphs. The first consists of graphs with a trunk, a
vertex, and one branch. The trunk is a random walk τ of the simplest type appearing
in (2.28), the branch is a random walk ω as in (2.28), and the vertex corresponds to
ωo. We denote these tree graphs by t\9 i.e. t\ = (τ,ω). The second class is formed
by tree graphs with a trunk τ and two branches ω'9ω"9 σ'o = 0 and the vertex at COQ.
We denote them by t2, i.e. t2 = (τ9ω'9ω"). We have also sums corresponding to
simpler graphs, like random walks τ or ω. Now, to every graph t described above
we assign a domain Xt. This domain is equal to XX9 or Xω, defined in (2.16), if
t = τ or ω. For t = t\ we put Xh = Xτ UXω, and for t = t2 Xh = Xτ UXω/ \JXωn.
We introduce parameters s into the terms of the equation as in the first sum of
(2.16), and we obtain the following equation:

o,λ)hτo(KG(λ))(τ)

Σ hτoλG(Πτo,λ)hτo(KG(λ))(τ)Vω(l(φo,G(ΠZo,ao)hZo(KG)(ώ)
ίi=(τ,ω)
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xfoo + ffi)) Π sπ+l: Σ hτoλG(Πτo,λ)hτo(KG(λ))(τ)
^ t2={τiω'iω")

^ 4 ^ X f f o + f f i ) , G ( D Z » , α

ΛΓ,2nJΓf Z t[=(τ,ω')

Π *Q

θo Π *• " Σ ^AG(D t 0 , A)

DoYτΠXf τ

τ ) ( ^ ; 1 ' + Q*"Q + v + «o)αi Π *• , (2.30)

where ω' in the third and fourth sums satisfy σ'o = 0. Arranging properly terms
in the above equation we can write it in the form (3.43) [3], but the functions
Ho,H\,H2 depending on s also. We consider them again on the complex polydisc
{s: \s\ S eKι} Of course they are analytic functions on this polydisc, and we would
like to obtain their bounds. They follow from the basic bounds (2.11), (2.17), and
the geometric combinatorial bounds (2.18), (2.19), but we need also additional ones
for the operator λG(Πz,λ), ones which are uniform in λ.

The operator G(Πz,λ) alone satisfies the bound (2.5) with the same constants
independent of λ9 and for all λ ^ 0, but λG(pZ9λ) does not satisfy such a bound.
It is easy to see that this operator approaches 1 if λ —> +oo, so it may satisfy only
bounds which hold for the identity operator. We need the following one:

(LJη)2\χΛj{y)λG(ί3z,λ)χAj/(y')f\ ^ Boe^^'Wη)2\χAj/(yf)f\, (2.31)

where / is an arbitrary function defined on D z Π Ω\, y e Πz Π Λj9 y' G D z Π Ay.
This bound may be proved for arbitrary λ ^ 0, but for simplicity, we prove it for
λ — λk only, i.e. for λ such that λη2 ^ 1. The proof follows from several simple
remarks. At first notice that j9f may differ at most by 1, \j — j ' \ S 1> so (2.31)
follows from the same inequality without the scaling factors, with a possible increase
of the constant 2?o by the factor Z,2. Assume that D z intersects Aj9 and possibly Aj+\9

and rescale the operators and the domain to the natural ξ-scale, ξ = L~J. Then (2.31)
follows from the rescaled inequality

Λ J i y > ) f \ ^ B'oe-^y'y\Δ/{yΊf\, (2.32)

where λr = λ(LJη)2. Notice that d{y,yf) is properly rescaled, in particular if D z in-

tersects Aj only, then d(y,yf) = \y — yf\ξ, the distance in the £-scale. Consider

the operator —(^βj )πz + v' + λf, which is equal to the inverse of the operator

Gξ(Πz,λ
f) without Q*aQ. Denote its inverse by CQ(D 2 ,Λ/) and assume that

{ M ^ (2.33)
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It is easy to see that the above inequality implies (2.32) for λ1 sufficiently large,
because then the following Neumann series is convergent:

n=0

j+ι) • λ'Cξ

0(Πz,λ')]n.

We can bound it using (2.9), (2.33) and (2.11) with the simpler exponential func-
tions coming from (2.33). Using also the simple inequality d(y,y') ^ |y — y'\ξ for
y,y' e D z we obtain (2.32) with y0 = \y'o, Bf

0 = 2B%cd

oCΊy'o), if ^c^y',) ^ I,
or λ' ^ 3B%c$(lγ'o). If λ' < ?>B%cd

Q(\yf

Q\ then (2.32) follows from the correspond-
ing bound (2.5) for G^(Πz,λ

f) multiplied by the bound for λ'. Thus the inequality
(2.31) is reduced to (2.33). This can be rescaled further to the unit lattice, because
of our assumption λ" = λ'ξ2 = λη2 ^ 1. The rescaled operator is equal to

λ"Cι

0(p29λ") = Λ - ( < ) α + v" + λ"yι = λ"(λ" + v" H- 2dz - tz)
- 1

λ" ( 1 x ~ 1

λ" + v;/

λn + v// + 2dz wto V Zλ" + v" 4- 2dz) '

where 2ί/z and — tz are diagonal and off-diagonal parts of the operator —(zl^ 1 )^ . The
above series gives the usual random walk expansion of the kernel of the operator,
and from this we obtain easily the bound

It implies (2.33) with yf

0 = ^ a n d Bo = 2co(4JT2)QXP(άτϊ^ w h i c h concludes
the proof of (2.31).

Let us finish the proof of the inequality (3.41) used in Sect. 3 [3]. We take
the random walk expansion (2.8) for G(λ), and apply (2.9), (2.11) to it, using the
inequalities (2.31) and (2.10) with λ instead of α. We obtain

\λG(λ)f\2 S 2d+2B,cx (d, ^yo) | / | 2 , (2.34)

which is the inequality (3.41) [3] with the precisely defined constant.
Now we estimate the expressions in Eq. (2.30) in the norm | |2. We estimate at

first the whole sums in (2.30) by polynomials in |<5α|2 and from such inequalities
we obtain estimates for the functions H\(s),H2(s;δa),Ho(s). We start with the first



Localization Expansions. I. "Background" Configurations

sum in (2.30). Estimating as in (2.11) and using (2.31), (2.19) we obtain

\χA(y) (the first sum)|2

49

d - {ΊL)dκx

I l l / 1 \
x(if Xτ n X f φ 0 ) + l(if Xτ ΠXf = 0))M"ϊ | τ | δ0 + yrlαo|2 |<5α|2\ λη J

d,-Ay0
(2.35)

This holds for all y G ΊBk- If ^(^) C Xo, then we can remove the factor e^ΊL) Kι

from the bound, which is not important. Again for arbitrary y we have the bound

first sum) — (the first sum for s = 1))|2

S 2d+4B0cλ U ^ *1 exp (-\y,d(yXXc

λT
2)\ δ,\δz\2 (2.36)

which is very important. The two sums on the right-hand side of (2.30) can be
estimated in the same way and we obtain the above inequalities for them, but with
2<5o I δa 12 replaced by

IΦo
1

-XUΛ

3

r

To estimate the second and third sums we have to obtain a bound for the operator
V(hz). From (2.27) we have for y e Bk,

\XA(y)V(hz)(f,g)\2 ^

For simplicity let us drop the characteristic functions χ^y) in the inequalities below,
but we always mean the localized inequalities. Taking / = φo we get

\V(hz)(φ0,g)\2 S 2d\dφo\ι(\dhz ηdg\\ + \(dhz)g\ι + \hzdg\\)

+ \Aφo\2\hzg\ + d\dφo\ι\hzg\

\)δo\dg\ι+(d ^ (2d + l)δo(\g\ + \dg\{),

(2.37)
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where we have used the assumptions (3.21) [3] on φo. Finally, using the same
elementary bounds we get

\V(hz,,){hz,f,g)\2 ^ (2d + 1X1/1 + \dfU + \Δf\2){\g\ + \δgU). (2.38)

Consider now the second sum in (2.30). Using the estimates (2.11), (2.17), (2.19)
we obtain

\χA(y)(the second sum)|2

ld + l)«5o + \\δa\

- 5 l ω l

{d'b (2L

(2L+l)d\δa\2θ+(\ω\-l)

exp/c,

^ BoCι 2BoCι

Π Ω ; Π

(2d

(2L+l)d\δa\2

exp (--y

^ 2d+2BoCι (d, X-

x (^

1

ci 1 (ifΛi, ΠXf + 0).

(Zα + L)OQ-\ \O0ί

(2.39)

where we have denoted |ίi | = |τ| + |ω| + 1, and

d,X-yλ(2L+\)d,

= 2BoCι

The last bound holds for all y £ B^. The difference of the second sum and
this sum with s = 1 can be estimated by the right-hand side above multiplied by

4 2
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The fourth sum in (2.30) has the same form as the second sum, but the operator
Vωo in the vertex is replaced by a simpler multiplication operator by the func-
tion go + g\. Therefore this sum can be bounded as in (2.39), but with the factor
{Id + l)(5o + §|<5α|2 replaced by \δ\ + §|(5α|2, i.e. we have

fourth sum)|2 ^ 2d+λB0cx (d9

 l-yλ B3 ί^δx + ^|(Sα|Λ

(1+B2\δoc\2+B2

2\δoc\2

2). (2.40)

The difference of the sum and the sum with s = 1 can be estimated again by the
above bound multiplied by 2exp(—^yod(y,(X{)~2)).

Consider finally the third sum in (2.30). It has a more complicated structure,
the summation is not just over random walks, but over tree graphs with one vertex
and two branches. We estimate it again as in (2.11), (2.17), (2.39), and we obtain
the following preliminary bound:

\XA(y)(thQ third sum)|2

2 _ u _ 1 c/,-yoJ(2ί/+l + | ία | 2 )2[25oCi U,-γ0j(2L+l

/ 5 3 \2 i

+ 52 |«5a|2+^|<5a|i)2 - ^ + -|«5α|2 E ^ r
\ z z / ί2=(τ,ω',ω"):j;

(2.41)

where \t2\ = \τ\ + \ω'\ + \ωff\ + 2, and d(y; t2) is defined in the same way as d(y; ω)
in (2.11), but now we take points along two branches ω',ωπ of t2. It is easy to
see that there is a tree graph Γ in the domain Xh, consisting of a path starting at
y and ending at some point yn of the last cube in τ, and of two paths starting at
yn and ending at points of the last cubes in ω',ωff, such that d(y;ΐ2) — \Γ\&k. We
decompose the graph Γ into two disjoint parts Γ°,Γ' as in the proof of (2.19), and
applying this inequality to the two branches of Γf we obtain an inequality of the
form (2.19), but with the term {ΊL)dκ\ in the last exponential multiplied by 2. Thus
in a general case we obtain the bound

| χ J ω ( t h e third term)|2 ^ 2d+1B0cx (d9 ^y 0 ) B2(2d + 1 + |<5α|2)

(2.42)

If Xh intersects Xf9 then we can choose a maximal path in Γ°, and the argu-
ments leading to the inequalities (2.20), (2.21) can be applied to this maximal path.
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Thus the difference of the third sum and the third sum for s = 1 can be estimated
by the right-hand side of (2.42) multiplied again by 2exp(—jyod(y,(X±)~2)).

Equation (2.30) can be written in the form

δoc + Hx{s)δa + H2(s; δoc) = H0(s), (2.43)

where the functions HQ,H\,H2 are defined by gathering together terms in (2.30) of
the corresponding orders in <5α. We obtain bounds for these functions by gathering
together terms of the corresponding orders in \δoc\2 in bounds discussed above. For
simplicity we introduce the following preliminary restrictions on <5o,δi,|<5α|2:

B2δ0 ύ J^J, B2B3δλ S ^ , B2\δoc\2 ̂  ± .

Our final restrictions will be much stronger. Using these restrictions we obtain, after
some simple estimates, the inequalities

\H0(s)\2 < B3δu \χA(y)(H0(s) - H0(l))\2 < exp ( ~

\Hx(s)δa\2 ^ Bx

ύ exp (-\yod{y9(Xϊ)~2)\ Bx(δ0 + δx)\δoc\2,

\H2(s;δoc)\2 SBx\δa\l \χA(y)(H2(s; δoc) - H2(l;δoc))\2

ύ exp (~yod(y,(Xίr2)\ Bx\δa\2 , (2.44)

where we may take B\ = 2ΊB2B\. The functions above are analytic functions of s
and δoc on the spaces {s:\s\ ^ eKι} and {δoc: \δa\2 ^ y2}, where y2 =

^ji£j~1, \y{\. We repeat the reasoning leading to Lemma 3.2 [3], and we con-

clude that Eq. (2.43) has a unique solution in {<5α: |<5α|2 < c} if ^3^1 ^ \c, B\δ0 ^

\, B\c -^ \, c ^ y2. A maximal such c is denoted by cβ, and is given by cβ =

min{|jfff 1,72} The solution ^α^^) is an analytic function of s9φo,oco,δψ,f\,θί\ on
the corresponding domains, and it satisfies the bound

\δθLk(s)\2 ^ 2\H0(s)\2 < 2B3δx . (2.45)

This ends the construction of the "localization extension" of the function δock.
We also need a bound for the difference (Sα̂ s1) — <5α(l) of a type of the sec-

ond bound in (2.44). We subtract Eqs. (2.43) for δoc(s\δot(\), and we obtain the
following equation for the difference:

(δak(s) -

+{dt{{δ(L)H2) O ' ^ ω + ί1 -t)δ<xk(l)\(δ0Lk(s)-δak(l)))

= (H0(s) -H0(l))- (Hx(s)δ(xk(s) -

-(H2(s; δock(s)) -H2(\; δak(s))). (2.46)

In order to be able to use the inequalities for the differences in (2.44) we have to
localize the above equation, i.e. we multiply it by XA(y), y £ ®£, and we introduce
the decomposition 1 = Σy'eBk &K/) before the differences δoc(s) — δoc(l) in the
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second and third terms on the left-hand side. We have to obtain bounds for the lo-
calized expressions χΔ{y)Hx{s)χΔ{y)δδί and XA(y)((s§ά)H2)(s;δθL)9χA(yΊδdL). We need
them for s = 1 only, but we use all the bounds proved until now for the general ad-
missible s, so we may consider these general expressions also. Let us start with the
operator H\(s). The function H\(s)χΔ(<y>)δcί is represented as a sum of terms over the
class of random tree graphs t described before. We estimate it making only a few
simple changes in the proof of the third inequality in (2.44). The basic steps yielding
the exponential factors for each term are described in (2.9), (2.11). We replace each
factor by a product of three factors, one with JQ replaced by ^yo, a n d two with yo re-
placed by |y 0 . The product of the factors with ^y0 is bounded by Qxp(—^yod(y,yf)),
one product of the factors with |yo is bounded by exp(—|yod(y,t)), where t is the
graph connected with the term, and the remaining factors with |yo are used to con-
trol the sum over the sequences of points (jμz), as in (2.11). We obtain the same
bounds as before, but with the constants c\(d^yo) instead of c\(d, \yo), and with
the condition on M stronger than the condition in (2.19) by the factor 2. Also, there
is no summation over / , hence one factor c\(d, |yo) is missing. Thus we obtain
the inequality

^ exp ^ - l y o ^ , / ) ^ Bxc-λ (d9 ^yo) (δ0 + δλ) \χΔ(yΊδόί\2 . (2.47)

For s — 1 the constant B\ may be improved by replacing the constant B^ by B2 in
all the estimates, but it is not important. Consider now the second expression, the
differential of H2. The function H2 is also a sum of terms of the class of random tree
graphs, but now we have at least two vertices with the function δot, and at most
seven, including the expressions at end-points of the graphs. The differentiation
replaces one of the functions δoc by χΔ(y')δoί, or one of the operators G(Dz,αo +
δcc) by its differential equal to — G(D^,αo 4- δ(x)χΔ^y^δόί G(Dz,αo + δoc). The first
operation results in an increase of the number of terms by the factor 7 at most, each
term is bounded in the same way as in the proof of (2.47). The second operation
results in replacing the terms j | ω | ( | ω | — 1) M~5(lωl-2)( jβ2 |^α|2)2 in the bounds
(2.39), (2.40), (2.41) by

and the rest of the bound is again the same as in the proof of (2.47). We obtain a
bound in which #i|<Sα|2 is replaced by (70B\B2c^ι(d, |yo) + BιBo)\χA(y')δ$.\29 and
we denote the new constant by B\c^ι(d, |yo). Obviously this new B\ is bigger than
the one in (2.44). We obtain the inequality

lΛ{y)

(2.48)

Notice that the third and fifth inequalities in (2.44), follow from (2.47), (2.48).
Now we are ready to estimate the difference δ(Xk(s) — δoc^l) using the lo-

calized equation (2.46). We take the norm | | 2 of both sides, and multiply by
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exp ^γod(y,(X{)~2). The norm of the left-hand side is bounded from below by the
norm of the first term minus the norms of the second and third terms. We estimate
the norm of the second term as follows:

exp-
•* •• • "w ^ y° N •N.J J x \ ^

Σ χΔ{y)Hι(l)χΔiyΊ(δak(s) - δak{\))

ύ Σ

exp (-JyoΦ'ffiΓ2)) W (d9

 l-y^j (δQ

exp \y,d{yfχXc

λr
2)\χΔ{yΊ{δak(s) - δ*k(\))\2

d, ±y0) (δ0 +

x exp pod(y\(XίΓ2)\χA(y)(δock(s) - δxk(l))\2

3 1
^ — sup exp -yod(y9(Xf)~2)\χA(y)(δotk(s) - δθLk(l))\2,

y

where we have used the conditions i?i<5o ^ | , B\B^δ\ ^ \B\Cβ ^ ^ , which imply
B\{δo + δ\) < - + jζ = jζ. We estimate in the same way the norm of the third
term using the inequality (2.48), and we bound it by

Bι sup \tδak(s) + (1 - t)δotk(l)\2

ί€[0,l]

• sup exp -y0d(y,(XfΓ2)\χA{y)(δ(xk(s) - <5α*(l))|2 .
y 4

The first supremum is bounded by 2B3δι, and 2B\B^δ\ ^ | , hence the above
expression can be bounded by \ times the second supremum. Thus the supre-
mum over y eTBjc of the norm of the left-hand side is bounded from below by
1 — ̂  — I = j ^ times the second supremum above. Using the second, fourth and
sixth inequalities in (2.44) we bound the norm of the right-hand side by

+ δi )\δak(s)\2 + Bγ \δak{s)\2

2

Combining the bounds we obtain

\lA(y){δzk{s) - <5α,(l))|2 < 3 exp U Λ . W Γ 2 ) ) B3δu (2.49)
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The two bounds (2.45), (2.49) are the basic bounds for the solution δoc(s) of
the equation (2.43). It also has the following fundamental localization property: if
s — 0 on a family ^ of cubes D, then δotk(s) = 0 on the domain (JD G^D, and δak(s)
does not depend on φo,oco,διl/,f\9oc\ restricted to this domain. This property follows
immediately from the form (2.30) of the equation.

Let us come back to the function δφk(δoc,s). For s = 1, it becomes a solution
of Eqs. (3.20) [3] if we substitute δock(l) instead of δoc. Generally we substitute
the solution δock(s) instead of δoc, and we denote δφk(s) = δφk(δock(s)9s). From the
inequalities (2.23) we obtain

\δφk(s)\ < 2d+3BoCι Ul-yo) e ( 7 I ) ^ Q + 3 £ 3 ) δx < B2

3δu

\χAω(δφk(s) - δφk(δock(s),l))\ < exp (-±

(2.50)

and the same inequalities for the other norms listed after (2.23). To estimate the
difference δφk(s) — δφk{\) we have to estimate the difference

δφk(δak(s),l) - δφk(δak(l),l)

δ

-/*<( δ(δa)δψi

(2.51)

We do it in the same way as for (2.46), we estimate the localized differential
XΔ(y){{jA^δφk){δai,s),χA{y>)δa). The function δφk(δa,s) is given by the random
walk expansion (2.16) with at most three functions δon at vertices of the walks. The
differential is obtained by replacing one of the functions δoc by χA(yf)δoί9 or one of the
operators G(Dz,αo + δoc) by —G(Dz,α0 + δa)χA(y)δόίG(Πz,ocQ + δoc). We estimate
it in exactly the same way as in the proof of (2.48). In this simpler case we can
do it a bit more carefully, as in the inequality (2.17), and we obtain the following
bound:

i ) (δcc,s),χA(y)δoί

S exp (~yod(y9y)j B3c^1 (d9 ^y0) \χΔ{y>)δ&\i, (2.52)

holding for all δoc in the space {<5α: |^α| 2 < yi} Combining (2.51), (2.52) and
(2.49) we obtain

\χA(y)(δφk(δock(s), 1) - δφk(δock(iχ\))\

) exp (-λ-

S exp



56 T. Balaban

This inequality and the inequalities (2.50) yield finally

\δφk(s)\ < B\δλ,

\χΔ(y)(δφk(s) - δφk(l))\ < exp (-\y0d{y,{Xc

xT
2)\ AB\δx. (2.53)

The function χχoδφk(s) has also a similar localization property as δcck(s): if s = 0 on
a family ^ of cubes, then χχoδφk(s) does not depend on φo,oto,δψ,fi,tti restricted
to the domain U D ( E ^Q Actually, a stronger statement holds, the function depends
on the variables restricted to this connected component of the domain ( |J D G ^Π) C

which contains Xo

We summarize the main results obtained until now in this section in the follow-
ing proposition.

Proposition 2.1. Consider the solutions δφk,δoίk of the system of Eqs. (3.20) [3]
defined on the space (3.21) [3]. There exist constants B\,K3,c6 such that B\c6 ^ | ,
<?6 ^ 72, and if B\δo ^ | , B^δ\ ^ \c^ then the solutions are extended to ana-
lytic functions δφk{s\δθίk{s) defined on {s: \s\ ̂  eKl}. The function δotk(s) satisfies
Eq. (2.30), and δφk(s) is given by the formula (2.16) with δa = δ(Xk(s). For s — 1
they coincide with the solutions δφk,δ(Xk, ί>e δφk(l) = δφk, δ<Xk(\) — d^k- Let Ή
be a family of the large cubes, and let su = 0 for D G ^ . Denote YQ = UΠG^ ^
then χXoδφk(s) depends on the variables in the space (3.21) [3] restricted to
the connected component of Yξ containing the domain XQ, δock(s) — 0 on YQ and
XA(y)δock(s) depends on the variables restricted to the component of Yξ containing
Λ(y). The functions δφk(s),δoίk(s) satisfy the bounds

\δφk(s)\<κ3δu \d«δφk(s)U<κ3δu

\d"δφk(s)\ia)^a < CaKiδx for 0 < α ̂  1,

< K3δu \δock(s)\2 < K3δu (2.54)

\XA(y)(δφk(s) - δφk(l))\ < exp (-\yod(y,(Xϊr2)) K3δu (2.55)

and the same bounds for the remaining norms written in (2.54), only with the
additional factor Ca for the third norm,

\XA(y)(δock(s) - δock(\))\2 < exp (-\yod(y9(Xf)~2)) K3δx. (2.56)

It follows from (2.53), (2.45) and (2.49) that we can take K3 = AB] in the
above proposition. We can also simplify the formulation assuming K3 = B\ without
any important loss of generality, although i?i is considerably bigger than AB\. The
estimates of the two differences are particularly important in the future. We need
them on the domain Xo, and it is enough then to replace the exponential functions
of y by small exponential factors. We use the bound (2.22), and we obtain the
inequalities

\χXo(δφk(s) - δφk)\ < exp (~γorιλA K3δu (2.57)
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and the corresponding bounds for the remaining norms in (2.54),

\χXo(δock(s) - δ(Xk)\2 < exp ί --yonM J K3δu

where r\ — ro — 4 is a positive integer, e.g. we may take r\ — 4.
The above proposition is an extension of Proposition 3.1 [3], and it plays a fun-

damental technical role in all localization expansions we construct in these papers.
Let us apply it now to the solution φk,oik of the basic system of Eqs. (1.14) [3]. This
solution has been constructed in the form φk = φo + δφk, ak = αo + δoίk, where
φo,αo is t n e approximate solution defined in (3.2), (3.3) [3], and the functions
δφk,δ(Xk satisfy the system (3.20) with the above φo,oco, and with δφ = O,f\ —
—/o,αi = 0. In this case <5o = C3^, <5i = C^δ, where δ satisfies the assumptions of
Proposition 2.1 [3], i.e., 0 < δ ^ ε, δ ^ c4, vε2 ^ δ2. We assume that BιC3δ ^ | ,

\cβ, which means that δ ^ Cγ, where cη = min{c4, ^(B\C3)~ι,
| c 6 } . Then the solutions δφk,δ(Xk can be extended to the analytic func-
tions δφk(s)9δθLk(s) by Proposition 2.1, with one small modification. In the above
constructions we have used the localized Green's functions G(D z,α),α = αo or
α = αo + δΰί and we have obtained the localization property with respect to αo.
It is not good enough now, because we are interested in localization with respect to
the variables (ψ + ψ',h + h!), and χzκ»α0 depends on these variables restricted to

A(y), or even to Δ(y'), where y' is a center of a block containing the point y. For
Δ(y) close to the boundary of D z this will involve a dependence of G(Dz,αo) on
(ψ + φ\ h + h') beyond the cube D z , on some neighborhood of D z . It is a small
neighborhood, but to have the same simple formulation as in Proposition 2.1 we
modify slightly the Green's functions. We use the fact that supp/z2 C D^, where
D^ is a cube with a center at z and of the size 2MLJη, if z e ΛJ"^ . From this it
follows that (Xohz = χπ°αo^z? hence we can replace the Green's functions G(DZ, α)
by G(Dz,χDoα), and all the formulas, bounds and statements remain the same. Now
the function Xπoαo depends on (φ + ψf,h + h') restricted to the small neighborhood
of D^, which is contained in D z . Therefore the localization property with respect
to these variables holds in the same form as in Proposition 2.1. Thus we define

Φk(s) = Φo + δφk(s), ock(s) = α0 + δak(s\ (2.58)

and we obtain analytic extensions of the solutions φk.^k They do not satisfy
Eqs. (1.14) [3], in particular the relation α = | ( φ 2 — 1) does not hold for them.
Otherwise they satisfy all the properties formulated in Proposition 1.1 [3], and also
the remaining ones in Proposition 2.1, with the constant K4 = (2K3 + l)C3. We
formulate these conclusions in the following proposition.

Proposition 2.2. Consider the solutions of Eqs. (1.14) [3] with the assumptions
of Proposition 1.1 [3]. There exist positive constants cη.K^ such that if δ ^ cη
then the solutions have the analytic extensions φk(s), oίk(s) defined by (2.58).
They satisfy the bounds (1.15), (1.16), of Proposition 1.1 [3] with the constant K4

instead of K\, and the differences φk(s) — φk,oίk(s) — α# satisfy the bounds (1.15)
[3], except the first and the sixth ones, on the domain Ωj ΠXo with K\ replaced
by e x p ( - ^ o ^ ( y , ( ^ Γ 2 ) ) ^ 4 , or by QxV{-\yQrλM)KΛ. If s = 0 on the family of
cubes %>, as in Proposition 2.1, then χχoφk(s),χχooίk(s) depend on the variables
(ψ + ψf,h + h') restricted to the component of 7O

C containing XQ.
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The existence and the properties of the analytic extensions φk(s),aίk(s) imply
existence and properties of φk

1\s), where φ^ is the simplified notation for the func-
tion ^(By,B£) constructed in Sect. 4 [3]. It is expressed by the formula (4.21) [3] in
terms of the function φ'k = </>(B£), and the extension of the last defines an extension
of φ^ by that formula. We have also

- δφ'k)

- δφ'k), (2.59)

or more explicitly, for y eAp(y/)ΠΛn,y
/ eΛf

p,

φ{

k

J\y;s) - φ[j\y) = Qn(δφ'k(s) - δφ'k){y)

-^•(LnL-p)2Qp(δφf

k(s) - δφ'k)(yf).

This representation implies that the difference φk

J\s) — φk^ satisfies the bound
(2.55), or (2.57) on XQΠΊBJ. We will need to know that φk

J\s) satisfies also
the properties (4.29), (4.37) [3], Let us consider again the proofs of these state-
ments. In those proofs we have used the bounds (1.15), (1.16) [3] only, with one
exception. Estimating the expression \φk (y)\ — 1 we have used the second equation
(1.14) [3]. This equation is not satisfied by the analytically extended configurations
φk(s),(xk(s), so we have to use instead an almost identical argument relying on
properties of ΦQ,01Q. We have

\\ΨΪJ\y,s)\-l\<\\(Qnφk(s))(y)\-

+K3C3δ+K4δ <

\φ'0{xx) - φ'0(x2)\2 + (Qn\\φ'0\
2 - \

< 1-d2(L"L-P)2φ2 + l(Qn\a'0\)(y)+~K4δ

< \d2φ2 + \{Lpη)-2C^δ + ^K4δ < 2K4δ,
2 A 2

which is the same bound as in the proof of (4.29) [3], but with K4 instead of K\.
Let us explain that in the above inequalities we take a real configuration (φ\h),
but an arbitrary complex s from the considered domain. The remaining arguments
in the proofs of (4.29), (4.37) [3] are the same for φk (s), except that we get the
constant K4 instead of K\. This yields the following proposition.

Proposition 2.3. The function ^(B 7 ,B^) defined on a space Ψ (B^;^,ε) with δ,ε
satisfying the assumptions of Proposition 1.1 [3] and δ ^ cη has the analytic
extension ^(B^B^ s) defined in terms of φ(Έ'k\s) by the formula (4.21) [3]. It
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satisfies the properties (4.29), (4.37) [3], with the constant K4 instead of K\,

\ψ(PJ9B'k;y;s) -

<exp(--y0rιM)K4δ on X0ΠBj, (2.60)

and the same localization property as in Proposition 2.2.

In the following sections we have to use the extensions for background functions
determined by a generating set Bjt+i They usually involve also the set B^ obtained
by omitting the k+ 1st domain Ω*+i, and we consider them on lattices connected
with the basic lattice in the 77-scale, i.e., with Tη. We construct their extensions
taking the partition into large cubes determined by B# only, that is disregarding the
domain φt+i For cubes D z intersecting Ωk+\ we take the corresponding operators
G(D z,α) as in (2.3), but with the operator aL~2Ql+λQk+\ on the intersection D z Π
Ωfc+i. These operators satisfy the same basic bounds (2.5), (2.7), (2.10) with properly
chosen constants #0,70, hence all the remaining bounds, and Propositions 2.1-2.3
hold for such background functions also.

3. Localization Expansions for Functions of the Covariance Operator

Besides the background configurations in the function (1.1) we have the oper-
ator CΛ

 5 , which depends non-locally on θ through the configurations φk+\ —
φ(Bjt+i),α£+i = α(B£+i). It is a function of an operator defining a basic quadratic
form in k + 1st fluctuation integrals. We will discuss these integrals in the next
paper, where we will derive the following formula for the quadratic form:

'\\2

L + ak\\ψl\\2-a2

k(ψ',QkG(ak+ι)Q*kψ
l)

Γ1 I " 1

Φk+ι • G(ak+ι)Qk*φ', — + φk+ι G ( α t + 1 ) φ k + λ φ k + γIΛ J

(3.1)

Here the operator G(α) is determined by the generating set B^ and defined by
(3.22) [2], and configurations ψf have supports in A — Ωk+X C T\ \ It is rather easy
to see that for real configurations φk+\,&k+\ t β e operator of the above quadratic form
is symmetric, positive and bounded and we will prove it in the next paper. We are
interested in two functions of this operator, namely in

y^rv^ ) 2

^ Λ and \og{{aL~2Q^Q + J<*>) \A) .
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The second will appear as a main contribution to logarithm of the fluctuation integral.
We consider these functions for the operator with the background configurations
φk+\,oik+\ replaced by arbitrary configurations φo,αo m m e space (3.21) of [2], with
(5o sufficiently small. Because of their importance let us write here the conditions
defining the space

\ < IΦol < \ \Φ\ - 1| < δ0, 10*0011 < δθ9 \A"φo\2 < <S0, |α o | 2 < <50 . (3.2)

At the moment we consider real configurations, but in the future we will extend
all constructions onto the complex space. The operator aL~2Q*Q + Δ^ defined by
configurations φo, OCQ and restricted to the set A is symmetric, positive and bounded.
Denote a positive lower bound by 70. We can define a function / of this operator,
where f(z) is an analytic function on a domain containing the interval [70,+00],
by the formula

f(aL-2Q*Q + AW) = ^-Jdzf(z)(zl - (aL~2Q*Q + A™))'1 , (3.3)
LTll Q

where C is a contour in the analyticity domain of f(z) and surrounding the spectrum
of the operator. For simplicity we omit the set A in all notations; we assume that
all the unit lattice operators are restricted to A without writing it explicitly. We
are interested in two functions: one is f(z) = z " — -±=9 more precisely we take
a branch of y/z having positive values for z real positive, and a cut along the
real negative half-axis; another is f(z) = logz, which is a branch of logarithm
having real values for z real positive, and a cut along the real negative half-axis.
By the formula (3.3) the localization problems for the two operators are reduced
to such a problem for the resolvent of the basic operator aL~2Q*Q + Δ^k\ We
solve it by constructing a generalized random walk expansion for the resolvent,
similar to the expansions (2.8), (2.13). There are at least two ways of constructing
such an expansion. We can do it using the method and the theorem on unit lattice
operators in the fifth section of [2a]. This can be applied directly to the resolvent
operator, but it requires an additional construction of a random walk expansion for
the operator A^k\ It turns out that it is possible to obtain an explicit representation
of the resolvent, which is quite similar to the formula (3.1), and we can construct
a random walk expansion based on it. This is a bit shorter way, and we follow it
here. To simplify properties of a representation of the resolvent we transform the
integral in the formula (3.3), taking into account the particular functions we are
interested in. The resolvent itself is analytic on the whole plane, except an interval
[70,71] in the positive half-axis. For the functions described above we can take the
contour C as a union of a circle \z\ = R with a large radius R, a circle \z\ = r
with a small radius r, and two "sides" of the interval [—R,—r], For the function
/(z) = z~3 we can take the limits R —• +00, r —• 0+ in the integral, and we obtain
the representation

0

For the function /(z) = logz it is slightly more complicated, because | logz| —> +00
as \z\ —> +00, so we cannot take the limit R —» +00. In this case we consider
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[-R, —r] as a union of two subintervals [—R, —Ro] and [—Ro, —r], and we write
the integral (3.3) as a sum of two integrals, one given by a contour which is a
union of the large circle and two "sides" of the interval [-R, —Ro], another given
by a contour which is a union of the small circle and two "sides" of the interval
[—Ro,—r]. For the first integral we use the resolvent equation, which yields the
additional factor \, and then we take the limit R —» +00. For the second integral
we can take the limit r —» 0-h We obtain the following representation:

\og(aL-2Q*Q + J<*>) - (aL~2Q*Q + J<*>) / —(aL~2Q*Q + A™ + xl)~ι

Ro X

Ro

-J dx(aL-2Q*Q + Aik) + xl)~l + log^o . (3.5)
0

It is easy to see directly, using the resolvent equation, that the right-hand side above
does not depend on RQ. We will use it in the future. To derive the representation
of the resolvent in the formulas (3.4), (3.5) we start with the formula

exp [ i ( ] ^

-\x\\Ψ\\2+ (*,/)

Cf} = (aL~2Q*Q + A(k) + xiy1 , (3.6)

where / is an arbitrary function on A with values in WLN, and we take x 2: 0. Let us
recall again that the variable φ in (3.6) is restricted to A. Consider the exponential
factor exp[— \(ψ,Δ^ψ)] under the integral. It can be represented by the integrals

exp [-I(<M(*ty>] = ±-fdφexp ^-\{φ - Qφ,a(Ψ - QΦ))

-\{φ,{-Δ" + vk + ao)φ) - l-λk\\φ0 φ\\2

= lfdφfdaexp[-\(Ψ-QΦMΨ-QΦ))

--{φ,(-Δη + vk + «o)Φ) - !'(<*,Φo Φ)

(3-7)

where the variables φ9cc are restricted to the domain Ω\, the first domain in the
sequence connected with the generating set IB ,̂ and Q denotes the corresponding
averaging operation Q(ΊBk), as in (3.22) [3]. Notice that Q in the formulas (3.1),
(3.3)—(3.6) denotes Q\, i.e., the basic 1-block averaging operation. It is easy to
see that integrating first with respect to φ, and then with respect to α, yields the
corresponding quadratic form on the right-hand side of (3.1), which represents A^h\
Now we substitute the last integral above in place of the exponential factor in
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the integral (3.6), and we obtain a Gaussian integral in the variables ψ,φ,oc. We
integrate first with respect to φ, then with respect to φ, and finally with respect to α.
We do not discuss here these elementary Gaussian integrations. They are reduced to
a simple linear algebra; let us write a final result only. We introduce the following
two operators:

Q*(Bk)a(lBk)Q(Bk) toί+1 +v* + α0) ,

Λk,x = — [ — (! - Q*Q) + — , I - Q*Q, (3.8)
ak + x cikΛ- aL~2 + x

where, in order to avoid confusion, we have written explicitly which operators are

determined by ΊBk. The operator Cx has the representation

1
j- + Φo <?M(«O)^O ΦoGk,x((xo)QkAk,x. (3.9)

It is very similar to the representation (3.1) for A^k\ the most important change is
that the operator G(OCQ) in (3.1) is replaced by Gk>x(oco) given by (3.8). Let us notice
that the above representation holds quite generally for the resolvent operator, and
we have the identity (3.9) with x replaced by —z, for z in a quite large domain in
the complex plane, but then we have more complicated properties and bounds of the
operator G*,-z(αo). They become very simple for — z = x ^ 0. The second operator
in the parenthesis in (3.8) is equal to the linear combination of two projection
operators

<*kx n*n i alaL~2

 n

3 1
^ -ak+ιL~2Ql+λQk+ι for 0 g x ^ -Λ*, and

1 _ , 1
for x > -ak .

From the above inequalities we conclude easily that the operator in the paren-
theses in (3.8), i.e., the operator G^(oto), is positive for αo real and sufficiently
small, or its real part is positive for αo complex and sufficiently small. We can get
a more precise bound using the following well known simple inequalities:

c(-Δη/) + c'Q*Qj ^ (ZΛ/)-2min{4c,c'} on L2(A\ where Δ is a y-block,

j ^ k and AηJ is the Laplace operator on A with Neumann boundary con-

ditions; c(-Aη/) + c'L- 2ρ£+ 1Qt+i ^ L-2min{4c,c'} on L\A'\ where A1 is a

k + 1-block, i.e., an Z-cube of Tη.
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Of course we have assumed that c,c' are positive numbers. Let us take a cube
D C Ωk which is a union of k + 1-blocks. By quite elementary considerations, using
the above inequalities, we obtain the bound

α0) e(4)] ^ -(-Zlg i V)+-^+ 1I- 2

on L2(Π), where e(#;x') = e* ' x ' , xr eTψqe Wid

and Itfloo = m a x | ^ | ^ ^ ~ 2 > M < —ak+ιL~2, x ^ 0 . (3.10)

The numerical factors above are to some extent arbitrary. If we take a cube D C Ωj,
j < k, which may intersect Ωy+i, but does not intersect Ω/+2, and which is a union
of j + 1-blocks, then the operator in the parentheses in (3.8) restricted to this cube
is equal to the corresponding operator in (2.3), and for it we have the above bound
with the second term on the right-hand side multiplied by (LJη)~2. Let us define
an operator G^x(D,αo) by the formula (3.8), but with the operator in the paren-
theses restricted to a cube D, the Laplace operator with Neumann boundary condi-
tions on D. Of course we have (/£,*(•, αo) = G(D,αo) if • is disjoint with Ωk+\.
The operators G ^ Π ^ α o ) play a crucial role in constructing the generalized ran-
dom walk expansion (2.8) for the operator G^x(αo). Convergence of this expansion
depends on the bounds (2.5). They hold for the operators G^X(Π, αo) also, but strictly
speaking the proofs given in [2a] do not cover this case, although they can be easily
extended to yield the bounds. Instead of doing this we notice that now it is enough
to prove the convergence in the I? -norms, because we want to use the expansions
for the operators in the expression on the right-hand side of (3.9), and the aver-
aging operations Qk can be interpreted as taking scalar products with characteristic
functions of A -blocks, that is with functions having L2 -norms equal to 1. This is a
crucial remark, because the bounds (2.5) in L2-norms are immediate consequences
of the bound (3.10). We obtain

(3.11)

where y E Λj^ Π D, y1 e Ay Π D, / is an arbitrary function on D, and we can take

#o = 15^-L 2 , yo = Jd^~2- This bound implies the convergence of the correspond-

ing expansion (2.8) in the L2-norms. This expansion yields an expansion of the

second term in the representation (3.9). It can be written in the form

Kx(hZn)Gk,x(ΠZn,a0)hZnχΔ{. yAKx9 (3.12)
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where the sum is over all walks z = (zo,zi,... ,zΛ), and the operator Kx(f) is given
by the formula,

Kx(f) = 2V/ V + Δf- (-^-[QtQk,n + T.

x[β*+iβ*+i./] ) k + , - e * [QΐQkj] \oί+ι, (3.13)

if supp/ intersects Ω*+i. If it does not, then it is given by the second formula in
(2.6), but with hz replaced by / . Instead of the bound (2.10) we use now the bound

{Vηf\\χΔ{y)Kx(hz)GU^θio)hzχΔ{yΊf\\ < 4dM~ιBoe-^d^yf\LJ"η)2\\χA{yΊf\\

(3.14)

following from (3.10), (3.11) and (3.13). It implies the convergence of (3.12) in
exactly the same way as in Sect. 2, in particular the bounds (5.11) hold without
any changes. We would like to construct a similar expansion for the third term on
the right-hand side of (3.9). It is slightly more complicated because of the inverse
operator in the middle of the expression. We have analyzed this operator in [3], so
we summarize necessary results obtained there in the equalities below

1 I " 1

— + φo G^x((Xo)φo\
Afc J

- Kx(φ0) - Gk,x(oc0)Φo Ul °^)]

= 11 - λkGk,x(λk)Kx(φ0) Gk,x(oco)φo + λkGKx{λk)

The operator λkG^x(λk) has the Hubert space norm ^ 1, the operator Kx(φo)
Gk,x(θίo)φo has a small norm of the order O(δo), and \φl — 1 + ψ\ < 2δ$ by (3.2),
hence the operator in the last square brackets above is a small perturbation of the
identity operator, and its inverse can be represented by a convergent Neumann se-
ries, for <5o sufficiently small. Thus the third term in (3.9) is given by the following
series:

ΣJ ak^-k,x < XA( ), Gk,x(oco)φo ® \λkGk,χ(λk)Kx(φo) - Gk^
n=0

-λkGKx{λk) Ul-l + ^\\ (λkGk,x(λk)Kx(φo)Gk,x(«o)

(3.15)
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It is a convergent series, whose nth term is a product of at least n small factors,
so we can obtain easily various uniform bounds for its sum. Now we construct
a random walk expansion of the sum by substituting in place of all the operators
Gk,x(θLo), Gk,x(λk) their random walk expansions. We obtain an expansion of the
general form (3.12), but in which the operators Kx(hz)GkίX(Πz,(Xo)hz may be replaced
by other possible operators. We describe this by introducing generalized random
walks, with points z replaced by pairs (z, i), where the natural number / indicates
which operator we take. We combine this expansion with (3.12), and we obtain the
following expansion of the sum of the second and third terms on the right-hand side
of (3.9), without the operators akAkfX

DUyΛ) = Σ (χA(y), Π Gωm(hZm,πZm)hZmχA(y,\ (3.16)
ω \ ra=0 I

where the sum is over random walks ω = (ωo,ωi,.. .,ω w ), |ω| = n, ωm = (zm,im)9

and an operator Gω(hz,Πz) is one of the operators

Kx{φo)hzGhx(Ώz,u.o), Kx(φ0) hzGkx(C

0O - 1 + — I, -Kx(hz)Gk,x(Uz, λk) ί φ 0 - 1 + j - I,
/C / \ ft /

-Xx(//z)Gyt,x(Π2,4)</>o, -λkhzGk,x(Πz,λk)φo . (3.17)

Thus the indices /w change from 1 to 12, but obviously they do not change indepen-
dently; there is a set of restrictions following from the structure of the expressions
in (3.12), and in the series (3.15). They should be quite clear, so we do not need
to formulate them explicitly here, but let us mention a few which will be used next
in bounds. The first two operators in (3.17) appear only at the beginning of the
product in (3.16), i.e. for m = 0, and z'o = 1 or 2. The last operator may appear
only at the end of the product. After the fifth operator there is in some place in the
product (3.16) either the seventh, eighth, or tenth operator, except when the fifth
operator appears the last time in the product. From the inequalities (3.10), (3.11),
(3.14) we obtain the following bounds:

(LJ"η)2\\χA(y>)f\\ , (3.18)

where the order of constants corresponds to the order of operators in (3.17), and
we have to include the factors (LJrj)2 in the norms for the operators involving Kx.
The bound of the fifth operator is not small, but we can use the fact that it is
followed by one of the operators described above, whose norms are of the order

O(<So), and assign the factor δfi to it. Now we can estimate the expansion (3.16)



66 T. Balaban

in the same way as the expansion (2.8), and we get the inequalities (2.11) with
minor changes only, more precisely the numerical factor on the right-hand side of
the third inequality is replaced by

9Blc\ (d, ±y0) (2L + 1)' (4MB0* (d, ^ (2L + l / ^ ^\ })max ̂ \ ^\ })
(3.19)

The remaining considerations are the same as in Sect. 2, we assume that the
expression in the parentheses above is 5̂  1, and this yields the convergence of
the expansion (3.16), and various bounds for the sum and certain partial sums. In
particular the whole sum, hence the operator DktX satisfies the bound

^ B4\f\, where B4 = 9 - 2d+ιB2

0cj (d, ^γo) (2L + \)d. (3.20)

In the above bounds we have used the fact that any ωm in a generalized random
walk ω can be followed by an ωm+\ with at most 4 different indices im+\, and this
is the reason for the number 48 in (3.19), and ψ in (3.20).

Using the bound (3.20), which is uniform in x ^ 0, and the equality

Ck,x = AKx + a\AKxDKxAKx (3.21)

following from the definition of D^x, we can simplify the formula (3.5). At first
notice that the first integral on the right-hand side of (3.5) converges to 0 as RQ —>•
+oo, because the under-integral expression is of the order O(^). The operator A^x

is a very simple operator given by the formula (3.8), and it is of the order O(^) for
large x, so the second integral in (3.5) of the second term on the right-hand side
of (3.21) is convergent as RQ —> +oo. This integral of the first term on the right-
hand side can be calculated explicitly, and the result combined with the term Iog7?o
in (3.5) is convergent to logak(I - Q*Q) + log(α* + aL~2)Q*Q as Ro -> +oo. We
can do a similar calculation for (3.4), and we obtain the following final formulas
for the operators in (3.4), (3.5):

Q*Q + f 7^ΛKXDKXAKX,
π 0 Vx
π

-2Q*Q + Δm) = logβ*(/ Q*Q) + log(ak + aL~2)Q*\og(aL-2Q*Q + Δm) = logβ*(/ - Q*Q) + log(ak + aL~2)Q*Q •

-a\ f dxAKxDKxAKx. (3.22)
o

The expansion (3.16) yields random walk expansions of these operators. We can use
them now either to introduce the localization parameters s into the operators, or to
construct their localization expansions directly. The introduction of the localization
parameters has been discussed thoroughly in Sect. 2. We use the expansion (3.16)
and construct an analytically extended operator Dk,x(s) by the formula (2.16). Using
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the bounds (3.20) and the basic inequality (2.21) we obtain

\DKx{s)f\ ύ B4 exp((7L)dκ, ) | / | . (3.23)

The extension of D^x defines an extension C^ΐ(s) through the formula (3.22). It
satisfies the bound

ί( )
(3.24)

following from (3.22), (3.23). Notice that the bounds (3.23), (3,24) can be improved
by omitting the factor Qxp((ΊL)dκ\), as in (2.23), if we restrict the supremum norms
on the left-hand sides to the domain XQ. Let us recall that the extensions in s are
defined for a given pair of localization domains XQ,X\ satisfying (2.14). The above
results form an important part of the whole localization problem, and we summarize
them in the proposition below.

Proposition 3.1. The operator C(k)i2 given by the formulas (3.4), (3.9), (3.6), (3.22),
(3.16), has the localization extension constructed above, which is an analytic func-
tion of (φo,oco) on the domain (3.2) with δo small enough, and of the localiza-
tion parameters s in {s : \s\ < eKι}. This localization extension satisfies the bound
(3.24), and the bound corresponding to (2.60) with K4δ replaced by B5\f\. It satis-
fies also the crucial localization property, which can be formulated in the following
form: if s = 0 on a family Ή of cubes, and if Y\ is the connected component of
(L)%>)c containing X\, then χγλC^ϊ(φQ,θίQ,s)f depends on φo,ao,s,f restricted to
the domain Y\.

Obviously similar conclusions can be formulated for the second operator in
(3.22). Actually we will not need this operator, only its trace which appears as
a leading term in contributions to the effective action coming from the fluctuation
integral. We will discuss these conclusions later, together with the remaining local-
ization expansion.

4. A Construction of the Localization Expansion (1.4)

In this section we construct the expansion (1.4), and prove complete analyticity
statements, using the results of the two preceding sections. Let us recall the following
identities for the background configurations occurring in (1.1):

φ(Bj, ΊBk; φ(βk, ΊBk+ι 0)) = φ(Bj, ΊBk+ι θ), or simply

ΨlJ\ψ(k\θ)) = ^£(0), where <̂*>(0) = ^\(0) = φ(Bk,BM;θ),

Ψ{

k

j\ψ(k\θ) + βPC^φ) = φ^\(θ) + δφ{

k

j\β^C^φ), (4.1)

where the last function on the right-hand side above is determined by the background
configurations φk+\(θ),θίk+\(θ), and for simplicity of notations we have omitted the
dependence on A. These identities are special cases of the identities (4.21), (3.49)
[3]. It seems that the last identity and the results of the two previous sections
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provide a natural way to construct the expansion; we could introduce properly the
localization parameters s into the functions on the right-hand side, and to interpolate
in s between 0 and 1 in a well known way. This is formally correct and yields a
localized expansion, but unfortunately the functions ψ^χ(s)9 δφ[j\s) do not have all
necessary properties needed in our method, for example, their values do not generally
belong to the space Ψj(X;CoLJη,εk), which we need for the bounds obtained in
[1]. This is so because the introduction of the localization parameters destroys their
structure, their algebraic properties and the equations satisfied by them. To overcome
these difficulties we have to use a more elaborate representation than the one above.
This will be done in several steps.

Let us start with geometric definitions. We have the localization domain X £ @j,
and we would like to assign to it a "smallest" in some sense localization domain
X\ € @k+ι containing it. Let us recall that in the considered scale, in which the
basic lattice T is in the 77-scale, i.e., it is Tη, a domain from 2j is a connected
union of LML^η-cubos from the cover πj, which are unions of Ld cubes of the size
MUr\ from the partition π7. We define the domain X\ G @k+ι in the following way:

X\ — a union of all Z2M-cubes from the cover n'k+v which contain a

LMIJη — cube from the cover πj contained in X. (4.2)

We define also a domain X' as a union of all large cubes from the partition
which have non-empty intersections with X. For these domains we have the

inclusions
XλCX'~L-\ XιDX;~L~2, (4.3)

for example for L = 3 we have Xλ C.Xr~2,Xχ DX'~. We would like to keep the
possibility of having this small value of Z, and we would like also to define a
domain XQ containing X and satisfying the condition (2.14). This is possible if we
introduce two scales of large cubes, one smaller for the constructions and results
of this paper, and another larger for the main renormalization group procedure. We
take the smaller scale in such a way that all conditions related to constructions and
properties of all the minimizing functions in this paper are satisfied. There are several
conditions involving the size M of the large cubes, for example the conditions
SdBocx(d, | y 0 ) (2Z, + l)dM~i ^ 1,M ^ 4(7L)dκxj-o used in the proofs of Sect. 2
and we assume that M\ is a number of the form Lmι satisfying all these conditions.
Thus all the statements proven until now hold for the number M\. The size M of
large cubes used in the renormalization group procedure, i.e. in the paper [1], is
greater than Mi, and we will obtain some conditions on it. From now on we have
to be particularly careful with the meaning of the operation "~." In this paper it
generally means that the size M\ of large cubes is used, except in the cases where
we have domains arising in the renormalization group procedure and the size M is
used, like in (4.2), (4.3).

Let us consider again the localization domain X. We would like to construct
a minimal in some sense sequence {Ω[,...,Ω/

k} of localization domains defined in
terms of Mi, satisfying (1.1) [3] and such that X C Ω'k. We define Ω'k in the same
way as X\ was defined, with Mi replacing M, we take

Ω'k = a union of LM\ -cubes from the cover π'k which contain

a LM\LJη-cubQ from the cover nfj contained in X. (4.4)
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Notice that the conditions (1.1) [3] are satisfied if Ω ^ C Ωn, where Ωn+\ is con-
sidered as a domain in <&ni and the operation " ~ " is defined in terms of cubes of the
partition πn. Until now we have only very mild restrictions on R, the strongest one
we may impose is connected with the conditions (2.14), and may be formulated as
Ω~+\L C Ωn, where we may even take r0 = 5. Thus a next domain in the sequence
must satisfy this condition only, so we consider Ω'k as a localization domain in 3)k-\
and we define

Ω'k_x = Ω'k~
5L, where we add layers of MxL

k~ιη = MiZ^-cubes. (4.5)

Generally, having defined Ω'n+X we consider it as a localization domain in 3fn and
we define

Ω'n = Ω^+i1, where we add layers of M\lJ η-cυbes. (4.6)

This way we construct the whole sequence {Ω[,Ωf

2,...,Ω
f

k} and the correspond-
ing generating set. They are determined by the domain X9 so we denote them
by {Ωι(X),Ω2(X)9...,Ωk(X)} and Bk(X). Notice that they depend on k also, the
domains Ωj(X) vary with k, according to the above definition. We define also a
domain X" in the same way as the domain X' before, namely as a union of Mi-cubes
from %k which have non-empty intersections with X. Obviously we have

I C I " C χ"~L-* c Ωk(X) C χ"~L-χ c X'~L~\

where the operation " ~ " is determined by the Mi-cubes. We define

χ0 =X'~4L, hence Ω\(X) C.XQ, because

(L - \)MX + 5LMλL-χ + -f 5LMιL-(k-ι) <(L- \)MX

^ (4.7)

The domain Xo is a localization domain from the corresponding family 3)k defined in
terms of Mi, and we consider X\ also as a domain from this family. We require that
the two domains X^X\ satisfy the condition (2.14), i.e., X^r° CX\, the operation
" ~ " is determined by the partition into Mi-cubes. By the definition of Xo and
(4.3) this condition is satisfied if 4ZMi + roM\ ^ LM. For ΓQ = 5 we may estimate
ALM\ + roMi < 6LM\, and the condition is satisfied if 6LMi ^ ZM, or 6Mi ^ M.
Assuming this, and assuming also that X\ is contained in Ω#, we obtain

X C Ωk(X) C C ΩX(X) C Xθ9X^ C l i C Ωk, Xθ9Xx G @k. (4.8)

The idea how to construct a localization expansion of the function (1.1) which
we follow here is to replace at first the function ψ^ by a local function with a
generating set contained in some neighborhood of X, and then to introduce the
parameters s into the function which is composed with this local one. We use the
generating set JB^X) and the corresponding local function φ(IB^(X)). We have

φ(Bk;φ) = φ(βk(X);ψ(Bk(X),Έlk;ψ)),

φ(Bk+ι θ) = φ(βk{X); ψ(Bk(X), Mk+ι;θ)). (4.9)
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We take the generating set corresponding to the sequence

{Ωu...9Ωj,Ωj+ι(X),...9Ωk(X)}

and we denote it by IB, U ΊB>[j\X). We have

ψ(Bj9mk9φ) = ψ(Bj,BjUBlJ\X);ψ(BjUBlJ\xilBk;ψ)). (4.10)

Consider the function iKB;,By U B J ^ O i//')- By (4.21) [3] we have

,Bj U ΈfjP(X);ψ") = QjΦ(βj U ΊΆ{

k

J\X); ψ") + ^
aJ

xQ*P-j(Ψp - QpΦWj U m\X)\ ψ")) on BP-\ΛP(X)\ p>j,

/') = φμ on (j An U (Ωy\β;+ 1(J0) (Λ (4.11)

The function 0(By U B^ίAΓ); ψ") can be written in the form

φ(Bj U B^(X); ψ") = φ(ΊBk(X); ψ(Bk(X)9Bj U B[j\X); ψ"))9 (4.12)

and we have

ψ(JBk(Xl]BjU]B[J\X);ιl/") = φ" on U W (4.13)
p=J

From the above formulas we get

= Qjφ(Bk(X); φ(Bk(X),Bj U B[J)(X); ψ")) + ^
aj

U B^iX); φ") - Qpφ(Bk(X); ψ(Bk(X), By U B^X); φ")))

Λ'),B*(A');^(Bt(jr),By U B[y)(X);f ))on 5^(^ P (Z)),

p ^ y , (4 i4)

again using the formula (4.21) [3]. Combining (4.10),(4.14) we obtain

φ(Bj,Bk;φ)

= φ(Bj(X), Bk(X); φ{Bk{X), By U B^{X); φ{Bj U Bψ(X), Bk; φ)))

= φ(Bj(X),Bk(X); φ(Bk(X),Bk; φ)) on Ωj(X)u\ hence on X Π T(J\ (4.15)
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This yields finally the identity

9 Bk(X); φ(Bk(X\ Bk; ψ(Bk, B*+1 0) + Φ'))

j , Bk(X); φ(flk(X), Bk+ι θ) + δφ(Bk(X\ Bk; φ
f))

on Ωj(X)u\ hence o n l ί l Γ^ . (4.16)

In the three identities above we have taken ΊΆj(X) defined by (4.4)-(4.6) with
j instead of k. We obtain a sequence of different, smaller domains, in particular
Ω) = Ωj(X) = X by (4.4). The external function φ(Bj(X\Bk(X)) on the right-
hand side of (4.16), restricted to XΠT^J\ is localized in a small neighborhood
of Ω\(X) (we add one layer of points to this domain), hence in the domain XQ.
Furthermore, regularity properties of this function on X Π T^ are basically the same
as of the function i/r(JBy,BjO- This will be analyzed in detail in the future.

Because of these properties we use the representation (4.16) as a basis of our
expansion method. We need to introduce the localization parameters only into the
internal functions on the right-hand side of (4.16). We discuss it now. We take the
localization parameters determined by the generating set B&, or by the sequence
of domains {Ωi,Ω2,...,Ω*}, which are considered as localization domains with
large cubes determined by M\. We do not take into account the domain Ω^+i. The
parameters s are introduced into the function φ(Έk(X)^k+\\ θ) in the way dis-
cussed before. This function is represented by the formula (4.21) [3] in terms of
the function 0(B£+i;0), and we extend the last one to the function φ(Ί&k+\;θ,s)
determined by the geometric setting constructed for B^, although on cubes inter-
secting Ωk+\ we take operators corresponding to k + 1s t renormalization step. Thus
we obtain the extension φ(Bk(X),ΊΆk+ι',θ,s) whose properties are summarized par-
tially in Proposition 2.3. Similarly the function δφ{^k{X)^k\Φ') is defined by the
formula

δψ(TBk(X)9Bk;ψ') = Q(ΊBk(X))δφ(ΊBk;φ
f) J ρ ( B

a(Bk(X))

x(φf-Q(Bk)δφ(Bk;φ
f)\ (4.17)

where δφ(&k', Φ') is the solution of the system of Eqs. (3.20) [3] with δφ = φ\ φ0 =
φ(ΊBk+\;θ),oίQ = α(B*+i;0),/i = 0,αi = 0. This solution is an analytic function
of φ\φo,oίo on any domain (3.21) [3] satisfying the assumptions of Proposition
3.1 [3] and it satisfies the bounds (3.47) [3] of this proposition. We denote the
solution by δφ(JBk;φ\φQ,(Xo). We introduce the parameters s into this function as
in Proposition 2.1, and we define

δφ(1Bk;φ\s) = δφ(Bk;φ\φ(BM',θ,s\a(Bk+ΰθ,s\s). (4.18)

Let us make a few remarks on domains and analyticity properties of the above
function. By Proposition 2.1 the function δφ(Bk',Φ',Φo,tto,s) is analytic on domains
(3.21) [3] with δi,(3o satisfying the assumptions of this proposition, in particular
#i<5o = I- The constant δ\ occurs in the restriction \φf\ < δ\ only, and we may
assume that it is sufficiently small. We have to check when φo = φ{βk+\\ θ,s)9 oco =
oc(JBk+i;9,s) belong to a domain (3.21) [3], or (3.2), with δo satisfying the above
condition. We consider these functions on a space Ψ (ΊB^i δ,ε) with δ,ε satisfying
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the assumptions of Proposition 2.2. Then they satisfy the bounds (1.15) [3] with K4

instead of K\9 and these yield immediately the last three bounds in (3.2) with δo =
K4δ. To bound φ2

0 - 1 we write φ2

0 - 1 = (φ0 - θ)2 + 2(φ0 - θ) θ + (θ2 - 1), and
from the first bound in (1.15) [3] and the definition of the space Ψ (Bk+\'9δ9ε) we
get

\φ2

0 - 11 ^ \φ0 - 0|2 H- 2|φo - 0||0| + \θ2 - 1| < AjS2 + 2 K ^ + 2(5 < 4K4δ

for (5 sufficiently small. Similarly we get

for δ,ε sufficiently small. Thus the two configurations belong to (3.2) with δo —
4K4δ, and we assume that δ is so small that ΛB\K4δ ^ | . With these assumptions
the function (4.18) is an analytic function of {θ,h),\j/',s defined on corresponding
domains

ψ\BM;δ,ε)x {tf:\φ'\ < δfi x {s:\s\ < eKl}. (4.19)

It satisfies the bounds (2.54) of Proposition 2.1. Substituting it into the expression
on the right-hand side of (4.17) we obtain an analytic extension <5^(B^(X),Byt; ψ',s)
of the function (4.17) defined on the same domains (4.19). From the representation
(4.17) and the first bound in (2.54) we obtain the bound

\δψ(Bk(X)9Bk;ιl/9s)\ < (2K3 + I ) * . (4.20)

The function xj/(Bk(X),JBk+\;Θ,s) has properties described in Proposition 2.3, in
particular it is defined on the domains (4.19) and it has values in the space
Ψ (Bk(X);2(d + 2)K4δ,ε). From all the above statements it follows that we have
constructed an analytic extension

ψ(Bk(X), Byt+i ;θ,s) + δφ(Bk(X), Bk; φ\ s) (4.21)

of the internal function on the right-hand side of (4.16), defined on the domains
(4.19) and having values in the space ψc(Bk(X);2(d + 2)K4δ + 4(2£"3 + l)δuε).
The last condition follows from (4.20) by considering the second term in (4.21)
as a part of the complex configuration in the definition (1.12) [3] of this space.
Assuming again that δ,ε,δ\ are sufficiently small, so that 2(d + 2)K4δ -f 4(2K3 +
l)δ\9ε satisfy the assumptions of Proposition 4.1 [3], we substitute the function
(4.21) into the external function on the right-hand side of (4.16), and we obtain
an analytic extension of the function (4.16) in the localization parameters s. By
Proposition 4.1 [3] it belongs to the space Ψ (Bj(X);δ29ε)9 where

δ2 = 2{d + 2)^i (2(d + 2)K4δ + 4(2i^3 + 1)^ ).

Let us recall now that in the function (1.1) we have \j/r = βk

 2C^2ψ9 and we
have to localize this expression also. We have constructed the analytic extension

in Proposition 3.1, and similarly to (4.18) we define

is). (4.22)
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It is an analytic function on the part of the domain (4.19) without the second
factor, and it satisfies the bound (3.24). The variable ψ, which is a "fluctuation"
variable connected with the k + 1s t renormalization transformation, and which will be
discussed in the next paper, satisfies the bound \xj/\ < p\(βk) = A\(logβk)P], where
p\ is an even integer smaller than /?o, hence

|f I < β;h5p,(βk) ^ 55Cβ I/?; i +" = δ,. (4.23)

Obviously δ\ can be arbitrarily small if yf?̂  is large enough. In the remaining formulas
and estimates we will use for simplicity the variable ψ', remembering that

ψ. (4.24)

We will come back to a discussion of (4.23) in another paper, where we will
construct and discuss all remaining localization expansions.

Thus the extended in s function inside (1.1) is analytic on quite large domains
determined by some absolute constants. Unfortunately these analyticity properties
do not fit well to the inductive hypotheses, as was explained already in [1], and
as should be clear from the above discussion. In particular the domains used do
not behave well under the compositions of various minimizing functions. Because
of this we have to use spaces of the type Ξj(σ,ε) introduced in [1], but localized
properly. Nevertheless we need also almost all results of the above analysis done
for the domains (4.19).

We formulate now definitions of such generalized spaces. They are simple mod-
ifications of the definitions (2.15), (2.16) and (2.20), (2.21) in [1], but because of
their importance we write here their complete formulations. Take a generating set
By, and a function σ(By) defined on Ωo, having positive values in the interval ]0,1],
and satisfying the condition that it is constant on corresponding blocks determined
by points of By, i.e., constant on ^-blocks Δn{y) for y e Λmn ^ j . We take Ωo as
some "small" neighbourhood of Ωi, for example Ωo = Ωj~, or even a smaller neigh-
bourhood obtained by adding a layer of 1-blocks to Ωi. We introduce the following
spaces of configurations φ defined on ΩQ and having values in IR^, and vectors

N

σ(B7 ),ε;Λ,v) = {(φ,h): \dξφ(x)\ < σ(Bj'9xX

\Δξφ(x)\M*)\ < σ2(Bj;x)(LnξΓ2s,\φ(x)-h\ < v

on Δn{y),y <G Λn, or simply on Bn(Λn) = Ωn\Ωn+un g j9

\h2-l\ <v~x inf σ2(Bj;x)(LnξΓ2ε2},
n,xEΩn\Ωn+ι

(4.25)

where ε, λ, v are positive numbers. We extend these spaces to complex spaces of
configurations (φ + φ',h + h), where (φ,h) is as above, φ' is defined on Ωo and
has values in <£N,h' is defined on IB, and has values in (EN. We take

Φc(Bj; σ(Bj),ε; λ, v) = {(φ + φ',h + h'): (φ,h) € Φ ( B ; ; σ(B y ),ε; λ, v),

\φ'\<ε,\dtφ'(x)\
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σ2(B;x)(LnξΓ2ε<σ2(Bj;x)(LnξΓ2ε,\h'(y)\ < V

\φ(x) • h'(y)\ < v-1σ2(Bj;x)(Lnζy2ε2 on Δn(y),y G Λn,n ^ j},

δa = ^((φ + φ'f - φ2) = ^(2φ φ' + φ'2). (4.26)

The above spaces are quite natural in many constructions, in particular Propositions
1.1 [3], 3.1 [3], 2.1, 2.2 can be formulated in terms of these spaces, with σ(By) = 1.
Of fundamental importance are spaces of configurations defined on B y . For such
configurations ψ with values in ΊR.N, and vectors h e ΊR.N, we introduce spaces

Ξy(By;σ(By),ε) = {(ψ9h): (^(B,-;^,*),*) e

\φ(y) - (Q(Bj)φj(lBj;ψ,h))(y)\ < σ2(ΊBj;y)ε for y e Λn9n £ j} , (4.27)

where φjiβj) is the minimizing function determined by IB, and by coefficients
aj9λj,Vj. Finally, for complex configurations (ψ + ι//\h + h'\(il/,h) as above, ψf,hf

Bydefined on IB, and having values in <CN, we define

Ξ%Bj;σ(Bj),s) = {(ψ + ψ',h + h'): (φ,h) G Ξj(Bjiσ(By),ε),

(φj(Bj; φ + ψ',h + h'),h + ti) = (φjφj , ψ,h) + δφjiΈj; ψ',h'),h + ti)

e Φc(Bj; σ(By), ε; λj, vj), \ψ'(y) - (&Bj)δφj(Bj; φ',ti)){y)\

< σ\Bj; y)ε for y e Λn,n ^ j}. (4.28)

One of the most important facts relating these spaces to functions φ(1Bj,]B'k) is
formulated in the following lemma, a generalization of Lemma 2.1 [1].

Lemma 4.1. For ε positive and small enough, and B, -< Έ'k (see the definition
(4.1) [3]) we have

φ(Bj,B'k):Ξc

k(Έ'k- σ(B'k),ε) - Ξ^B,-;σ(Bj,TR'k)σ(Έ'k),ε), (4.29)

where σ(SBj,ΊR'k) is a function defined on Ωo by the formula

σ(βj,B'k;x) = L"L-P for x € (ΩB\Ω«+i) Π (Ω'p\Ω'p+ι). (4.30)

Notice that the intersection in (4.30) is empty if n > /?, by the assumption
B 7 -< B[, hence n ^ p and σ(By,B£) ^ 1. The above lemma follows immediately
from the composition formula (4.21) [3] by inspecting the definitions of the spaces
involved, in particular corresponding weights on the intersections in (4.30). We
could introduce also generalizations of other spaces considered in [1], but in this
paper we will use only spaces Ψj(X;σ,ε), which are defined by the conditions
(3.13), (3.14) [1] restricted to a localization domain X, e.g. X G Q)j.

We modify also slightly the inductive assumption (H.5) on the analyticity
domains of the localized functions in the expansion (H.5). For a localization do-
main X e % we construct the minimal generating set By(X) (described in (4.4)-
(4.6)), and we assume that the function S^\y,X\\j/j,Vjh) has an analytic extension
onto the space Ξj(fBj(X);l9εj) satisfying the bound and the invariance property
in (H.5). This space is larger than the space Ξj(l,εj), so the above assumption
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is stronger than the inductive assumption (H.5) in [1]. It implies that a localized
function of the expansion (3.127) in [1], corresponding to a domain X e %, has
an analytic extension onto one of the two spaces: Ξj(JBj(X); 1,6/), or the subspace
of Ψj(X;CoLJη,εk) given by the configurations satisfying the additional condition
(3.107) [1], and it satisfies the bound (3.128) [1]. We write it more generally as

\fi(X;ψj)\ < £exp(-(κ - l)dj(X)\ (4.31)

where E is a positive constant, which in applications will be one of the constants
in various assumptions and bounds in [1].

Let us consider now the function

β{X\ ψ(ΊBj(XχiBk(X); ψ(Bk(X)9BM; θ,s) + δψ(Bk(X)9Bk; φ\s))). (4.32)

For s = 1 and ψ' given by (4.24) it is equal to the function (1.1). We would like
to prove that it can be analytically extended onto a space

3£+1(Bjfr+1; l,ε') x {φf : \ψ'\ < δλ} x {s : \s\ <eκ^} (4.33)

for e! < βk, e.g. ε '= ε^+i, and for δ\ sufficiently small. Actually we are interested in
a situation where the function depends on the variables restricted to some domain Y
containing X\, and then we can take B^+i as equal to B*+i(y), so B#+i in (4.33)
has a more general meaning. We will discuss it again later on. To prove the above
statement we have to prove that the function inside (4.32) transforms the space
(4.33) into the two spaces written above as the two possible analyticity domains.
At first we write

+ δψ(Bk(X)9Bk; ψf,s)

θ) + [Asψ(Bk(X)9Bk+ι;θ9s) + δψ(ΊBk(X)9Bk; ψ\s)] .

(4.34)

The idea is that for the first configuration on the right-hand side we know quite
precisely spaces to which it belongs, and the configuration in the square bracket
should be sufficiently small. We use (4.29) for the first configuration, and we get

φ(mk(X),Bk+ι;θ) e Ξc

k(mk(X);σ(Bk(X),lBk+ι),ε') C Ξc

k{Bk(X); l , e ' ) . (4.35)

To estimate the configuration in the square bracket we notice that the proofs of
Lemmas 4.3, 4.4 [3] can be easily interpreted as yielding

Ξ£ + 1 (B, + 1 ; l,ε') C ψ\BM;2(d + 2)ε',2(d + 2)ε ') . (4.36)

By Proposition 2.3 the first term in the square bracket is an analytic function
on the space (4.33), if 2(d + 2)ε; ^ c7, and it satisfies the bound (2.60) with
δ — 2{d + 2)ε/'. By the analysis between (4.17) and (4.20) the second term is an-
alytic on this space also, if ε' is sufficiently small to satisfy the conditions listed
there, and it satisfies the bound (4.20). Thus the expression in the square bracket
on the right-hand side of (4.34) is an analytic function on the space (4.33) and
it can be bounded by δ3 =2(έ/ + 2) K4exp(-y0Mi)ε' + (2K3 + l)δχ, if ε',δ\ are
small enough. Let us take the value of the function φ(ΊBk(X)) on the configuration
(4.34). It can be written as the sum

;ψ(Άk(X),Bk+1;θ)) + δφ(Bk(X); [...]),



76 T. Balaban

where the function δφ(Ek(X)) is defined by the configurations φo = φ(Bk+\;θ),
α0 = oc(JBk+ι;θ), fx = 0,αi = 0. It satisfies the bounds (3.47) [3] with δ3 instead
of δ\. From this and the definition of the spaces Ξc

k(JRk;σ,ε) we conclude that the
configuration (4.34) belongs to the space Ξc

k(JBk(X); l,β' + (K2 + 1)<53), or that the
function (4.34) is analytic on the space (4.33) and transforms it into the above one.
From this and Lemma 5.1 we obtain the following statement: the function inside
(4.32) is defined and analytic on the space (4.33) with ε\δ\ sufficiently small, and
it transforms this space into the space

Ξϊ(Bj(X); σ(Bj(X)9Bk(X))9εk)9 if ε1 + (K2 + l)δ3 £ εk. (4.37)

Let us analyze the last condition in more detail for ε' = εk+\, where we take
sj given by the formula εj = <xotkξ*,<*o,k = αoO + Σ S ^ ) , α = ^ r - y , 0 < y <
70 = min{l, ^y^}. The positive constant αo is sufficiently small, in particular it can
be chosen in such a way that all the previous conditions on ε' are satisfied. The last
condition is satisfied if 2(rf + 2)(K2 + 1 )K4 exp(-y0Mi )ek + (K2 + 1 )(2K3 + 1 )δ{ ^
L~aot8k, because Z~ααε/t ^ εk — &k+\- We assume now that M\ satisfies the additional
condition 2(d + 2)(K2 + l)K4Qxp(-y0Mx) ^ \L~aa, or %dLaK2KA\ g expyoM.
Then the last condition is satisfied if {K2 + l)(2K3 + l)δ\ S ^L~aaεk, or if

SLaK2K3- g ^ , MV"K2K^ ^ expyoMi . (4.38)

If we take δ\ given by (4.23), and use the asymptotic properties of βk, then we

obtain the bound (5i < 2# 5 C α i /^ + α i 77 ί ^ 1 ~ α i ( ' / ~ 2 ) , and the first condition above is

satisfied if /5i~αi ^ 1 6 L a 5 5 C a i ^ 2 ^ 3 ^ ^ ~ a i ( i / " " 2 ) . Taking αi such that ocx(d - 2) ^

y we obtain that the last condition is satisfied if β is large enough, more precisely

if βl2-^ ^ lό^BsC^K^^. We will come back to these conditions in one of

the following papers, where other localization expansions will be discussed. Now

we assume that they are satisfied.
For the space in (4.37) we have the inclusions

Ξ°<Bj(X);σ(Bj(X),Bk(X))9εk) C Ξ°.(

kχ (4.39)

where the last one follows from the generalization of Lemma 3.1 in [1] discussed
before in connection with Lemmas 4.3, 4.4 [3]. Actually we have to be more precise
now, because the representation (3.127) [1] with the bounds (3.128) [1] hold on the
subspace of the space Ψj(CoLJη,εk) defined by the additional condition (3.107) [1],
that is the condition \d2ψ\ < K\C0ίl(lJη)2~Cίιεk, where 0 < oc\ ^ 1 and Cαi is an
absolute constant depending on oc\ only. Thus instead of the last inclusion above we
have to prove that

; l9εk)

<KλCaι(lJηf-*εk) . (4.40)

The function ψ(ΊBj(X%ΊBk(X)) has the representation (4.21) [3] in terms of the func-

tion φ(Bk(X)). We use again the inclusion Ξc(Bk(X)9Ί,εk) C ψC(JBk(X);2(d +
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2)Sk,2(d + 2)εk), and from Proposition 1.1 [3] we obtain that φ(Έk{X)) satisfies
the third inequality in (1.15) [3] with δ replaced by 2(d + 2)εk. In particular on
the domain X we have the inequality with the constant K\Ca2(d -h 2)εk on the
right-hand side. Notice that other inequalities in (1.15) [3] hold with K\δ replaced
by βyb by the definition of the space Ξc(Bk(X); l,e^). From these inequalities and
(4.21) [3] we obtain easily that on the domain X

id^iBjiXXΊBkiX^KK.C^LJηf-^id + 2)εk + 4(Vη)2εk,

which implies (4.40) with a properly chosen absolute constant Cαi depending on
oίud only. From the inclusions (4.39), (4.40), the statement before (4.37) and the
assumptions on the function S{X,\j/j) we conclude the following lemma.

Lemma 4.2. The function (4.32) is defined and analytic on the space (4.33) with
εf ^ £k+\ and δ\ satisfying the condition (4.38). On this space it satisfies the bound
(4.31).

After the above preparatory analysis we can finally construct a localization ex-
pansion for the function (1.1). We start with the following simple interpolation
identity used many times for similar purposes:

, Bk(X); φ(Bk(X), Bk+ι ;θ,l) + δφ(Bk(X), Bk; φ',

= Σ Π fdsa—^(X;φ(mj(X),JBk(X);ψ(JBk(X),Bk+ι;θ,s)

(4.41)

The summation above is over all subfamilies # of the family of large cubes (in the
scale M\) determined by the generating set ΊBk and contained in X{, the complement
^ c is with respect to this family. From now on let us assume for simplicity that
I c l i C Ωk+\. Let us consider the domain

Yl=XlU [JO, (4.42)
new

by which we mean, as usual, the domain obtained by adding proper lower dimen-
sional walls (i.e. the walls such that all cubes containing them in their boundaries
belong to # ) . This domain is generally a union of several components. By the
localization property discussed above the function (4.32) for s such that s = 0 on
^ c , i.e. s(%>c) = 0, depends on (θ,h),ιj/\s, restricted to the component of Y\ con-
taining the domain X, or X\. If there are other non-empty components of 71 ? then
the corresponding term on the right-hand side of (4.41) vanishes, because of the
derivatives ^ - for D contained in those other components. Thus we can write the
sum as a sum over connected domains Y\ of the form (4.42), and the product over
D G ^ can be replaced by a product over D C Y\ ΠXf. We obtain an expansion of
the form

Γ; φ{

k

J\φ(k\θ) + ψ*)) = Σ *\X> Y\;θ, ψ'). (4.43)
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A term of this expansion is equal to the corresponding term in (4.41) with # related
to Y\ by (4.42). It is almost a desired localization expansion, in particular it satisfies
the most important localization property: the function S'{X,Y\\θ,\j/') depends on
θ, φf restricted to the domain Y\. Unfortunately one feature is still missing, the
domains Y\ in the sum are not localization domains. We correct it by doing partial
resummations in the above sum.

At first we assign to each domain Y\ in (4.43) a localization domain
Y G ̂ ( B j +i) containing Y\, and in some sense minimal. For a cube Di E #,Di c
Ωj\Ωj+\ (hence a cube of the size M\LJη) we take the cube D G UJ (hence the
cube of the size MLJη) containing Di, and we take the domain U{D/:D/ G πj,D; D
D,D; C Ωj\Ωj+\}. This family of cubes is non-empty because each component of
Ωj\Ωj+\ belongs to Sfj. We obtain a domain from Q)j containing D, hence Di, and
contained in Π~L (which is the cube of the size (1L + X)MVY\ with D in its center).
Strictly speaking this construction is described for j ^ k, for j — k + 1 we still have
cubes Di of the size M\, but we take the corresponding cubes D G %+i, i.e., of the
size ML, the rest of the construction is the same. We take a union of these do-
mains over all Di G <£, and we obtain a domain, which is a union of connected
components denoted Y^\. . . , 7 ( n ) . Each component 7 ( ί ) G®(Bjt+i), and contains
at least one component of \J %>, hence a cube Di G # touching X\ along some
d — 1-dimensional wall. Take one of those cubes and denote the corresponding
cube D by Πfι\ Each component 7 ^ is a union of large cubes in the scale M,
more precisely 7 W Π (Ωj\Ωj+\) is a union of cubes from π7 . Denote this family of
large cubes by <$V\ hence ( j ^ ( 0 = ^ ( 0 We define

Y = Xx U (j 7 ( 0 . (4.44)

Obviously Y G ̂ (B^+i), and there may be many domains Y\ determining the same
domain 7. We do a partial resummation of the terms in (4.43) over the domains
Y\ determining a fixed 7, and we define

S(X,Y;θ,φ')= Σ . W,h;6,Ϋ) (4.45)
Y\:Y\determines Y

Each term in the above sum depends on θ, φ'', or rather θ, ψ, restricted to Y\ C Y, so
the sum depends on these variables restricted to Y. In order to formulate analyticity
properties of the above function we have to define the generating set B^+i(7). It
has been defined by (4.4)-(4.6) if Y C Ωk+U but generally we have Y G ̂ (B*+i)
and Y may intersect the domains Ωj\Ωj+\ for j ^ &, so we have to modify this
definition properly. Such a modification is rather obvious, we take Ω'k+X = Y Π Ω^+i?
Ω'k = Ω'^f U ( 7 Π Ωk Π Ωc

k+ι), where we add layers of Mx -cubes, ..., Ω'n = Ω'~+\L U
(7 ΠΩnΠ Ωc

n+ι), where we add layers of MiZ/^-cubes, . . ., and so on. Obviously we
have Ωj c Ωj. The sequence {Ω[,Ωf

2,...,Ω'k,Ω
f

k+ι} is determined by the localization
domain 7, and we denote it as before by {Ω\(Y),^(7),...,Ω^(7),Ωk+\(Y)}. The
corresponding generating set is denoted by B£+i(7), and we have B£+i(7) -< B^+i.
Consider a term in the sum (4.45) corresponding to a domain Y\. It is defined by
the formula in (4.41) in terms of the function (4.32), in which we take s = 0 on ^c.
This function is localized completely in Y\, as it follows from the constructions of
the two previous sections, from the way the localization parameters s have been
introduced. This means that if we take a different generating set B^+ 1, but such
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that Y\ ΠB£ + 1 = Y\ nBfc+i, then the function (4.32) is equal to the corresponding
function with B^+1 instead of Bjt+i, assuming that the parameters sr connected
with B^+1 are equal to 0 outside Y\, and are equal to s inside Y\. Obviously we
have Yλ n B w ( F ) = Yx Π B*+ 1 by the definition of Y and B^+ 1(7), so we may
replace B^+i by B^+i(7) in the definitions of all the terms of the sum (4.45).
Applying Lemma 4.2 we conclude that the functions (4.32) determining these terms
are analytic on the space (4.33) with B^+i(7) instead of B^+i. The terms are defined
by the expressions in (4.41) involving integrals of derivatives with respect to SQ for
D 6 ^ . We replace the derivatives by the Cauchy formulas for the circles \SQ\ = eKι,
or arbitrarily close circles, and we obtain formulas for functions S'{X,Y\\θ,\jf'),
which imply that they are analytic functions defined on the spaces

Ξc

k+ι(Bk+ι(Y);l,ε') x {f: | f | < M (4.46)

with ε\δ\ as discussed previously in connection with Lemma 4.2. On the above
spaces they satisfy the bounds

\S\X, Yι;θ,ιl/')\ < Ee-(Kl-l)W exp(-(K - \)dj{X)) (4.47)

for κ\ ^ log(l + kλ), or simply for κ\ ̂  2. From this and (4.45) we obtain that

S{X,Y\θ,\j/') is also defined and analytic on the spaces (4.46). We would like to
estimate this function in terms of exponential factors involving linear sizes of X, Y.
The relevant linear size of X is dj(X), and for Y we take dk+ι(Y) defined by (1.3).

In order to find a relation between | # | (which is a number of cubes in the family
<&), dj(X) and dk+\(Y), we construct a proper tree graph for the domain Y. For
a domain Y^ we take a tree graph ΓQ starting at the center of D ^ and built of
segments connecting centers of nearest neighbor cubes, if they are of the same size.
If they have different sizes, then we take a shortest path connecting their centers
and contained in their union. We can take this tree graph in such a way that to each
cube in ^ ι \ except the cube D^, we can assign one segment, or one path. The
scaled length | |iBJt+1 of each segment is equal to 1, and the scaled length of a path
can be estimated by 1 -h \(d — 1) = \(d + 1). From this we obtain the following
simple bound

where in the second inequality we have used the fact that a cube in # may generate
(1L + \)d cubes in ̂ ι \ Now take a tree graph Γo cX satisfying the conditions of
the definition of dj(X), and such that J^Γ\ΓQ\ < dj{X) + ε, where ε is an arbitrary
positive number, and the length |Γ 0 | is taken in the fy-scale. This tree graph intersects
every cube from the cover π'j contained in X, so it intersects every cube from the
cover π^+ 1 contained in X\. The cube D ^ touches a cube from π'k+ι contained in
X\ along ad— 1-dimensional wall, and the last one intersects Γo, so we connect
ΓQ with the center of D ^ by a shortest path, and we combine this path with the
tree graph ΓQ ) obtaining this way a tree graph Γ('λ The scaled length of the path
can be estimated by dL + \, so we get

Π 7 ( 0 | + dL + 1 < d(2L + l)d\V Π
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We combine now all the graphs and we take the graph Γ = Γo U Γ ( 1 ) U U Γ(n\
It is a tree graph, if the paths connecting ΓQ with the centers of the cubes D ^ are
disjoint, which is always possible to achieve, and it is contained in Y. It is also
clear that it intersects every cube from the cover πf

k+ι contained in Y Π Ωk+ι, and
every cube from one of the covers π'j contained in YΠ(Ωj\Ωj+\). Thus we have

\Γ\Bk+ι ^ dk+ι(Y). On the other hand ΓOCX C Ωk+U hence \Γ0\Bk+ι = ^L-ι\Γ0\9

and

M 1 υ | ' fk.

+Σd(2L + \f\<€ Π 7 ( / ) | = L-ιLJη(dj(X) + ε) + d(2L + l)d\<g\.
ι = l

Combining the two bounds and taking the limit ε —> 0 we obtain the inequality

dk+i(Y) ^ L-{LJ'ηdj(X) + d(2L+ l)d\^\, (4.48)

which yields the desired relation between the three quantities involved.
Now we would like to estimate the function given by the formula (4.45). A

term in the sum is bounded in (4.47). For the exponent of the exponential functions
on the right-hand side of this bound we have

(ic, - 1)|*| +{κ-\)dj{X)

+ γ(L'η)-ικL-ίl/ηdj(X) ^ κ2\<€\ + κodj(X) + 2κdk+ι(Y), (4.49)

where we have assumed that jfc — 1 ^ Ko, 2d(2L+\y — ^K, or κ\ ^ 4d(2L + l)dκ,

and we have denoted κ2 = \κ\ — 1. To estimate the sum in (4.45) we use the

exponential factor e~K2^. We start with the following simple inequality:

where the "primes" mean that the sums are restricted to the admissible domains
determining a fixed domain Y. Using again the fact that a cube in ̂  Π (Ωj\Ωk+\)
may generate (2L + l)d cubes from π7 in Y ΠX{ Π (ΩJ\ΩJ+\) we obtain the bound

where the volume is taken in the ξ-scale, ξ = L~J. We take half of the exponent in
the exponential function on the right-hand side of the previous inequality and we ap-
ply the above bound. The remaining half yields the product ΠDiciΊnxcn(Ω \Ω +ι)

e~lK2

We can estimate the primed sum on the right-hand side by a sum over all subdo-
mains of Y Γ\Xf Π (Ωj\Ωj+\) which are unions of large cubes in the scale M\, and



Localization Expansions. I. "Background" Configurations 81

the last sum of the above products is equal to (1 + e 2K2)Mi . Thus
we can bound the whole primed sum on the right-hand side by

exp
Md

The expression in the parenthesis is equal to a value of the function f(x) = x —

e~xA at x = \κ2, where A = (2L + l)djp. This is an increasing function, because

/ ' ( * ) = 1 + e~xA > 0, and /(logΛ) = log A - 1 > 0, hence if \κ2 ^ logΛ, then

f(\κ2) > 0. With this assumption on κ2 the above exponential can be bounded

by 1, and we obtain that

Σ e~KlW ύ 1. (4.50)
Yi .Yi determines Y

The assumption on κ2 translates into an assumption on κ\ of the form κ\ ^
4Jlog((2Z+ l)^-) + 2. Let us analyze this assumption in more detail. We have

only two conditions on the quotient jj : that it is a power Lm°, where mo is a
natural number, and that it is ^ \4d. We can replace the above assumption on κ\
by the slightly stronger one κ\ ^ 8drπo log(2Z + 1), and taking the smallest num-
ber mo we still obtain a weaker condition than the one introduced previously, i.e.,
K\ ^ 4d(2L + \)dκ. We fix K\ satisfying both conditions.

The expansion (4.43), the definition (4.45) and the bounds (4.47), (4.48), (4.49),
(4.50) yield the expansion

; θ, Ψ*), (4.51)

whose terms are analytic functions on the domains (4.46), satisfying the bounds

\fi(X,Y;θ,ιl/)\ < Eexp(-κ0dj(X)-2κdM(Y)). (4.52)

Let us formulate the most important results on the localization expansion constructed
in this section in the following proposition.

Proposition 4.3. Let us consider the function (1.1), where $(X,\j/j) is analytic on a
complex space containing one of the two spaces Ξj(Άj(X); 1,8/), Ψj(X'9CoL/η,εk)
with the condition (3.107) [1] and it satisfies the bound (4.31). The function (1.1)
has a localization expansion of the form (4.51), whose terms are analytic functions
on the spaces (4.46) with ε',δ\ satisfying the conditions ε' ^ fi#+i, (4.38). They
depend on θ,ιj/\ or θ9ιj/9 restricted to 7, and they satisfy the bounds (4.52).

The construction of the localization expansion above is quite universal and we
will apply it in several other situations. Notice that until now we have obtained only
one condition on K, namely \κ — 1 ^ κo, or fc ^ 3κ:o + 3. Notice also that we have
formulated and proved it under the simplifying assumption X dX\ <Z Ωjt+i. Later
we will have to discuss also some simple variations, like X\ C Ωk. We have also
considered the two versions of xj/f, one as an independent complex variable, and the
other given by the formula (4.24). This will be also used in the future for some
simple generalizations.
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